Practical Financial Modelling
A Guide to Current Practice

m

PUBLISHING

Practical Financial Modelling
A Guide to Current Practice

Jonathan Swan

o

ELSEVIER
AMSTERDAM ~ BOSTON ~ HEIDELBERG ~LONDON ~ NEW YORK ~ OXFORD
PARIS SAN DIEGO SAN FRANCISCO SINGAPORE ~ SYDNEY TOKYO

CIMA Publishing

An imprint of Elsevier

Linacre House, Jordan Hill, Oxford OX2 8DP
30 Corporate Drive, Burlington, MA 01803

First published 2005
Copyright © 2005, Elsevier Ltd. All rights reserved

No part of this publication may be reproduced in any material form (including
photocopying or storing in any medium by electronic means and whether

or not transiently or incidentally to some other use of this publication) without

the written permission of the copyright holder except in accordance with the
provisions of the Copyright, Designs and Patents Act 1988 or under the terms of

a licence issued by the Copyright Licensing Agency Ltd, 90 Tottenham Court Road,
London, England W1T 4LP. Applications for the copyright holder’s written
permission to reproduce any part of this publication should be addressed

to the publisher

Permissions may be sought directly from Elsevier’s Science and Technology Rights
Department in Oxford, UK: phone: (+44) (0) 1865 843830; fax: (+44) (0) 1865 853333;
e-mail: permissions@elsevier.co.uk. You may also complete your request on-line via

the Elsevier Science homepage (www.elsevier.com), by selecting

‘Customer Support’ and then ‘Obtaining Permissions’

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

ISBN 0 7506 6356 1

For information on all CIMA publications visit our website at
www.cimapublishing.com

Typeset by Newgen Imaging Systems (P) Ltd., Chennai, India
Printed and bound in Great Britain

Working together to grow
libraries in developing countries

www.elsevier.com | www.bookaid.org | www.sabre.org

ELSEVIER BOOKAID oo Foundation

To Rebecca, Jack and Jeremy, who still don’t understand
what this book is about

Preface
About the Author
Context

1 Model structure
Introduction
Two approaches
Purpose
Structure
Workbook structure
Inputs
Workings
Outputs
Variations
Documentation
Reporting
Reports
Model development
Navigation

2 Quality control
Introduction
Taxonomies of error
Audit tools
Error values
Audit sheet
Structural checks
Arithmetical checks
Financial checks
Model map

3 Mainly formulae
Introduction
Range names
Additional name functionality
BODMAS
Timing
Changing time periods

Contents

x

X1

SN Q0 0 0 e

26
26
26
28
30
32
34
42
43
46

48
48
49
60
71
71
76

Contents

Circularities and iteration 79
Array formulae 88
Coercion 89
4 Mainly functions 90
Introduction 90
Logical 90
Lookup 99
Financial 109
Dates 111
Other useful functions 113
5 Model use 117
Introduction 117
Grouping and outlining 117
Data inputs 119
Conditional formatting 123
Custom formatting 126
Protection 131
6 Sensitivity analysis and scenarios 135
Introduction 135
Goal Seek 135
Data tables 136
Scenarios 138
Solver 147
Risk 147
Monte Carlo simulation 148
7 Automation 151
Introduction 151
Recorded macros 152
Iteration macro 153
Assigning macros 155
Written macros 157
Branching macros 158
Quarterly/annual macro 160
Error handling 160
User-defined functions 161
Appendix: Keyboard shortcuts 165

Index 170

Preface

Most of the books on financial modelling that I have come across tend to go long on the
financial and short on the modelling. Most of them are full of genuinely useful financial
calculations but they offer little insight into how to put them together in a robust and reli-
able model, in much the same way that a dictionary helps you with your spelling but does
not help you to write good prose. To stay with this analogy for a moment, I would describe
this book as a grammar that will provide you with a structural and conceptual basis for your
financial modelling. I shall assume that you have a good working vocabulary, or the ability
to refer to the appropriate dictionary, as required. This book sits between your Excel man-
ual and your finance textbook.

I should state at the outset that there is no agreed ‘best’ practice in financial modelling —
the methodology and techniques used are those which are best suited to the task at hand.
In this book we will examine some of the common, generic, approaches you will encounter
in financial models today, with a view to understanding the technical background and to
appreciate that the same problem can often be solved in several ways, some of which appear
better or more reliable than others, and some of which appear counter-intuitive and less
satisfactory. The intention is to encourage you to reflect on your own practice in the
light of these suggestions, and I am confident that you will be able to generate your
own solutions to the problems and issues that follow. Even if you are not convinced by my
arguments, by engaging with them you will have greater confidence in your own model-
ling abilities. You have picked this book from the shelf because at some point you have
asked yourself the fundamental question — is this model right?

About the Author

Jonathan Swan is a director of Operis TRG Limited, the training arm of Operis Group plc.
He has extensive experience in teaching the use of spreadsheets as a financial analysis tool.
Over the past decade he has developed and delivered financial modelling training
programmes to many investment banks, international financial institutions, management
consulting and accounting firms, in the City of London and throughout Europe.

Jonathan holds an MBA from the East London Business School (University of East
London) and is a member of the Securities Institute.

About Operis Group plc

Operis is a London-based project finance advisory firm, well known for its financial
modelling expertise and experience. We:

* develop financial models of large transactions for a range of clients which includes
financial institutions and project promoters in a variety of sectors and countries;

* advise government clients, companies and consortia in the PPP sector on project defini-
tion, bid strategy, funding routes, benchmarking, refinancing and project management;

* provide both formal and informal assurance advice for sponsors and funders in con-
nection with financial models and project documentation developed by other firms;

* have a department of accountants and tax advisors in-house to provide additional advice
in connection with such projects.

* are the largest provider of training in financial modelling, to over two thousand
individuals in the last three years;

* market software valuable in the development and auditing of large financial models,
which has been adopted by three out of four of the world’s largest accountancy prac-
tices; and

* are currently the only European firm specifically accredited to ISO 9001:2000 for its
financial modelling build, model audit and training activities.

The firm was established in 1990 and now has a headcount of 42, making it one of the
largest teams devoted to its particular discipline.

Context

People make mistakes

Let us face up to it. The list of investment decisions based on flawed models is large and
growing; for example, a cut-and-paste error cost a Canadian corporation $24m; an
unchecked economic model resulted in a plaintiff being awarded more than $12m in dam-
ages; and a US company blamed a typographical error for misrepresenting its profits by
$140 m.* These models were developed by skilled and professional analysts working for
world class institutions. The international accounting firm Ernst & Young has estimated
that some 80% of financial models contained errors, whilst at the 2003 European
Spreadsheet Risks Interest Group (EuSpRIG) conference the model auditing team from
PricewaterhouseCoopers declared that they had never found a model that did not contain
mistakes, and my own auditing team would agree. The reason we so rarely hear of this
appalling track record is that the organisations involved invariably close ranks and matters
are resolved outside the court room.

It doesn’t happen here

Although most firms would profess to have modelling standards and procedures, the reality
is that responsibility for the financial modelling function is often diffused, and individual
analysts apply their own interpretation of quality control. I have even heard directors claim-
ing that ‘we only recruit the best MBAs from the most prestigious business schools™ as if
this mantra somehow protects them from poor modelling and its consequences.

Human error has been the subject of academic and operational research for many years,
and there is a rich literature which includes the psychological analysis of error, various tax-
onomies of error, and models of human performance. Financial modelling has been inves-
tigated in this context for over two decades and the published research, although somewhat
limited and circumscribed, is remarkably consistent. In order to understand the causes of
error the researchers have attempted to investigate the modelling process and those carrying

"Further examples can be found at the European Spreadsheet Risks Interest Group website: www.eusprig.org

Context

out the modelling activity. Unfortunately investment banks and large corporations seem
reluctant to allow their analysts and managers to be used as subjects, and given that most
researchers are based in the business schools, the research guinea pigs are typically MBA or
undergraduate business studies students.

A consequence is the difficulty in setting a meaningful modelling exercise for research
purposes — most tend to be fairly limited, with a small number of inputs leading to
a relatively simple set of calculations. Given these constraints however, the results highlight
both inconsistencies in the way in which subjects develop models, and perhaps more
importantly, a general lack of diligence in checking through completed work.

It might be assumed that the business school student is not representative of the finan-
cial analyst of the investment bank, but in fact there is one key similarity: it is highly
unlikely that either of them have ever received formal training in financial modelling.
Indeed, many organisations (and individuals) equate ‘competency with Microsoft Excel’
with ‘competency in financial modelling’, which reveals a fundamental lack of under-
standing of the skills and knowledge required.

The principle of error reduction

I have taught practical financial modelling for several years. The methodology I teach is
based on that used by my colleagues, who have worked on some of the most complex
financial modelling assignments in the industry worldwide. This methodology is not
unique, it certainly is not rocket science, and I would never suggest that it is the only or
‘best” methodology. It is my intention to introduce the methodology in this book, and in
doing so, compare and contrast it with alternative approaches which are in common use
and might be described as current practice.

The delegates attending my courses are highly motivated finance, banking, or manage-
ment professionals who bring a range of modelling experience with them, and my exposition
of our methodology is often the stimulus for robust debate. However, although we may dis-
agree on the finer points, I am usually able to convince them of the validity of our approach
because it is based on what I call the ‘principle of error reduction’. This simple concept is
based on our own experience and that of others in the business, where we recognise that cer-
tain modelling operations are more error-prone than others. Going back to the research
referred to above, it seems that humans have a natural error rate to the order of 1%. Some of
the research recognises that financial model development is an activity similar to computer
programming and which has been extensively studied. It seems that computer programmers
anticipate an error rate of around 3% and spend upto 40% of their time checking and
reviewing their own work to reduce this rate even further. Is it worth asking how much time
the average financial analyst spends on model audit and review? And yet I still come across
very intelligent people who claim that their work is error-free. I believe in adopting a prag-
matic approach which accepts that errors are inevitable but then seeks to minimise their
occurrence and to enhance their detection.

There is no methodology for error-proofing: there is no way of ensuring that a plus is
typed instead of a minus. The principle of error reduction enables us to recognise potential
sources of error and to either substitute them with a more reliable technique, or to imple-
ment an audit check which can be used to test the validity of the routine.

Context

In the early days of financial modelling, users and sponsors were willing to accept a
certain element of ambiguity; that the model was, of course, only an approximation of the
transaction. In recent years there has been a trend to see the model as the ultimate reality
with generalised assumptions taking on the guise of hard fact. It might be helpful to remind
ourselves of the simple adage: is it better to be vaguely right, than precisely wrong?

Definition

Here’s a working definition: the principle of error reduction accepts that errors are inevitable.
Some techniques are more prone to error than others. We reduce the risk of error by using
alternative techniques and a consistent methodology that serves to enhance the detection of
errors when they occur.

This book

The overall structure of this book reflects the modelling process: we begin by considering
how model purpose can dictate model structure, followed by an exploration of various lay-
outs which are designed in consultation with the users or the model sponsors. This then
leads into techniques used in model building, ensuring that quality control is built in from
the outset. We then look at techniques which enhance the usability of the model but at the
same time protect the model from unwanted amendments.

Chapter 1: Model structure

This sets out a number of issues relating to model structure and some suggestions about what
might constitute a good model layout. The structure of a financial model will depend in large
part on its purpose and use, which generally means that there is no single blueprint. However,
by introducing a top-down methodology which includes user involvement from the outset,
and by focussing on the outputs required of the model, we can more easily work with and
manage our users expectations and in so doing clarify the modelling task. Model building is
an intangible process and we must therefore emphasise the tangible evidence of our work: the
printouts. Right from the very first moments of developing the model structure we must be
prepared to generate reports that can be seen and used by the model owners.

Chapter 2: Quality control

Quality control should be an integral part of the model development process, and not a set
of checks or procedures to be carried out on completion. A fundamental part of the
process, even for relatively minor models, is to set up an audit sheet on which are listed the
results of the key checks that should be carried out.

Chapter 3: Mainly formulae

A financial model is all about calculations, and this chapter sets out a number of ways in
which we can make our formulae clearer and easier to understand. One of the most con-
tentious issues in current modelling practice is the use of range names and the arguments for
and against are rehearsed at some length. In many models the issue of timing is important,

Context

where the occurrence and duration of key events impact on dependent routines.
Techniques such as masking offer simple solutions to what can often appear to be difficult
problems. The problem of circular formulae and the use of iteration is also described.

Chapter 4: Mainly functions

A high level of competence in modelling can be achieved through the knowledge of a
handful of Excel functions. Building on the ideas expressed in chapter 3, we extend our
abilities to solve complex problems by exploring the logic and the lookup-type functions,
along with a handful of date and other functions.

Chapter 5: Model use

Our users rely on us to set up the calculations and functionality of the model for ease of
use, and so we need to understand how they might approach the model and anticipate ways
in which we can both help them use the model sensibly and without damaging the under-
lying code or structure. Functionality such as data validation and drop-down boxes can
simplify user—model interaction.

Chapter 6: Sensitivity analysis and scenarios

One of the key reasons for building models, as opposed to spreadsheets, is that we wish to
explore the effects of changing input values on the corresponding outputs. This is either by
changing or flexing a small number of inputs (sensitivity analysis) or by running scenarios.
Techniques for data tables are described, along with some of the common ways to manage
scenarios, including CHOOSE, VLOOKUP, and multiple input sheets.

Chapter 7: Automation

Good modelling practice suggests that the analyst should generally avoid using macros and
to write appropriate code in the worksheet. However, the sheer repetitiveness or complex-
ity of some tasks means that automation is a genuine option, and so a good modeller
should have an understanding of basic macro techniques in the context of good practice.
We explore recording and writing macro code and assigning macros to keyboard shortcuts,
worksheet buttons, and menus. We also look at user-defined functions.

Microsoft Excel

I have tested all the exercises and examples in the following chapters with all versions of
Excel from 95 through XP and 2003, but not with Lotus 1-2-3 or Quattro Pro. We shall
be using Microsoft Excel throughout, and I have endeavoured to ensure that we use native
Excel functionality, without resorting to macros, add-ins or third party software. I am
aware that many organisations do not care much for the endless round of Microsoft
updates and new software versions and that you may be working, quite happily, on 97 or
2000. The screen shots are from Excel 2003, but the exercises and illustrations work in all
recent versions of Excel, unless stated otherwise.

Context

The Lotus 1-2-3 legacy

Microsoft Excel is the industry standard software. I dont feel it necessary to provide a
history of the spreadsheet but it is important to recognise the role played by Lotus 1-2-3
and the way in which it still influences financial modelling practice today. Many analysts,
myself included, achieved a high level of competence in the days when 1-2-3 dominated
the market. In the time since, these individuals have progressed beyond the analytical
function and are now in middle and senior management. Modelling is no longer part of
their job description, and instead they manage, perhaps at a distance, those who have the
day-to-day responsibility for developing financial models.

The problem is that the modelling methodologies and techniques of 1-2-3 are not
necessarily the most appropriate for modern modelling, but management is unwilling or
unable to perceive the need to discard the old way of working and therefore does not
encourage their subordinates to learn new methods. We often see models in which the
inputs have been coloured blue — a tradition that started in the old days of single sheet
spreadsheets. Another 1-2-3 convention is that of starting all formulae with a + sign
instead of =.* In the earlier versions of 1-2-3 cell contents could only be deleted using the
cumbersome /Range Erase command sequence, rather than using the Delete key. Some
users developed the workaround of using the spacebar to clear cells, which of course inserts
an invisible space (text) character into the cell. This still causes problems such as generat-
ing spurious #VALUE! errors in dependent formulae. A further feature of the 1-2-3 mod-
eller is an over-reliance on a very limited set of functions, typically IFs and VLOOKUPs,
whereas we now have a range of additional functions and techniques available and which
will be explored in this book.

Without doubt, 1-2-3 was the leading spreadsheet of the early 1990s, and that in good
hands it was an impressive and robust tool. Personally I was not convinced about the value
of the Microsoft product until Excel 5 was released. The point is that Excel dominates
the market and is the spreadsheet application of choice for the vast majority of those who
produce financial models.

Conventions

I have travelled quite widely in the course of my teaching and I am well aware of the
international differences in formulae, functions, formatting, and most of all the keyboard
shortcuts. With a view to an international readership I have tried to anticipate possible
problems when working on the exercises in this book, and in several cases I point out where
specific shortcuts do not work. In this book I will use UK/US settings for my routine work
I use the following conventions:

=|F(E25>1000.00,E25,0)

T have also found that accountants have the habit of doing this because of their tendency to use the number key-
pad and the + sign is close to hand whereas the = sign is on the main keyboard. This is also the case in some
countries (Switzerland, Germany) where the keyboard layout means that the + sign is easier to type. In any case
it makes absolutely no difference to the result but in my opinion just looks rather scruffy.

Context

Elsewhere I should write this as

=WENN(E25>1.000,00;E25;0) or =SI(E25>1.000,00;E25;0), that is, using the local
name for the function, the ; semicolon as the argument separator, and recognising the
appropriate thousands and decimal notations.

Anticipating that some readers may wish to copy formulae directly from the page, I have
elected to show them exactly as they should be written. This may be at the cost of clarity,
but entering spaces into calculations can cause problems. For example,

=sum (E24:K24) generated a #NAME? error, because in this case Excel does not recog-
nise the SUM.

Keyboard shortcuts

I encourage the use of keyboard shortcuts to make our work more accurate and efficient.
Learn the shortcuts most relevant to the work you carry out routinely.

Menu commands

In this book I will use the following notation for Excel menu commands:
Insert, Name, Create

The underlined letters indicate the keys used in the shortcut: Alt+l, N, C

The plus sign indicates that the Alt+] are pressed together, released, and then the N is
pressed and released, followed by the C.

In most dialog boxes, the OK button is the default, which means we can simply press
Enter to confirm the command. Esc will of course cancel the operation.

Dialog box commands

The command sequence Tools, Options, Calculation, Iteration has no underline for the
Calculation element. This is because Calculation is the name of a tab in the dialog box.
If, for example, we use Alt+T, O, the Options dialog box normally opens on the View tab.
To select the Calculation tab, press Ctrl+Page Down, or Ctrl+right arrow.

To select commands within the dialog box, use the Tab key (or Shift+Tab), or better,
press Alt+the underlined letter in the command (check boxes and items in lists can be
selected using the Spacebar).

The full keystroke sequence for Tools, Options, Calculation, Iteration is:

Alt+T, O, Ctrl+Page Down, Alt+l.

If you are using Excel in a language other than English, substitute the appropriate
command and shortcut sequences.

Context

Character shortcuts

Many shortcuts avoid the menus altogether. Ctrl+S is the shortcut for File, Save. The most
basic of these are listed within the menus themselves. These shortcuts tend to be language-
independent — Ctrl+P seems to print on all versions of Excel I have used so far. However,
shortcuts which use specific characters may not work. For example, Ctrl+[(open square
bracket) serves to select precedent cells on an English language installation of Excel.
Although the [character exists on other keyboards, it may not work as a shortcut. The
equivalent for Ctrl+[on a German keyboard is Strg+U.

Menu and toolbar shortcuts

An alternative method of activating the menu bar is to press F10. The shortcut menu which
is normally shown by right-clicking with the mouse, can be displayed by pressing
Shift+F10.

You can even access the toolbars using the keyboard. Press F10 to activate the menu bar,
then press Ctrl+Tab (repeatedly) to activate each toolbar in turn. Use the arrow keys to
scroll across the toolbars and press Enter to select the button. If you press F10 followed by
Shift+F10 you will see the Toolbars menu.

Further information

A list of keyboard shortcuts used in this book is provided in the appendix. For more infor-
mation about these and other shortcuts, use Excel Help (F1) and search for ‘keyboard
shortcuts’.

Context

Function Help

Paste Function

Funckion categary:

Function narme:

walues),

NP¥{rate,valuel, valuez,...)

Most Recently Used «| |DB -
Al ~ | |DDE
Fy
Dake & Time IPMT
Math & Trig IRR
Skatistical ISPMT
Lookup & Reference MIRR.
Database MPER.
Texk [P
Logical PMT
Information LJ PPMT _‘_]

Returns the nek present value of an investment based on a discount rate
and a series of future payments (negative values) and income (positive

[o« |

Cancel

Shift+F3 Paste Function

When writing functions into the spreadsheet it can be difficult to remember the
sequence of arguments and so I find it helpful to remember that we can press Shift+F3 to
fire up the Paste Function dialog box; or once we have typed the function name we can
press Ctrl+A to bring up the function window. It is worth noting that the function

window can be detached and moved around the screen with the mouse.

TPy

Rate]

Yaluel |

YalueZ |

Faormula result =

Returns the net present value of an investment based on a discount rate and a series of
future pavments (negative values) and income (positive values).
Rate: is the rate of discount over the length of one period,

Zancel

o]

Ctrl+A Function window

CHAPTER Model structure

Introduction

A good model is easily recognisable — it has clearly identifiable results based on clearly
defined inputs. The relationship between them can be tracked through a logical audit trail.
There is little empirical research into the needs and expectations of model users, but our
experience suggests that most users want to know the location of the key results. The abil-
ity to perform sensitivity and/or scenario analysis is also very important, so the location of
the key inputs should be explicit.

In this chapter, we will consider some of the general conventions concerning model struc-
ture. It is tempting to refer to them as rules, but in almost every case the suggestion that ‘we
must always do this ..." can be immediately countered by the observation ‘except when we
don't. It is important to recognise that when setting out a rule-based methodology we should
have techniques for proving conformance with such rules and for locating and identifying
exceptions. This forms the basis of Chapter 2.

The demonstration workbooks for this chapter are located in the Chapter 1: Model
structure folder on the CD-ROM.

Choosing the right tool

In a book about financial modelling it may seem obvious that we are talking about spread-
sheets, but remember that this isn’t always the case. Very recently I met with a client who was
trying to design a model that would be manipulated in several ways to generate management
information relating to the operational costs of a number of business units. The calculations
were arithmetically simple, and I soon realised that the analyst wanted to perform das mod-
elling rather than financial modelling. It would be far more efficient to use a database applica-
tion than a spreadsheet. We had a quick refresher session on Microsoft Access, sketched out an
appropriate table and query structure, and the task was completed by the end of the afternoon.

Two approaches

Although the structure of a model will depend for a large part on its purpose, there are a
number of ground rules which should be recognised. I always recommend a top-down

Practical Financial Modelling

approach: we identify the purpose or objective of the model first, followed by a consider-
ation of the usage of the model. Consider the following simple examples:

1 Model A will be used to calculate the net present value and internal rate of return of a
manufacturing project, to be used by the company’s management.

2 Model B is a loan calculator, which will be used and re-used by a number of colleagues.

3 Model Cis to produce consolidated monthly accounts using information from several
business units, to be reported to the management.

4 Model D is a timesheeting system.

5 Model E is a budgeting model which will be used over a period of time, and will require
the actual figures to be compared with the budgeted figures as they become available.

In the first model it is likely that we will be required to carry out sensitivity and scenario
analysis, possibly using risk techniques. It is likely to be a one-off development, where we
would build it, use it, and probably discard it once the project goes ahead. The loan calcu-
lator, however, is specifically designed for multiple use, and for multiple users of unknown
modelling experience. In this case, we would need to think about providing documenta-
tion and perhaps writing macros to automate the use of the model (and restricting the abil-
ity of the users to break anything!). The third model will generate standard management
reports but the complexity will lie in obtaining and organising the input information. It
might be that we would have to think about linking to the spreadsheets developed by each
individual business unit. The timesheeting system would probably be developed as a tem-
plate, and a single sheet should be sufficient. The budgeting model is a work-in-progress,
in that it will be used over a period of time, during which the actuals will be entered into
the model for comparison with the forecast or budget values, and reference will be made
to last year’s results for comparison.

Already, in each case, we are thinking about the overall structure and function of the
model, before concerning ourselves with the detail, and ideally we are engaging our users
or sponsors in the process. Unfortunately, we find that the majority of modellers adopt a
bottom-up approach, in which the collection and input of the raw data takes priority. This
results in a rapid and unstructured early development phase, followed by a problematic and
time consuming late development phase in which the analyst attempts to structure and
restructure the earlier work. Quite often the model grows by a process of accretion, in
which different model elements are bolted on to the existing code, with some being
definite enhancements whilst others do not really seem to do much. I also refer to the
bottom-up concept as the ‘stream of consciousness approach’ a sequence of ideas
thought up one after another, but without necessarily taking into account the relationships
within the model itself. This type of modelling also tends to be idiosyncratic, by which
I mean that each model, regardless of purpose, is as distinct and individual as the analyst
who created it. It is often quite difficult for colleagues to understand the model, and
in the absence of the model builder it can be almost impossible to have full confidence that
the model is actually doing what it is supposed to do, and because the users or sponsors
have not been involved in the development process the results themselves may be unsatis-
factory. Quite often discussions about such models become confrontational rather than
co-operative.

Model structure

Purpose

Returning to the top-down approach, we might summarise the key issues as being ‘what is
this model for?’, and to an equal extent, ‘who is this model for?” This means that we give care-
ful consideration to model purpose and use before even thinking about firing up Excel.
I often take a piece of paper and sketch out the model layout and structure. The first task
in the spreadsheet is to design the model outputs, and by outputs we mean the
physical reports that will be generated from the model. In doing this, we can then show others
the outcomes we intend to achieve — without the numbers, of course, but in terms of
the deliverable we hope to produce. On a recent training assignment with a German
investment bank, I was asked if it was possible to develop a standard company valuation
model. I was able to liaise with colleagues in London who prepared various drafts of the out-
puts, and by using an iterative process with local staff we were able to produce an agreed
model structure by the end of the week. My colleagues were then able to set about the task
of writing the model and the whole transaction was turned around in a very short time.

The top-down approach means that the outputs are agreed at the outset. From the mod-
elling perspective, this then offers a work plan: the modelling assignment is simply to com-
plete all the appropriate rows on the outputs sheet. And in doing so, the outputs then act
as a work record, so that we can print the model at a moment’s notice to show colleagues,
management, or the client.

Although we are considering model development, we can use the same approach when
reviewing models: the key question is still ‘what is this model for?’ I like to set myself what
I call the “2 Minute Rule” — can I identify the key results of someone’s model within the
first two minutes of examining it?

Structure

As mentioned above, model structure will depend on model purpose. As with many issues in
financial modelling, different modellers will have different opinions concerning model struc-
ture, and it would be foolish to suggest that there is a best practice that could work for all
models at all times. But there is some agreement about what might constitute good practice,
and so we will review the key ideas and then look at some variations on the theme. Some of
the ideas which follow may seem quite counterintuitive, but generally the principle of error
reduction applies, and the time taken on developing a robust model structure will be repaid
by reduced audit time and a flattening of the learning curve for users. I will not present these
ideas as rules to be followed rigidly, because in almost every case there are valid exceptions.

Workbook structure

A very old modelling principle, from the first days of multiple sheets, is that each sheet
should have the same layout and that each column should have the same function on each
sheet. For example, column E is quarter 1 of the first year of the forecast period, on every
sheet in the workbook. The operational researchers have shown that if sheets have different
layouts the risk of error increases as the developers or users have to orientate themselves to
the layout of each sheet, and that levels of confidence are generally lower.

Practical Financial Modelling

Inputs

The inputs or assumptions sheet

This is where you should store all the numbers that are used in your model. It is generally
agreed that it is very sensible to isolate the inputs or assumptions of the model. The premise is
that you or your users should be able to change the numbers used in the model, but not the
formulae. When you look at your Excel screen, how do you know if you are looking at num-
bers or calculations? The simple answer is that you click on the cell and inspect the contents
on the formula bar, but this is not particularly efficient. The suggestion is that you keep all your
inputs on a separate sheet. If we have a separate inputs sheet, we can protect all other sheets in
the file, so that users can flex the model and run sensitivity analysis without breaking anything.

You should always be able to track an assumption right back to its source, be it a data
book or project document, and it should be expressed in the same units in the inputs, in
the outputs, and in the documentation.

Documentation

I would recommend that inputs should be documented — there are three types of data you
can put into a model: publicly available information, commercially sensitive information,
and the ‘plug’ number (i.e. an imaginary or temporary number). The latter should be very
clearly identified. A few years ago I wrote an example of an interest calculation in response
to an enquiry from someone who had attended a course of mine. A couple of months later
I was dismayed to see that the analyst had simply copied and pasted this routine from my
email into his model. The interest rate I had used was purely hypothetical and we both
learned an important lesson — I now clearly identify my plug numbers with colour and doc-
ument them with cell comments.

Comments and text boxes

Excel is not particularly good at handling large amounts of text. Cell comments (Shift+F2)
are very useful but of limited functionality. Do not be tempted to use merged cells as these
break down the underlying structure of the spreadsheet. Although a cell can contain a sub-
stantial amount of text and can be formatted as required (use Alt+Enter to wrap text within
the cell), the cell will not expand automatically, and we can end up with an irritatingly large
entry in the formula bar. Cells can contain up to 32,767 characters, of which only the first
1,024 will appear in the cell (formulae are restricted to the 1,024 limit). Large amounts of
text should be placed in text boxes. These can be created from the Drawing toolbar, and
have the benefit that they can be easily edited, formatted, resized, and moved.

As the text box is an object, under Tools, Options, View, we can choose to Hide All so
that the box is neither shown or printed. The print option can also be set using the text
box shortcut menu (right-click on the box border) and choosing Properties in the Format
Text Box dialog,.

Accuracy

When setting up the inputs sheet it is appropriate to determine the level of accuracy and
the level of detail that is required. In some types of model we might start out with ball-park

Model structure

figures and then gradually refine the detail. With others we may be able to accept some
imprecision or approximation, but some may require a high level of detail and accuracy
from the outset. I often point out that it is the discrimination and common sense applied
in selecting the correct inputs and excluding those that are trivial or irrelevant that can
make or break a model. The problem is that this ability only comes with experience.

Colour

Some people suggest that it is sufficient merely to colour the inputs wherever they are
located in the workbook. I am not too keen on this approach, because using the principle
of error reduction these analysts have to remember to colour the cells every time they enter
a value. Forgetting this even once means that the numbers are lost in the mass of calcula-
tions (although we do have techniques for locating them again in Chapter 2).

Generally a consistent approach to the use of colour throughout the model can be very help-
ful — if you have ever played around with Visual Basic you will have seen how colour is used
to indicate different elements of the macro code. Sensible use of colour psychology can help
others grasp the layout of your work. I prefer to use fill (background) colours — font colours
don’t always stand out, especially if the cell is currently blank or has a number format which
returns a “~” for zero values. Don't use too many colours, do make them different, and always
remember that around 10% of your colleagues are affected by some form of colour blindness.

Absence of calculations

The final point about the inputs sheet is that it contains no calculations whatsoever,
because that is the function of the workings sheet. The immediate exception to this sweep-
ing generalisation is that data tables (Chapter 6) must be located on the same sheet as the
input being tested. Also, I would not consider a link formula as a calculation. If we want
to use the same production figure for each year in the forecast period, it is a simple exercise
to write the figure in the first cell and put link formulae in the rest of the row. Other than
this, the inputs sheet is made up of raw numbers.

A] C o E F ! G H | J K ! M
1
2 [Financial yaar endirg | 2004 2005 2006 2007 2008, 2009 2010 2011 Yearsin |
3
4 Inflabion rate 3% 3% % A% 3% 3% % A% Inllabanin
5
6 O
(e real tems price 2004) 18 18 13 8 13 18 13 18 OHiPricain
L] production (housiands umtsfdig) o 4 4] B L]] 0 Froducionin
.| prodechon () 35 =9 (] Fa e He Lo o) Froductonlneln

11 | Cperating costs, in real terms

12 il varsabilie (AL o 8 3 3 3 3 3 0 Contallnd Viarsatakeln
13 frind AN} 0 10 (e 10,100 K 100 0L 10,0000 [100 0 10,0000 fan 0 ConlaFmmdlin

1"

Inputs sheet with cell links

Workings

The workings or calculations sheet

This is perhaps the more controversial issue when considering model structure. The
suggestion here is that all the calculations used in the model are located on a single sheet,
which by implication can then be rather large. However, the operational researchers have
shown that the use of multiple sheets increases the risk of error, especially in large models

Practical Financial Modelling

where it can be difficult to form a mental map of the overall model layout and the rela-
tionships between different elements on different sheets. The principle of error reduc-
tion therefore applies, and we enter all the calculations on a single sheet.

Logic cascade

Quite often we find that in the process of building the workings, a cascade effect is intro-
duced, in which logic flows from left to right and from top to bottom (but not always). The
flow is in general linear, which can be of great benefit in tracking logic and debugging errors.
The audit techniques and tools in the Chapter 2 work very effectively with this methodology.

The size of the sheet

Some people express concern about the potential size of the workings sheet. Variations
might allow for the workings to be spread over several sheets to make them manageable,
but the concern is that the overall linear flow of information from inputs to workings to
outputs is compromised by workings logic flowing in the reverse direction. The judicious
use of grouping and outlining techniques (Chapter 5) and the use of colour can make a
large workings sheet less intimidating.

Some people complain that a lengthy workings sheet would be impossible to work with.
I tend to point out that the conceptual model is already established if we have ever looked
at a large document in a word processor. Imagine if Microsoft Word used the same sheet
layout as Excel.

No numbers

As with the earlier observation about the absence of calculations on the inputs sheet, we
should also note that there should be no values on the workings sheet (but we will consider
an exception — the base column — later on). This means both input values proper, and also
hard-coded values which have been typed directly into a calculation, for example,
=E117"1.175. In Chapter 2 we will look at ways of detecting such slips. Values from the
inputs sheet are brought through to the workings by the use of link formulae:

=Inputs!E5

I would strongly recommend that we avoid writing calculations that combine input links
with workings formulae, for example

—D10°(1+Inputs!E5)

I am quite happy to accept that this formula works, but from an audit/review perspective it
requires us to check references on two sheets rather than one. I describe this type of formula
as a three-dimensional calculation and I will consider it further in Chapter 2. At this stage
it is worth noting that by using links to pick up values from the inputs sheet, and then to
write calculations based on the links, we end up with a full audit trail on the one sheet.

We will explore the functionality of the workings sheet in more detail in the following
chapters.

Model structure

A B ISR e E ||
1

2 |Financial year ending 2004 2005

3

4 |Inflation | |

4 | [rate | | 3% =Inflationln InflationRate
B | lindex | 1 1.03 =DE™(1HnflationRate) | Inflationindex
7

8_ |Price |

o real terms (2004) | | 18 =Priceln |PriceReal
10| 'maoney terms | | 18.54 =PriceReal"Inflationindex | Priceloney

12 :F'roduction

13 | production {thousands units/day) 0 =Productionin ProductionTUD
14 production {days) 365 =ProductionDaysIn |ProductionDays
15 total units/year 0 =ProductionTUD*FProductionDays™1000 | Productionfnnual
168

17 |R_av_ enue 0 =ProductionAnnual*Priceloney Revenue

Workings sheet with links to inputs sheet

Outputs

Rationale

If the concept of the single workings sheet is controversial, the design principles of the out-
put sheets are the most counterintuitive. The two key suggestions are that the output sheets
are populated with links to the workings sheets, and that none of the output sheets are
linked to each other. To explain this, let us consider the calculation of depreciation. If my
outputs include the pro forma financial statements such as the Cash Flow, the Profit and
Loss (P&L), and the Balance Sheet, we would expect depreciation to be reported on the
P&L and the effect of it would be to reduce the book value of the fixed assets on the bal-
ance sheet. However, rather than feeding the P&L depreciation through to the balance
sheet, the calculations are set out on the workings sheet, as shown below.

28 |Fined assets: Development

40| depreciation rate 2% % 2% Depllatelevelopment

i vaphy, eal 40 00 ann n n Capexleveiprment Req

32 NBV b 0 32960000 26,368,000 .. NEVDevelopmentBf

33 capei, money 41,200 000 a 0. Capont el #- goes to Cash Flow

14 depreciation 0240000 6592000 5271600 DeprecistionDevelprent ———®goes to Profit and Loss
35 NBW o 0 32960000 25363000 21094400 . MEY Denverloprment CF ————#eyues Lo Balanue Shewl

36

Workings results feed through to the outputs sheets

We should find that each line of output contains a single formula which links back to
the workings. The benefit is that revenue on the cash flow is the same as revenue on the
P&L because they both link to the original revenue as calculated on the workings.

I would recommend that each output sheet should contain summary calculations, that
is, wherever the output heading is Total, Subtotal, or Net, there should be a simple sum or
addition (or whatever) of the relevant output rows. This serves to make each output sheet
internally consistent; the numbers always add up. The imbalance check on the balance sheet,

Practical Financial Modelling

for example, should be based on the balance sheet itself and not on a suspense account
tucked away on the workings sheet!

il oS Bt [- St E

1 BALANCE SHEET

R

3 Financial year ending 2004 2005
4

-5 |Fixed assets 33.0) =NB%Total Cf

E

? \Current agsets _ _

8 | |cash | | 28.8) =CashCf

e85
10 [Current liabilities _ _
11 [overdratt | - |=Overdraficf
12 diidends payable | (1.8) =DividendsCf

13| [tax payable - |=TaxPayableCf
14 total | (1.8)|=E11+E124E13
15| :

16 |Deferred liabilities | | _
A7 |debt | | (50.0)=DebtCf

18

19 [Met assets 10.0) =E5+ES+E14+E17
2l |
214 Equity _ |

22 linvested | | 20.00 =EquityCf

23 Iretained earnings | (10.0) =RetainedEarningsCf
24 | taotal | 10.0) =E22+E23

%5

26 Shareholders’ funds 10.0=E24
27 | _ :

28 |Imbalance | 0=E19-E26

29

Outputs sheets contain links to workings, and summary calculations

Audit

In setting up such summary calculations it is worth recognising that similar calculations
may already exist in the workings. We might have an operating cash flow line as a sum-
mary calculation on the Cash Flow report, as well as an operating cash flow formula in

Model structure

the workings. This apparent duplication has a benefit, because, as the accountants teach us,
if we can calculate the same thing using two different methods and the results agree, we can
have confidence in our work. In Chapter 2, we will look at the idea of setting up an audit
sheet in which we specifically check output results with workings for this purpose.

Variations

A reality check

As I teach this set of ideas concerning model structure on my courses, I normally find that
at this stage I will have one or two individuals simmering with indignation at this ivory tower
exposition of how models should be built, in contrast to the realities of model building in
real organisations. But this is not ivory tower, and there are many equally valid approaches
to model structure. The key point is that we have a standard sequence of inputs — workings
— outputs. If we change input 7, we should see a change in output O. There is a linear path
between the two, most of which is on the workings sheet. This basic methodology, once
understood, becomes a very flexible basis for different modelling situations.
Earlier in this chapter we considered five different models:

1 Model A is used to calculate the net present value and internal rate of return of a manu-
facturing project, to be used by the company’s management.

2 Model B is a loan calculator, which will be used and re-used by a number of colleagues.

3 Model C produces consolidated monthly accounts using information from several
business units, to be reported to management.

4 Model D is a timesheeting system.

5 Model E is a budgeting model which will be used over a period of time, and will require the
actual figures to be compared with the budgeted figures as they become available.

I would suggest that model A best illustrates the straightforward inputs—workings—outputs
structure described above. The management would want to flex the inputs sheet for the
sensitivity analysis, and the results are set out on the outputs. Model B, the loan calculator,
introduces the first variation — we would probably want to show the inputs and outputs on
the same sheet. We would need to ensure that the outputs could not be overwritten, and
I would still recommend that we have a separate workings sheet.

Model C is also a variation, this time perhaps with multiple inputs sheets, one for each
business unit. These could be copied and pasted from the source spreadsheets, or we could
link the files. In general terms it is best to avoid file links in models (explained below),
but in this case it might be the only realistic solution. The workings sheet is then used to
consolidate this information before feeding it into the calculations, indeed it might be
possible to have individual workings sheets for each business unit input sheet, with a
consolidation workings sheet to pull it all together. The output sheets, in our methodol-
ogy, are based on the workings and as such need little attention.

The fourth model, the timesheeting system, is perhaps so simple it can be set out on one
sheet. The constants would be the employee name and number, the dates, the hourly rate,
and the overtime rate, and the only real variable is the number of hours worked. Once the

Practical Financial Modelling

information has been input, the model (if we can call it that) is printed and submitted
to management. As long as we can differentiate inputs from workings and outputs, the
structure holds.

Model E, the budgeting model, is an interesting mixture of historic data and forecast
assumptions or estimates, with the added factor of the actuals which will be entered during
the year. The number-crunching is probably quite simple, with some year-to-date summary
formulae and perhaps some extrapolations of budget under/overspend. Reporting should be
straightforward, but the model will need to be set up so that the user is clear about what can
and cannot be changed. A single, well laid out sheet might be an option, but it may be more
appropriate to have a historic (previous years figures) inputs sheet, a forecast assumptions
inputs sheet, an actuals inputs sheet, and then the workings and the outputs. The historic
sheet is not going to change, the forecast sheet might be manipulated in response to the
information made available during the year, and the actuals sheet itself is for the ongoing
darta entry. The outputs sheets would need to display all three input elements for compari-
son, along with any variance and extrapolation results.

Other variations are permissible. Model A, the NPV calculation, may contain a sub-
stantial amount of operating data relating to the manufacturing project, but in terms of
sensitivity analysis the management might be interested in flexing just one or two key vari-
ables. In this context we might consider two inputs sheets — one for the key drivers and the
other for the bulk of the unchanging assumptions. Or in the example of company valua-
tion modelling, we would have historic data about the company and assumptions that
relate to the forecast period. The historic data is not going to change but the forecast
assumptions will be tested, so put them on separate sheets (one tip relating to historic data
is to make sure that totals and subtotals are calculated and not simply typed in — this will
flag up any errors due to rounding when the historic data was compiled).

Returning to Model C, the consolidation model, I mentioned that I am not particularly
keen on linking to other files. The premise here is that each model should be self-con-
tained, and file links are a notorious cause of error — particularly if the linked file is no
longer in the location specified by the path in the link formulae — the classic example being
when the model and its files are sent as email attachments. These are usually stored in the
recipient’s Temp directory and the links fail. Remember, if Excel is unable to refresh the
links to the precedent files, your model is essentially broken. If file links are to be used,
make sure they are isolated from the rest of the model. To manage file links, such as in
model C, I suggest that we set up workbook-specific link sheets containing the relevant
links, such that each link sheet contains links to only one external workbook. In other
models it may just be appropriate to have a single links sheet, which contains all the file
link formulae. These values are then fed into the model as required.

Documentation

Key information

Whether we are top-down or bottom-up modellers, once we get started on building a
model the temptation is to crack on and get the job done. It is important to make sure that
you document your work from the outset. I would recommend a separate documentation
sheet, although you could include this information on the audit sheet as described in

Model structure

Chapter 2. Information we should include would be:

1 Model name.

2 Version number.

3 Filename — use the CELL function to return the full path of the workbook:=CELL
(“filename”).

4 Date — do not be tempted to use =NOW() functionality as this will only tell you the
current date, not the date when the model was last used. The date must be hard-coded
(try Ctrl+; as a date shortcut). Put the current date and time in the page footer.

5 Model author — your details, including telephone number and email address, in case
anyone needs to get hold of you concerning the model.

6 Model sponsor — on whose behalf are you building the model? Contact details.

7 Model owner — if questions arise, who is empowered to make decisions concerning
accounting policies? Who has ultimate responsibility for the verification of the inputs?
Contact details.

8 Work completed — a record of main features/elements completed. With dates.

9 Work to follow — a list of priorities for future tasks. With deadlines.

10 Amendments — work previously completed but then revised. With dates.

11 Iteration cycle — how many times has the model been subjected to review/audit by the
model sponsor/owner?

12 Audit — what is the overall audit status of the model (see Chapter 2).

13 Instructions to users — description of model purpose, locations of key inputs, key out-
puts. Description of macros. Instructions for printing.

14 Navigation — Go To macro buttons or hyperlinks.

[B | c | D | E | F | ER| H | | J

1 4

2 1

S todel name NewCo FSA Regulatory Financials Forecast

4| “ersion number 0.5

a5 Filename CAFSAMewCo FSA Regulatory Financials Forecast. xls]Documentation

6 | Date 01/06/2004

| Deadline 30/06/2004

g | Author J5S, P to review

o Sponsor | MEA,

10| Chwenier Finance Director, finance. director@newco, co.uk

L Wark completed tadel structure

12 Agreernent with F3A financial requirermnents template

13

14| Wark to follow Confirmation of applicable FSA ratios

15

16 | Amendments il

17 |

18 | lteration cycle 1

20| Audit status FALSE

21

22 | Instructions il

23

;g i anation Key Inputs ‘ Warkings ‘

% |

erd FSA Report ‘ Financial statments

28

Basic workbook documentation, with navigation buttons

Practical Financial Modelling

File Properties

In my experience the File, Properties dialog box is little used. It is a generic Microsoft
Office feature and the five tabs in the dialog box store information which may not be
apparent in the workbook itself, or difficult to update manually.

Under Tools, Options, General, Prompt for workbook properties, you can ensure that the
Properties dialog box is displayed automatically when a workbook is saved for the first time.
General

This tab provides information about the file name, path, and size, and about when the file
was created, modified and accessed.

Summary

This contains information relating to ownership. As far as I can tell, the default Author and
Company are derived from the details provided when Excel/Office was installed, but these
fields can be edited.

ipfstart2004 Properties E]

ummary | Statistics | Contents | Custom |

ipfstart2004 Black Sea

Tvpe: Microsoft Excel Worksheet
Location: P\ TRG Coursesimodels
Size: 72.5KE (74,240 bytes)

M3-Di05 name: IPFSTA~Z LS

Created: 07 September 2004 09:33:15
Modified: 14 Qctober 2004 11:04:33
Arccessed: 14 Ockober 2004 11:04:33
Attribukes: Read anly Hidden
Archive SyskEt
[ok] [Zancel

The File, Properties dialog box

Model structure

Statistics

This duplicates the General tab but also stores information about the use of the workbook.
The non-editable field for ‘Last saved by’ is linked to the name shown under Tools,
Options, General, User name.

Contents

This lists all sheets, charts, and range names used in the file. These are all derived from the
workbook and cannot be edited.

Custom

Additional headings are provided in which further information can be stored. There is a list
of predefined properties or you can define your own.

Reporting

I have suggested that by using the top-down approach to modelling we focus on the out-
puts first — the tangible product of the largely intangible process. The outputs, or reports,
are designed in consultation with the users so that the reports are of genuine value. And we
ensure that the outputs are designed from the outset, so that at any stage of the model
development we can demonstrate the progress made. We should therefore make sure that
we can print our work at a moment’s notice. When it comes to reporting some modellers
rely on macros, which in some cases is the only way to handle complex reports. But it is
helpful to understand basic printing techniques.

Print area

Before printing, go to each sheet in turn and press Ctrl+End. This will select the bottom
right hand cell in the worksheet. It should correspond to the intersection of the last col-
umn with anything in it, with the last row that contains anything. To fix this:

Select the empty columns or rows

Delete them: Edit, Delete or Ctrl+—.

Save the file, close it and re-open it.

Run the Ctrl+End shortcut again to confirm that the end cell is where it should be.

BN =

It is worth noting that Ctrl+End relates only to cells in the worksheet. If you have objects
such as macro buttons, combo boxes, or embedded graphs, Excel does tend to recognise
them and increases the print area accordingly, which you may or may not want, in which
case you will have to define the print area manually.

Practical Financial Modelling

The print area is usually defined automatically by Excel. To specify your own print area
you can select the range manually and use File, Print Area, Set Print Area. Range names
can speed up this selection process if you have set them up in advance. It would seem that
we are restricted to one print area at a time, but we can work around this using non-
contiguous selection: Ctrl+click and drag over non-adjacent ranges. Using print preview to
see what this does, we find that Excel puts each range on a separate sheet. I would welcome
a workaround for this but I have never found a non-macro solution.

We can also specify print areas using the View, Page Break Preview command which
has appeared in recent versions of Excel. With this technique, we can define the ranges
for printing and view them in isolation from the other information in the workbook. We
can redefine the boundaries of the areas by clicking and dragging, and ranges can be
added or removed by right-clicking and making the appropriate choices from the short-
cut menu.

Whichever technique we use, we are confronted by Excel’s inability to assemble print
areas from different sheets unless we are content that each print area should be printed on
a different page. We could record a simple macro in which the source print areas are copied
and pasted (as values perhaps) to a separate sheet and assembled for printing, this sheet
then being discarded or retained on completion of the subsequent print command.

Group mode

If you have used the inputs—workings—outputs structure described previously, it is likely
that we only need to print the outputs. These should all have the same page layout to give
a consistent look-and-feel to the reports. You will know that you can group all your output
sheets by Ctrl+ or Shift+ clicking on the sheet tabs, which then sets up group mode. An
alternative is to right-click a sheet tab and choose Select All Sheets.

Page setup

Page setup can catch out the unwary, because there are two ways of using it. If you have
grouped the sheets together and you use the File, Page Setup command, the settings you
specify will apply to all sheets in the group. If, however, you run File, Print Preview and
run the Setup command from there, the settings only apply to the current sheet, whether
or not it is one of a group. This little-known wrinkle accounts for reams of wasted paper
where analysts are convinced that they have the correct settings and yet the changes stub-
bornly refuse to appear.

Fit to page

If a standard layout has been adopted for the report sheets, we will find that we have the
same number of columns on each sheet so the width is constant. However, each sheet is
likely to differ in its length. Page Setup offers the scaling options to increase or decrease
by a percentage value, or to fit to a specified number of pages. With the latter, it is worth
noting that we need only specify one value; for example, I have adjusted the column widths
and layout with the intention of printing on a landscape page, but we do not know the

Model structure

length. Rather than specifying 1 page wide by 1 tall, we simply enter the width require-
ment and leave the height blank. The effect of Fit to Page on font size must be appreciated
if you are working with a house style.

Headers and footers

Headers and footers should be classed as part of the model’s documentation and treated
accordingly. Each page of the printout should show the sheet name and page number, and
at least one page should have the filename. It should be compulsory to include both the
date and the time on the printout — we have seen models approaching financial close that
are being adjusted and updated and subsequently printed on an hour-by-hour basis. You
must be able to confirm that the printouts on your desk are the most up-to-date available.
The footer should also contain such caveats as ‘Numbers may not agree due to rounding’,
Numbers in £000s’, or ‘Numbers in millions unless stated otherwise’ if applicable.

It is not widely known, but headers and footers can be used as a form of security
stamp. For some reason Excel “remembers” all custom headers and footers created in a
workbook. If you make sure that your details are entered in this way, even if you don’t then
use the header or footer for printing, they will be recorded for posterity when the file is
saved.

Page Setup DE

Page] Maragins] HeaderFooter Sheet]

Print area:] f'gj Prink. .. ‘

Print kitles —

Prink Preview]

Riowis to repeat at top:]$1 $1 E ‘
opkions...
Columns ko repeat at [eft;]$.ﬁ.:$.ﬂ. j\ﬂd
Prink
[aridlines ™ Row and column headings
[Black and white TR J(ND”E} LJ
[T Draft quality
Page arder -
* Down, then over EE E ?.'_
" wer, then down BE & E =5

Ok | Cancel

Setting print titles

Practical Financial Modelling

You may be aware that if we attempt to write an & character into a header or footer, for
example, XYZ & Partners, Excel will omit the &. To solve this, use XYZ && Partners.

One of the failings of Excel is that it has never had the ability to put a link to a cell in
the header or footer, because there are times when we need to include more information
than can be entered using the header/footer codes. Back in the worksheet we can use
functions such as = CELL(“filename”) which will return the full path of the spreadsheet,
rather than the simple filename returned by the &[file] code used in the header/footer
dialog box. We can also use Print Titles to include information from the worksheet, so
we could write the CELL function into a cell outside the print area, select the print area,
and set the print titles as being the single column and row that intersect at this cell
reference.

This can be extended to include multiple column/row intersections, but we
cannot include non-adjacent rows or columns. A limitation to print titles is that they are
worksheet-specific and cannot be applied to multiple worksheets, although we can set them
up on each worksheet individually.

I would not recommend putting the version number of the model into the header or
footer because it often gets overlooked when updating a file. The version number should
appear on the model’s documentation sheet as part of the normal printout.

Reports

We should be able to generate reports at short notice. Once the page setup routines have
been followed, printing reports can be as simple as Ctrl or Shift clicking the sheet tabs to
group them, and then running the print command (Ctrl+P). If using this method remem-
ber to switch off group mode afterwards — click on a sheet tab outside the group, or right-
click a sheet tab and choose Ungroup Sheets from the shortcut menu.

Report manager

There is an Excel add-in called the Report Manager which can be used to set up reports.
As this book is concerned with in-built Excel functionality it will not be considered fur-
ther, but you may well wish to explore it yourself.

Custom views

Another way to set up reports is to use custom views. The time spent setting these up is
recouped from the ease of use in generating reports later on. It is similar to the process of
setting up range names (see Chapter 3) but it includes the print settings. This technique is
particularly useful if individual elements of the reports need to be printed, rather than a job
lot which may have standard print settings.

Clear any existing print area using File, Print Area, Clear Print Area.

Select the first range for printing.

Use File, Print Area, Set Print Area.

Use File, Page Setup to specify the settings required, headers and footers, etc.

B o=

Model structure

5 Use View, Custom Views, Add, and give the view a name.
6 Click OK.

Repeat this for each additional range to include, making sure that the existing print area is
cleared each time. This technique is particularly useful if individual elements of the reports
need to be printed, rather than a job lot which may have standard print settings. When you
need to print, use View, Custom Views, Show and print the selection.

Model development

Let’s go!

Drawing on the ideas set out above, and anticipating further suggestions in the following
chapters, it is helpful to consider the first steps in setting up a model. Above all else, make
sure that the location of the inputs is specified, and that the key results are set out clearly.
The amount of effort you put in at this stage should be commensurate with the ultimate
purpose of the exercise — the quick and dirty monthly figures spreadsheet does not really
require us to labour over the finer points of detail and methodology, whereas the model
supporting the business case for opening a new office will benefit from the extra effort
spent setting up a clear and robust structure from the outset.

New file

Create a new workbook in Excel, add new sheets as required by right-clicking a sheet tab,
choosing Insert, and Worksheet, or pressing Shift+F11. Name the sheets. You will know
that you can click and drag the sheet tabs to rearrange them, and you can copy a sheet by
Ctrl+click and drag its tab. Decide if an audit sheet is necessary (Chapter 2).

Saving

At this stage, save your work. With a simple model we probably do not need to give too
much thought to this, but with a more complex model that will be developed over a period
of time it makes sense to consider the grandparent/parent/child system: the first draft of the
model is the grandparent; following the next set of modelling activities the workbook is
saved with a new name number as the parent; and after the next development saved again
with a new name or number as the child. As work progresses, the grandparent is deleted,
the parent promoted to grandparent, and the child to parent, with the current work as the
child. In this way you will have a rolling series of files showing work-in-progress but with at
least two back-ups. Alternatively, if disk space is not a problem, we can use an incremental
file saving system, with each version of the model carrying a specific version number (which
I would like to see documented in the workbook, for audit purposes: see Chapter 2).

Learn the shortcuts Ctrl+S for File, Save, and F12 for File, Save As. I would recommend
that, if you have it, the AutoSave add-in should be disabled (Tools, Autosave — if you cannot
see this command, it has already been disabled). You should control the back-up process, not
Excel.

Practical Financial Modelling

Grouping

The general modelling rule is that each sheet should have the same layout (‘look and feel).
To apply the same settings to each sheet, group them together by right-clicking on any
sheet tab and choosing Select All Sheets. To select groups of sheets, select the first sheet
tab, hold down the Shift key, and click on the last sheet tab. To select non-adjacent sheets,
hold down Ctrl whilst clicking on the required sheet tabs. Caution: any editing or format-
ting carried out with group mode on will affect all grouped sheets. You can check the
grouping status by looking at the sheet tabs or by reading the Excel title bar — it will have
the warning [Group] after the file name. To disable group mode, click on a sheet tab out-
side the group, or right-click a sheet tab and choose Ungroup Sheets. Note that you will
find that some commands appear to be disabled while Group mode is active.

Layout

With group mode enabled, adjust the column widths and enter the column headings that
are common to all sheets. Apply any standard borders. You may want to consider provid-
ing a ‘hard edge’ to the model, by hiding all the columns beyond the end of the forecast
period or equivalent. Put the active cell in the column which you would like to be the right-
hand edge of the spreadsheet. Press Ctrl+Shift+right arrow, followed by Ctrl+Spacebar.
These two actions select the surplus columns. Press Ctrl+) or run the Format, Column,
Hide command, to hide these columns.

To restore the hidden columns, press Ctrl+A and press Ctrl+Shift+) (or Format,
Column, Unhide).

Units and base columns

Identify and label any units columns, and set up a base column if required (see Chapter 3).
Apply a fill colour to both.

Number formatting

You may wish to apply number formatting at this stage. I would agree that comma (thou-
sands) format is useful, but I would not recommend any of the custom millions-type for-
mats at this stage (see Chapter 5). Note that if you apply the thousands format, values such
as percentages will appear as zeros until formatted appropriately. If we have numbers in the
millions we can enter them more efficiently using the exponential format. For example, we
can write 10,000,000 as 10E6. Excel displays this as 1.00E+07, and the thousands format
makes this more readable (people simply do not like the exponential format). Learn the
shortcuts for the common number formats:

Ctrl+Shift+% for percentage, two decimals.

Ctrl+Shift+! for thousands, two decimals.

Ctrl+8hift+$ for your default currency format.

Ctrl+Shift+~ applies the default general number format (i.e. it clears any existing number
formatting).

There is no shortcut for changing the number of decimal places.

Model structure

AutoComplete

Disable the AutoComplete feature. This analyses your text entry whilst you type and if it
corresponds to a previous entry in the same column Excel will suggest how to complete
your typing for you. I find this immensely irritating and I switch it off using Tools,
Options, Edit, and clearing the Enable AutoComplete for cell values check box. There are
occasions when it would be helpful to copy from the cell above and in this case I use the
little-known shortcut Shift+”

Printing

Now prepare the model for printing, as mentioned in the previous section. We should be
able to print our work at a moment’s notice. At the very least we should get the page lay-
out setup, with appropriate headers and footers. Run a test print, and show the results to
colleagues or the project sponsor to ensure that your layout matches expectations.

Data entry

For quick data entry, select the range to contain the information (row or column) and type
in the figures or text. Press Enter to move the active cell down after each entry, or Tab to
move the active cell to the right. Hold down Shift with either Enter or Tab to move in the
reverse direction. While the range remains selected Excel will cycle you through each cell
within that range in turn.

To fill a range with the same information, select the range first, type the entry, and press
Ctrl+Enter.

To select a range of cells which already contain data or formulae, press Ctrl+".

To select cells in a particular direction, press Ctrl+Shift+arrow key.

To select a row, press Shift+Spacebar.

To select a column, press Ctrl+Spacebar.

To select the whole sheet, press Ctrl+A.

Cell comments

As you start work on the model, you may find it helpful to document your work as you go
using cell comments. You can easily set these up by using the Insert, Comment command, or
the shortcut Shift+F2. To remove cell comments, use Edit, Clear, Comments.

You can change the name which appears by default in the comment by using Tools,
Options, General, User name.

Fill Right

As you start writing formulae, you will almost invariably need to copy them across the row.
Using the mouse to copy across can be frustrating, particularly when the mouse pointer
reaches the right-hand edge of the screen and the spreadsheet starts scrolling rapidly. A
more effective technique is to write the formula, select the cells in the row using Shift+right
arrow, and then press Ctrl+R, which is the shortcut for Edit, Fill, Right.

Practical Financial Modelling

Sign conventions

At this stage we should also give thought to our sign conventions — do we show liabilities
as negatives or positives? As far as the outputs sheets are concerned, this is determined by
reporting conventions which seem to differ from one organisation to the next. However,
for workings or calculations purposes, there is a good reason to calculate all liabilities as
positives (liabilities here being used in a broad sense, covering all charges, for example,
costs, depreciation, interest payable, debt repayments, tax charges, and so on). The reason
for showing them as positive numbers is that in our accounting and finance training we
tend to learn textbook formulae which express, for example, profits (or earnings) before tax
as being revenue /Jess costs, less depreciation, Jess interest. If costs, depreciation, or interest
were calculated as negatives, we would have to add them back, which just would not look
right. And worse, an inconsistent approach might result, for example, in positive costs and
interest, but negative depreciation. This formula would be messy, and it would take addi-
tional time to then check the precedent values to ensure the signs were correct.

Do not confuse the observations here about sign convention on liabilities with the
sign seen in cash flows: we may well expect to see a cash account or a company’s reserves
increasing or decreasing over time, using the appropriate sign to show the direction of the
movement.

If we had a reporting convention of showing liabilities as negatives, we can change the
sign using =0-, as in

=0-InterestPaid

This might look a little fussy, but on UK/US keyboards the — and the = keys are adjacent
to each other and we see this as a fairly common typing mistake, so I would not recommend
simply typing =-InterestPaid, because we could not be sure if this was an error or not. This
=0- method of changing sign is also easier to spot.

Navigation

As we start the model build it is important that we can navigate our way around.
A sensible layout with appropriate documentation will greatly help, but when checking
formulae and references we need to be able to move quickly and efficiently around
the workbook. I would expect any competent modeller to be familiar with the following
techniques.

Ctrl+PgUp/Ctri+PgDn

These basic shortcuts are used to move from one sheet to the next.

Alt+PgUp/Alt+PgDn

Not so widely used as shortcuts, but serve to move a screen to the left or screen right.

Model structure

53|

54 |

o5 :
R T v Documentation
£ | Inputs

g5 | Wiarkings

£9 | fudic

B0 | ey Resulks
5_1_ [Cash Flow

EE. | Prafit and Loss
Ei ! Balance Sheet
ES T Revenue

EE | Operating Cosks
E? | Fixed Assets

I4| 4| » | M Documentation { Inputs £ Workings [/ audit / Key Resulits £
Ready

The scroll tabs and the sheet navigation menu

Right-click scroll tab buttons

Right-clicking anywhere on the scroll tab buttons at the bottom left of the workbook will
bring up a shortcut menu which lists all the worksheets and can be used to navigate rap-
idly across multiple sheets.

Home/Ctrl+Home

The Home key will move the active cell to column A, or to the left hand edge of the work-
sheet if Window, Freeze Panes has been used. Ctrl+Home takes the active cell to Al, or
to the top left cell if the panes have been frozen.

Ctrl+End

This keystroke combination will move the active cell to the bottom-right hand cell of the
active sheet. This should correspond to the intersection of the last column and last row of
the active area. Sometimes we find that this cell is way beyond the expected end of the
sheet, which normally indicates that at some stage we copied something too far across a row
(or down a column), and subsequently deleted the material.

The solution to this is to:

1 Select the appropriate rows and/or columns.
2 Delete them.
3 Save the file.

Practical Financial Modelling

4 Close the file.
5 Re-open the file.

On pressing Ctrl+End again, the active cell should now be in its correct position.

Ctrl+arrow

Press Ctrl+an arrow key to move to the edge of the spreadsheet in that direction.
Alternatively press End and the word End appears in the status bar; press any of the
arrow keys to be moved to the last cell in that direction. If the row or column is empty,
or the active cell is already beyond the last cell, you will find yourself at the outer edges
of the spreadsheet. This can be irritating if you frequently need to read across a row, so
one workaround is to give the worksheet a ‘hard edge’. If, for example, column T marks
the right hand edge of your workings area, fill the column with a number or a character.
Now when you use Ctrl (or End) + arrow, you should find that the active cell will always
stop in column T. A sneaky variation on this is to use the ‘ apostrophe character —
when this is entered in a cell, the cell appears blank, with the (non-printing)’ only
visible in the formula bar.

F6

If the window has been split, use F6 to move the active cell from one pane to the next. Use
Shift+F6 to reverse.

Go To

You can use either F5 or Ctrl+G to call up the Edit, Go To dialog box. Enter either the cell
reference or range name and choose OK (or press Enter). One interesting feature of Go To is

b [| e S S N | S e

1

2 |Financial year ending 2004 2005 2006 2007
3
4 Inflation |
5 rate 3% 3% 3% 3%
B | lindex 1 1.03 1.06 1.09 1.13
l-f +
8 Price |

LJ |real terms (2004) | I 18! 18| 18 18
10 maney terms 18.54 19.10 1967 20.26
]
B7 |Project cash flow | |
B3 | money terms | 41200000 25710 2076181 25717 876
BY | realterms -40,000,000 1,900,000 1,900,000 22 850,000

The split window

Model structure

Goko:

$0465 5k 305 i‘
049

CapexdbandonmentIn

CapexfbandonmentiMonsy
CapexAbandonmentReal

CapexDeveloprmentIn

CapexDevelopmentManey

CapexDevelopmentReal

CapexExpansionIn

CapexExpansionMoney ﬂ

Reference:

Special. .. I (] 4 | Zancel

Go to, and Go back

that if you then press F5 again, Excel enters your previous location as the default, as a Go
Back function. If I used F5 to move the active cell from E36 to E73, when I press F5 again
the destination cell is assumed to be E36. Excel in fact stores up to the last four locations of
the active cell, which allows for some useful auditing. Although the dialog box lists all your
range names (if you have any), Excel will list the cell references of the ranges in the dialog box.

Name Box

The box on the left-hand edge of the formula bar is the Name Box. It normally shows
the cell reference of the active cell, but you can click in the box and type a cell reference

CostsFixedln Sl R D
CostsUnitvarableln

Inflationin ending 2004
OilPriceln

ProductionDaysin 0,
Praductionin

earsin

7 | real termg price (2004) 18
8 production ithousands unitsiday) | 0

The Name Box

Practical Financial Modelling

for a Go To functionality. You can also select a range name from the list with the same
result.

Note that in this context it is not possible to widen the Name Box, so longer names
can be difficult if not impossible to read. We will look at names in more detail in

Chapter 3.

Ctrl+[

You will of course be familiar with F2 Edit Cell, and that when used on a formula Excel
highlights all precedent cells with different colours (assuming Tools, Options, Edit, Edit
Directly in Cell has been activated). With many formulae, however, the references are off-
screen and you will need to browse to find them, and in so doing run the risk of losing the
active cell. One powerful shortcut is Ctrl+[(open square bracket), which is Select
Precedents. This in itself is a shortcut for F5 Edit, Go To, Special, Precedents. The trick
with Select Precedents is that the precedent cells are highlighted, and you do not need to
scroll around to find the selected cells but instead press Enter repeatedly. You will know that
when you have several cells selected the active cell will scroll around within the selection
when you press Enter (or Tab). I will often take this a step further and while the precedent
cells are still selected, apply a Fill Color. In this way, for example, all the precedent cells for
my EBITDA* calculation can be coloured light blue, and 1 can examine the audit trail at
leisure, or even leave it as a marker for other users to follow.

The benefit of Ctrl+[is that you can inspect both the values and the formulae in the prece-
dent cells. Pressing Ctrl+[repeatedly will push you further up the precedent pathway.

I am sure you can predict that Ctrl+] (close square bracket) will Select Dependents.
One thing to note with these two techniques is that they are formula-driven, by
which I mean that there must be a formula on the same sheet to push or pull the selec-
tion. If you have an inputs sheet, for example, which contains only values, Ctrl+] does
not work. Also, if a formula feeds into one formula on the same sheet and another on
another sheet, the shortcut will only pick up the dependent on the same sheet. However,
with the workings sheet methodology introduced earlier in this chapter, this is not such a

problem.

Hyperlinks

Hyperlinks do not seem to be used much in modelling. Used carefully they are a very effi-
cient way of navigating to very specific locations in the workbook.

Select the cell to contain the hyperlink and use Insert, Hyperlink (or Ctrl+K).

Click on the Place in this Document tab.

Type the text to display in the cell (and if you want to, a ScreenTip)

You can then either enter a cell reference or a range name for the destination
cell(s).

5 Click OK to return to the workbook.

NS S

"Earnings Before Interest, Tax, Depreciation, and Amortisation

Model structure

Insert Hyperlink [E”X|

Link to: Text to displaw: !Revenue| ScreenTig, .. |

Twpe the cell reference:

l'u'U".'l.’ lingstalZ:k12

Or select a place in this document;

- 'Profit and Loss'
- 'Balance Shest'
- Revenue
~'Operating Costs'
- 'Fixed Assats'
=1 Defined Mames
i Inputs!Print _Titles
B Rewvenue

5

£

- =

E-mail Address QK | Cancel

Inserting hyperlinks

Test the hyperlink by clicking on it. Note that unlike F5 Go To, there is no corresponding
‘go back’ functionality, unless you then set up further hyperlinks. Hyperlinks can be edited
by selecting the cell using the keyboard and pressing Ctrl+K — do not try to click on the
cell otherwise you will activate the link!

Excel also has a HYPERLINK function which has the following syntax:

=HYPERLINK(“[model.xIs]'Balance Sheet'!A1”,”"Balance Sheet”)

When the user clicks on this example the active cell will move to the home cell position on
the balance sheet. Note that the filename must be included, and the entire filename+sheet-
name+cell reference string is enclosed in quotes. The second part of the formula is the
prompt or text which appears in the cell as a hyperlink.

Warning: neither method will update the link references if the sheet or file names
change, and as such are very prone to error.

CHAPTER Quality control

Introduction

The previous chapter set out some suggestions concerning model layout and structure. If
accepted and implemented, these suggestions take the form of rules, and when using a rule-
based methodology we should always be able to check and confirm that such rules are being
followed. With the principle of error reduction we want to anticipate potential errors and to
identify them as early as possible. This chapter sets out the requirement for us to incorpo-
rate quality control into the model development process. If left too late, minor errors have
a habit of compounding themselves and they become very difficult to untangle.

If you are reading this book from start to finish, this chapter appears to sit uneasily in
the sequence: the previous chapter looked at getting started and setting out the structure
of the model, and the following chapters look at the formulae and functions and model
use. But here we are concerned about the various checks and tests that we will be applying
as we start the number crunching, and we need to appreciate that in some of this we will
be a little ahead of ourselves, and the significance of a specific test (e.g. the iteration status)
will not become apparent until we cover the related topic in detail later in the book.

The demonstration workbooks for this chapter are in the Chapter 2: Quality Control
folder on the CD-ROM.

Taxonomies of error

There are several taxonomies of the types of error which may be found in spreadsheets and
financial models.* From my own experience I would suggest that we should be aware of
the following categories of error.

Pointing errors

By far and away the commonest error in all the research exercises and seen in general prac-
tice is the discrepancy in cell reference. There is a simple rule — never type a cell reference.

*Please refer to Professor Ray Panko’s website http://panko.cba.hawaii.edu/sst/ for the research relating to spread-
sheet errors.

Quality control

To put a reference into a formula, either click on the cell with the mouse, or better, use the
arrow keys to select the cell (the keyboard is slower — pointing errors are normally caused
when working at speed). Alternatively, consider the use of range names instead of cell
references (Chapter 3). It is quite difficult, although not impossible, to put the wrong name
into a formula, and it is much easier to spot such errors if they have occurred.

Input errors

You know its 5,000, I know its 5,000, but somehow it ended up in the model as 5 and the
numbers are a factor of a thousand out somewhere. Make sure that the numbers on the inputs
sheet are expressed in the same units as in the project or transaction documentation. A use-
ful test for this is to make sure that one of your output sheets is a summary of your inputs
sheet using references to the actual values used in the dependent calculations. In this example
a calculation in the workings multiplied the 5 by 1000, with the outcome that when the input
was finally corrected and the 5,000 entered in full, the outputs displayed 5,000,000.
Remember the old expression, Garbage In, Garbage Out.

Omission errors

Naturally the most difficult type of error to spot, and the one that most frequently is noted
after the event is an omission error. If the analyst has not been told to include a particular
set of costs, for example, who is responsible for the error? This is best avoided by adopting
the top-down approach to model building, outlined in the previous chapter. By preparing
the model outputs first, and by engaging in an iterative process with the model sponsors,
many such omission errors are trapped at the very outset of the modelling process.

Commission errors

These occur when the analyst does something that they are not required to do, such as
adding extra detail or including calculations that are not needed but which affect the
model’s results. An example is that of a part-qualified accountant who amended a tax
calculation on the basis that ‘this is how it should be done’, rather than how the
company actually did it. Again, the top-down approach to model design helps prevent
this: agreeing the model inputs and outputs in advance reduces the scope for creative
modelling.

Alteration errors

A variation of the commission error, where perhaps a flaw or mistake has been identified
and corrected by the modeller, but the model sponsors were not told of the update. All such
amendments should be logged on the audit sheet.

Calculation errors

A general description for the largest category of error, and many such errors can be hard to
track down. A particular problem is the long formula, containing several sets of brackets,
lots of sheet names, and wrapping around the formula bar. Not only do such formulae look
unpleasant, but research shows that they are rarely checked or tested in detail, and quite
often even the analyst who created them is unsure of their exact function. One of the

Practical Financial Modelling

themes of the formulae and functions chapters is to break formulae into short sections over
several cells, which may appear less intellectually rigorous but is far more reliable in the
long term. A criticism of the short formula argument is that if we have more formula cells
then statistically there is a greater risk of error, but the point is that the formulae are shorter
and simpler and inherently less error prone.

Timing errors

Calculations involving the timing of an event, or the duration of a process such as depre-
ciation, are often some of the most difficult to set up reliably. Workarounds include such
dodges as simply writing the formula in a fixed number of cells, such that if the asset life,
for example, is changed, the calculations do not reflect this unless they are copied to the
new cells. This category also includes errors such as using the annual interest rate when cal-
culating interest on a quarterly basis. Chapters 3 and 4 set out a number of reliable tech-
niques which address this type of problem.

Domain errors

Domain knowledge refers to your professional knowledge — finance, accounting, manage-
ment, or whatever. The researchers reassuringly note that this is the least common type of
error — we all know that cash is not profit, that we should depreciate our assets, pay tax, use
real discount rates on real cash flows, even if we are not sure how to perform the calculations.

Audit tools

Excel contains a surprising amount of audit functionality without recourse to expensive
third party auditing tools. The latest versions of Excel contain some fairly sophisticated
audit features, some of which automate the manual procedures described in this section.
As with any diagnostic procedure, it is important to be able to understand the significance
of the test, and the meaning and implications of the result.

Be aware that some features of the auditing toolbar and several of the audit shortcuts
may be disabled if Excel’s protection, group, or objects features have been set.

F2 Edit Cell

We know about using F2 to edit the contents of a cell directly in the worksheet, rather than
using the Formula Bar. If this does not seem to work, run the Tools, Options command
and check that the Edit directly in cell option has been selected on the Edit tab. We can use
the Home, End, and Shift and arrow key combinations to correct or amend the formula.
If the wrong cell references have been entered, we can use the trick of pressing F2 again,
then using the arrow keys to select the correct cells in the worksheet (Point mode, shown
on the status bar). Press F2 once more to carry on editing the formula.

This same technique can be used in some dialog boxes which require range or cell refer-
ences. Any attempt to use the arrow keys will cause the references to change, which can be
annoying if you are simply trying to edit part of a cell address, for example. Press F2 to
change from Point to back to Edit mode.

Remember, F2 is your basic diagnostic tool for checking Excel formulae.

Quality control

Audit Toolbar

You can fire up the auditing toolbar using Tools, Auditing, Show Auditing Toolbar. It con-
tains buttons for tracing precedents and dependents, tracing errors, and for locating invalid
entries when using data validation (Chapter 5). I am not particularly keen to see blue
arrows drawn all over my workbook, but the toolbar does have some uses. In this example,
the revenue calculation feeds into a cash flow calculation further down the workings sheet,
as well as to the revenue line on the Cash Flow report. On clicking Trace Dependents,
Excel points to both. The workbook icon indicates that the dependent formula is off-sheet,
and we can double-click the dashed arrow to see the Go To dialog box which lists the off-
sheet references. Generally I find the Ctrl+[(Select Precedents) and Ctrl+] (Select
Dependents) shortcuts more useful.

Trace Error is used for auditing cells which contain error values, which in themselves are
relatively easy to audit anyway, as we shall see.

[A] [E] | [D | E | F 5 | H I [l
ERRET LCu U - " o L 06 242
2 C—]
| 93 |Fixed assets: totals ‘

94 capex, maney L= i 48521
185 | depreciation Lcu =7 79,121
96| |NBV cf Lcu | p37 83z
Ed| |
| 98 |Hrofits |
199 operating Lcu - [b4 384
1100 before ta Lcu 800,714 | 23742
101] after tax Lcu E00,714 JaE 610
102
1103 | Relained earmings
l104] of Lcu 5 - dEJProft sl Loss K 2702
|I05] increase (AW - RON714 - 2R S oot R 194
:_laa% cf LU =2 B - | Coean] [k [cama] |2/
@Cash flows
109] prefinancing Lcu 20023800 - 53517475 16567326 | 19823717 | 19,350 503

Double click on the sheet link arrow to see the Go to dialog box

View formulas

We can click on individual cells to inspect their contents on the formula bar. Sometimes,
however, we want to get a bigger picture of the type and structure of the formulae used in
a workbook, and a neat trick here is to use Tools, Options, View and select the Formulas
check box. Alternatively use the keyboard shortcut Ctrl+* (left apostrophe — unfortunately
this does not work on most European keyboards). This doubles the width of the work-
sheet columns and exposes the underlying formulae. This can be very useful to get an over-
all impression of the workbook, and it is worth noting that this is a printable view. By
hiding appropriate columns and adjusting column widths as required we can print out a hard
copy of the sheet for future reference. To restore the view, repeat the command sequence/
shortcut.

F9

Sometimes we want to get some information about a cell without actually wanting to see it.
Press F2 to inspect the formula of interest, and click and drag/select one of the cell references.

Practical Financial Modelling

Then press F9. The reference converts to the value in the precedent cell. Repeat for each part
of the formula, until all references are converted to values. Do not press Enter otherwise the
references will be permanently converted to values.

=N £54-E225-E255

Select the cell reference and press F9

If you use this technique with range names, Excel will treat the name as an array refer-
ence and on pressing F9 it will return every value in the array. Not helpful.

The Watch window

This is a new feature in Excel and I have to admit that it is rather useful. Using the new
Tools, Formula Auditing, Show Watch Window command, a small window is displayed
from which we can monitor a formula and its value.

Watch Window v X
2 Add Watch,,, o Deleke Wakch

Sheet Mame Zell Walue Formula
w'orkings D3CRLowest D215 1.15 =3MALL{DSCRRepaymentPeriod, DebticracePerind+1)

The Watch window (Excel 2003)

To use it, select a cell containing a formula and choose Add Watch in the Watch win-
dow. The Watch window works across sheets, so that the effect of changing an input value
or precedent formula can be seen on the dependent formula. T have not checked the limi-
tations of this tool, but it would appear to be robust — I did the usual trick of filling col-
umn A with RAND functions and it did not seem to object to watching the 65,536
formulae that were produced.

Error values

Error values signify Excel’s inability to understand a formula or function and in themselves
can be helpful diagnostic tools. Regardless of the specific layout, we tend to see that for-
mulae cascade through the model, and on encountering an error value we simply work
back to locate the first occurrence of the error. If we understand the error value it is usu-
ally fairly simple to resolve the problem. I describe some of the common error values and
their causes below, but refer to Excel Help for more detailed explanations and for less
common causes.

Quality control

#VALUE!

This error has two common causes:

1 Referencing a cell that contains text. Select the cell with the error and press F2 or
Ctrl+[. Inspect the precedent cells and correct as necessary. If the cell looks empty, the
problem could be that a user has pressed the Spacebar to clear the contents of the cell,
so press the Delete key to make sure.

2 Referencing a range instead of a single cell, for example, =E10+(E12:E20). In this
case, the analyst missed out the required SUM. A similar problem arises with range
names if the reference to the range name is outside the columns included in the name
range, for example, in column D the formula reads =EBITDA, but the range EBITDA
is defined as E42:K42 (see Chapter 3 for further information).

#REF!

This error is commonly found when rows or columns are deleted from the model, such that
a formula refers to a cell which no longer exists. The unpleasant feature of the #REF! error
is that Excel will substitute it into the formula in place of the original cell reference. If sev-
eral rows or columns have been deleted it can be difficult to rebuild the formula, or to work
out what the formula was originally referring to (#REFI-E66-#REFI-E117). If it is possible,
undo the deletions and instead select and delete the contents of the unwanted cells (not the
rows or columns themselves). Then, with the cells still selected, type some text and press
Ctrl+Enter. This should fill the range with text and the dependent formulae now return
the #VALUE! error. Locate these formula and make the appropriate amendments whilst the
cell references are still available; or at least put in a cell comment to provide instructions on
what to do with the formulae after the unwanted rows (or columns) are finally deleted. Do
not simply delete the original cell contents as you may end up with formulae that refer to
blank cells, a cardinal modelling error.

#NAME?

This error clearly indicates that Excel does not recognise the range name you have entered
into a formula. Normally this is easy to fix: on pressing F2 the range names and references
in the formula that Excel recognises should appear in colour; if a name remains black it is
likely to be the unknown name, although it is possible that it could refer to a range on
another sheet. Alternatively, use the F9 technique from the previous chapter: click and drag
over each range name and press F9. If Excel recognises the name it displays the values
from the range (usually all of them, as an array). If a name evaluates to #NAME? it has
not been recognised. The corrections are equally simple. Check the spelling of the
name and type the correction, or press F3 Insert, Name, Paste and select the name from
the list. If neither of these work, check that the name exists in the first place by using
Ctrl+F (Edit, Find), typing in the unknown name (as spelled in the formula), and seeing if
Excel can find the original name. If the row is located, run the name command Insert,
Name, Create (or Define) as required. Range names are explained in much more detail in
Chapter 3.

Practical Financial Modelling

#DIV/0!

This error often occurs either when data is being deleted from a model, or when formulae
are being written in advance of the relevant information being provided. The denominator
is missing from a division formula, so once the information or precedent calculation is pro-
vided the error will disappear. If the information is genuinely unavailable, use unit values (1)
instead, as a temporary workaround. Document your work accordingly.

#NUM!

Not a common error, this usually occurs with the IRR function. Excel uses an iterative
technique to calculate the IRR and if it cannot generate an answer within 20 iterations it
returns the #NUM! error. This typically happens if all the values in the cash flow have the
same sign.

#N/A

This is often generated by the VLOOKUP, HLOOKUR, and MATCH type functions explained
in Chapter 4, usually because there is no exact match for the item being looked for. Each
of these functions contains an argument to specify if an exact match is required for the
lookup item. If the argument has been omitted, Excel assumes that it has been sorted and
if there is no exact match the error is produced. If you encounter this problem, refer to
Chapter 4 and make sure that the function contains a FALSE or 0 argument.

Debugging errors

Once a formula generates an error value, all dependent formulae do the same, unless there
is a circularity or calculation has been set to manual (press F9 to force a recalculation any-
way). To locate the source of the error browse down the left hand column of the calcula-
tions area until you find the first occurrence of the error. Find and fix.

Break and make

A common modelling problem arises when adding new routines to an existing model. The
danger lies in failing to link the new logic to the old formulae in the right places. I like to
use what [call the “break-and-make” approach: I identify in advance the formulae which
will eventually need updating and I break them deliberately, either by using a nonexistent
range name (generating the #NAME? error) or dividing the formula by zero (#DIV/0). I
then write the new code. When I am ready, I revisit the broken formula and both correct
them and amend them with the appropriate references to the new routine. The error values
disappear and I am confident that the model has been thoroughly updated.

Audit sheet

The purpose

The audit sheet is an additional sheet in the model in which we carry out and record our
quality checks. Models have different purposes and uses, so the audit sheet can be as simple

Quality control

or as complex as required. It might contain the key documentation described in Chapter 2.
We will consider four types of check which we can perform: structural, arithmetical,
financial, and change checks. The results of the checks should be recorded and we should
recognise that these checks do not necessarily indicate errors or problems; there may be a
perfectly valid reason why the analyst has hidden a column, or used a hard-coded value in
a calculation. The purpose of audit is to better understand the model and its operation, and
to satisfy ourselves that it does what it is supposed to do. If we are auditing our own work
we can make corrections as necessary, but when checking someone else’s work we should
find out who has the responsibility for making changes.

Layout

To set up an audit sheet in an existing model, simply copy an existing output sheet (try
Ctrl+click and drag a sheet tab). Delete any existing sheet content, and any number/text
formatting, and name the sheet as Audit. This sheet should conform to the same layout as
used in the rest of the workbook.

Each audit check is then listed. At the outset, before the checks are carried out, the result of
each test is a fail, and we enter the logical operator FALSE. As there may be a substantial num-
ber of checks, it is helpful to have an audit summary, which reads TRUE if all checks have been
passed, and FALSE if any one or more has failed. In the example below, the results of each test
are recorded in column D. I have entered the following formula in a cell in column E:

—AND(D:D)

The AND function is explained in detail in Chapter 4, and the D:D notation in Chapter 3.
The effect of the formula is that Excel scans all the results in column D. If any one (or
more) reads FALSE, the function returns FALSE. Only if every single test is TRUE does
the function return TRUE. We get a problem if a test returns an error message, because the
audit check will simply repeat the error. We will return to this particular problem later
(p 86). Also, jumping slightly ahead of ourselves, we can give the cell the name AuditCheck
(Insert, Name, Create — range names are discussed in Chapter 3).

AuditCheck = A =ANDD:D)

A& LB | ' R F | &6 |
1
2] 2005 2006 2007
3
EN All checks passed? | TRUE LAwdiCheck
5
| B |Balance sheet check - TRUE o 0 0
[
The AuditCheck cell

On each output sheet we can put in a link to AuditCheck, so that the current audit
status is recorded on any printouts that we generate.

It would also be helpful if we could list the number of audit tests, and to count those
that currently evaluate to FALSE. In a cell below AuditCheck, write the following formula:

—COUNTIF(D:D,FALSE)

Practical Financial Modelling

This returns the number of tests that read FALSE.
In the cell below, enter the following formula:

—COUNTA(D:D)

This returns the total number of audit tests.

o E T = | F | G |

1

= 2005 2006 2007
3

B All checks passed? | | FALEE AuditCheck

5 1 eror out of |

| | 28 checks

7

_ & |Balance sheet check TRUE o 0 0
)

Counting errors

Structural checks

Structural checks are manual checks, in that we must carry out particular command
sequences each time we wish to run a particular audit test. The results must then be
recorded on the audit sheet.

Location of inputs

At all times you should be able to identify the input values in the workbook. Although
some users suggest using colour I have recommended that inputs should be located only
on the inputs sheet. What if they are not?

Select the columns containing the calculations.

Press F5 (Edit, Go To), and click the Special button.

Choose the Constants option. You can then deselect Text, Logicals, and Errors.
Choose OK.

[FE NSRS R

Excel now highlights all cells containing input values. I suggest that we apply a fill colour
at this point, to prevent us losing the selection and having to repeat the Go To sequence.
When running audit checks I use the pink fill colour because it is particularly unpleasant
and I never use pink for anything else. Now browse the worksheet to find any coloured
cells. Make any corrections or notes and then put in a line on the audit sheet to record that
the test has been carried out successfully.

Hardcoded values

These are values which have been written directly into calculations (=E117*1.175) and
can be harder to locate. It would be logical to expect the Edit, Go To, Special, Formulas,
Numbers command to select formulae which contain numbers. But it doesn’t.

Quality control

An alternative is available, if you feel bold enough. We recognise that all the numbers in
the workings and outputs are ultimately derived from the inputs. If there are no inputs,
there should be no results.

1 Back up (save) the file.

2 Select all the inputs and delete them (assuming you can locate the inputs in the first
place, if not, use the F5 Edit, Go To, Special command to select them).

3 Check the results and workings. If any numbers are visible, they must be hardcoded.
Do not rely on this step, because your inputs currently have a value of zero. Dependent
formulae, particularly multiplications, will mask any hardcoded values. Also you may
have a rash of #DIV/0! errors, which further serve to cover up any values.

4 With the original input cells selected, remove any number formatting (Format, Cells,
General, or Ctrl+Shift+~).

5 'Type a1 and press Ctri+Enter. All input cells should have a value of 1.

_ﬂ B o i) E E e [e kel

51k :

2 Flnanclal year ending Units Base 2005 2006 2007 2008 2000 2010 2011 2012
8

_4 |Inflstion

(65 nle lLELY T00% 0% TO0% 100 % 100 T

6| index 100 20 400 800 16,00 2w 54,00 12800 256,00
7

_ 0 |Production {units) 1 1 1 1 1 1 1 1
8

10 Price

1] mal 2004 unit 100 100 100 100 100 100 100 100
12 money unit 200 4.00 8.00 16,00 3200 64.00 1200 256,00
13

14 |Reveriue 2 4] 16 12 &4 120 25

Using predictive values

Now inspect your workings and outputs. You are looking for unusual number sequences.
Growth or inflation, for example, are now compounding at 100% and should be generat-
ing the exponential sequence 1, 2, 4, 8, 16, 32, . . . You should be able to recognise this in
its various permutations in the workings. Anything with a different sequence must be driven
by different values. Check and locate any hardcoded numbers. Make any corrections, and
then put in a line on the audit sheet to record that the test has been carried out successfully.

References to blank cells

It is a cardinal rule in modelling that formulae must never refer to blank cells, and to do
so is to invite disaster. This problem often arises when people decide to delete routines from
their models, without realising that there are dependent formulae. In this case I always rec-
ommend that we could delete the rows containing the redundant formulae in their
entirety, as dependent formulae will then return the #REF! error and can be easily located
(the break-and-make technique mentioned previously). In reality I would run a Trace
Dependents check before deleting anything.
So how do we find references to blank cells?

—_

Select the columns containing the calculations.

2 DPress F5 (Edit, Go To) and click the Special button.

3 Choose the Precedents option (note that the Ctrl+[shortcut does not work for this
technique).

Practical Financial Modelling

Choose OK. Excel should have selected every formula on the sheet.

Immediately press F5, and click the Special button again.

This time, choose the Blanks option.

Click OK.

Run the F5 Edit, Go To, Special command again and select Dependents to trace the
formulae which refer to these blank cells.

o N O\ N

Hopefully Excel will tell you that no cells were found. If it does not, apply a fill colour
and search for the selected cells. When you find them, it may be apparent as to which for-
mula is reading that cell, if it is not, select the blank cell and press Ctrl+] (Select
Dependents). This should then reveal the formula with the reference to the blank cell. You
should decide what to do about the problem, such as substituting in zero or unit values, or
rewriting the formula. Put a line on the audit sheet to record your findings.

You can also do this test in reverse:

1 Select the whole sheet.

2 Use F5 Edit, Go To, Special and choose Blanks. This selects all blank cells in the work-
sheet.

Press Ctrl+] (Trace Dependents).

Apply a background colour.

5 Any selected or coloured cells will refer to a blank cell.

FENISN

Left-to-right consistency

An important modelling rule relating to our calculations is that there should only be one
formula on each row; that is, the formula in the first cell of the row must be the same as
that in the last cell in the row. There are instances where it might be considered appropri-
ate to have two or more formulae, for example, in some projects we might have a develop-
ment or construction phase, followed by an operational phase. There are differences in the
accounting treatments used in each phase, in that, for example, assets are not depreciated
until they are put into use, or that interest is capitalised during development and expensed
during operations. It is not appropriate to have different calculations on the same row,
because the transition from one phase to the next is indicated by input information such
as the start of production or the generation of revenues. If the project slips or is brought
forward, the user simply changes the inputs sheet. If the left-to-right consistency rule has
not been followed, any such alteration to inputs will require the user to then locate and
change the dependent formulae on the workings, and this should be avoided at all costs. If
the formula is not updated, the model is wrong. The technicalities of this important issue
are considered in more detail in Chapters 3 and 4, but for the moment we are considering
audit checks, and so we need to be able to confirm that the left-to-right consistency rule
has been followed. This uses another of the Edit, Go To, Special commands.

1 Select the columns containing the calculations. Make sure that the active cell is in the
left hand column.

2 Press F5 Edit, Go To, and click the Special button.

Choose the Row differences option.

4 Choose OK.

(SN}

Quality control

Excel now compares every cell on every row with its neighbours, and highlights any that dif-
fer from the first cell in the row. Again, I would normally recommend using a fill colour at this
stage, so that you can browse through the worksheet at leisure. There are two common sources
of error which we can trap at this stage: first, a formula has been corrected or updated, but has
not then been copied across the row; and second, such a correction has been made, but not
copied right across the row — this typically happens with mouse users who use the AutoFill
click-and-drag technique to copy formulae across the row. These can be easily corrected.

If we locate a genuine difference in formulae in one row which is based on an assump-
tion about the timing of an event, we need then to consider what steps we then need to
take — are we able to correct the formula or write a revised routine ourselves, or does the
problem need referring back to the model’s author or owner for clarification? Make sure
the audit sheet is updated accordingly, and the model documentation is updated to reflect
your findings and actions, if any.

3-D calculations

Three-dimensional (3-D) calculations are calculations which refer to cells on different
sheets, for example,

=‘Balance Sheet'!F27-'‘Balance Sheet’!|E27-Profit and Loss’lE24

I would suggest that this is not the best way to write formulae, not least because even this lit-
tle formula looks rather more complex than it actually is, simply because each of the references
is prefixed with a sheet name. The difficulties of auditing such formulae are notorious — even
with F5 Go To/Go Back techniques, it can be time consuming to locate each reference. We
also remember that the operational researchers point out that the use of multiple sheets
increases the risk of error in itself; as we check each reference on each sheet, we need to verify
that the reference itself is correct in the context of that sheet. It induces a certain amount of
gloom when reviewing an apparendy straightforward model, in which virtually every
formula takes up two or more lines on the formula bar (my colleagues refer to this as ‘spaghetti
modelling). I would suggest that we work with two-dimensional formulae — calculations that
are based on references on the same sheet (this is a key part of the inputs — workings — outputs
methodology). And I know that you are going to point out that you know where everything
is in your model, and that you don't have a problem with 3-D calculations, but I would sug-
gest that your colleagues are not so familiar with your work, so the less clutter the better.

We can easily locate 3-D calculations because they all have a unique feature — the excla-
mation mark. All we need to do is Edit, Find (Ctrl+F) using ! as the search string. Unlike
the Go To, Special commands we need to repeat the Find command after locating each
3-D calculation. Having confirmed the absence of 3-D calculations, put a line on the Audit
sheet to record the result.

In Chapter 1, I recommended that input values are linked through to the workings
sheet, for example,

=Inputs!E5
I would suggest, pedantically, that this is an example of a 3-D formula, in contrast to
='Balance Sheet’|F27-‘Balance Sheet’'|E27-'Profit and Loss’|E24,

which is a 3-D calculation. The rule is that we avoid the latter, but 3-D links are acceptable.

Practical Financial Modelling

File links

Generally, file links should be avoided at all costs. As mentioned in chapter 1, your model
is unusable if Excel cannot establish or refresh links to precedent files. I recommended that
if file links are to be used, the link formulae are entered on a single sheet for easy reference
and management. Excel will normally warn you if there are external links in your work-
book when you attempt to open the file.

Microsoft Excel

This workbook contains inks to other data sources,

« If you update the Iinks, Excel will atbempt to retneve the latest data,
! E « If you don't update the links, Excel will use the previous informatian.

Moke that data links can be used ko access and share confidential information without your pormission and possibly perform ather
harmFul actions. Do not update the links i you do nok brust the sowrce of this workbook.

[update 1 [Dion't Update] [Help

The file links warning

The Edit, Links command simply lists the files which are linked to your workbook, but it
does not tell you where the link formulae are. However, as with 3-D calculations they are easy
to locate because the unique feature of such formulae is the use of the [square brackets] around
the filename. Use Edit, Find (Ctrl+F) and enter either the [or] as the search string. Amend as
required, and update the Audit sheet with an entry to confirm the absence of file links.

I have had people contacting me in some desperation who, having correctly eliminated
all such formulae from the entire workbook, still find Excel asking if they wish to update
links upon opening the file. The trick here is to check if the model contains range names,
and if so, if any of them are links to other files. This can be tested by moving the active cell

to a blank part of the workbook and then:

1 Use Insert, Name, Paste, and clicking on Paste List (see Chapter 3). Excel produces a
list of all range names in the model.

Press Ctrl+* to select this list (Select Current Region).

Use the Ctrl+F Edit, Find command to search for the [or], as before.

Note the name containing the file link reference, and use Insert, Names, Define.
Locate the errant name in the list and click the Delete button.

Repeat 3-5 as required.

[©) WAV I NGV)

To confirm that all file links have now been removed, check the Edit, Links command. If
it is greyed out, then there are no file links in the workbook. Having done this, we then
need to locate any formulae which contain the now deleted range name, using the audit
check to locate errors, below.

Errors

In any model there is a possibility that some cells contain error messages, and that these mes-
sages are not causing any output problems, perhaps because they occur in some calculations
used for a particular scenario. On first inspection all seems to be well, but following further work
the errors suddenly manifest themselves. We can use another Edit, Go To, Special command:

1 Select the columns containing the calculations.
2 Press F5 Edit, Go To, and click the Special button.

Quality control

3 Choose the Formulas option, and uncheck the Numbers, Text, and Logicals boxes.
4 Choose OK.

Apply fill colour to the selection, and browse through the model. Locate and repair
formulae, as required. Record your results on the audit sheet.

Hidden columns and rows

It is quite common to use the Group and Outline techniques (Chapter 5) to make large
models easier to handle. In this case, rows and columns are hidden in a structured and sys-
tematic way and can be expanded or collapsed as required. At other times columns and
rows may be hidden for aesthetic purposes or to simplify printing, and later on we will look
at issues concerning quarterly and annual modelling which will require us to hide columns.
But there are instances when the analyst has concealed key drivers or formulae and we
should be able to locate and explain such hidden detail. The audit check is simple:

Press F5 Edit, Go To, and click the Special button.

Choose Visible cells only.

Apply a fill colour to the cells selected by Excel.

Select the whole sheet (Ctri+A).

Use the Format, Column, Unhide/Format, Row, Unhide commands.

N N =

Any hidden rows or columns are now clearly exposed. Inspect their contents and if appro-
priate hide the rows or columns again. Record your results on the audit sheet.

Hidden sheets

Sheets are often hidden to prevent users from accessing calculations or key inputs. Use the
Format, Sheet, Unhide command to see the list of hidden sheets. Identify why they have
been hidden, and hide again if necessary.

Unhide X

Unhide sheet:

| Additionaléssumprions

oK l[Cancel]

A hidden sheet

If the Visual Basic property of xISheetVeryHidden has been used, it will not be possible to
unhide the sheet without the appropriate access to the macro or VB code.

Practical Financial Modelling

Merged cells

When centring a heading over a range of cells Excel now creates merged cells. These are a
little dangerous in that the grid or matrix structure of the spreadsheet is now compromised.
The merged cell is referenced by the cell at the top left of the range, and the contents of the
cell can be referred to in formulae. On setting up a merged cell, any existing data in the
source cells is lost other than that in the top-left cell. Formulae which refer to other cells
included in the merge will return zero values regardless of the content of the merged cell and
the audit techniques of F2 and Ctrl+[point to the original locations of the cells even though
they no longer exist. There is no simple audit check for merged cells; the only method of
which I am aware is to start in column A and press Ctrl+Spacebar to select the column. I
then move the active cell and repeat this action in column B, and so on. If when using this
technique Excel suddenly selects two or more columns, this is symptomatic of a merged cell.
They are not easy to spot, and it may be helpful to apply a fill colour and then to move down
through the column pressing Shift+Spacebar to select the row. Once you have found the
merged cell, decide whether it is worth unmerging — if it is a title or heading you may be
able to accept it. Unmerge using Format, Cells, Alignment, Merge Cells, or click the Merge
and Center button. Always press Ctrl+] (Trace Dependents) to make sure that there are no
formulae linking to the cell. Record your findings on the audit sheet.

Array formulae

Array formulae are discussed in Chapter 3. They are a particular type of calculation which
because of their advanced nature tend to be written only by competent analysts and as such
tend not to be a major source of error. They come in two flavours: single cell array calcu-
lations, and multiple cell array calculations. They can be difficult to understand and as
such their presence in a model should be recorded on the audit sheet. Having looked at
how we can find 3-D formulae and file link formulae, it is tempting to assume that we
could simply run Ctrl+F Edit, Find, using the unique feature of the array formula which is
the curly bracket { or } as the search string. Unfortunately, Excel cannot identify that these
brackets exist in the formula, so we have to resort to a cumbersome method similar to that
used for locating merged cells. If we select a column in the sheet and press Ctrl+Plus to
insert a column, Excel will complain that we are attempting to change part of an array. This
technique will locate data tables, which are of course one of the commonest forms of the
array calculation. Once an array has been located, press Ctrl+/ to select all the cells in the
array.

Microsoft Excel

! '}‘ Cannok change part of a table.

Excel doesn't like changes to arrays or data tables

Quality control

If this action is repeated over the width of the workings area and no such error messages
are seen, then there are no multiple cell array formulae.

The curly brackets also disappear if we use Ctrl+" (Tools, Options, View, Formulas), or if
we attempt to use techniques such as replacing the = with *, or prefixing the = with an
apostrophe. This means that it is not possible to easily locate single cell array formulae with-
out using a macro.

Remember to record your findings on the audit sheet.

Iteration status

Although not a structural check as such, I include the iteration status check at this point.
Iteration is a powerful feature and is explained in much more detail in Chapter 3, but for

the moment we should note that it is used to solve circular calculations. The problem with
this is that the majority of circularities are accidental and iteration will happily calculate
both deliberate circular code and simple slips. We should always check that either iteration
is off and that the model is non-circular, or that iteration is on and that the circular code
is controlled with a switch (Chapter 3). Use Tools, Options and click on the Calculate tab,
and note the Iteration check box.

Options
| Color | internstional | Save | ErrorChecking | Speling | Securty |
| Wiew alculation [Edit | General | Tramsition | Customlists | Chart |
Zalculation
&) Automatic) Manual Calc Mow (F9)
() Automatic except tables Recalculate before save

Zalc sheet

Mazxirum ikerations: i_IIIIIII _ Mazimum change: DF|
‘arkbook opkions
|pdate remote references Save external link values
[Precision as displayed [] Accept labels in formulas

[] 1904 date system

[o] 4][Cancel J

The iteration command

Practical Financial Modelling

One of the reasons for running this check in particular is that Excel has a habit of sav-
ing the iteration status as a file attribute. When the workbook is re-opened, Excel will
switch on iteration without any other warning, and so it is not safe to assume that the iter-
ation status is always off by default.

During model build the iteration should always be off; as it is during the development
phase that circular errors are most likely to arise.

Record the iteration status on the audit sheet.

Arithmetical checks

The accountants teach us that if we can calculate the same thing using different methods
and get the same result then we can be confident about our work. As the model is being
developed, the values generated by our calculations will change, and so these audit checks
must be dynamic. The arithmetical checks are designed to check that things add up. Even
a simple model can merit a quick cross-check. If the inputs—workings—outputs structure
has been used, with or without variations as described in the previous chapter, it is likely
that the reports contain totals and subtotals which duplicate calculations in the workings.
We can turn this to our advantage by comparing the results. If a discrepancy is found, it
will usually be due to one of three common errors:

1 acalculation has been updated to reflect a new element on the workings sheet, but the
relevant output sheet has not been updated to show this new element; or

2 a calculation has been updated to reflect a new element on the workings sheet but not
then copied across the row, and the output has been updated;

3 the output has been updated but with no changes made to the workings sheet.

For example, the project cash flow on the workings sheet should have the same values as
the project cash flow summary formula on the Cash Flow report. On the audit sheet, we
link the two lines and subtract one from the other. The result should be zero. Put in a log-
ical sum on the audit sheet as the audit check.

_4 |Project cash flow check

5| onworkings 20023000 A351T4TS 16567120 19823717 19050500 15069046 19606749 20664001 17122170
B | onCash Flow 0000 31740 TeberJG 1SEEIAY) 1H000500) 15069046 1960649 J06R40T 1712170
| |check SUIES MU a o 1) u o u o a o

A simple audit check

Other such arithmetical checks might include the financing cash flow, profits before and
after tax, increases or moves in cash balances and retained earnings.

Another form of arithmetical check is to test that the assumptions reported in the out-
puts match the assumptions on the inputs sheet. This serves to ensure that the same units
are used throughout — we once reviewed a model of a hydroelectric dam project, in which
the energy output was specified as kilowatt/hours. Somewhere in the model it was arbi-
trarily changed to megawatt/hours, an order of magnitude of difference. This had meant a
change in the tariff structure, and a number of problems then arose.

Link the input values from the inputs sheet, and the output values from the reports, and
set up a logical sum as the audit check.

Quality control

Financial checks

Principle

The arithmetical checks simply prove that things add up. If they do not, the underlying
problem is usually fairly easy to identify, using the navigation shortcuts from Chapter 1.
Financial checks test the underlying financial and accounting policies used in the model,
and can be much more difficult to remedy if errors are found. The researchers point out
that as financial professionals, finance is described as our ‘domain knowledge’ and as such
the evidence is that there are markedly fewer errors in this area: it is unlikely that we would
use an incorrect depreciation treatment, or an out-of-date tax calculation. Whether they are
modelled correctly is another story, and thus the need for financial checks. These
should include verification that the appropriate accounting and financial rules have been
applied — the notes to a company’s audited accounts provide a conceptual guide. We
also need to recognise that individuals and organisations may have different definitions of the
metrics being used in the model: is your understanding of ‘cash flow available for debt serv-
ice’ the same as mine? How many different ways do you know how to calculate Return on
Capital Employed/Return on Investment? Whether you choose to provide de initions here in
the audit section or to set them out in the reports is a decision you need to make soon.

Balance sheet

The first, classic, financial check is that of the balance sheet. A lot of modelling is based on
cash flow analysis and balance sheets are not created routinely; some analysts never use
them. However, it is worth noting that a lot of people involved in financial modelling hold
financial rather than accounting qualifications, and so are not too familiar with the con-
cept of double entry accounting and the basic accounting equation that

ASSETS = LIABILITIES + EQUITY

For example, any tax we incur is paid from our cash flow and also deducted from our profits.
Interest payments reduce our cash, and (in most jurisdictions) also reduce our tax liability.
Accounting for one part of the transaction and not the other is quickly highlighted if even the
simplest of balance sheets is included in the outputs, whether or not it is formally required.
Alternatively, set up an abbreviated balance sheet on the audit sheet. We can then test that move-
ments in the cash flow report are reflected in the cash balances, and that movements in the profit
and loss or income statement are mirrored in the retained earnings on the balance sheet.

We need to set up the appropriate lines on the audit sheet. If we simply link through
the balance sheet imbalance line to this sheet, we will simply see a line of zeros which in
a large model simply disappear off the right hand edge of the screen. In the base column we
could put in a sum function and test to see that the product of the row is equal to zero.

=SUM(E20:P20)=0

But the accountants teach us about a type of error called the ‘compensating error’; simply
put, if we have an imbalance of +10 in one period and —10 in another, the product is zero
and would not be detected arithmetically. To avoid this, we can nest each of the balance
sheet links in the ABS function:

=ABS(‘Balance Sheet'!|E36)

Practical Financial Modelling

The ABS function returns the absolute value, that is, without the sign. This should allow
the SUM function to flag up any errors.

But we might also have very minor rounding errors floating around. If the imbalance
line reads 0.0022 in a particular period the logical SUM check returns FALSE. On inspec-
tion, however, it might be difficult to locate the rounding error, particularly if the audit
sheet has been formatted. We could agree a particular level of tolerance, say, 0.01, and enter
this into a cell at the top of the audit sheet (and perhaps give it a range name such as
Tolerance). We then return to the SUM function and update it:

=SUM(E20:P20)<Tolerance

A variation of this is to use the ROUND function in which we specify the number of dec-
imal places we wish to include:

=ROUND(SUM(E20:P20),2)=0

In this example, we are rounding the formula to two decimal places.

Cash Flow

The second of the classic financial checks is the reconciliation of cash flow movements with
the cash balance on the balance sheet. My own preference is that the net cash increase and
the cash carried forward (closing or ending balance) are linked through to the audit sheet
as two identifiable lines, rather than running the test as a single, 3-D calculation. The test
is that this period’s cash carried forward balance less the last period’s cash carried forward
balance is the same as the net cash increase (decrease) from the cash flow statement. Put in
an appropriate logical sum in the audit column.

Profit and Loss

The third classic financial check is the reconciliation of movements on the Profit and Loss
report with changes in the retained earnings on the Balance Sheet. This should prove that
the retained earnings carried forward balance for this period, less the retained earnings bal-
ance for the last period, should be the same as the increase (decrease) in retained earnings
from the profit and loss/income statement.

Ratios

One of the common reasons we build models is to carry out ratio analysis on cash flows for
a variety of purposes. I would suggest that such analysis can be used during model devel-
opment as what I would describe as a rationality check. If you have some experience of
working with ratios, and you have an understanding of the entity you are modelling, you
may have a gut feeling for what sort of values you might expect to see. If these expectations
are set out formally, you and your colleagues are able to monitor them as the model is
developed. The liquidity ratios (current assets, acid test), efficiency ratios (stock turnover,
debtors and creditors, etc.) and profitability ratios (return on capital employed, gross profit,
net profit, etc.) are very helpful. As this list is fairly extensive I will defer to your own pro-
fessional knowledge and experience to select the ratios of most relevance to your own

Quality control

requirements. On the audit sheet, list the ratios to be tested, along with your expected
threshold values. As with the profit and loss and cash flow checks, link through the source
information on a line by line basis, and write the appropriate calculations. These could
either be as one-offs, for example, an overall return on capital employed, or on a periodic
basis copied across the row. In either case we are concerned that the ratio passes or fails the
test, rather than its numerical outcome, so the formula should be a logical test. The audit
column cell should then return TRUE if the ratio test is satisfied in all periods, and FALSE
if any one (or more) fail. This is a simple AND function, as above.

It is important to document the method for calculating the ratio, as for example, return
on capital employed has many flavours. We should also document our assumptions about
the threshold values, remembering that they will depend on the circumstances of the model
and the company, industry or country. From your experience you will know that not even
the textbooks agree on the expected values of particular ratios, but even if you are not that
familiar with using ratios I would recommend using them as an audit check, as they can
rapidly point out flaws in assumptions or calculations that might be otherwise difficult to
spot. Just to give one example, in setting up the receivables (debtors) and payables (credi-
tors) inputs in a model, the values for the debtor days and creditor days were tranposed —
instead of expecting the company’s customers to pay within 30 days, and the company to
pay its bills within 90 days, the figures were reversed. The subsequent working capital
results did not merit attention, nor was the effect noticed on the cash flow. However, the
current assets ratio (current assets/current liabilities) was in excess of 4 to 1, where we would
expect this type of company to have a ratio to the order of 2.5 to 1 or less. If this ratio had
been set up as an audit check early on, this error would have been detected and resolved at
the time, rather than at the late stage of development that it actually reached.

IRR

The internal rate of return is directly related to the net present value of an investment and
its cash flows. Ignoring interest and inflation, if we invest 1,000 today, and receive four
annual payments of 250, the net present value is zero and the IRR is 0%. We can use this
as an audit check if we recognise different types of elements in the model as being cash
flows. As a simple example, we could consider calculating the IRR of a debt. The debt cash
flow is made up of the amount drawndown, the repayments, and the interest charged by
the bank. From this it may be obvious that the IRR of a debt cash flow must be equal to
the interest rate, although this does depend on the interest calculation being used and that
the interest rate remains constant. If;, for audit purposes, we charge interest on the opening
balance and calculate the debt cash flow as the debt drawdown less the repayments less the

4 |Debt

o | interes| rale 5% 5% 5% 5% 5% 5% 5%

| interest on opening balance 1] 1,000 G600 60O 400 200 a
7|

8| nt U A0 Te000 12000 5000 FYTin] i]

| drawdownf{repayrment) 20,000 -4,000 4,000 -4,000 -4 000 -4 000 0

o] cf 1] 20,000 16,000 12,000 3,000 4 000 0 1]
11

12 |Cash flow IRR 5.00% 20,000 5,000 -4 800 -4 600 -4 400 -4.200 u]

A simple IRR test

Practical Financial Modelling

interest, the IRR equals the interest rate. We could also recognise that the NPV of the debt
cash flow, discounted at the interest rate, should be zero.

Change checks

When working on a model over an extended period of time, with periods of perhaps days
or even weeks between modelling activity, it can be difficult to develop a familiarity with
the numbers being generated, or a sense of progress. The change check is not an audit
check proper, but acts more as a continuity check. Noting the observations about the ratio
and IRR tests above, we could identify a number of key results and record their values in the
audit sheet — IRR, NPV, debt service cover ratio, whatever. Even though the results are not
meaningful, because the model is not yet complete, they can remind us of our previous
work and show the effects of recent and current work.

1 Put the appropriate headings on the audit sheet.

Write the appropriate key result calculations on the workings sheet, and put links to
these formulae on the audit sheet.

3 At the end of the modelling session, copy these results and Edit, Paste Special, Values
into the adjacent cells. Put the date above the pasted cells (use Ctrl+; to insert the cur-
rent date).

4 At the end of the next session, copy the updated results and either paste values on top
of the previous or adjacent to them, and date accordingly.

The benefit of this technique is that at the end of each bout of modelling activity we can
monitor the effect of the work on these key results and check that the changes tie in with
our expectations or understanding of the effects we would expect to see.

Model comparison

Sometimes we have the situation where there are several copies of a model (for example, it
has been emailed to colleagues). With the tinkering that can then take place, it can be dif-
ficult to determine if each model is exactly the same. Why not add up the workings, or an
output sheet? A simple SUM can be tucked away tidily at the bottom of a sheet, or on the
audit sheet. The idea can be extended by putting in a SUM at the bottom of each column,
which might help identify where the discrepancies are creeping in. This technique is not
completely reliable, but can be helpful.

Model map

It can be quite helpful to form an overall picture of the model and we can use a basic model
mapping technique to create a graphical view of the model and its components.

1 Make a copy of the worksheet to be mapped — Ctrl+click and drag the sheet tab.
2 Select the entire sheet — Ctrl+A.

Quality control

3 Adjust the standard column width to 2 units. If the worksheet is particularly long or
wide, try changing the Zoom to 50% or less.

4 Sdll with the whole worksheet selected, press F5 Edit, Go To and click the Special
button.

5 Choose Constants, and clear the Text, Logicals, and Errors check boxes. Choose OK.
Excel has now selected all cells which contain numbers. Apply a fill colour. If Excel is
not able to find any cells, make a note of this result.

6 Repeat Step 4, and then choose Constants, this time clearing the Numbers, Logicals,
and Errors check boxes. Choose OK. Apply a fill colour to all selected cells, which in
this case contain text.

7 Repeat Step 4 for Constants, Logicals, and Constants, Errors, using a different
colour each time.

8 Then repeat Step 4 for Formulas, and each of Numbers, Text, Logicals, and Errors.

9 Now select just the columns in the forecast period (if the model has one). Use F5 Edit,
Go To, Special, and Row differences. Apply a fill colour to any cells found.

10 Finally, select the columns of the forecast period and run F5 Edit, Go To, Special and
select Precedents. Directly on completion of this command, use F5 Edit, Go To,
Special, and choose Blanks. Apply a fill colour.

In the few moments it has taken to carry out these steps, we now have a full map of the
worksheet, in which we can visually identify key exceptions to the modelling rules set out
in this chapter and elsewhere, in particular the location of inputs and hardcoded values in
formulae; breaches of the left-to-right consistency rule, and references to empty cells. By
clicking on any of the coloured cells, regardless of its size, we can still read its contents on
the formula bar.*

Alternatively, the map can confirm that the worksheet layout conforms to good practice.

If you have reduced the zoom level to below 40%, you will notice an interesting feature
in that Excel will display range names in the worksheet. With our practice of naming single
rows (see Chapter 3), this is not that useful because the display is so small, but if names
have been used to describe blocks of cells then it can be quite helpful.

" We could use conditional formatting for the model map, using ISTEXT and ISNUMBER functions, although

we would not be able to differentiate between values and formulae. See Chapter 5.

CHAPTER Mainly formulae

Introduction

The purpose of this chapter is not to show you how to write formulae in the first place, but
to consider ways in which you can set them out more clearly and which conform to the prin-
ciple of error reduction. One of the concerns we have about writing calculations is what I
call the ‘intellectual challenge’ approach: the attempt to solve modelling problems in the
least amount of space. The results are formulae of bewildering length and complexity, that
require considerable time and effort to understand, and are difficult to audit and review. We
have all done it — we have spent some time trying to solve a problem and in so doing we
have created a monster of a formula, which takes up four lines on the formula bar and has
six closing brackets. And then we look back at the formula a week or so later and amaze our-
selves that we were so clever, because we are not quite sure how (or why) we did it.

There are a number of articles and web sites whose authors push hard for this approach.
In almost every case I would urge caution, because long, complex calculations are daunting
to look at, and the operational research suggests that the longer the formula, the less chance
of it being either read correctly or understood. If the reviewer or user is unable to under-
stand a formula, we are failing to give them the confidence they need to rely on the results
of the model. We can still tackle complex problems, but I suggest that the task is broken into
steps, using as much of the worksheet as required. It may appear more time-consuming, but
the logic is simply expressed and should be easy to follow. We have 36,536 rows in a work-
book — an awful lot of real estate into which to break down and spread out the calculations.

This chapter explores ways in which we can make formulae simpler to understand and
the next considers how functions can be used in this context, although I have included the
use of a handful of functions in this chapter to help illustrate the use of particular tech-
niques. Conforming to the overall purpose of the book, the intention is to encourage you
to reflect on alternative practice in the light of these suggestions. I am confident that you
would be able to generate alternative solutions to the problems and issues that follow. Even
if you reject my solutions, you will have greater confidence in your own modelling abilities.

The demonstration workbooks for this chapter are located in Chapter 3: Mainly Formulae

folder.

Mainly formulae

Range names

The big debate

The use of range names is probably one of the most contentious issues in financial model-
ling. For some they are just plain common sense, but for others they represent the dark side
of modelling. In this section, we will look at range names in some detail, and in doing so
explore the arguments for and against.

Geographical precision

Many modellers seem to prefer the geographic precision of the cell reference — there is no
dispute over the location of Inputs!D4. Indeed there isn’t — but what exactly is Inputs!D4?
Most of the time we are more interested in what the cell contains, rather than where it is
located. And in Chapter 1 we covered a number of simple navigation techniques which
would allow us to visit the cell if required. I have encountered modellers who claim that
they can read a formula and intuitively understand the elements referred to by cell refer-
ence. I might suggest that intuition is not the most reliable of modelling skills.

Speed

Some modellers argue that it is much faster to write formulae using cell references. This is
undoubtedly true, for anyone reasonably proficient with the keyboard and mouse. But the
number one error in financial models is that of the pointing error — inserting the wrong cell
reference. We certainly should not type cell references, but should point to the cell using
either the mouse or keyboard. It is all too easy to click on the wrong cell, and it can be quite
tricky to spot this mistake as it happens, particularly if the user is inexperienced or under
time pressure. But although not impossible, it is quite difficult to use the wrong range name,
and often such a mistake is immediately apparent on inspection of the formula.

The Lotus 1-2-3 legacy

From my own experience I have identified a number of reasons why some people are so resist-
ant to names. Lotus 1-2-3 had range names but they did not work in quite the same way as
they do in Excel. For example, the Lotus modeller could write @SUM(Sales) but not

+Sales-Costs

Lotus names could only be used as a range reference, in functions such as SUM, COUNT, AVG,
etc. Having learned this limitation, the Lotus modeller is often not aware of the enhanced
functionality of Excel names. I have mentioned before that a lot of people cut their financial
modelling teeth with 1-2-3 and by now have progressed to senior levels of the organisation,
and I have heard of many cases where the junior (and not-so-junior) members of the team are
discouraged from using techniques such as names because of management antipathy.

Poor teaching

I have also found that the subject of range names is often poorly explained. Many people
are shown how to set up range names using the text at the start of the row. For example,
the text ‘total sales’ is used to name the adjacent row.

Practical Financial Modelling
Londaon
[total sales

Paris
total sales

g

Mewe York
total sales

Ty
g

Row headings do not make sensible range names

First, Excel does not care much for the space between the words and substitutes in the
underscore character total_sales, which looks scruffy. But second, and more importantly
from a modelling perspective, we might have several ‘total sales’ lines, for example, one for
each business unit or region. There is no differentiation between each one, and Excel will
only allow one definition, so range names do not appear to offer any value. At this point
most analysts immediately dismiss range names altogether.

Range labels

In passing it is worth being aware that Excel possesses a rogue feature called ‘Range Labels’,
in which the text to the left or above a range can be used in formulae as a kind of range
name on the fly. This is not worth exploring further. You may wish to confirm that this
lightweight feature has been disabled by checking that Tools, Options, Calculation, Accept
labels in formulas is off (the default since Excel 2000).

The rule of thumb

There is a trade-off between development time and model usage, and I would agree that
certainly in a small model (e.g. the monthly management accounts) the use of range names
is superfluous. My simple rule of thumb is that if you cannot see the item being referred
to on screen, then it should be named, and the name must exist in the worksheet.

The principle

The underlying principle of using range names is that formulae are readable. Consider the
following example:

Earnings before tax =Revenue-CostsOperating-InterestNet

(we will look at name conventions later).

If you are familiar with the concept of the earnings (or profits) before tax it should not
take too long to spot that I have left out depreciation.
Now consider this formula:

Earnings before tax =E16-E87-E114

Mainly formulae

What’s missing from this? In order to discover the missing reference, we need to inspect the
other references first. Not too time consuming using the F2, Ctrl+[and auditing tools from
Chapter 2, but it detracts from an early understanding of the formula.

Name conventions

Before going too much further with this exposition of range names, it is worth recognising
that even in a relatively simple model you could end up with a couple of hundred range
names. We should give some thought to how we will organise the names in order to make
them manageable, and to ensure that they have real meaning. I normally suggest the
following naming convention:

CategoryDescriptionSubDescription . . .
For example,

CostsFixedReal
CostsLabourHour
CostsVariableMoney
CostsOperating

All of the above names are in the overall category of costs. Within this I have provided appro-
priate descriptions to differentiate one element from the other, and the name should be as long
as it needs to be to allow for this. I have also written the names as compound words, with no
spaces, with each component identified with an upper case letter. As noted above, Excel will
substitute the underscore _ character into any spaces, which works but looks untidy. Some
people suggest that a full stop can be used in this context, for example, Costs.Variable.Unit
(similar to the command syntax in Visual Basic for Applications, in Chapter 7). Excel does not
allow the use of arithmetical operators in range names. Numbers cannot be used for names
unless you prefix them with an underscore, but this is not recommended.

Avoid using names that could confuse or mislead, and use common sense if abbreviat-
ing or using acronyms. EBITDA is recognisably earnings before interest, tax, depreciation,
and amortisation, but would you recognise PCTCT as profits chargeable to corporation tax?
What about TVA or MwSt*? Do not use range names that look like Excel functions, for
example, SUM or NPV. This does not confuse Excel but may cause problems for your users.
Avoid names such as Q1 and Q2 because these are also valid cell references. In fact Excel
will not allow you to do this, and will add a trailing underscore _ character to the name
without telling you (Q1_ and Q2_), which can lead to trouble if you have not spotted it.

Range names must be unique. If you attempt to create a name that already exists on the
same sheet, Excel will prompt you and offer the choice between going ahead with the new
name and eliminating the earlier definition, or to stop and set up an alternative name for
the current range. Think this one through if it should happen: any existing formulae con-
taining the original name will automatically refer to the new definition. If you create a
duplicate name on a different sheet, however, Excel will not provide any warning and will
create something known as a local or sheet level name, which we will look at shortly.

"Taxe sur la Valeur Ajoutée and MehrwertSteuer respectively — French and German sales tax.

Practical Financial Modelling

The key point is to make sure your range names are meaningful. We use them so that
we can write readable formulae in such a way that other users can understand our work.
A logical and consistent approach will enhance this.

Benefits

There are several further benefits of using range names. As a model is developed, it is likely
that blocks of code are moved around, with rows being inserted or deleted as required. Cell
reference formulae will still work, of course, but the references will be different, for exam-
ple, you may have recognised that E45 is your Revenue line, so when it next appears as E63
you may have to spend a moment checking that this is correct. The range name Revenue,
however, will remain unchanged regardless of where it is located.

I am often asked, fairly aggressively, “How am I supposed to remember all the names?”
There is a simple answer — you arent. And I normally respond, “Do you remember all
your cell references?”. You can always use the F3 Paste Name dialog box to refresh your
memory.

Re-usable code

Additionally, range names can be re-used. The earnings before tax formula referred to above
is the same in all of my models. The elements to which it refers, however, will be in differ-
ent locations in each new model that I set up. But if I use range names I can simply copy
and paste the formula from one workbook to the next. If the names in the formula do not
exist in the new workbook Excel will by default treat the names as absolute references and
refer to the corresponding cells in the new workbook, until such time as the names are
redefined. If the appropriate range names already exist in the new workbook, Excel will
offer a choice between using the name as defined in the new workbook or using the name
in the original file. The option exists to change the names in the source formula before
pasting into the new workbook (Name Conflict). Given that over time, colleagues and
users become familiar with your name conventions, new model development can become
quite efficient as you re-use code from previous models.

Microsoft Excel E|

A formula or sheet you want to move or copy contains the name 'Revenue’, which already exists on the destination worksheet, Do
-i wou want to use this version of the name?
"‘V) + To use the name as defined in the destination sheet, click ¥es,
+ To rename the range referred ta in the Farmula or warkshest, click Mo, and enter a new name in the Mame Conflict dialog bax.

Name conflicts — make sure the pasted name refers to the correct definition

The certainty of names

Range names offer considerable advantages in heavy duty modelling, large complex mod-
els perhaps with file links, and with macros. Range names provide an element of certainty
that cell references lack: if you need to prepare a monthly income statement derived from

Mainly formulae

14 business units you probably do not want to waste time hunting around the source files
for the detail you require, when you know you need to pick up revenues, costs, and so on.
When running command sequences to pick up data from other files, the consistent use of
names in the source files can allow for very effective data capture, where the use of cell ref-
erencing may be much less reliable — the insertion or deletion of a single row can wreck the
process. VBA macros which are written using name ranges will be more robust, and of
course the VBA code can be re-used in new models (see Chapter 7).

Creating names

It is good practice to document your names in the workbook and this is easily achieved
using the Create Names command. We have already considered the problem in using the
row headings as potential names, in that the text down the left-hand side of the sheet is
descriptive but also can be repetitive. Instead, put the names on the right-hand side of the
range. In this way names are unique, descriptive, and immediately adjacent to the range to
which they refer. Select the name and the cells and run the Insert, Name, Create
command. This produces a simple dialog box:

Create Names E] e T Toes
Create namesin 42 45 TaxFayablesf
[i 45 A48 TaxFayable
[] Left column 42 45 TEKPEfﬂ' _
F [Bottan fom 45 48 TaxFPayableCf

Right calurmn
[(8] 4] [Cancel]

Names are created from text located at the edges of a range

Excel examines your selection and identifies that the names are in the right-hand column
(using the simple assumption that this is the only text in the selection; values or formulae
cannot be used as names). Click OK. On page 22, we saw the Go to functionality of the
Name Box and this can be used to confirm that the name has been created and to confirm
the range. Note that the Name Box cannot be widened, so it can be difficult to locate longer
range names — in which case use F5. A further tip is to click and drag over a range of cells,
and then inspect the Name Box. If Excel recognises the selected range, it will show the name
in the box. Selecting an individual cell within a named range will result in the cell reference
only appearing in the box.

A shortcut for Insert, Name, Create is Ctrl+Shift+F3.

It is possible to name individual cells as well as rows or columns. The name must be adja-
cent to the cell, and the usual Insert, Name, Create command used. An individually named
cell is effectively an absolute reference.

Insert, Name, Create is not infallible: if you have selected multiple rows and names
and there are several blank rows in the selection, Excel may fail to identify the position of

Practical Financial Modelling

the names and the dialog box is blank. You can help by selecting the appropriate check box.
If you run the command and yet the name does not appear to have been created, check
that you have selected both the row and the name. If you have a range which contains more
rows than columns, Excel can get confused and offer to create names in both the top row
and the right column. If you do not spot this, you will discover that the outcome is that
Excel creates only the name that occurs in both the top row and the right column, and the
range thus named is in the first column. This is typically noticed when the name is used in
a formula and returns the #VALUE! error, because one name is attempting to reference
more than one cell (see below).

Al B [& E AR SRS
% ' [Create Names E|
o L Creake names in
il cash 5% IntRateCash Fie e
2 overdraft 10% IntRateCverdraft DLeFtcnIumn
24 | debt 7% IntRateDebt 0 éottom o
29 =
T [I | Right colurmn
% | i [oK, l [Cancel
3

Excel sometimes gets confused

An alternative to using names on the right-hand edge of the range is to set up an extra
column on the left-hand side and put the names at the start of each row. This can be use-
ful when your forecast period is very wide. Some users suggest hiding this column once it
has been set up, but I prefer to keep it visible so that I can inspect names and ranges in the
workbook.

I have referred to range names describing rows in both this and subsequent sections, but
the same methods can be used in the context of columns.

Interestingly, the Undo command does not work for Create Names, but it does work
for Define Name.

Defining names

The Insert, Name, Define (or Ctrl+F3) command allows additional functionality. The
Define Name dialog provides information about the range names already set up and their
corresponding cell references. It also allows for names to be deleted. But because good prac-
tice recommends that names should be documented in the worksheet itself, range names
should not be set up using this command, the point being that the defined name only exists
in the Name Box. You can use it to set up names that you might not want to appear in the
sheet, for example, ‘PrintArea’ or ‘BalanceSheet’.

You can also assemble non-adjacent ranges using range names, which can be useful for
printing and other purposes. For example, 1 could assemble the ranges BalanceSheet,

Mainly formulae

IncomeStatement, and CashFlow, into a single range called FinancialStatements, provided
that they are all on the same sheet. To do this, set up the individual names first using Define
Names. Then return to the Define Name dialog box and type in the new name. In the Refers
to section, type an equals sign followed by the names separated by commas. Important — do
not press Enter as Excel tends to ignore what you have just done. Instead, click Add. Tip — if
you type the names in lower case you should see them convert to upper case as appropriate.

Define Name

Mames in workbook;

inancialStatements I
Balancesheet
| Financialstatements
Incomestatement
Refers to:
! =RBalanceshest, CashFlow, IncomesStatement ¥

Assembling non-adjacent ranges into a single range

Combination names can be a little difficult to use. If you press F5, you will not see them
listed, but if you type the name Excel will happily highlight the source ranges as required.
You cannot perform calculations on combination names, as this will normally generate the
#VALUE! error. But you can print them: use File, Page Setup and select the Sheet tab. In
the Print area box, type in the combination name (or use F3 Paste Name). If you next select
Print Preview, you may be disappointed — if the source names are not physically adjacent to
each other in the workbook, Excel will put a page break between them.

There are further tricks using Define Name to follow.

Using names
If we consider the Earnings before tax formula mentioned previously,
=Revenue-CostsOperating-DepreciationTotal-InterestNet

we need to understand what the names mean in this context. I have often encountered very
strong criticism from the cell reference modellers who demand to know which Revenue is
being referred to in the formula. There is a very simple answer: it is the cell at the inter-
section of the Revenue row with this column. If the model has been set up so that each
column represents one year, then the revenue figure referred to is the revenue figure for that

Practical Financial Modelling

year. By virtue of the use of the range name, it cannot be the revenue for any other year.
To understand this further, type the following formula into a cell: =3:3

This formula is a relative reference to row 3 — by omitting the column reference Excel
assumes that this formula therefore refers to row 3 in #is column, whatever this column actu-
ally is (and this is a very efficient way of writing code). A range name is a more meaningful
way of setting up such references. A formula such as =Revenue is read as the instruction to
look up ‘this column’ to its intersection with the row called Revenue and to return the value
from that cell. This range/column intersection is as unique as its cell reference. If it is not on
the current sheet Excel will then look in the same column on each sheet until it finds the cor-
rect cell. This should emphasise the key modelling layout rule, that each column has the same
function on each sheet. If you cannot guarantee the same layout and structure on each sheet
in the workbook, you should avoid the use of range names from the outset.

If the formula is in a cell which does not have a corresponding name in the same column,
the usual result is the #VALUE! error. Editing the cell will reveal that the formula is valid (the
name is in uppercase and in colour); but Ctrl+[(Go To Precedents) should reveal the problem.

All of this is fine, assuming that every formula you will write should refer to something
in the same column. If, for any reason, you need to refer to something in a different
column (e.g. a previous balance) you will need to use cell references.

Having set up your range names, there are a number of ways of using them. First, you
can type the names directly into your formulae. Tip: if you have created range names using
the compound word with initial capitals convention (e.g. CostsOperating), try typing the
formula in lower case:

=revenue-costsoperating-depreciationtotal-interestnet
If Excel recognises the names, you will find that it will capitalise the names automatically:
=Revenue-CostsOperating-DepreciationTotal-InterestNet

If you get a #NAME! error, edit the cell and look for the name that has remained in lower case.

=Revenue-CostsOperating-deptotal-InterestNet

Paste Name

Another way to use names in formulae is to use Insert, Name, Paste and selecting it from
the list in the dialog box (the shortcut is F3). As the list of names can be quite long, you
can type the first letter of the name you are looking for to scroll more rapidly through the
list (if you are particularly fast on the keyboard, you can type up to the first three letters).

Applying names

As mentioned earlier, it is undoubtedly quicker to write some formulae using cell refer-
ences, and it would be laborious indeed to then rewrite the formula using the appropriate
names. Instead, we can use the Insert, Name, Apply command. Excel will scan through the
worksheet and identify any cell references that correspond to named ranges, and convert
the reference to the name.

When using this command, we often find that Excel has automatically selected one or
more names in the dialog box — this is not because Excel is intelligent enough to work out
which names need to be applied, but simply because it remembers the last names that were
created. Most of the time we need to cherry-pick the relevant names from the list.

Mainly formulae

Apply Names b
PpLy lesieid
Apply names:

| IrFlation
i InflationIndes:

Pricshcal |
I PriceReal Cancel

iPr Eal . o i .
| FroductionlJnits Qpkions =

Turnowver

Ignore Relativeldbsolute
Lise row and column names

Applying names to existing cell reference formulae

If, after running this command, the references have not been converted to names, check
that the reference is to a cell in the same column (names work on the principle that the ref-
erence is to the intersection of the current column with the named row), or that the refer-
ence is not to another sheet, for example, =Inputs!E5 will not be converted to Inflationin
even if that is the correct name to substitute, because of the sheet name in the formula.
In this case it will have to be updated manually.

Deleting names

Good practice suggests that you should delete misspelled or redundant range names at the
carliest opportunity. Insert, Name, Define (Ctrl+F3) is the only way to delete range names.

Define Name

MNames in workbook;

OpeningBalance fs]
ClosingBalance

Expenditure Close
Income

CpeningBalance

dildil.

Delete

Refers to:
| =Sheet114$C45:4645 %

Using the Define Name command to delete mis-spelled or redundant range names

Practical Financial Modelling

If the deleted name has already been used in a formula, the #NAME? error value appears.
Use the audit tricks from Chapter 2 to locate and fix the problem, or use Edit, Replace
(Ctrl4+H) to substitute a new or corrected name for the deleted name.

Excel only allows names to be deleted individually from the list, and so can prove rather
time consuming if there are a lot of them. The usual Ctrl- and Shift-clicking techniques
don’t work in this dialog box.

Removing names

A few years ago I developed a course in collaboration with a client, and the analyst assigned
to the project was vehemently opposed to range names. Fach time I sent him the latest
iteration of the training model, it would be returned with the range names removed and the
formulae replaced with cell references. Although it is a simple operation to convert references
to names, Excel offers no functionality to revert names to references. In this case, the analyst
was manually rewriting the formulae, a time-consuming and perhaps redundant exercise.
There is one slightly messy way in which we can solve this problem. Although Lotus
1-2-3 used range names, it did not have the same ability to identify the intersection of the
column containing the range reference with the named row. Excel was deliberately
designed to contain functionality that would help users make the transition from 1-2-3,
and so we can take advantage of this to force Excel to behave like its competitor. Assuming

Options

| Color | International | Save | Error Checking | Speling | Security |
| Wiew || Calculation :| Edit | General | Transition (Custum Lists | cChart |
Save Excel files as: IMichsuFt COffice Excel Workbook, L |

Setkings

Microsoft OFfice Excel menu key: || |

|:| Transition navigation keys
Sheet Opkions

[] Transition formula evaluation
[]iTransition Formula entry

[o] 4 J [Cancel

A cumbersome way of removing names from formulae

Mainly formulae

that we have a model containing formulae using range names, we can use Tools, Options,
click on the Transition tab, and choose Transition formula entry. Excel now thinks that it
is 1-2-3.

Identify a cell containing a range name formula and press F2. No difference. Press Enter,
and then edit the cell again. The range names have now been converted to cell references
for the whole of the named range, although you will notice that the formula bar reveals that
the names are still there. Repeat as required for each formula. When complete, repeat the
Tools, Options, Transition sequence and deselect the Transition formula entry box. Both
the formula bar and F2 show that the names have now been removed. The formulae can
then be tidied up.

Assuming that we have followed the left-to-right consistency rule, we need only carry
out this operation on the left-hand formulae and then copy across when complete. You will
now need to use the Define Name command to delete the unwanted/redundant names.

200|Amount subject to tax I - - - 1,108,104
201

202 |Tax

203| rate L 0% 30% 30% 30%
204 payahle bf - - - -
205| incurred D|=E200:N200*E203: N203 - 332431
06| paid =T = P 3
207| payable cf | o - - - 332431

Ao

The formulae resulting from the 1-2-3 remove names trick

Extending ranges

A mild criticism of named ranges is that if the range is extended (extra columns or rows are
added), the name may or may not recognise this. It is relatively easy to work around this.
If the new columns are inserted from the edge of the working area, then the named ranges
do not change. If the new columns are inserted inside the working area, then the range
names will expand accordingly. Tip: whether you are using range names or cell references,
take care when inserting new columns. Any formula that referred to the previous column
will now skip the new columns. Copy the formulae from the last working column to the
new edge of the workbook.

B | | | new columns

5} 0.o) 8.5 146 21.1] | |=F9 lOpeningElaIance
7 16.6 13.2| 13.7) 17.3 | | 10.6/Income

g 5.2 7.1 72 7.6 | | 5.0 Expenditure

g ol 85 145 21.1 _ _ 35.4 ClosingBalance

A formula problem from inserting new columns

Moving named ranges

During model development it is not uncommon to restructure sections of the model. If named
ranges are to be moved, we should make sure that the entire range is selected, including the
name. If we then Ctrl+X Cut and Ctrl+V Paste, the cells and the name will move to the new
location. If only part of the range is moved, the range name will refer to the original location.

Practical Financial Modelling

The same applies if we copy and paste ranges and appropriate caution should exercised when
writing dependent formulae, to ensure that they are not referencing the original ranges.

Names and functions

Range names can cause problems if used with some Excel functions and it is appropriate
to consider this now, in advance of Chapter 4, although you may wish to refer to that chap-
ter in this context. What I call range functions (MAX, MIN, COUNT, SUM, AVERAGE, etc.)
are designed to operate on a range of cells, so if a range name is used as an argument, the
function will act on that range. For example, =SUM(Revenue) will, quite rightly, return
the total of the line called Revenue, regardless of which column contains the formula. But
if I need to return, say, the smaller of this year’s available cash compared to my annual debt
repayment, the following formula would give me unexpected results:

=MIN(CashAvailable,DebtRepayment)

The problem is that as an array type function, MIN finds the smallest value in the entire
CashAvailable range, compares it to the smallest value in the DebtRepayment row, and
returns the smaller of the two. As I copy the formula across the row, I get the same result
in each cell. If T press F2 to edit the formula, I notice that Excel highlights both rows, rather
than the individual cells I expected to see.

In order for us to use these functions and benefit from range names, we need to provide
some extra detail. If I wrote = CashAvailable Excel would have no problem, because it
would return the CashAvailable value from this column. If T rewrite the formula slightly,
=0+CashAvailable, this calculation works as well. But if I now substitute the calculations
into the original formula, I discover that it now works:

=MIN(0+CashAvailable,0+DebtRepayment)

F2 now reveals that Excel has gone back to the column intersections as expected. The rea-
son for this is that Excel does not read formulae and functions from left to right, it applies
the rules of arithmetic priority and in this example it evaluates the contents of the brack-
ets first. So it carries out the two calculations as they are written, and it then passes the
results to the MIN to process. However, adding zero to a range name does not look too
clever, so Excel shows a glimmer of intelligence in allowing us a final trick — omit the zero.
The final formula is:

=MIN(+CashAvailable, +DebtRepayment)

Do not omit the comma (argument separator) — we are not adding the two values together.
Use the +range name technique for any array type functions. The clue that this amend-
ment is required is that usually (but not always) on writing the formula and copying across
the row you get the same result in each cell.

Additional name functionality

The previous sections introduced the key name concepts and techniques, sufficient for
most routine modelling purposes. The following sections describe additional techniques
which are less commonely used.

Mainly formulae

Intersection formulae

It goes without saying that cell Cl is the intersection between column C and row 1 and
provides a unique reference. If we have row and column names we can repeat the trick with
range names. If we had a column named London and a row called Sales, I could write a
reference to the London Sales cell in the following way:

=London Sales

In case you have not spotted it, there is a space or ‘intersection operator’ between the two
names. As this intersection is as unique as a cell reference, there is no requirement to write
the formula in the same row or column as the named ranges. If it turns out that there is no
intersection between the row and the column, Excel will return the #NULL! error. I include
this short paragraph on intersection formulae out of completeness; I do not find it partic-
ularly useful, and indeed I have found it rather unstable.

Three-dimensional names

It is possible to set up range names which refer to elements on different sheets, which
would be useful for consolidations, but in practice little else. In this example we have three
inputs sheets which have the exactly the same layout but represent the profit and loss state-
ments for three business units.

We can create a summary sheet for the totals.

1 Make a copy of one of the inputs sheets to act as the summary sheet (Ctrl+click and
drag the sheet tab).

2 Delete the numbers from this sheet.

Use Insert, Name, Define (or Ctrl+F3) and type in the range name.

4 In the Refers to box, delete the existing suggestion.

[S8)

B 157 Fevenn {EE] 3[R i

perating costs 10 4 |Cparating costs 85 4| Dpersning costs 123

5 |Deprucustun 2 & |Deprucistion 18 5 | Depracution 4
6|]

7| Dperating Profit 37 3 7| Oparating Profi 24

75 |roat iraarat [F] 3 [sa imtarast (i) ERCTTE 13
10| 1| 0|

11 |Frofits busers Las 25 11 |Paofts bufors Lax 22 11 | Profts before tax 1
12 12

13| Tax 2t 0% 075 ne& | 13| Tax 0% [FR:]

14 |Profts ater tas 175 158 o7

18]

= *
3 %« r m London '\ Parks {Hewiork { Summary J woriings i o » 5 Bark '\ Newvnae { Summary { Workings Jf Qutpits _

Setting up 3D names

Practical Financial Modelling

Define Mame

Mames in workbook:

TotalRevenue oK

TotalRevenLe

Close

Delete

Refers bo:
= =London:Mewyork!$D43

.

Defining the 3D name

5 Click on the first sheet tab in the range, hold down Shift and click on the last sheet tab.
Then click on the cell to be named.

6 Rather than repeating steps 35, click Add after defining the name. Type in the next
name, and simply change the cell reference in the Refers to box. Only choose OK when
all names have been defined.

Test that the 3-D names work by using the SUM function on the summary sheet.

I am not particularly enthusiastic about 3-D names because the standard audit/go to
functionality does not work: neither Ctrl+[or F5 will show the precedent cells. Also, if they
are to be used at all they should be used for a single dimension — as with naming rows as
one row high and several columns across, and columns as one column wide and several
rows in length, the 3-D range should be one cell drilling down through each sheet. If mul-
tiple cells are named Excel will make no attempt to use the column matching principle
from earlier on; and a SUM function will return the value of the sum of all cells in the
range, regardless of which column the SUM is copied to. Likewise the reference must be to
the same cell on each sheet — we cannot have a 3-D name which refers to E16 on one sheet
and E20 on the next. Finally, 3-D names must be defined, they cannot be created, and
therefore are unlikely to be documented in the spreadsheet.

Sheet level or local names

If you set up a range name using Create or Define, the name is described as a global name.
Provided you are in the correct column, you can write a formula on any sheet referring to
a name and Excel will return the appropriate value. As we also noted eatlier, if on creating
a name, Excel spots that the name already exists on the same sheet, it will warn you.
If, however, the duplicate name is on a different sheet, you will receive no warning at all.
When you come to use the name in a formula, you may be baffled to find that the name
does not return the value you expect. Ctrl+[Go To Precedents also flags up that something
has gone wrong. This is because you have set up a local or sheet level name. Let us assume,
in the first instance, that this was a genuine error.

Mainly formulae

Define Name

Mames in workbook:

! CostsOperating

CostsOperating
Depreciation
DepreciationLondon
InterestMet
Interesthetlondon
PaT

PATLondon

PBIT

PBITLondon

PET

Close

il

> Delete

I

Refers bo:
i =London! $0%4 %,

Identifying a sheet level or local name

If you have a look in the Define Name dialog box (Ctrl+F3), you will find that the
duplicate name has the sheet name showing in the list.

If this is the case, you can simply use the Delete button in the Define Names dialog box
to remove the name. Sometimes it is not so simple. If the current sheet has the local name,
you will not be able to see the global name in the Define Names list because it is masked
by the sheet level name. If you are on a different sheet, you will not be able to see the local
name. To get out of this muddle, go to the sheet which contains that local name and delete
it. Then delete the global name. Then make any corrections required.

However, you may wish to set up sheet level names deliberately. If we have a workbook
in which each sheet represents a separate business unit, it may be appropriate to have the
same layout and the same names on each sheet (e.g. Revenue and Costs). This can be done
quite simply by setting up one sheet first with all the headings, formulae and names
required. Then copy the sheet (Ctri+click and drag the sheet tab) as many times as is
required. Because the same names occur on each sheet, Excel sets up sheet level names for
the duplicates. The formulae use the sheet level names, and if you wish to write further for-
mula you can do so.

The original sheet contains the global names, and should be deleted if not required. The
now-redundant global range names should be deleted using Define Name. To then sum-
marise the figures from each sheet onto a main report, write the appropriate formulae but
this time using the sheet name prefix for each name, for example:

=South!Sales+North!Sales+East!Sales+West!Sales

Problems can arise if you mix and match global and local names. For example, if I fail to
delete the source sheet in the exercise above, in addition to the local names South!Sales,
North!Sales, etc., I still have the original global Sales. If I attempt to include it in a
formula using it’s own sheet name, for example:

=Original!Sales+South!Sales+ - - -

Practical Financial Modelling

Excel pulls an odd little trick by substituting the filename for the sheet name:
=consolidatedsales.xls!Sales+South!Sales+ - - -

Not very helpful.

To create a sheet level name without copying names from other sheets, we use Insert,
Name, Define (Ctrl+F3), and prefix the name with the sheet name, for example,
Base!Price — note the use of the ! exclamation mark. For documentation purposes we
should then type the name into the worksheet.

Define Name

Mames in workbook:

]Base!Price| | QK |
InterestMetLondon
PaT _] Close
PATLondaon
PEIT Add
PBITLondon —
PET _.——_i
PETLondon Delete
Revenue
Revenuelondon
Tax ____j

Refers to:

[=BasetsDg2 S

Defining a sheet level or local name

Relative names

I pointed out previously that we can be very comfortable using range names once we
understand that they can only refer to the intersection of the named range with the current
column: if your formula in column E reads Revenue, then we know with absolute certainty
that the Revenue figure is also that for column E — it can not be anything else. Hopefully,
as far as your modelling goes, that will be the case.

But you may encounter relative names. An example of this might be where I set up a rou-
tine that begins with an opening balance, which is by my definition would be a link to the
previous closing balance. Because the previous balance is in the previous column, a normal
range name would not be allowed. However, we could set up a range called PreviousBalance
using Define Name. Select a cell in the opening balance row, and press Ctrl+F3. Type in the
name PreviousBalance, then click in the Refers to box. In the worksheet, click on the actual
previous balance cell and note the absolute reference that then appears in the dialog box. The
trick here is to press F4 (Absolute) three times until the $ signs disappear. Then click OK.

Now rewrite the opening balance formula using the new name. It should work — if you
press F2 Excel should highlight the previous balance. Now try using F5 Go To and choose
PreviousBalance as the destination. What happens? You should find that it is always
relative to the current cell, whether or not it is actually the previous balance at all. In this
example, PreviousBalance is always 3 cells below and one the left of the active cell.

If your colleagues or users are new to range names they are unlikely to thank you for
using relative names and in any case I suggest that relative names are best avoided.

Mainly formulae

A B el D E | E == H | J [| L I 1 P] ¢ P i 1
1 -
7| Define Name ml
% Names in yrorkbock:
= £ Presanusialance
L5 | ool o4 145 210 0.7 CpeningBatance |
& 166 132 13.7 173 106 fncome | Close
(7| 0.2 71 7.2 18 6.0 Expenditure ——
8| [1] 0.4 145 210 07 3.3 ClsingDatance | | | add
9
o] '
L
112
= finfers ra:
14 o =
E =Seet2IED =
16

PreviousBalance is always three cells below and one to the left of the current cell

Mixed absolute and relative names

Accumulated depreciation is an example of a rolling total type of calculation, where in
this case we need to add up all the depreciation previously charged up to and including
the current period. You will probably know that the cell reference version of the
formula is:

—SUM(SE$80:E80)

As the formula is copied across the row, the E80 reference is fixed, and the relative ref-
erence changes. To achieve the same effect with range names, try the following:

1 Name the row as required using Create Names (Ctrl+Shift+F3).

2 Write the formula required in the appropriate row. Copy across the row and ignore
the result.

3 Move to the first formula in this row.

4 Use Define Name (Ctrl+F3) and select the name.

5 In the Refers to box, amend the reference so that it only refers to the first cell in the
range, then delete the $ signs (F4) from the second reference.
6 Click the Add button (not OK).

Define Name

Mames in workboolk:

Follingsum 0

Close

Delete

Refers to:
| —Sheet113C45:65

Mixed reference range name

Practical Financial Modelling

Test that it works.

This technique is not very flexible and may result in unexpected circularities. If you copy
the formula to another row, Excel will include the cells between the formula and the original
named range. The use of F5 Go To will highlight the potential problems of this technique.

Naming values and formulae

Take, for example, this afternoon’s exchange rate between sterling and the euro. I should write
it into my model, appropriately named. Instead, I shall use Define Names. I shall use a plau-
sible name, such as ExchangeRateGBPEuro, but instead of referring to a specific cell or range,
in the Refers to section of the dialog box I type in the value. I can now amend my currency
calculations by multiplying by my new exchange rate, but nobody can see it in the workbook.

Define Name

Marnes in workboak:

|ExchangeR ateGEPELND o

angeRateEPEUrD

Close

Delete

Refers to:
|=1.4905

IEIH

Naming a value

Even worse, using F5, ExchangeRateGBPEuro returns an invalid reference. Where is
the exchange rate? The only way to check is to inspect the Define Name dialog, or to use
the F9 trick from Chapter 2. It may be that you can think of a moral reason for hiding key
values such as this, but good practice suggests that all values used in the model should be
both easily accessible and properly documented.

We can slide further into the ethical abyss by naming formulae. In this case, you can use
Define Names to set up names for formulae which are entered into the Refers to section
of the dialog box. It is not quite as straightforward as it could be — a formula such called
GrossProfit which is made up of Sales-Costs will return the same value if copied across
the row, because Excel only uses the left hand cell from each of Sales and Costs. However,
if you write the named formula using cell references it should work.

Dynamic range names

Returning to the issue of having named ranges grow or shrink as data is added or deleted,
it is possible to solve this using expanding or dynamic range names. This needs some

Mainly formulae

careful thought, but is worth exploring. It may be helpful to refer to the section on the
OFFSET and Lookup functions in Chapter 4.

Let us create a chart based on a series of sales figures. We would like to add the sales figures
for each week as they become available, but we do not want to have to keep updating the
chart. Because of the open-ended nature of the exercise, it would be sensible to put the
range name in a column to the left of the figures.

M o [N 0 (- SO - | e O] 0 o8 T [[l

Wesk 1 WeskJ \Weekd Weskd \Wesks \Weekb Wesk/ Weskd \Weskd Wesk1U |

Sales | 7.60 6.19 590 6.3 943 5.54

==l

92 944

Range name in column C

What we would like to do is to automatically increase this range as the figures are

updated.

1 We can use the COUNT function to return the number of values in the row (COUNTA
would include the text in the headings).

2 We can use the OFFSET function to define a range that starts in the first cell in the row
and ends 7 cells further on, where 7 is the value returned by COUNT. If COUNT
increases, the OFFSET reads further across the row.

3 We combine the two functions in the Define Name dialog box.

The syntax is:

=OFFSET(SheetName!D34,,,,COUNT($34:$34)) (explanation below)

(note the four commas).

4 Click Add.

Define Name

Mames in workbook:

| Sales o]

Close

Jildlil.

Delete

Refers to:
! =0FFSET(SheetMame!$0434, ,,, COUMNT(Sheet 1 1434, 534)) 2

A dynamic range name using OFFSET

Practical Financial Modelling

5 Set up a chart, based on the existing range. Use the Chart, Source Data commands
to specify both the Data Range and the Series values are derived from the
named range — remember to include the sheet reference otherwise Excel complains
continuously.

6 Now add new data and test to see that the range has updated.

The COUNT formula is used to count the number of values in row 34 (in this example).
We do not know how many values this will eventually contain, and this referencing looks
at the entire row. Make sure the referencing is absolute ($34:$34).

The OFFSET function uses D34 as its starting point and reads off the number of cells
in the row identified by the COUNT. As further cells are added, the COUNT increases and
the range expands. Note the four commas — these are placeholders for arguments that are
not relevant here but are explained further in Chapter 4. In simple terms, the COUNT
returns the argument for the width of the range.

The dynamic name functionality is useful in the context of the sales chart exercise used
here, and in topics such as lookup tables, where it is important that if new data is added to
the table, its definition must be updated.

Dynamic names are useful when data is being added. If you start deleting data, specifi-
cally from the left hand edge of the range, the COUNT value falls and the OFFSET does
not read across the full range. You can solve this by changing the start point cell reference,
for example, D34 could be changed to H34 to exclude the first four weeks. Make sure
that the redundant values are then deleted.

Dynamic range names are of interest to the modeller but they bring in the ambiguity
inherent in the use of OFFSET. Although F5 Goto is effective, F2, Ctrl+[and the auditing
tools are a little vague in identifying the cells in use, because of the full row referencing used
in the COUNT function.

Listing names

It can be useful to provide your users with a list of the range names you have set up in
the model. Select a cell on your inputs or documentation sheet, and use the Insert, Name,
Paste (F3) command and click the Paste List button. Excel lists all your range names
in alphabetical order, along with their cell references. There are a couple of useful tricks you
can pull here: a quick scan down the list will show you any names that refer to
deleted ranges, as they will refer to #REF!. You can use Insert, Name, Define to then delete
any of these redundant names. But we can also use the list to answer two important ques-
tions: do any names refer to blank references, and are there any ranges which have multi-
ple names?

If you look at the list of names and corresponding references, you might ask yourself how
has Excel actually provided the cell references. It displays what is apparently a formula (e.g.)
=Workings!E4:K4. It is possible to do this manually, if you prefix the formula with
an apostrophe. But if you look carefully you will see that Excel has not done this. If you
now edit the cell and press Enter, you will either return a #VALUE! error or a value, depend-
ing on the column. If you then use the Ctrl+[Go To Precedents shortcut, you will high-
light the source range. (Note that you must edit the cell first; this method does not work
whilst Excel is displaying the cell references).

Mainly formulae

Empty ranges

To use this method to locate empty ranges, try the following sequence:

1

0N O\ N W N

10
11

Paste the name list onto the workings or calculation sheet.

F2 Edit each of the cell references, then

Select all the references.

Press Ctrl+[Go To Precedents.

Press F5 Go To Special, and select Blanks.

Using the Fill Color palette to apply a background colour.

Browse the sheet for any coloured cells.

Select any cells that you find, and check the name that appears in the Name Box
(assuming the original name text has been deleted from the sheet already).

Use Insert, Name, Define to delete the name from the list. (You may wish to Ctrl+F
Edit, Find or Ctrl +] the name first, in case it has been used in a formula.)

Repeat as required.

Record the results on the audit sheet, if necessary.

Multiple names

We can use the name list to locate multiple names used for a range. This typically occurs

when a name has been misspelled and then corrected, without having then deleted the mis-

spelled name. However it can also occur during the early stages of a model’s development,

before a naming convention has been agreed, and the names already in use are then

replaced with new names. This can lead to a lot of confusion.

1

n

F3 Paste List onto any sheet.

DO NOT edit the cell references.

The names are listed alphabetically, so we use the Data, Sort command to sort the ref-
erences into ascending order.

In the column adjacent to the references, write a logical formula to test if the range ref-
erence is the same as the one in the cell below, for example:

=E10=E11

Copy the formula down the column. Unique references will return FALSE.
You can write a function to count the number of TRUE values:

=COUNTIF(list of references, TRUE)

Obviously if this returns zero then no further work is required.

Locate all TRUE values and identify the problem names; correct using Insert, Names,
Define.

Record the results on the audit sheet, if necessary.

External name references

Paste List also allows you to identify names that refer to other files. We noted in Chapter 2
that this is not best practice but in some cases is unavoidable. The name list will include

Practical Financial Modelling

FET =Workings!$EF100:5ME100 FALSE I 1.|
FPAT =Workings!$EF101:5MF101 FALSE
RetainedEarningsBf =Workings!$EF104:5MF104 FALSE
RetainedEarningsincrease =WorkingsBEFT105:FNF105 FALSE
RetainedEarningsCf =Workings$EF108:FNF106 FALSE
CashFlowPreFinancing =Workings!$EF102:5MF102 FALSE
CashFlowFinancing =Workings!SEFT10:ENE110 - FALSE
MetCashBf =WorkingsBEFT13:8MNF113 FALSE
MetCashlncrease =Workings!$EF114:5M%114 FALSE
MetCashCf =Workings!$EF115:5MF115 FALSE
CashBf =Workings!FEF122:5ME122 FALSE
CashCf =Workings!$EF123:5ME123 FALSE
OverdraftBf =Workings!$EF130:5MF130 FALSE
OverdraftCf =Workings!$EF131:5MF131 FALSE
TaxableProfi =WorkingsBEFT1S2: NF192 FALSE
TaxLossBf =WorkingsBEF125:FNF195 FALSE
TaxLossIncurred =Workings!$EF195:5MF196 FALSE
TaxlLosslsed =Workings!SEF197 FNF197 FALSE
TaxlLossCf =WorkingsBEF158:FNF198 FALSE
PCTCT =Workings!E200:¥N$200 TRUE
TaxAmountSubjectToTax =Workings!E200:5N$200 FALSE
TaxRate =Workings!$EF203: FNE203 FALSE
TaxPayableBf =WorkingsBEF204: §MNF204 FALSE
Taxlncurred =Workings!$EF205:5NE205 FALSE
TaxPaid =Workings!E206:5M$206 FALSE
TaxPayableCf =WorkingsBEF207: NE207 FALSE

Using Paste List to locate multiple name for a range

the references to other files as file link formula. These can be easily located if you Ctrl+F
Edit Find and search for the square brackets [or], back slash/or for the string “.xIs".
Alternatively we can sort the list of names by the cell reference column and browse through
the addresses.

It should be noted that Paste List will not list sheet level names that have been defined
on other sheets. Nor does it differentiate between sheet level and global names.

CostsOperating =3urmrmary!5054
Depreciation =Summaryl 505

Interesthlet =SummarylFDES
LondonRevenue ='Chspreadshestsilondon. xls'1Revenue
PAT =Summary!$0514
FEIT =summarylFDE7
FET =Sumrmary! 50511
Revenue =Summary!30DF3
Tax =Summaryl$0§13

An external range name

Mainly formulae

BODMAS

Brackets, order (power), division, multiplication, addition, and subtraction: the principle
of arithmetic priority. One of the ideas promoted in this and the following chapters is to
keep formulae short — the longer the formula, the more chance we have of running into a
Bodmas slip. You know the example: = 1+2*3 gives the result as 7. =(1+2)*3 is 9.
Generally the use of brackets around each ‘clause’ is helpful, but in more complex formu-
lae I often recommend breaking the formula into a number of smaller calculations. It may
seem time-consuming and an insult to the intelligence, but I've seen too many megafor-
mulae in my time which contain simple Bodmas errors.

Timing

Apart from simple calculator-type models, which contain sequences of single calculations
which are time-independent, most models will have some period of time under analysis,
either as historical data or forecast assumptions. The first rule that applies is that the time
periods must be consistent across each sheet (the same column has the same function on
each sheet), and we should use the same time periods across each sheet. This is simple in
concept, but in practice it can be difficult to apply, particularly in relation to producing the
option for quarterly or annual reports. Another common problem is that the timing or
duration of certain events is uncertain, with difficulties in writing dependent formulae. In
the following section we will consider various techniques which help us work around some
of the inherent difficulties in writing robust, time-dependent calculations.

Left-to-right consistency

One of the fundamental rules of models that involve more than one period is that each row
should have only one formula, and this was briefly introduced, along with its correspon-
ding audit check, in Chapter 2. Consider a discounted cash flow scenario in which we are
considering investing in a new production facility. The investment will probably take place
in the third and fourth quarters of this financial year. The accounting rule is that the new
asset will not be depreciated until it is put into use, in the first quarter of the next finan-
cial year. We need not consider the depreciation treatment in detail, but we need to recog-
nise that for the first two quarters of the analysis there should be no depreciation, and that
it should kick in after that. It might be tempting to leave the first two cells in the depreci-
ation line blank; after all, there is no need for a calculation. But what happens if we decide
to bring the project forward — on the inputs side the management will type the investment
figures in the appropriate cells, but they are then required to locate and update the deprecia-
tion formula. The same problems arise if we defer the expenditure — the onset of depreci-
ation should also be delayed. We should avoid users having to update formulae, however
well-intentioned.

The modelling rule is that the formula for depreciation must be the same all the way
across the forecast period. We need the same formula for the period before depreciation
starts, for the duration of the life of the asset, and the same formula must handle the period

Practical Financial Modelling

after the asset has been fully depreciated, with no user intervention required. We will
explore techniques to solve this problem in the sections which follow.

Base column

To adhere to the rule of left-to-right consistency, we need to recognise that some formulae
would almost by definition need to be different, in particular the first cell of a row. For
example, consider a simple inflation compounding formula that takes the previous value
and multiplies it by the current inflation rate:

=E5*(1+InflationRate)

This works fine when copied across the row, but only if there is a value of 1 in E5 to start
off the logic. However, we cannot type this into E5 as this is in the forecast period and
breaches the rule about the hardcoded values in the workings area. Furthermore, perhaps
E5 itself should be an escalation value, for example, 1.03. This causes a further problem,
because the value of 1.03 is dependent on inflation having a value of 3% in the time
period represented by column E. If this value changes, the hardcoded 1.03 will not
reflect this.

This problem is simply solved using a base column. The purpose of this additional col-
umn at the left-hand edge of the forecast area is that it handles such initialisation values
and other numbers that may be required for formulae but without breaching the left-to-
right consistency principle, nor that of having hardcoded values in the calculations area.
The values in the base column are not inputs as such and are not variables, in that their
value will not change. They are simply there to make the formulae work.

Al B lgl 85 EEN O F | 5 | Ho|
1
2
3 |Inflation _
4 rate | 3% 3%/ InflationRate
5| index lEw: 1)=D5*(1 +InflationRate)

Column D acts as the base column

Another way of using the base column is to recognise that it falls outside the forecast
area as such, and can be described as the ‘now’ or ‘current’ column. In this way it can
handle time-independent information, such as the depreciation life of an asset, which
will not vary over the forecast period. Also, it can be used to store genuine current infor-
mation, such as the actual current value of an asset, which then feeds into the forecast
calculations. In some types of modelling, for example, company valuation, we may need
multiple base columns, which in this case would handle one or more years of historic
data.

Mainly formulae

A, B T T Wil e [e el
1 200 2002 2003 2004 2005
2
Z_Fprepast inflation | |
o) rate 3% 3%
B index 1 1.03 1.06
2]
Z Growth assumption 4%: 6%
g
E Forecast (real) Histaric data |
10| revenue 20 21 23 2392 | 2536
11 costs 15 15 16 1664 1764
i operating profit 5] 7 7.28 | .72
1=
14 |Forecast (nominal) T |
18| revenue 2464 | 2690
1B | costs 1714 1877
1 aperating profit 780 8.19 |

Extending the base column idea to handle three years’ of historic data. Column F now acts as the
original base column for calculation purposes

Corkscrew

This is a very simple technique which will be used in material in the following chapters.

It allows us to pass information from one period to the next. It can be illustrated using the

example of a simple bank account. At the start of the period we have an opening balance,
we then deposit funds into the account, and we make withdrawals. At the end of the period
we have a closing balance, which becomes the opening balance for the next period. We call

it a corkscrew because if we run a Trace Dependents audit check on the code, we see a

zig-zag as the balances pass forward.

Al B M 0 | E | F | & |
B0 21 Q2 Q3 24
2]

3 |Incame and expenditure

ER |opening balance

5] incarme

B | expenditure

| claging balance

% Formula Auditing o
Sl B | Em 2 [=E]2) AP i3 B P LS B
]

W Trace Dependents

Using the Formula Auditing Trace Dependents tool to illustrate the corkscrew

Practical Financial Modelling

When we set up this routine we note that without exception, the opening balance
formula is a simple cell reference to the previous balance — it is never a calculation, and it
never contains a range name (why not? See page 56 above). In the first period, this means
that it is looking outside the forecast period proper, which is why we use the base column.
However, it is a cardinal modelling rule that formulae must never reference blank cells, so
we initialise with a value of zero for the closing balance in the base column.

In the context of the depreciation problem mentioned above, the corkscrew offers a
mechanism where we can identify the cash flows as they occur and roll them up until such
time as the depreciation formula should kick in.

A B [¢ e £t | F | & |
L1 21 oz 3 G4
2
| 3 |Fixed assets | | |
L4 | [bf] 10| 20 25
| 5 | |capex 10 10 12 12
| B | | depreciation o o 7 7
| cf o 10 20 25 a0

The opening balance in D4 is a cell reference link to the zero in the base column C7

You may see different ways of describing the opening and closing balances. The closing
balance is sometimes referred to as the ending balance. In English accounting, we often use
the expressions ‘Brought forward’ (b/f or bf) and ‘Carried forward’ (c/f or cf). As always,
be consistent with your own terminology, to avoid confusion later on.

An interesting feature of the corkscrew is that the closing balance is a balance sheet item.
Depending on how the corkscrew is set up, it may also include the profit and loss and cash
flow items.

A B e I e F ¢ [H | I

1] ai [f7] 3]

2
| 3 |Fixed aseets
4| | n 1 an 25
| capex 10 10 12 12 * goes to Cash Mow
| 6 | depreciation 0 0 7 7 * goes to Mofit and Loss
el | ct u u Pl i} 30— qoes o Balance Sheet

g

The corkscrew can handle information that is reported on different output sheets

I have often found that corkscrews can offer a simple solution to apparently complex
problems, in which analysts have found themselves bogged down in technical problems
trying to identify items that have occurred previously instead of thinking about bringing
the item forward. Some countries report accumulated depreciation on their balance sheets,
which can be solved as a continuous sum of all previous depreciation, or more simply as a
basic three line corkscrew.

In the three line corkscrew we can perform the following calculations:

=closing balance—opening balance=increase, or
=opening balance+increase=closing balance

Mainly formulae

A | B I ¢ | @B | B | & HEBR
Bix 8y Q2 L3 Q4
02
_ 3 |Fixed assets [[
. bf 0 a8 B 4
5 | |capex 10 0 0 a
| (5 depreciation 2 2 2 2
| 5 cf o] B 4 2
B |
| 2]
10 |Accumulated depreciation [
L 1 o 2 4| B
12 depreciation 2 2 2 2
A5 lef 1] 2 4 =] =]

Accumulated depreciation corkscrew. The annual depreciation from row 6 is linked to row 12,
which adds in the accumulated depreciation from previous years (row 11)

In the four line corkscrew we can calculate:

=0opening balance

=additions to the corkscrew

=deductions from the corkscrew

=opening balance+additions—deductions=closing balance

Masks

The technique of masking is simply that of enabling or disabling a particular calculation
or routine based on a zero or unit value. If the formula is multiplied by zero, it evaluates
to zero, if it is multiplied by 1, we get the expected result. This is another method for tack-
ling the issue of left-to-right consistency. The mask can be either input, in which case the
string of Os and 1s is entered manually on the inputs sheet, or calculated using logical func-
tionality. This is explored in much more detail in Chapter 4, but it is worth looking at the
basics here. A simple example should help — I would like to pay a dividend to my share-
holders, but under the terms of a loan covenant I am not permitted to do so until the loan
has been paid off. We will assume that the bank are willing to vary the duration of the loan
subject to our financial circumstances, so we cannot simply type in the dividend formula
from the point at which the loan is repaid (and this would breach the left-to-right consis-
tency principle). I have a loan corkscrew in my model which shows the loan being draw-
down and then there are a series of repayments until the loan is finally paid off. Whilst the
repayments are underway, therefore, I cannot pay a dividend. All we need here is an extra
line for the mask.
Rather than writing an IF routine, we simply write the test condition:

=LoanRepayment=0

When you enter this, Excel recurns FALSE or TRUE. FALSE has a value of zero and TRUE
a value of 1. If we now multiply the dividend calculation by the loan repayment mask,

Practical Financial Modelling

Al B (o] [R = L] I o | s] L |) 1 L M
A Vear 1 | ‘frar 2
i o1 o2 03 24 a1 0z ok} Qi
3]
4 |Luan
6| bf 0 g B 4 2 0 1} 0 LoanBf
b dravclmm in n n n n n n 0 | manDrawdmam
Z rapaymeant 2 2 2 2 2 o] 0 LoanRepayment
8 cf u =} [} 4 2 u U u U LoanCt
]
10 | Dividend mask FALSE | FALSE | FALSE | FALSE @ FALSE = TRUE TRUE TRUE Dividendiask
1 =1 nanRepaymeant=/l
jiF) .
13 [Urdend u u u u u s 2 2 Umadend
14 —Dnidend Calculation™Dividendhdask
15

Loan repayment corkscrew and dividend mask

dividends are only shown for those years in which there is no loan repayment. Do not
worry if you can see problems with this, for example, an interest-only loan, or the possi-
bility of paying a dividend provided we exceed a particular interest or repayment cover
ratio, because this is fully explored in Chapter 4.

Flags

Flags are a type of mask but tend to indicate single events, such as the start of operations
or the expected date of the completion of a transaction. They use the same TRUE/FALSE
functionality, and may be calculated or input.

| A B EERET I o P [e | e s K L [MW
=
21 s 2006 2007 2008 2005 2010 xn 12 Year
3|
T!Slarl e I
| year 2007 Stanear
My FALSE = FALSE = TRUE FALSE FALSE FALSE FALSE FALSE SlanYearFlay

—StartYear-Year

a:ul-l cn|t_n

The StartYear flag — is the year in row 3 the same as the year shown in C5?

Switches

Switches and masks are similar, but we tend to think of masks and flags as time-depend-
ent, extending across the forecast period with the results being generated for each period.
Switches, on the other hand, tend to be single cells and are therefore time-independent.
They may also have more functionality than simple true/false outcomes, and a common
example of a switch would be a cell used to drive the scenario to be used by the model (see
Chapter 6 for a more detailed explanation).

Changing time periods

If we agree with the rule of left-to-right consistency, we are faced with a number of prob-
lems where it would seem that this is going to be a very difficult rule to comply with.
In this section we will consider a number of techniques to solve this problem.

Mainly formulae

Quarterly to annual

This is one of the thorniest of all modelling issues: how do we set up a model so that we
can report either quarterly or annual results (or monthly to quarterly, etc.)? A basic mod-
elling rule is that the model is set up using the smallest time units required — if there is a
requirement to report monthly then the whole model is set up at this level. This in itself is
problematic, because with some types of analysis there may be more months in the fore-
cast period than columns in Excel. The usual solutions tend to be a bit messy: the annual
total formulae are interposed amongst the quarterly figures, and by judicial use of hidden
columns we can laboriously convert from one time period to the other.

2 m w2 o3 a4 Total m o w3 4 Tatal wa o2 a3
_Ai-IEPwllls

opersting 17.95 17.20 12.43 130 58.94 10.05 16,30 15.10 11.42 5288 2zn 1805 17.28
befare tax 521 73 733 594 25.81 a.58 784 216 682 1246 535 .04 966
aflor fax 1684 4% pi-cl 197 1.1 ins 212 197 112 BI6 293 1% 1m

Wrong solution: profits calculated quarterly, with annual totals in columns | and N

The immediate problem with this type of solution is first it requires a lot of effort (which
usually ends up being macro-driven) and second, that it drives a coach and horses through
the principle of left-to-right consistency. If any formula needs to be amended or updated,
it is no longer a question of simply copying across the row, because this will then overwrite
the annual totals. Let us look at a couple of solutions — the principle is the same whether
we need to convert from quarterly to annual or from monthly to quarterly, or any other
permutation.

Rolling total

One solution is to separate the quarterly and annual calculations into two rows. The quar-
terly row works as before, and we set up a corkscrew and mask for the annuals.

1 Set up a four line corkscrew with the headings Brought forward, Additions,
Retirements, and Carried forward.

2 The brought forward (or opening balance) is a link to the previous closing balance.

The additions is a link to the quarterly figure.

4 We will skip the retirements for a moment, and set up the carried forward (closing or
ending balance) as the brought forward plus the additions, less the retirements.

W

I £ Y P O 5 0 Y b)) T I | IR
i Year 1 Yeard Yeard

=l ol o2 a3 o4 o1 a2 03 04 ol o2 o o4
3

4 |Profits
5 uperaling 17.95 7.2 1249 1.3 10.06 1630 18.10 1Az n 1505 Lr] 1850

B | |hefors tax 2 733 733 584 BsR TE4 005 B8 53 704 9BE 1070
I alteer lax 1 65 LB -] 299 1.97 ENI) 212 .87 112 19 1% 1w 263
B

"8 |Operaling profl
0] o 0 1795 3515 4754 S804 | G900 8530 10040 11182 | 12393 14198 15936

| addtans 1785 720 1248 1130 W06 630 1610 1142|1211 B 17 EAl
121 refirernents

S T 0 W85 315 4/K4 BAE4 | BH00 BRA) | 10040 VIEZ| 17393 14188 1893|1777

Rolling total #1: basic cumulative corkscrew but with no retirements

Practical Financial Modelling

5 At this stage, the corkscrew accumulates the quarterly figures over time. We want to
drop out the total in the fourth quarter of each year, so we need to set up a mask that
identifies the fourth quarter (remember that Q4 is also a valid cell reference, so we
enclose it in quotes in the following example).

=Quarter="Q4”"

6 The retirements formula adds the opening balance to the additions and multiplies by
the mask:

=(Bf+Additions)*QuarterMask

7 The retirements line now shows the annual figures.

A] c 1 B E F G H | J K L L] N o 1 L*] E
7l Yoar | Yoar 7 Yoard
2 o a2 =x] a4 (1] a2 o o4 *1] o2 [=x} 04 Ousree
3
4_Profns
5 operating 1795 Lo i} 1243 1 10.06 1630 1510 142 z1n 18.05 waE 1850
B before tax &N 733 733 554 858 784 916 (3] 635 704 aEs 10.70
i after tax 188 4% 29 187 305 213 197 112 283 1.2% 1.00 183
a
8 |Cuarer magk FALSE FALSE FALSE TRUE | FALSE FALSE FALSE TRUE FALSE FALSE FALSE TRUE
mn
11 Cparating predt
120 W i} 1795 E-RE 47 B4 . 1008 x®35 AR - zn 3016 47 44 B
13 wdditions 1795 1720 1249 130 10.06 1630 1510 11.42 Lral) 1805 1738 1850 Addiions
14 retigments 5854 s208 £5.94 Retiemunts
15 ef O 1795 315 476 WG Xk, NsS 1211 XE, Fau cr

Rolling total #2: insertion of the quarter mask and the retirements formula

If we use range names for this, we might end up with the following: OperatingProfitQuarterly
and OperatingProfitAnnual. For reporting purposes, we could either have a single version of
each report which then contains a reference to, for example, the quarterly value. We can then
use Ctrl+H Edit, Replace and change all ...Quarterly references to ...Annual, and then hide
the unwanted columns. Or we could set up two copies of each report, one of which is the
quarterly report, the second of which is the annual, with the columns hidden in advance.

A A S e A | P Q |
1 Vear 1 Year2 | Year3
it Q4 24 24 Quarter
|5
_4 |Profits | | |
5 | operating | 1130 .42 1850
B | before tax 5.84 | 582 1070
7| aftertax | 1.897 J2 | 263
8
9 |Quarter mask TRUE | TRUE | TRUE
10|
11 | Operating profit . |
2] |bf [4764 | 4046 47 .44 |Bf
13| | additions | 11.30 .42 18.50 Additions
14| retirements o283 | 65594 Retirements
5] Jef o 8 . cf
16 | ¥
17 |Profit and loss Year|l Year2 Year3l
18
19| operating profit 58.94 52.88 0 65.94
20

Hiding the columns to produce an annual report

Mainly formulae

The benefit of this solution is that we have preserved full left-to-right consistency. The
downside is that we will probably have to build an awful lot of corkscrews. With some
models we are required to produce quarterly reports for the development phase and annual
reports thereafter. This technique easily lends itself to this requirement — and is flexible if
the requirement changes.

Relative totals

This is a simpler variation of the rolling total method and can be set up using cell refer-
ences or relative range names. The concept is similar, in that we add up the values from the
current and previous three quarters. Every fourth total then represents the total for that
year. To do this, your first quarter of the first year must be in column D or further to the
right, to avoid it referring to cells beyond the left hand edge of the worksheet.

1 Write a SUM function that adds up the four cells above and to the left.
2 Copy the formula across the row. Test to confirm that the Q4 totals represent the total
for the year.

LI AE I =] L e S —
|
o 24 al o2 (¥ 24 Cluarter
4 |Profits
_& | operating 17 95 17,0 1244 1130 ILRE) 1630 1510 1142 2n 18505 Vs 18 &l
6| |befors tax 521 733 733 594 BE8 784 916 689 535 704 965 1070
7 after Lan 1.5 a4x 299 1.9 d0s 12 A5 112 293 1% 1.00 253
8
.l
"oTes BI5 47 B4 [=SUM(ES HE) .15 5276 5288 5493 669 ceBE BE.04

21 | Operating profits
2

The relative sum technique is used in row 21

Use the same column hiding and reporting techniques described previously. Use the rel-
ative naming procedure described on page 62 if you wish to use range names. This method
is simpler than the corkscrew and far less time consuming, and if you are confident about
your model layout it is very robust. However, the corkscrew retirements produced zero
results in quarters 1, 2, and 3, so an accidental link to one of these would be rather obvi-
ous. The relative total method has values for all quarters and it would be more difficult to
spot a mistake. Of course, there is no reason why you couldn’t use the mask in this tech-
nique as well.

We should give some thought to the ways in which we convert quarterly figures into
their annual equivalents. For some figures a total is sufficient, but for others we may need
to return an average, for example, with interest or inflation rates. Again the corkscrew offers
a simple solution for this. I leave it to you to extend these techniques to consider convert-
ing monthly to quarterly to semi-annual to annual.

Circularities and iteration

A circular formula is one which directly or indirectly refers to itself. Most of the time they
are produced in error, and Excel wastes no time in filling your screen with dialog boxes,
Help windows, toolbars and blue audit lines. Quite often it is a simple matter to locate and

Practical Financial Modelling

rectify a circularity, but in some cases it can be rather difficult, especially if the predecessor
trail extends over multiple sheets. However, sometimes we are faced with calculations that
are inherently circular. In this section, we will review some techniques for locating the acci-
dental circularity, and then consider how to solve the deliberate or intentional circularity.
You should recognise that a circular model is fundamentally broken. Somewhere you
have a calculation that is no longer recalculating, and dependent formulae similarly fail to
recalculate. At this point, your model has the functionality of a table in Microsoft Word.

Debugging circularities

We have all had occasions when we have written a trivial formula and suddenly Excel fires up
the circular warning. If you are lucky, the blue audit lines which then fill your workbook are
meaningful and you can locate the source of the problem. But sometimes the problem is
rather more intractable — it is hard to believe but some users continue working on the model
despite the warning. Unfortunately, Excel has never had something as useful as a #CIRC! error,
which would make life so much simpler. Instead we have to examine the model carefully.

Microsoft Excel

Microsoft Office Excel cannot calculate a formula, Cell references in the Formula refer to the Formula's result, creating a circular
reference. Try one of the Following:

! E «» If vou accidentally created the circular reference, click O, This will display the Circular Reference toolbar and help For using it ko
£ correct your Formula.
» For mare information about circular references and how to work with them, click Help.
= To continue leaving the formula as it is, click Cancel,

[ook [Cancel] [Help]

The circular warning. Do not ignore

Having dismissed the circular warning dialog box and closed down the so-called Help
window and the circular reference toolbar, note the Circular warning on the status bar.
If there is a cell reference next to it, one or more formulae on the active sheet are not
recalculating due to the circularity. They may or may not be in the circular path. The cell
reference next to the warning will refer to a non-calculating cell (which could be a calculation
in the circular path, or a dependent formula that refers to a cell in the circular path). If
there is no cell reference then the active sheet is clear. Note that the circular warning
remains even if you are working in another workbook — never ignore this warning, because
something, somewhere, is broken.

Once you have identified which sheets are involved in the circularity, you can then
examine the formulae. There are two things to note here: because Excel is unable to calcu-
late, the formula which gave rise to the circularity will evaluate to zero. Also, formulae in
the circular path are not recalculated, so changes to predecessors or to inputs will have no
effect on these cells. One neat little trick is to select a cell, press F2 and then press Enter.
If the cell is in the circular path, the value originally shown in the cell is lost and a zero
appears. Continue with this and eventually you will be able to differentiate between non-
circular calculated cells and the circular non-calculated cells. Do not use this technique for
a large circularity.

There are two basic approaches to tracking down circularities, both of which are some-
what risky, so the first step is always to back up the file first.

Mainly formulae

0112 - f =0-InterestCash+nterestCverdraft+HnterestSenior

Al B [sere=s D | E | F |
79
| 80 |Praject cash flows
| 81| maney terms -41,200000 10,625,742 12,943 482
182 | [real terms -40,000 000 10,015 781 11,845 120
83
8__4 Financing cash flow h8 250000 11797 8000 -1 729369
| 85 |
86 |Met cash balances |
|87 | bf 1] 27,050,000 25,576,242
|88 | lincrease 227 050,000/ -1,171 758 1,214,113
89| cf 0 o7 050,000 258758 242 27 092 355
150 |
191 |...cash) |
|92 | linterest rate 0 0 0
193 | linterest 1] 1,352 500 1,293 5912
194 | bf 1] 27 050 000 25878 242
1958 | lincrease 27 050,000 -1,171 758 1,214,113
|96 | |cf 0 27 050,000 25578242 27 092 355
197 |
| 98 |... overdraft
199 | |interest rate] 0 0
1100| interest o 0 0
i .bf Circular Reference v x|
102| |increase =
nml e 0 o112 st
04
1105 | Seniar debt
110B| interest rate 1] 0 0
1107| linterest 1,750,000 3,150,000 2 450 000
1108| bf 0 50,000,000 40,000,000
1109 drawdown (repayment) 50,000,000 -10,000000 -10,000,000
10| cf 0 50,000,000 40,000 000 30,000,000
11
[112|Interest net | NN DDD_I 1797 5000 1,156,088
1113
1114 | Equity
1115] |bf 1] 20,000 000 20,000,000
|116| lincrease 20,000,000, 0 0
17 lef E 0 20,000,000 20,000,000 20.000.000
M4 v vy Chartl £ Inputs b Workings /
Ready Circular: D112

Excel attempts to determine the circular path. Note the circular warning on the status bar

Trial and error

The first method is an unsophisticated trial-and-error approach. If you are dealing with a
forecast-type model, you will have many rows of calculations, and hopefully you will be
observing the left-to-right consistency rule established earlier in this chapter, whereby the
formula in the first cell of each row is simply copied across the row. This means that you
do not need to examine the formulae other than in the first column, so delete all the addi-
tional columns. Once you have done this, start deleting individual routines, pressing
Ctrl+Z (Undo) after each deletion. At some point the circularity will disappear, returning
on Undo. Once this happens, delete individual elements within each routine, looking for
the same effect. If you are lucky you may be able to locate the circularity quite quickly.
Once you have found it, make a note of the problem and its solution, close down the work-
book. You should then be able to make your correction in the original file.

Practical Financial Modelling

This technique is not wholly reliable, in that some circularities are caused by problems
in the now-deleted forecast period, for example, MAX/MIN, and some of the lookup type
functions. If the circularity disappears when you delete the columns other than the first
one, you may have a problem involving calculations across columns, so Ctrl+Z Undo and
delete all columns after the first two.

Error tracking

A more reliable solution is to introduce an error message into the model. As noted above, there
is no #CIRC! error, so we will have to do this manually. Again, back up the workbook first.
Locate an input that is at the head of the longest dependency trail which you think runs through
the circularity, for example, inflation or price. It is up to you which error you introduce, but I
would normally divide the input by zero, which gives the #DIV/0! message (and I am assuming
that there are no such errors already in the model). Alternatively, if you have a strong suspicion
concerning the location of the circularity, introduce the error closer to the suspected code.

= B 000 3 o gy T R —, I,
L T (T | (=) (TN Y S P S) (RN ST o P o)
1 [Financial year ending 2005 2006 2007 2008 2009 2010 2011 2012 Yearsin
2
3 |infiation rate Ceanm] #ovw #oni) w0 #0nvil #ONI #0nv #NA Infistonin
4|

The original input value has been divided by zero

Inspection of the dependent formulae should now reveal that the error has cascaded
through the model — press F9 (Recalc) a couple of times to force the issue. You will see
that the error does not penetrate into the circular code, which should still contain num-
bers. This is a problem, in that the error message is in the clean parts of the model, and the
numbers are in the broken part. It would be more helpful if the position was reversed.

_BO | Project cash flows

CHE| rnonay b "owonetl " wonem " gDl " sonem T doher " wonem T 0ROl T MDRADI | CoshFionPropct Moy
02 realterms “owovol [osonvol Tosonl T sonil T sonee T #OM01 T #0WOL T #DOMIOI CashFlowProectResl
H3

B4 [Financing cagh flow 1 [1] [1} [} 0 1] [1 0/ CashlowFinancing

The error has cascaded through the workings but has not appeared in row 84.

Go to Tools, Options, Recalculation and switch on lteration (this is explored in more
detail shortly). Press F9 (Recalc) a couple of times to force the error message into the circu-
lar path. Next, repeat the command sequence and switch lteration off. You should see the
circular warning reappear, and at this stage the error message should permeate the whole
model. Locate the original input cell and remove the division formula. The error message dis-
appears throughout the clean sections of the model and remains trapped within the circular-
ity. You could use conditional formatting to assign a colour to the error cells (see Chapter 5),
or a background colour — use F5 Edit, Go To, Special, Formulas, Errors to select the cells.

Mainly formulae

Go To Special [E|
Select

i) Comments () Row differences

) Constants) Column differences
(%) Formulas) Precedents

[] Mumbers) Dependerts

Errars () Last call

() Blanks) wisible cells only
) Current region () Conditional Formats
() Current array () Data vwalidation

) Ohijects 4l

[oK] [Cancel

Selecting cells with error values

Now that the circular path has been isolated, you can work your way through the code
in an attempt to locate the source of the problem. Note that F2 (Edit) will cause the cells
to revert to zero. If you switch to manual recalculation (Tools, Options, Recalculation,
Manual) the numbers will remain. Initially you should concentrate on excluding those
routines which you firmly believe are not actually causing the circularity. You could also try
variations of the error routine — once you have narrowed down your investigation, try
replacing the * =’ in a precedent formula with a text character such as ‘. The formula
is now a text string, and dependent formula now have the #VALUE! error, which can
be helpful to differentiate from the surrounding #DIV/0 errors. As text, it cannot be in the
circular path, and at some point you will find that the circularity disappears. Restore the
formulae as required, make a note of the cause of the circularity, and update the original
workbook. Iteration is explained in more detail in the next section

You should always bear in mind that there could be more than one circularity in a
model, and the use of different error values can be useful in this context. It can also be help-
ful to sketch out the components of a model in order to determine the relationships
between them and the audit path.

Handling circular code

We are occasionally faced with a problem that involves an inherent circularity which cannot
be avoided. We will explore this issue by using an interest calculation as the example but
please note this is simply for the purposes of illustration and I am making no suggestion that
this is necessarily the correct way to do it.

Let us consider an interest-earning cash account.

Practical Financial Modelling

D4 h & =AVERAGE(DS,DE"D3
A B o e R |
1
2 [Cash | | |
3| linterest rate 5%
4| interest I ?.5!
] |bf _ 100
B cf 200

A simple interest calculation

We have the opening and closing balance, and we earn interest at 5%. Using the aver-
age balance method, this gives us 7.5 of interest. The effect of this would be to increase the
total cash balance carried forward, so we could add the 7.5 of interest to the existing end
balance. But we are using the average balance method to calculate interest, in which case
we must repeat the calculation, which increases the amount of interest, which then
increases closing balance, so we calculate the interest again, and so on. There is a circular-
ity involving the carried forward balance and the interest amount.

If we put this into the model, Excel complains about the circularity and the model locks
up. So we go to Tools, Options, Calculation, and switch on the [teration command. We then
find that the interest and the closing balance have been calculated to some detail: 7.692308.
We also discover that Excel will happily recalculate the formulae if the inputs change and all
dependent formulae now work, so the model is apparently in good working order.

Take a look at the status bar. The original circular warning has been replaced by the
Calculate prompt. This normally appears when you have set recalculation to manual, and Excel
prompts you to press F9 to recalculate. But we aren’t using manual recalculation, and pressing
F9 has no effect and indeed the Calculate prompt remains. This is normally the only clue that
you will have that someone is using iteration. But what’s the problem? The model is working.

Now try the following formula:

011 it = =3UMDI:D11)
o R [[s
1
2 %Cash _ _
3 | interest rate 8%
4 | interest _ 7 .B32303
4 bf _ 100
B jef _ 207 6923
7|
B 1
3 | i
10 2
11 |]|
12

Iteration is on. Where does the 300 come from?

Mainly formulae

You will have spotted that this formula is circular, but Excel did not complain when it
was entered. You may want to consider why the sum of 1 and 2 should equal 300. Before
we look at that, just press F9 a couple of times.

If we go back to the Tools, Options, Calculation dialog box, we note that Iteration is part
of the Excel recalculation engine. The first point is that we cannot simply iterate part of the
workbook, it has to be all or nothing. The second point is that iteration is controlled by
two constraints. Excel will either iterate the formula 100 times, or until there is a maxi-
mum change of 0.001 (both of these are defaults: the maximum number of iterations is
32,767, and the maximum change is up to 15 decimals). The interest on the cash account
was constrained by the maximum change setting, whereas the simple sum was governed by
the maximum iterations (1 + 2, repeated 100 times). The interest value will not change
until its precedents are changed, but the simple sum will reiterate 100 times every single
time the model recalculates.

Options

| Color | International | Save | ErorChecking | Speling | Security |
| Wiew | | Caleulation © | Edit | General | Tramsition | CustomLists | Chart |
Zalculation
(%) Automatic) Manual Calc Mow (F3)
{_} Automatic except tables Recalculate before save
Zalc Sheet
Ikeration
Maxirmum iterations: i-IEIEI Maximurm change: | 0,001 |
Workbook opkions
Update remote references [#] save external link values
[precision as displayed [] accept labels in Farmulas

[] 1904 date system

Ok][Cancel J

The iteration command and constraints

The interest routine is described as a converging circularity (i.e. the results are
governed by the maximum change constraint), the simple sum is a diverging circularity
(the results are governed by the maximum iterations). It is this latter type that is the most
dangerous.

The key issue is that after switching iteration on, Excel will iterate all subsequent circu-
lar formulae without comment or warning. As we know, the majority of circularities are

Practical Financial Modelling

errors, so we must be very cautious about the use of iteration. Note that we can’t simply
turn it off because Excel will only complain about ‘a circularity’. If we have other or mul-
tiple inadvertent circularities there is nothing to warn us: my simple sum is a deliberately
obvious example of what might go wrong; we have seen real life errors ticking over at much
lower levels, but with the result that the model gave a different answer each time it was run.

Most investment banks specifically instruct their analysts not to use iteration because of
this inherent problem of differentiating deliberate from accidental circularities. These poor
souls are left wrestling with the algebra in an effort to work around the problem. With a
little planning, however, it is possible to use iteration and to preserve career prospects.

Let us look again at the interest routine: it is a good calculation if the iteration is on, but
I would prefer it to make itself non-circular if iteration is off. We could consider the use of
an IF test here: in Excel-speak,

IF(Iteration=0N,AVERAGE(Opening Balance, Closing Balance)*IntRate,0)

If iteration is on, therefore, run the circular interest calculation, if iteration is off, return
zero (non-circular).

The problem here is the test condition because we cannot write Iteration=0ON. There
is no direct way of testing the iteration status from a formula. But we can do it indirectly,
if the user provides the information about iteration. In a cell at the top of the worksheet,
enter the prompt ‘Is iteration on?’ In the adjacent cell, enter the appropriate response (you
may find it helpful to name the cell, Switch). Now update the interest calculation to read:

= IF(Switch, AVERAGE(+Bf, +Cf)*IntRate,0)

(note the plus signs prefixing the range names — refer to page 60 for explanation).

Dk | e =IF(Switch AVERAGE(+ET,+CH"IntRate 0)
A B EEREER - o [e T

1

2 Iz iteration on? TRUE Switch

3

4 |Cash

] \interest rate | 5% IntHate

] linterest I F.E! _

7 bf | 100 Bt

d cf | | 200 Cf

4

Implementing the Switch mechanism

Note that you do not need to specify the condition that Switch=TRUE, because the
content of the Switch cell is either true or false and the IF condition must evaluate to either
true or false.

We can now test the mechanism. Switch on the iteration and do not forget to update
the Switch cell to TRUE. The interest should be calculated. Set the Switch to FALSE and
switch off the iteration. The interest reads zero and the circularity has disappeared.

Mainly formulae

One observation is that when the switch is false, the interest (or whatever is being
calculated) reads zero. One workaround is to change the switch formula as follows:

=|F(Switch,AVERAGE(+Bf, +Cf)*Rate,Bf*IntRate) or
=|F(Switch,AVERAGE(+Bf, +Cf),Bf)*IntRate

In both cases, the false outcome is to multiply the opening balance by the rate which
generates a number. This is useful if you are developing code in which you need to see
the effect of interest (or whatever); the zero value previously used is not very helpful. My
own preference is for the original formula: if a user notes that there is no interest being
shown on the Profit and Loss statement, for example, it is a significant omission and
would be caught. The Bf*IntRate version of the formula results in incorrect numbers and
may not be picked up by the users. This does not quite fit in with the Principle of Error
Reduction, in that users may believe that the temporary interest value is the correct
value.

Some people have suggested that the false outcome could be a text flag, for example,
‘Iteration is Off’. This is an option, but any dependent formulae will generate the #VALUE!
error, which is probably not worth the trouble.

We can now write circular code that is controlled by the switch. At any stage, we can
switch iteration off to test for unintentional circularities. Any and all code that involves
iteration should have the switch control built in. As it is most likely that accidental circu-
larities are introduced during the development of the model, it would make sense to leave
iteration off until such time as the circular components are under test. Once the model is
complete and is being used for sensitivity analysis (see Chapter 6), you can leave the itera-
tion on. A question that may arise, in using the inputs/workings/outputs methodology
described previously, is where should the iteration prompt and switch cell be located? The
TRUE/FALSE response is indeed an input, and a variable as such, but I would keep them
on the workings sheet because the switch drives the circular code. Once the model is ready
for the users, iteration is switched on, and the users should not really have any reason to
switch it off.

It is very good practice to document the use of iteration so that other users can be con-
fident that other circularities are not being masked. You should note that it is also possible
to lie — the switch could read FALSE and yet iteration is still on. For this reason I always
recommend that on seeing any sort of switch mechanism you should immediately check
the iteration status in the Tools, Options dialog box. This should form part of the audit
routine and the outcome should be recorded on the audit sheet.

The iteration off/on routine lends itself to macro automation (see Chapter 7). I prefer
not to make it too easy to set up iteration, because users may not understand the full impli-
cations of using it and may end up in trouble. If a user does not understand the prompt
‘Is iteration on?” it is unlikely that they would go much further with it. You could use the
data validation tricks in Chapter 5 to ensure that the user does not input ‘Yes’ in response
to the prompt!

A fringe benefit of using the switch mechanism is that if error values appear in iterated
circular code they are almost impossible to resolve, as the error is trapped in the circular
loop regardless of any correction. Setting the switch to FALSE and immediately back to
TRUE has the effect of purging the error.

Practical Financial Modelling

Array formulae

I find it hard to enthuse about array formulae. It is true that they can perform some
spectacularly complex calculations, but in routine use they are of little value and generally
fall foul of the principle of error reduction. They are difficult to edit, difficult to under-
stand, and, if referring to large arrays, they can slow down the recalculation of a model. We
should also recognise that few analysts, in practice, would claim to be familiar with array
formulae, so you may find colleagues unwilling or unable to help you if you get stuck.
According to Excel Help, an array formula ‘can perform multiple calculations and then
return either a single result or multiple results’. In practice this means that we can, for
example, multiply one block of cells by another block of cells. The formula is written as:

& E ¢] B | E TR - |
B
A T
=R This column times this column makes
e 16.04 | _ 10.99 {=B4:B17*04:D17}
| i | 13.82 11.89 164.35
B | 17.32 14201 24591
B 16.27 1574 25597
a8 | 10.98] 16.11 176.95
e 12.42 _ 14 A0 179.99
10| 18.74 _ 10.26 20263
1 1017 1239 125.91
12 19.44 _ 13.97 271 .53
k) 17.43 11.51 200.54
14 | 11.751 12.93! 152.80
152 14.84 1477 219.13
1B | 18.64 11.36 211.82
17 10.94 | _ 1289 142.09
18

A trivial example of an array formula

We press Ctrl+Shift+Enter to enter the formula. The commonest errors are failing to select
the full range of cells to contain the array formula, and having either too few or too many cells
in the selection. The next commonest error is then editing the formula and forgetting the
Ctrl+Shift+Enter trick, so that Excel complains that it cannot be part of an array — press Esc
to continue.

Microsoft Excel

! '}‘ ¥ou cannot change part of an array.

Excel complains if you try to edit array formulae

Mainly formulae

Another example is to perform an array calculation with the results in one cell. We can use
the audit sheet created in Chapter 2 as an example of this. You may recall that we set up an
AuditCheck cell, which returned TRUE if all audit tests had been passed, and FALSE if even
one had failed. However, if one of the tests returned an error message, the audit check displays
the error. We can easily amend the formula to include an ISERROR check as in the following:

=NOT(ISERROR(AND(D:D)))

The NOT converts the result to FALSE if the formula does return an error.

We already have a code that identifies how many tests have failed overall, and so it would
be helpful if we could return the total number of audit tests that were giving an error mes-
sage. SUMIF and, more correctly, COUNTIF immediately come to mind, with ISERROR as
the logical test. ISERROR does not differentiate existing FALSE values from errors. The
array method will do this as a single calculation:

—SUM(IF(ISERROR(AuditTests), 1,0))

Remember to press Ctrl+Shift+Enter, and test to prove that it works.

Note that I have substituted Audit Tests as a range name for D:D, as I have found that
using the D:D column referencing technique does not seem to work, although cell refer-
encing and range names seem to function. Again I would remind you that if you are exper-
imenting with this or similar single cell array formulae, you must use Ctrl+Shift+Enter.

In general I would suggest that in routine modelling you should find sufficient func-
tionality in the masking routines and the logic and lookup functions in the next Chapter 4.
I would refer you to the specialist Excel formula reference guides for further insight into
array formulae. The general modelling rule is to keep formulae short and understandable,
and with 65,536 rows you have a lot of space to use.

Coercion

Sometimes the results of our calculations are in formats or layouts that we do not wish to use,
and it would be helpful to change the appearance not through formatting but by forcing
Excel to change the result. A simple example is that of the TRUE and FALSE operators gen-
erated by logical tests. We know that they have numeric values of 1 and 0 respectively and we
can happily multiply against these values when using masks and other techniques. However,
if we attempt to SUM a row containing TRUE and FALSE values, the result is zero, because
Excel does not accept the logical operators as values. In order for this to work, we need to
convert (or coerce) the operators by the simple operation of adding zero. For example,

=DebtRepayment>0

reads TRUE for periods in which repayments take place, and FALSE if they do not. If we
need to return the number of loan repayments, a sum of this mask will not work. If
we coerce the formula

=(DebtRepayment>0)+0

we now see a line of 1 and O values. The sum of this row will now be valid.

CHAPTER Mainly functions

Introduction

There seems to be a distinct learning curve associated with Excel functions. Most people
begin gently with the likes of SUM and COUNT and AVERAGE, and soon graduate to IF
and VLOOKUP, and perhaps SUMIF and COUNTIF. And that, for many, is as far as they
get, so once they start developing financial models they are overly reliant on this limited
group of functions. The purpose of this chapter is to provide you with the twelve or so most
useful functions for the general financial modeller. As with Chapter 3, we will look at some
examples in the context of techniques combining formulae with functions.

The demonstration workbooks for this chapter are in the Chapter 4: Mainly Functions
folder on the CD-ROM.

We can use the Shift + F3 or Ctrl + A shortcuts for function help. Remember that when
writing a formula or function we can use F2 to change from Edit to Point mode and back
again, and we can use this trick to specify ranges in dialog boxes.

In my years of teaching Excel functions I have found that many people find Excel func-
tion Help difficult to use, particularly with its explanations of function arguments and syn-
tax. I take the liberty here of rephrasing some of these elements using expressions that my
students have found more understandable.

Logical

Good old IF

The first group of functions to consider are the logical functions: those that depend on one
or more conditions being satisfied. Although simple in principle, they are prone to both
overuse and abuse, and the IF function in particular is very prone to error. Experience from
model auditing has shown that some modellers have a limited understanding of the use of
logic and tend to generate unnecessarily complex formulae. You've seen them — calculations
which take up four lines in the Formula Bar and have six closing brackets. This approach
is unfortunately reinforced by the intellectual satisfaction which some modellers obtain
through writing such code.

Mainly functions

The basic format of the IF function is:
=|F(test condition, outcome if TRUE, outcome if FALSE)
You know that the basic test condition operators are

= equality (equals to) <> inequality (not equal to0)
< less than <= less than or equal to
> greater than >= greater than or equal to

The tests and the outcomes can use values, text (in “quotes”) cell references, formulae, and
functions.

Let us consider some common examples:

=IF(E10>0,E10,0) If the content of E10 is greater than zero, show that value, otherwise
show a zero.

=IF(E10>0,E10*E5, ") If the content of E10 is greater than zero, multiply E10 by E5,
otherwise show nothing. Caution: the lazy “” technique now returns a text string, although
the cell will look empty. Any dependent formulae will now return the #VALUE! error.
A better solution is to return a zero and use appropriate formatting (Chapter 5).

=|F(E10=0,E10,E10*E5) If the content of E10 is equal to zero, show zero, otherwise
multiply E10 by E5. Caution: E10 must be exactly zero for this to work.

Now let us extend this using an example that requires us to split positive (cash) and neg-
ative (overdraft) values from a cash flow (net cash):

Cash =IF(NetCash>0,NetCash,0)
Overdraft =IF(NetCash<0,0,NetCash)

I hope you can spot the mistake. The cash formula tests to see if net cash is positive
and shows the value if it is. The overdraft formula tests to see if net cash is negative
and shows a zero if it is. I correctly changed the direction of the test from > to <, but
inadvertently switched the true/false outcomes as well. The second formula is in fact a cash
formula.

A MAX/MIN solution

Let’s consider an alternative solution for this problem. Instead of using an IF, let us try MAX
and MIN:

Cash =MAX(+NetCash,0) or =MAX(0,+NetCash)
Overdraft =MIN(+NetCash,0) or =MIN(0,+NetCash)
(or alternatively, =MAX(0-NetCash,0)

The MAX function works by returning the largest value from the arguments in the brack-
ets. In this case, it compares the NetCash value to zero. The MIN returns the smallest value.
MAX does not return positive numbers in itself, but in this case the comparator is zero so
it returns any value greater than that. I have written each formula in two ways to show that
the order of the arguments doesn’t matter, unlike the IF. MAX and MIN can evaluate up to
30 arguments.

The purpose of the + in front of the range name is to prevent Excel from evaluating the
largest value in the whole NetCash range (page 60).

Practical Financial Modelling

Although I have only used trivial examples so far, we need to recognise that IFs tend to
cause problems because people do not pay enough attention to the detail. If one formula
seems to work, it is assumed that the next one works as well. The real problems arise when
we extend the IF with further conditions.

—IF(E10>0,E10,IF(E10>100,E10*E5,0))

This contrived example introduces the nested IF but also fails miserably. If E10 is greater
than zero, show that value, otherwise if E10 is greater than 100, multiply by E5, otherwise
show zero. The problem is that any value of E10 that is positive will satisfy the first IF con-
dition, so that if E10 is 1 or 1000 the function will return that value. The multiplication
by E5 will never happen. The formula should read:

=|F(E10>100,E10*E5,IF(E10>0,E10,0))

Using AND and OR

At this stage we will look at techniques for building more complex conditions. If we need
to specify that two conditions must be satisfied (e.g. E10>0 and E5>10) we can write an
AND function:

—IF(AND(E10>0,E5>10),E10*E5,0)

The AND function returns TRUE if both arguments evaluate to TRUE. If either or both
return FALSE, the AND returns FALSE. AND will allow up to 30 individual tests to be
evaluated.

If we require either argument to be true, rather than both, we can use the OR function:

—IF(OR(E10>0,E5>10),E10*E5,0)

In this case, OR will return TRUE if either test is TRUE. Only if both tests are FALSE will
it recurn FALSE. As with AND, up to 30 tests can be evaluated. Occasionally the product
of the AND/OR test may be opposite to the result you actually need. Imagine that should
both E10 be greater than zero and E5 greater than 10, the FALSE outcome of the IF test
should be followed. This can be done using the NOT function:

=IF(NOT(AND(E10>0,E5>10),E10*E5,0)

Let’s apply the principle of error reduction.

Starting again

I have not really gone into too much detail with these last examples because in my opin-
ion we are moving into dangerous waters and I am going to suggest some alternative ways

Mainly functions

of composing this logic that should be more readable and therefore less prone to error. Let
us go back to the original IF test:

=IF(E10>0,E10,0)
Try writing just the test condition itself into a cell:
=E10>0

Excel will evaluate the formula and return TRUE or FALSE. These are referred to as the log-
ical operators. If you rewrite the formula:

=(E10>0)+0

Excel will return a 1 or a 0; 1 being TRUE, 0 is FALSE. The addition of the zero forces
Excel to return the value of the logical operator; some people prefer the values to the
operators.

The logical mask

This functionality offers an alternative approach to building logic into models; instead of
constructing long, cumbersome IF formulae we can break the underlying logic into indi-
vidual steps, with each step carrying out a single logic test. This links back to the concept
of the mask, introduced on page 75.

Breaking down the =IF(E10>0,E10,0) formula into steps, we have

Mask =E10>0
Calculation =Mask*E10

This is a very simple illustration, and you are probably thinking that it seems redundant to
split a one cell formula into two cells. But now let us extend it with the same multiple con-
ditions used above:

=IF(AND(E10>0,E5>10),E10*E5,0) can be expressed as:

Line 1 =E10>0
Line 2 =E5>10
Mask =AND(Line 1, Line 2)

Calculation =E10*E5*Mask
And similarly,

=IF(OR(E10>0,E5>10),E10*E5,0) can be expressed as:

Line 1 =E10>0
Line 2 =E5>10
Mask =0OR(Line 1, Line 2)

Calculation =E10*E5*Mask

Practical Financial Modelling

Finally,
~IF(NOT(AND(E10>0,E5>10),E10*E5,0) is:

Line 1 =E10>0

Line 2 =E5>10

Line 3 =AND(Line 1, Line 2)
Mask =NOT(Line 3)

Calculation =E10*E5*Mask

The mask technique can be very useful for identifying events. For example, the accounting
rules relating to depreciation generally specify that assets are depreciated when they are put into
use, which may be some time after they were purchased. If we can find a driver that indicates
that the asset is in use, we can build a simple mask to control the depreciation formula.

Mask =Production>0
Depreciation = (depreciation formula)*Mask

A B 157> - s R e NS (S
B 2008 2006 2007 | 2008 2008
_ 2 |Productian | | | | |
3 | |units | | 0 10000 10000 10000 10,000 Production
4
_5 |Mask | | FALSE | TRUE = TRUE | TRUE | TRUE Mask
B
_ 7 |Fixed assets |
8 | |asset life 4 years | |
9 | |bf | | 0] 100000 75000 50000, 25000
10| capex | | 100,000 0 0 0 0
11| |depreciation | | 0 25000 25000 25000 25000
2] ef | 0 1000000 74000 &00000 25000 0
i

This approach can be too simplistic. If the driver is not directly associated with the asset,
we could end up with the mask returning the wrong value and suspending depreciation,
which is not acceptable. The test of Production>0 only returns information about the
current level of production, rather than the more important fact that the event of produc-
tion starting (and therefore depreciation) has taken place. Let us change the routine and
add an additional line:

Production is happening =Production>0
Production has started =0OR(previous cell, +ProductionHappening)

Previous cell is a reference to the cell immediately to the left of the formula cell, and this new
line needs a FALSE in the base column to start it off. The formula looks at the previous result
and compares it to the current production level. The OR returns TRUE if either cell contains
a TRUE. What makes this interesting is that when the new ProductionStarted line flips over
to TRUE, it cannot revert back to FALSE. Ever. If production is halted, the formula still
returns TRUE because the previous cell reads TRUE. If we make the depreciation formula read
off the second line, we find that depreciation will now continue regardless of production.

Mainly functions

o7 i A =0R(CY +ProductionHappening)
A B [c NGEM t [f [© [® | |
e] 2005 2006 2007 | 2008 2009/
_ 2 |Production | | | | | |
_3 | lunits 0 10000 10000 10000 10,000 Production
4
5 |Production |]
B | |is happening | FALSE | TRUE | TRUE | TRUE | TRUE ProductionHappening
_7 | has started | FALSE | FALSE 1 TRUE | TRUE | TRUE | TRUE PFroductionStarted
g
9 |Fixed assets | |
10 |asset life | 4 years | | | | |
1] b 0 100000 75000 50000 28000
12| |capex 100,000 0 1] 0 0
13| |depreciation 0 25000 250000 25000 25000
14 ef | 0 100000 75000 &0000 25000 0
15

We can also write this routine without the OR. The formula can be written as:
=previous cell+ProductionStarted>0

This produces the same result.

Even with these trivial examples, we are trying to set out our work in a way that can be
easily followed. Each line contains only one action, be it a logic test, a mask, or a calcula-
tion. One criticism is that apparently simple logic is now spread over several lines, but I
think the ease with which we can revisit and understand what can be complex logic
sequences more than repays the extra effort in setting up these routines.

Putting it into practice

An example should help. Let us consider commercial bank loan. We will imagine that we
can negotiate a repayment holiday, which means we can drawdown the funds and simply
pay the interest until the repayment period starts. At this stage we are not sure how long
the repayment period lasts, nor are we sure about the duration of the loan.

The modelling problem is in two parts: we must identify a trigger to commence repay-
ments and a trigger to stop repayments. Repayments therefore only take place in the time
between the end of the repayment holiday and the completion of the repayment. The
principle of left-to-right consistency demands that we can only have one formula for debt
repayment.

To begin with, we will borrow 1,000,000 to be repaid over 10 years, with a 2-year repay-
ment holiday at the start. We may want to defer the drawdown to the second year, and the
duration of the loan and the repayment holiday are variables. Assuming equal repayments
each year, the annual repayment will be:

=SUM(Amount)/(Duration — RepaymentHoliday)

that is, 8 annual payments of 125,000.

Practical Financial Modelling

We can set this up in the model:

AnnualRepay.. w £ =SLIMEA f(Digrati pay {oliday)

) e e i i T T e Rt ST e o S T) ey] T P
1
[zl 206 2006 007 R i) 2010 M1 M2 013 014
| 3 |Business luan
| 4 | amount RRLLIFLLY u u u u u u 0 Amount
15| term 0 Furation
B repayment haliday 2 RopaymonHoliday
?] annual repayment J"M-'HI’PWWM

a
a7 o 0
110 drawduoem 1000000 o o 1] 1] o 1] a
|11 repayment
2] ef 0

13
We can set up a corkscrew to handle the debt:

L1 - e =AnnualRepayment

A B [& [0 [E [T ® T w [W [1T [3 T % [N W [W
1
2] 08 206 2007 2008 209 a0 ann a2 K] 14

3 |Business Inan

4 armont 1 00 non o o 0 il il o 1] 0 0 Amaurt
6 torrn 10 Duration

B repayrment holiday 2 RopaymantHaliday

7| annwal reprymont 125000 AnrsaiSeggayrmmmt

B

9| br 0 BFAO0N FEDOON RIAOON AONONO RFEOO0 JA0O0N 175000 0 4000 Af
10 drawderwm 1,000 000 il 0 a a 1] 0 a 0 0 Orirvatcrnm
1] opsayrmemt 105000 176000 125000 105000 106000 125000 175000 125 000) 125 000 Bupsayrmiond
Al ol 0 B75000 750000 G25000 &0O00D0 375000 250000 125000 0 125000 250000 Gf
13

Note that simply pulling in the annual repayment figure causes the debt to be overpaid.
We need to suspend the repayments during the first 2 years. One solution is to set up
a quick mask based on the year number or column number, along the lines of
=Number>RepaymentHoliday, and on first pass this would do the trick.

M4 - A =AnnualRepayment’iiask

Al B — e D TR w e [owm e o Towe T R N
1
2 005 2008 07 2008 008 nmn am e a3 il
3 |Rusiness nan
4 amnaunt 1 000 onn 1] n n n n n n n 0 Amannd
5 e 0 fusration
B repayrment holiday 2 RapaymantHoliday
7 annual repayment 128000 AnnaaiRepaymant
B
] nurribir 1 2 | 4 s B 7 a8 9 A0 Murrbnr
10 iy rrsend ok FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE Mask
1
12] r 0 100000 1000000, RPAODD FADOON BISOO0 ADNODD, IS0 JS0000 125000 AF
13 drawedewm 1,000,000 n n 1] o n] 1]] 0 Orirvakram
| 18] mpayrment 1] 0 125000, 135000 175000 1250000 125000 125000 125000 108 (ol Ronaymmant
6| ol 0 1000000 1000000 B75000 750000 25000 S00000 3765000 250000 135000 ocr
16

But later on I shall consider the effect of deferring the loan drawdown, that is, borrow-
ing the funds in year 2 or year 3. If this happens, and we assume that we are still entitled
to the repayment holiday, then this mask will not work. If we consider a number sequence
that has a 1 in the year in which the first repayment is due, we can write a formula such
as = Previous + 1 where Previous is a cell reference to the preceding cell. If this is copied
back to the start of the row, it does not work until you type -2 in the base column. You
may recognise this as =0—RepaymentHoliday. At this point, the number sequence
(or index) is now driven by the input repayment holiday value, and the first repayment is

Mainly functions

due wherever the index reads 1 (although this still does not solve the problem of the
deferred drawdown). The mask formula can be written as:

=Holidaylndex>0 and the repayment formula becomes
=AnnualRepayment*Mask

ca -
Al B 1PV T [T [T T e (T I L M N

1
T 2005 2006 2007 2008 2009 2010 2011 2012 03 24
| 3 |Dusiness loan

4 amuunl 1000 U o 1]] u u u o o U Amowd

5 limm 0 Deriabiene
| B | repayment holiday 2 RepsymantHolday
[7 | =nnual repayment 125000 AnnusiRapsyment

o
D9 index —3 B i [] 3 [5 A 7 0 Holdaynder
1d regrayrmien ik FALSE FALSE TRUE THUE TRUE TRUE THUE TRUE THUE TRUE Mash

1
2] Ibf 0 1000000 1000000 B7S00N 7S00000 BZSO00 SO0OO0 37SO00 2S0000 125000 AF
(13| drawdown 1,000,000 1] o o 1] o o 1] 1] 0 Drawetonn
(14| repayrnent 0 0 125000 1250000 125000 125000 1250000 125000 125000 125,000 | Repayment
[16] o 0 1000000 1000000 E75000 7SO000) BAGOO0, S0O000 J75000 250000 125000 oo

6

This now holds back the repayments until the end of the repayment holiday (as the mask
changes from FALSE to TRUE), but it does not recognise that the loan will eventually get
paid off, or could be paid off early. You should set up another index, starting in the base
column with =0—Duration and incrementing by 1 each year. Set up a second mask which
reads =DurationIndex<1. If you inspect this row it reads TRUE from the start. We should
only make repayments when both lines read TRUE, so set up a repayment mask reading:
=AND(+HolidayMask, +DurationMask) and amend the repayment calculation in the
corkscrew accordingly.

Note that AND and OR are grouped with the likes of MAX and MIN in that they require
range names to be prefixed with a plus sign if they are to read from the same column and
not the whole row (page 60).

013 -] =AND(+Holi 0
TAl B [Dl = 220 T I] (R [, L T | N

1
=5 2005 2006 2007 2008 200 010 il 2012 o3 M4
_3 |Business laan

A | amount 1,000 000 0 [1] [[i] 1] i 1] [U Amourt

5 Lemm U Dervabion
B | mpayment holiday 2 RapaymordHolday
7| annual repaymant 125000 AnnuatRepayrnent

]
9| holiday index 2 - i 1 2 3 4 5 3 7 0 Holidayineex
10| heliday mask PFaSE "FaSE " TRUE [TRUE T TRUE " TRUE [TRUE " TRUE " TRUE | TRUE |HokdayMask
1 duration indes w g 8 T -] 5 4 3 2 1 U Durabiordngox
12| durition mask TRUE _ TRUE = TAUE | TRUE | TRUE TRUE | TRUF | TRUE TRUE TRUE | PurliorMassh
3| repaymen mask FALSE = TRUE | TRUF | TRUE TRUE | TRUE | TRUE = TRUE TRUE Mast
4] bt 0 1000000 1000000 675000 750000 625000 500000 375000 250000 135,000 f
15| drawdown 1,000,000 1 a [1] 0 a a a 0| Crawedown
6| repayment a 0 125000 125000 125000, 125000 125000/ 125000 125,000 125,000 Repaymet
e fer 0/ 1000000 100UG00 EYA000) 7SOO00) B2S000 S000000 FAO000 250000 125000 ot

18

Test the operation of the masks by changing both the repayment holiday and duration
values.

I mentioned previously that we might not be sure when we will actually draw down
the loan, but whenever this happens, we will still be entitled to the repayment holiday.

Practical Financial Modelling

This issue can be resolved by changing the existing mask. First, we need to identify when
the loan is actually drawndown. Set up a row which tests for this: = Amount > 0. This
returns TRUE in the year the drawdown takes place. We can create a flag to show that this event
has occurred, and we can then replace the existing duration and holiday indices with a single
loan repayment index. On the line below the drawdown test put a zero in the base column and
then fill the row with =Previous+Above, where Previous is a cell reference to the previous
cell in the row and Above is a cell or range reference to the drawdown test line. This row
should read 1 from the point at which the drawdown takes place. In the next row, we can set
up the loan index using a neat trick to carry out a rolling sum:

=SUM($start of index:start of index).

The first reference in this formula must be absolute, the second part relative. When you
copy this formula across the row, you should find that the numbers accumulate. The value of
1 occurs in the year in which the debt is drawndown.

] - & =SUMBD§0.010)
Al H [[o | HUm 1 e [T e M N

1
a2 2005 2006 2007 2008 200 2010 201 2012 a3 014
"3 Hugsness lnan
A& | |amount 1,000,000 o '} 0 o) 0 o 0 0 Amoumt
R 10 Diavitors

b rapayriant holiday 2 RepayrmentHolday
_T | |snnual repayrment 125000 AnnusiRepsyment

H

g loan drawmdesm TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE DvawdownMask
0 flsg 0 1 1 I 1 1 | 1 1 | | Fiag
L T [1 2 3 4 & [T i E] 10 Lot

12
421
]
15 repayrrnt mask FALSE FALSE TRVE TRUE TRUE TRVE TRUE TRUE TRUE FALSE Mask

18] |bf 0 100 1 oo Ha I 7EO (1) LRt S Ereaiin) 2400 M0 128 M0 B!

17| | drawdown 1,000 000 o 0 o 0 a o 0 0 Lvawcion
18 repsyrent] 0 135000 125000 125000, 125000, 125000 125000 125000 0 Repayment
ag |d 0 1o o B I i) B4 (1M A0 N0 ErEgitl] 260 126 MK 128 00

2

To complete this routine, we need to know when the repayments should start, assuming
that the repayment holiday still applies. We also need to identify when the repayments fin-
ish, although to get the logic the right way round we should actually identify the period
during which the repayments have not finished.

Repayments due
Repayments not finished

=LoanIndex>Holiday
=LoanIndex<=Duration

o1 - = =SUME0$10:01D)
Al B [G o € i H = = =Rl M]

1
I ARk et an? ANE ArH Ann am a2 ans An4

3 IDusiness faan
| 4| amoum 1,000 000] 1] o 0 1] 0 o a 0 Amaunt
5] ltem 10 Daritio

7] repayment holiday 2 Repaymentiiodsy
|7 | annual repayment 125000 Annwaifapayment

8
9| loan drawndawn TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE DrawcownMask
(10| |fag o 1 1 | 1 1 1 1 1 1 I Fi

0| index — 2 3 4 5 & 7 8 E] 10 Loanlidex

12
E .II!P‘I"'I'III!I'“ dhun FALEE FALRE TRUE | THUE TRUE TRUE TRUE TRUE TRUE THUE RuopuaymendOue
14| |repayment not finished TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE Repaymentlindinished
|15 repayment mask | FALSE FALSE TRUE TRUE TRUE TRLE TRUE TRUE TRLE TRUE Mash
(16| bf 0 1ENan 10N 87 0 e B25 [0 S A5 240 100 126 [&Y

17| drawdawn 1000 000 o a 0 a] o a 0 0 Lrawdions

18| repayment 0 0 125000 125000 125000 135000 125000 125000 125000 135000 Repeyment
_!Q_I «f 0 1m0 1 e HIS [0 L L LE L S0 0 36 (1M N 125 [0 oo

Al

This is a tidier solution than the previous version, in that only one index is required. You
may find alternative solutions.

Mainly functions

Having worked through this explanation of the use of logic techniques in modelling,
I would invite you to consider solving the loan exercise using IF.

Lookup

Good old VLOOKUP and HLOOKUP

The lookup table is a well established financial modelling tool. As an organised structure,
it contains reference information that can be retrieved for calculation purposes. It allows
me, for example, to quote the current share price of a company, or to set the hourly rate
for a consultant, or even to run scenarios (see Chapter 6). In the right circumstances it is
robust and reliable, but it doesn’t lend itself to all types of modelling. The two basic flavours
are VLOOKUP and HLOOKUP — with the former the information is arranged in rows, in
the latter it is in columns.
The basic syntax of the VLOOKUP is:

=VLOOKUP(item, lookup table, column, match type).

You can enter an item into a cell, the VLOOKUP looks for it in the first column of the
lookup table, reads across to the appropriate column, and returns the corresponding entry.

Item is the cell reference or range name containing the search item. The search item must
occur in the first (index) column of the lookup table (in HLOOKUP the search item must
occur in the first row).

Lookup table is the range in which the information is arranged. This can be cell refer-
ences or a range name.

Column is the number of the column which contains the item you wish to return. This
is normally a value. The left hand column is column 1.

Match type is FALSE or O if an exact match is required. If TRUE or 1, Excel will match
the lookup item with an item from the range which is less than or equal to the test item,
but with the assumption that the first column has been sorted into ascending order. If this
argument is omitted, Excel assumes that the match type is TRUE.

We need one VLOOKUP formula for each item of information we wish to obtain.
VLOOKUP is not case sensitive in terms of the search item and its corresponding entry in
the index column. Look at the following example:

Ca - A =VLOOKUP(C3,C:H15 2 0)
Al B [— & D = O 2 N 70 | |

2
3 | | Enter Ticker. GHI

4
| 5 | | Company name I GHI Inc.!
| 6 | |Cunent share price | 1]

7
E Ticker CoName Price Hi Lo P/E
|25 ABC | ABC Ltd | 13 23 7 8%
10 DEF DEF plc 13 22 11 B%
11| GHI GHI Inc. 11 16 g 7%
112 | JKL JKL Ltd 16 20 12 7%
iz WMD) MMNO ple 12 21 16 8%
14 PaR PQR Inc 18 2 13 10%
| 15| STU |STU Group plc 15 24 " 9%

16

Practical Financial Modelling

A well-constructed lookup table can be very reliable. However there are problems and
limitations. The index column must not contain duplicates; VLOOKUP will only handle the
first match. One of the commonest problems is when new data is appended to the table and
the formulae are not updated, although a simple workaround for this is to use a range name
for the table and to rename the table after updating. As the formula requires you to specify
the column from which you want to return the result, a further structural problem occurs if
columns are inserted or deleted. The hardcoded column number can also cause problems if
the formula is copied, as can the failure to set absolute references for the lookup table — this
latter problem is often missed. If the match type argument is omitted, the formula will
return an approximate match rather than an exact match, which can be misleading as there
will be no indication of this. Only if the item does not appear in the index column will Excel
return the #N/A error. Lastly, it should be obvious but lookup does not work in reverse: with
my share portfolio above, I can not find out the company name of my lowest priced stock.

It should be apparent that VLOOKUP requires an organised table structure. Our cash flow
models do not have such organisation.

Lookup without using LOOKUPs

In the example below, we can see a typical lumpy cash flow and the resulting cash balances
of a project. Being prudent financial planners, we wish to avoid going into overdraft and
so it would be helpful to flag up cash shortfalls. However, I do not want to keep scrolling
across the screen on the off chance that this scenario might happen; it would be more use-
ful if Excel could warn us of the event. Firstly we will identify the lowest cash flow. This is
easily done with a MIN: =MIN(CashFlow). We will call this CashFlowMinimum. Next, we
need to identify the year in which this occurs. The row of years is called Yearindex.

CashF lwwivin... bx B = MiM{CashF low)
A] ¢ [BEE 5 | P < I

e il (1 2y bl [N LTS, O O O (U o | (il L) ST L R [e TR
_1_Financial year ending 2005 2006 2007 2008 2000 2010 2011 2012 2013 2014 2015

il

3 _:Cash flows
project /43
minirnum cazh fow l -isa!GsMFMm.'\m'm

416 154 sg0 02 - =] i 2] 743 416 172

o =

Let us solve this problem with a simple mask. We can put in a line that tests if the min-
imum cash value corresponds to the cash balance value for that year.

=CashFlowMinimum=CashFlow Call this row Mask.

As CashFlowMinimum is the name of a single cell, it is inherently absolute and can be
copied across the row. We should see a TRUE value in the year in which this value occurs.
Now multiply by the YearIndex

=YearIndex*Mask Call this row CashFlowMinimumYear.

To finish off, put a SUM in the base column:

=SUM(CashFlowMinimumYear).

Mainly functions

Change the numbers to prove that this works.

D7 - A =SUNCashhinimum Y ear)
TA&T B | I (e} H | T] [(F=) |l N 5]
1[Financlal year ending 2005 206 2007 2002 2000 2010 201 2012 2013 2014 2015
2
3 |Cash flows

praject 743 416 158 520 702 - 150 2 a 743 416 172
minimurn cash flow -158 CashFiwdfinimunn
mazk FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE
year] 0 (] 0] 210 i} 0 il 0]

MATCH and INDEX

Staying with the problem of looking up information in the financial model, where the
values themselves are not organised and could occur anywhere in a given range, we can look
at two further functions, MATCH and INDEX, which together provide the lookup
functionality we need. To introduce them we will look at them individually.

MATCH

The MATCH function looks for an item in a range and returns its position. It has the
following syntax:

=MATCH(item, range, match type)

Item is the cell reference or range name of the value we wish to look for.

Range is the row or column where this item can be found.

Match type is FALSE or O if an exact match is required. If TRUE or 1, Excel will return
an item from the range which is less than or equal to the test item, but with the assumption
that the range is in ascending order. If this argument is omitted, Excel assumes that match type
is TRUE.

Using the cash flow example above, we can write this formula:

=MATCH(CashFlowMinimum,CashFlow,0) Important — do not miss out the 0. Call it
CashFlowPosition.

CashFlowPos... = £ =MATCH{CashF lowhdinirum, CashF low 0}
A B 0 R s il R e s | I | T
| 1 |Financial year ending 2005 2006 2007 2008 2009 2010 2011
2
ECash Muvrs | |
L4 | project 743 416 158 580 702 - 158 721
|5 rinimurn cash flow -158 CashFlowllinirmum
L6] position I G-ICaar‘.'."—.l’owPoa.ffiJn
/

The formula tells us that the lowest cash balance is in position 6. Now we need to find out
the corresponding value from the year index row. Although this is not entirely dissimilar to
the LOOKUP function, remember that the cash flow line is in no particular order, as it
simply reflects the cash flows generated each year.

INDEX

The MATCH function is effectively the first part of a VLOOKUP — it locates an item in a
range and returns its position. The second part of VLOOKUP is then to locate the position

Practical Financial Modelling

in another range and return the corresponding value. This is handled by the INDEX
function. In many years of teaching this, I have found that the simplest explanation of
INDEX is:

=INDEX(range, position)

Range is the row (or column) you want to examine.

Position is a value corresponding to the location of the value to be returned. Position
must be a positive, whole number. Position 1 is always the left hand cell in a row, or the
top cell in a column.

Returning to our minimum cash flow example, the MATCH function tells us that the
lowest value is in position 6 of the cash balance row. We now use the INDEX to return the
corresponding year.

=INDEX(YearIndex,CashFlowPosition)

CachFlowhdin . - £ =INDEX(Yearlndex CachFlowPosition)

e a1 (S 0 [T s i (St [M [
| 1 |Financial year ending 2005 2006 2007 2008 2009 2010 2011
2
ECash flows | | |
4| project 743 416 158 580 702 - 158 721
51 minimurn cash flow -158 CashFlowMinimurn
| B | position B CashFlowPosition
B yedr 200N CarshiFlowilininn Yedr
g

If you feel confident you could omit the first step and simply nest the two formulae:
=INDEX(YearIndex, MATCH(CashFlowMinimum,CashFlow,0))

Again, do not forget the zero.
Straightaway there are a couple of caveats to consider. First, we must recognise that the
search item is unique. Given that even in a formatted cell Excel can calculate to fifteen
decimal places, it may be considered unlikely that two cash balances are exactly the same —
but it is not impossible. Second, the MATCH range must have a one-for-one correspon-
dence with the INDEX range — there is no value to the exercise if they are of different sizes
or are in a different order.

Does the apparent complexity of the nested INDEX ... MATCH offer any benefits over
the simple mask method that we considered earlier?

The concept of the pool

INDEX, however, can offer a great deal of functionality in its own right. We can explore
this in the context of the loan repayment schedule we looked at in the previous section.
For the moment we'll take out the repayment holiday, and delete the loan and repayment

Mainly functions

mask elements. We'll borrow the money for five years. Set up new lines as shown, ignoring
the negatives:

__ Dumation = = 5
A B) c |eEECEEM) € | F | & H | | | 1 | L [T N

1
[2 | 2005 2005 2007 2008 i) 2010 201 012 3 014
ERCT [
[4 | |amound 1,000,000 o 1] 0 1] 0 0 o '] 0 Amount
L& tom Jm.v.m |

[} repayment haliday 0 Repaymentilolday
|7 | | annual repayment 200,000 Annuaiftepayment

]

9 |Loan poal
(10| [br Poolgf
| 11| add to pool Footfdditon
12| remove from pool FooiRemovals
13| ef 0 | | | Poolc
1
|15 |Loan
16| bf 1] HI) [CLERiL L) 400 [ax anon n axam AN BN [N HN 0 &

17| | drawdown 1,000,000 o a 0 o 0 0 a 0 O Drawdons
(18] repaymem 200000 200000 200000 200000 200000 200000 200000 200000 200000 200000 e
(18] |of] B X0 HI N A0 Xn An n A 400 [0 (UARIEY) IO 0 - o0 o cf

20

The concept of the pool is that we will add in the debt as it is drawdown. Once this has
occurred, repayments will start and continue until the debt is paid off. The timing and
duration of the loan are still variables.

The corkscrew is straightforward

Opening balance bf
Add to Pool
Remove from Pool
Closing balance cf

=previous closing balance(cell reference)
=Amount

let us leave for a moment
=PoolBf+PoolAdditions—PoolRemovals

Delete the existing debt repayment formulae from the debt corkscrew. Repayment is now
the PoolCf/Duration. Do not worry about the overpayment that now follows.

The PoolRemovals line should show the debt dropping out after Duration number
of years. As the closing balance reaches zero, the repayment formula also reads zero.
Prove this by typing in the loan amount in the appropriate cell. Note the effect on the

repayments.

na2 - ARLETTE]

Al B | T 2 I - O | [H [A I E M]
1

2 2005 2006 2007 2000 200 2010 2011 2012 ama 2014
| 3 |Business loan
4 | armoun 10 o] 1) 1] n n a 0 n 0 Amount
5 ferm 5 Duration
(B | repayment holidsy 0 RepsymentHolidsy
7| anmual spayron U JEET AneaatHiparrem
L]
|2 |Loan pool
[10] mf 01 (X0 1 000 1 000 00 1 00 1 [0 o 1]] 1] 0 Fooiff
11 add te pool 1,000,000 o a 0 o o] a 0 D PociAdditions
(12| remove fram pool Pooilemovais
13] et 0 100 10 10D 1o 1 i} [i] i 7] 0 Foall!
14
|15 |Loan
(16| bf 1] HIam [CLERiL) 400 XK anomn o 1] 1] (1] o s
17| drawdown 1,000,000 0 g 0 o a 0 Lo
| 18| repaymem 200000 200000 200000 200000 200,000 1] 0 o 0 Repsyment
[19] el] B0 A0 HI I Al TR M n n 1] o 1] oo
20

Of course we need a calculation for this. Think back to the description of the INDEX
function: it looks in a range at a specified position. The range we are interested in is the

Practical Financial Modelling

PoolAdditions line, and specifically position 1. We want the loan amount to appear in
this cell. We could write =INDEX(PoolAdditions, 1) but that would be hardcoded. As
with the mask treatment, the 1 and related values should be set up above the pool as a
separate line. In the base column, type in =0-Duration. In the rest of the row
type =previous+1, where previous is a cell reference to the adjacent cell. This should
result in a number sequence in which the value of 1 appears now in the required column.
Name this row as Poollndex.

L2l RN =0 Duration r L E— ; T T S g TR R

| [T PN N R)) T A O O 2 [] Y Y i N
‘ A E] 2 K] [1 2 3 1 5 Povlindes
[0 1000000 1000000 1000000 1000000 1000000 0 i i 0 PoaiBf
[12] adéto poal 1,000 000] i 0] 0] 0 0 0 Fooldditions
43| remowve from pool 1,000,000 Pooilemovais
||I cf 0 1000 1 000 1 000 000 1 000 000 1 (00 000 o il 1] o 0 Foak
[18

Now we can write the PoolRemovals formula as:
=INDEX(PoolAdditions,Poolindex)

Copy the formula to the other cells in the row. Remember that the position value for
INDEX must be a positive whole number, so the negative and zero index values generate
#VALUE! errors. We can protect against this by rewriting the formula once more:

=|F(Poolindex<1,0,INDEX(PoolAdditions,Poollndex))

That is, if the Poollndex is not a positive whole number, return zero.

Now, having proved that it works, let us find out why. It should be clear that the loan
drops out where it does because the instruction in the INDEX formula is to look in the
PoolAdditions row at the position specified in the Poolindex row, in this case a 1, so return
the value from position 1 in the PoolAdditions range. The next index value is 2, and the
instruction in the formula is to look in the PoolAdditions range at position 2, and so on.
We can test that the mechanism works if you delete the debt in year 1 and instead put the
debt in year 2. Now change the loan duration and prove that the repayments are correct.
Finally, split the loan so that the first tranche is drawndown in the first year and the remain-
der in the second. Does this work?

If you are still struggling with this you are in good company. Having taught this tech-
nique for several years I still find that this is the most frequent post-course enquiry I
receive, which either suggests that I am not very good at teaching it, or that people have
found it useful but did not quite grasp the issues the first time around. The usual ques-
tion picks up on the formula’s structure, in that the range element is an absolute refer-
ence (so make sure you have the $ signs if you are using cell references), and that
the position element is a relative reference. It doesn’t matter where you are in relation
to the PoolAdditions line, but the position value is taken from the Poollndex in the
same column. Also, the Poollndex is the driver of this mechanism — whatever value is
used as the duration, the Poollndex recalculates. The INDEX function simply does what
it is told.

Mainly functions

[1E] = & = (Paclindex=1 0 NDEXPoaldddtions Pealindex)]
[+ D | F (£}

3 H | E == H] I [T I K| L M N

1
2] 2005 2008 2007 2008 2009 2010 2011 iz 2013 014
"3 |Businasss loim

1 amount 1,000,000 a o o o 0 1] o o 0 Amount
(5| temn 5 Durstion
B | repayment holiday 11 HigryrrentHobcdiy

F

8 |
ERETET

10| index 5 -4 -3 -2 - 0 2 3 4 5! Pooil oo
[11] uf 01 N0 1 000 Y 000 7 00 o 1 000 [1] (1] 1] 0 Foaitf

12| add 10 pool 1,000,000 1} 0 1] 1] L1} o 0 Pooiddditions
_lﬂ remowve from pool o a o o o 1] 0 0 Poalfemenals
_|_i_‘ ol 0 1JEDgn 1 e 1 oo 8 o 1 e e a n o 1] 0 Fooltf

£
_|_E_:L08'|
A7 bl] HEO HX &nmm A 1] 1] o 1] o8

18 | drawdown 1,000,000 a 0 a o o O Drawdonn
(19| repayment 200,000! 200000/ 200000 200000 200,000 0 0 Repayment
) o 1] B BRI (XD 400 [angm o 1] 1] o 0 ooy

21

If you want to extend this repayment schedule to look at semi-annual repayments rather
than annual, the rule is that the model should be set up according to the shortest time period
it will use. Instead of the Poolindex values representing whole years, they will now represent
periods and you can factor this in accordingly. Likewise, if you want to include the repay-
ment holiday you can set up the mask we used previously. I will leave you to do this.

This INDEX and pool mechanism is very useful in modelling. There are many examples
when a pool comes in handy, such as straight line depreciation. In this case you can set up
a pool that picks up the capital expenditure as it is incurred and holds it for the life of the
asset. While it is held in the pool it is available for the depreciation calculation, which can
be as simple as PoolCf/AssetLife. As seen above, this pool can handle any number of assets,
provided they share the same life. I could therefore have one depreciation pool for my five
year assets, another for my 10 year assets, and so on.

Other examples include corporate bonds, such that whilst the bond is in issue we pay a
coupon (interest). Or venture capital, which has the features of debt to begin with and
therefore drives an interest calculation, but at some stage we might want to convert to share
capital and add the amount to the share capital corkscrew. We could also consider the
retirement of tax losses, in which a company incurs a tax loss and can carry it forward over
time to set against future profits. This period is defined by the tax authorities and is not
unlimited.

Fixed schedules

The INDEX and mask combination also allows to handle issues such as accelerated depre-
ciation (or capital allowances in the UK). The problem is that the values to use for the
depreciation charge differ each year, with higher charges in the first years. If we are not sure
when the capital expenditure will take place it is often difficult to apply the correct rate for
the year/column. Look at the following:

ScheduleCheck = # —SUN[UepSchedule)~1
Al B o T e] e Y (S e e e R K
2005 2006 a7 2008 2009 2010 2011

1

2] IrvestmentSum |

|3 | Investment 1000 0 1000 0 0 L 0 0 investment
4

h

SeheduleCheck
Depreciation schedule {eg)! TRUE _l A0%, 30% 20% 10% 0 1] 0 DepSchedule

Practical Financial Modelling

I have put a SUM in the base column at the start of the Investment line. The DepSchedule
row lists the annual depreciation charges and I have included additional zero values to
complete the forecast period. Make sure this row adds up to 100% by putting a logical
check in the base column.

We then add a mechanism to count the number of charges in the depreciation schedule,
in case they are varied. This is expressed as =(DepSchedule>0)+0, with a SUM in the
base column.

Next we need a flag to identify that the investment has occurred. The Investment
Happened line captures the capex event =Investment>0, and the line below, Coercion,
converts this to a value.

D10 - e =InvestmentHappened+0
Al B | C - [F [6 [=8 = 9.1 K
) 2005 2006 2007 2000 2009 200 2m
=24 Investment=Sum
_ 3 |Investment 1000 0 1000 o o o 0 0 fmestment
4
8| ScheduleCheck
_6 |Depreciation schedule (eg) TRUE A0% 30% 0% 10% o i} 0 DepSchedule
_7 | count 4 1 1 1 1 a 1] 0 DepCount
B
8 | imvestment happened FAl S5F TRUF FALSF | FAISF FAISF FAISF FAISF imestmentHanpenad
0| coercion I E}! i 0 0 1] a 0 Coercion
1"

We now need to create a number sequence which counts off from the event of the invest-
ment. This number sequence will be used in an INDEX formula very shortly. The Counter
row recognises the InvestmentHappened event (=previous+Coercion), and the
Cumulative row creates the number sequence (=previous+Counter), with appropriate
zero values in the base column.

D13 - £ =C13+Counter

Al B [C | e e e R [L e el [| i

| 2005 2006 2007 2000 2009 2010 2a0m

2 InvestmentSum
_3 |Investment nno 1] 1000] | L [} 0 frvestment

1

LY ScheduleChack
_A |Depreciation schedule () TRUF A% A% Mm% 0% n n N DenSicheduk
7| count 4 1 1 1 1 1] 1] 0 DepCount

&
"9 | investment happened FALSC | TRUE | TALSC | FALSC | TALSC | TALSC | TALSC fmestment!iappened
10| coercion 1] | 1] 0 1] 1] 0 Cocrcion

11
12| counter 0 0 1 1 1 1 1 1 Counter

13 cumulatre UI U! 1 2 3 4 b b Uumulateve

We need a mask which will identify that the investment has taken place and is ready
for depreciation, but we will need another to ensure that we only apply the deprecia-
tion for the correct number of periods. Mask A tests that Cumulative>0, and Mask B
tests that the Cumulative<=Count (the count of the number of depreciation charges
in the schedule). The final Mask returns TRUE only when both Mask A and Mask B
are TRUE.

Mainly functions

D1k - e SAMU+HMaskds, HlaskH)
Al B | ¢ e & | F | e [W [oa- g I
EH MG R A7 R @ omnl o
fi R InvestmemSum | |
_3 |Invastment 1000 0| 1000 0 0 o o 0 Imvestment
4
5| ScheduleCheck [
_& |Depreciation schedule (2g) TRUE A0% 30%, 0% 10% o a 0 DepScheduie
7| vounl 4 1 1 1 1) 1] a 0 DepGount
8
9| imvestment happened FALSE | TRUE | FALSE FALSE FALSE FALSE FALSE ImvestmentHappened
10| coercion 1] 1 1] 1] 1] 1] 0 Coercron
11
12| counter o 1] 1 1 1 1 1 1 Counter
E cumulative 1] o 1 2 3 4 5 6 Curnulative
14 mash A FALSE IHUE IHUE IHUE IHUE IHUE IHUE Maskd
15| mask B TRLE TRLIE TRLE TRUE | TRUE FALSE = FALSE MaskB
E| mask TALSC 1 TRUC | TRUC | TRUC | TRUC | TALSC | TALSC Mask
17

Finally we can set up the depreciation corkscrew. The depreciation rate row uses an
INDEX formula to align the appropriate rate with the investment event:

=INDEX(DepSchedule,Cumulative)*Mask

DepSchedule is the set of rates in the depreciation schedule, Cumulative is the number
sequence beginning in the investment year, and Mask ensures that the formula only works
in the number of years specified in the depreciation schedule.

The rest of the corkscrew is straightforward. The depreciation formula is:

=InvestmentSum*DepRate

Test that this routine works by changing the timing of the investment, or the depreciation
schedule. Don’t push it too far, because it will not handle more than one investment, but
it is otherwise very robust. Think about creating an error trap based on ScheduleCheck in
case the depreciation rates do not add up to 100%.

nis » & =INDFEX(DepSchedule Cumilarie)“Wask
A A EEtias v e e e e e e il e | K
IEEL 2005 2006 2007 2008 2009 20100 2am
|2 | IrvastmantSum | | |
| 3 |Imvestment 1000 0 1000 0 0 0 0 0 irvestment
1
5] ScheduleCheck |
| 6 |Depreciation schedule (2g) TRULC 40% J0% 20% 10% 1] 1] 0 DepScheduke
| 7 | count 4 1) 1) 1] 1 1]] 1] 0 DepCount
8
1 investment happened FALSC | TRUC FALSC | TALSC TALSC TALSC TALSC fmvestmentilappemed
] coercion u 1 u u u u U Cocrcion
11
12| counter 0 0 1] 1 1 1l 1 1 Counter
13 cumulatre u u 3 2 3 4 b b Cumulstve
| 14| mask A FAl SF TRLUF TRUF TRUF TRUF TRUF TRUF Masid
| 15| mask B TRUE | TRUE TRUE TRUE TRUE | FALSE FALSE MasiB
|16 | mask FALSE | TRUE | TRUE TRUE TRUE FALSE FALSE Mask
17
18| Depreciation
E rate I El%! A% 30% 0% 10% 0% 0% DenRate
| 20| |bf 1] 1] 600 J00 100 1] 0.of
| 21| |capex 1] o 1] u u u U Clapox
| 22| depreciation o 400 300 200 100 o 0 Depreciation
| 23| lef o 0 600 J00 100 1] 1] 0cf
24

Practical Financial Modelling

OFFSET

Before moving on from the lookup functions, we will take a quick look at the OFFSET
function. OFFSET is one of those functions like IF, which tend to be overused and abused.
In simple terms it has the following syntax:

=0OFFSET(starting point, rows, columns)

Starting point is the cell from which you wish to navigate. It is not necessarily the current
cell. If you are using cell references you should decide if this reference should be absolute
or relative.

Rows is a value or cell reference to a cell that contains a value that represents the number
of rows you wish to read down (positive value) or up (negative value) from the starting
point.

Columns is a value or cell reference to a cell that contains a value that represents the
number of columns you wish to read to the right (positive value) or left (negative value) of
the starting point.

The immediate point to note is that this is an indirect referencing technique: in effect
we are giving Excel directions to a cell, rather than addressing it specifically.

If we look back at the loan pool removals routine in the previous exercise, it reads

=|F(Poolindex<1,0,INDEX(PoolAdditions,Poollndex))

INDEX asks Excel to read across a row to a particular position. We can achieve the same
result using OFFSET. We need to type a zero in the base column on the PoolAdditions row,
which will act as our starting point. Call it PoolAdditionsBase.

=|F(Poolindex<1,0,0FFSET(PoolAdditionsBase,,Poolindex))

The additional comma is required because in this example the row argument is not required.
Excel interprets this as the instruction to start at the PoolAdditionsBase cell and read across
(blank rows and) the number of columns specified by the Poolindex. Test to see if it works.

o1 = i =IFiPoolindex<1.0 0P SET(FooladdsionsDase, Paclindei])
| - C. NS E R T Ho T T Y [[T M N

8 |Loan poal

10| findex 5 -4 | 2 q 0 | -] 3 A 5 Poolindex
(1] o Pooladidi 0 1000 1A 1SN0 000 1 S000) 1 A0 000 500 000 i 1] 0 Boatdl

12| |addto poal 0 1000000 500,000 1] o o 1] o o D' Povidcdiicns
_QJ remave from poal I 0 100000 500,000 0] 0 Poalfemavsls
14 el 0] 1000000, 1 S0 1 A0 1 E0000 18000 00,00 u u 0 0 Foall

15|

Make sure that the OFFSET formula is suitably covered with the error trap which will
prevent from reading off the edge of the spreadsheet or from returning the text in the row
heading. I do not think that the resulting formula is an improvement on the original
IF ... INDEX.

We often find that people hard code the row and column references into their OFFSETS,
and as a model develops and routines are moved around, there always remains a nagging
doubt that it might not be reading what it should. Because of the indirect nature of the ref-
erencing, you will find that the usual audit techniques (F2, Ctrl+[) point to the start cell

Mainly functions

and the cells containing the row and column values, but not to the target cell. Try it with
the depreciation schedule OFFSET.

Financial

In a book about financial modelling it might be expected that we would look at the
Excel financial functions in some detail. But we won’, other than to recognise that these
functions do not always work in the same way that you might have been taught at business
school or in the textbooks. For example, the concept of Net Present Value is based on the
value of the cash flows into and out of an investment, discounted by the cost of capital or
hurdle rate. If you have never looked at Excel’s Help topic for NPV, you might assume we
could enter the investment amount and list the expected cash flows, and then discount to
their present values. But we must be careful about the timing of the investment and the
returns: Excel assumes that the investment takes place in time 1, rather than the present
time O (so it is really a future NPV). If the first cash flow (usually the investment) takes place
in time zero the formula should be written:

=NPV(DiscountRate, CashFlow 1 ... CashFlow n)+CashFlow 0

This can be illustrated using the following example. The investment (outflow) of 300
occurs in the first period, followed by three returns (inflows) of 100. The interest rate is
10%. The Excel NPV function gives a value of (46.65). If we calculate this arithmetically,
we set up an additional row to show the period number 0-3, and write the following
discount formula:

=CashFlow/(1+rate)”period

The SUM of this row is (51.31), a difference of 4.66.

011 b #* =CashFlow/(1+Rate)*Period

Al B | ¢ el E | F | 6 | H | |
Perind | [o 1] 2 3 Feriod

Cash flows ' | (300.00) 10000 100.00 | 100.00 CashFiow
Interest/discount rate | 10% Rate

Met present values -

e
o
i
4 |
L2
L2y
B8 | MNPYfunction | | {46.65)
|5
1]

R
S

[11| |discounted cashflows [EO0OO0) 9091 8264 7513 OCF
2
3| |sumof DCFs {51.31)

1

e L,

Change the period row to 1-4 and you will see that the Excel NPV and the arithmetical
NPV now agree.

Practical Financial Modelling

011 hd & =CashFlow/(1+Rate}"Period
Al ®] ¢ M E | F | & | H [1 |
1 |Period | | 1] 2 3 4 Period
2
3 |Cash flows (300.00) 100.00 | 10000 100.00 CashFiow
4
E Interest/discount rate | 10% Rate
2]
7 |Met present values | | |
8 | NPYfunction | | {46.65)
9|
0]
1] discounted cash flows I E§?2.73i! 52.54 75.13 65.30 | DCF
12

To make Excel agree with the time zero investment NPV, rewrite the function as:
~NPV(Rate,E3:G3)+D3
A further refinement is to recognise that cash flows are normally treated as year end flows.

In some circumstances we may need to consider them as mid year cash flows, and this is
easily done by changing the period row:

D11 b A& =D3/(1+Rate)*Period
A E e T T T e e |
| 1 [Period | 0.5 1.4 25| 3.5 Period
2
| 3 |Cash flows _ (300,007 | 100.00 | 100.00 | 100.00 | CashFlow
4
| 5 |Interest/discount rate 0.10 | Rate
B
| 7 |Met present values _
8 | |MPYfunction | | 51.31) |
)
ECI
111 | |discounted cash flows I EBE.EME _| 06.65 78.80 71.64 OCF
12
113 | |sum of DCFs (48.93)
14

Excel’s NPV will not recognise this, although you could use the XNPV function if you have
the Analysis ToolPak add-in installed.

A common source of confusion arises when calculating the quarterly or monthly NPV
and failing to amend the discount rate appropriately. Remember that if we are calculating
simple interest we can divide the annual rate by the number of periods, but if using
compound interest we should use the following formula:

=(1+annual rate)”(1/period)-1

Mainly functions

You can use this formula as an approximate audit check:

=(1+annual rate)=(1+monthly rate)*12—1

Check - £ =({1 MonthlyRate) 2-1=AnnualRate
I . - | ¢ "JSpaE| E F [H] A TN (T Sl (VYT 3T - T [0 -
1 [Period 1 2 3 4 8 1] 7 8 9 10 1 12 Month
2]
| 3 |Cash flows: {(iiNO0y 10000 000 10000 10000 0000 10000 10000 | 10000 10000 | 10000 10000 CowdhFleas
4
:‘E‘_:Intemsh’dlscoum rates
6 annual 0% Arvmaifale
|7 | manthly 1A% MonthdBale
8 check TRLE IChack
k]
i)
(11| dizcounted cach flows @009} 9a42 a7 BR %87 %n 8538 9450 o3 R4 g31n 9238 e 9081 KCFa
i2
13| | sum of DCFs 075
"

The reality is that most financial institutions require their analysts to write the full arith-
metical treatment for these and other financial calculations, where possible. We all know
the basic compounding and discounting formulae and therefore their appearance in the
worksheet is easy to check.

The exception would be the internal rate of return function. If you have covered IRR at
business school or in your finance studies, you will be aware that we use an iterative tech-
nique to calculate the IRR and we can safely use the Excel IRR function. The IRR function
uses a default guess of the interest rate at 10%. If the cash flow does not begin with the
investment as a negative amount, Excel gives up on the iteration and returns the #NUM!
error. Also, you should know that if the cash flow changes signs more than once, there will
be another IRR — Excel will not return this unless you change the guess:

=|RR(CashFlow, myguess%)

As with NPV, if the cash flows are irregular you can use the XIRR function if it is available
on your PC.

Dates

Calculations involving dates are fairly straightforward if we understand that Excel will read
dates as numbers, provided they are in written in a valid date format. We can prove this
quite simply by entering a date such as 25/5/05 (for the UK; use 5/25/05 in the US or your
local date convention). The date appears in the cell and should be right aligned, which
shows that Excel is treating it as a number (if it is left aligned Excel is reading it as text and
we will be unable to use the date for calculation purposes). Strip the formatting from the
cell using Ctrl+Shift+~ or Ctrl+Shift+!. In this example we can see a date serial number
of 38,497, which is the number of days which have elapsed since 1st January 1900 (unless
you are an Apple Mac user, in which case day 1 was 2nd January 1904. If this is an issue
check under Tools, Options, Calculation and the 1904 date system check box). Reformat
the cell using Ctrl+# (default date format). If we then enter another date such as
25/12/2005 we can calculate the number of days between the two dates. Note that the dates
do not need to be in the same format.

Practical Financial Modelling

NOW()

The NOW() function can be entered into the worksheet to return the current date and time
according to the computer’s internal clock. The result is subject to the normal recalculation
rules, so that it will only update when a recalculation occurs, through editing or writing
formulae or F9 manual recalculation. If you take off the date formatting, we see that the
function is calculated to several decimal places, which implies that Excel is working to a
split second level of accuracy. Because of this I do not normally use NOW() for routine date
calculations, as the results change very slightly during the course of a day. It is useful as a
time stamp, but we can achieve this just as easily in the page header or footer settings.
A variation on the theme is to use the TODAY() function, which returns the date serial
number without the decimals. Both techniques assume your PC’s clock is correct.

A neat trick to insert the current date into the workbook is Ctrl+; (semicolon). This is
a hardcoded value and will not update.

DATE(year, month, day)

Sometimes we find that the information about the date of an event is already located in the
model but not in valid date format. For example, we may know that the company has a
financial year end of 31st March, but the years themselves are entered as column headings
across the forecast period. We can use the DATE function to assemble this information into

a valid date value.

1 Name the row of years on the workings sheet as FYEYears. (FYE = financial year end).

2 Enter the day and month of the year end on the inputs sheet, and name them as
FYEDayIn and FYEMonthin.

3 Link the day and month to the workings sheet and name accordingly.

4 Write the DATE function as:

=DATE(FYEYears, FYEMonth, FYEDay)

5 When the formula is copied across the row, we should see valid year end dates gener-
ated for each year.

Date series

While we are on the subject of dates, we might want to remind ourselves that Excel can
help set up sensible date series as, for example, column headings. If we require a row of
dates for the ‘week commencing’, we can type in the first two dates of the sequence and
use the AutoFill method to copy the series across the row — select both cells, click and drag
the little box (AutoFill handle) at the bottom right corner of the active range.

A | B SceasEwees £ | F | G s e e e) e S e [s

¥Week commencing | 110:0}1:'&15 7012008 |

14/03/2005

:..|r.u r..||_.

Mainly functions

We can use the same functionality to put in month ends, by typing in the date of the first
month end and this time right-click and dragging the AutoFill handle. At the end of the
operation Excel displays a shortcut menu from which we can select Fill Months. If you
have entered a month end date (31/5/05) Excel is intelligent enough to recognise this and
will give the appropriate month ends, rather than generating spurious dates such as
31/06/05.

Other useful functions

LARGE/SMALL

I rather like the LARGE and SMALL functions primarily because they offer functionality
that a lot of modellers don't know about. We have looked at MAX and MIN and recognised
that they return the largest and smallest values from a range, respectively. But what about
other values? Look back at the minimum cash balance routine on page 98. We briefly con-
sidered that it might be that there might be two or more years in which this balance
occurred. We can pick out these values using SMALL, the syntax for which is:

=SMALL(range, value)

A value of 1 is the first smallest value (=MIN), 2 is the second smallest, and so on. You can
work out how LARGE works. Unfortunately SMALL and LARGE do not help with dupli-
cate values, because if there are two years in which the cash balance is zero, SMALL will
only identify the value itself. However, as previously noted, cash flow calculations are cal-
culated to several decimal places and duplicates may be unlikely to occur.

I once used LARGE to set up a dynamic sorting system. We needed to show the expo-
sure to a number of liabilities the value of which changed frequently. I should point out
that Data, Sort was not an option. We used LARGE, MATCH and INDEX to solve the prob-
lem. Don’t even think of using RANK.

A | B G b E | F G | H |]
7
21 Live data Sorted data
13 item Value Ovler LARGC MATCH INDC
4 | A] 1 =LARGE(value Order) =MATCH(G4 Value,D) =INDEX{ltern H4)
(5 B 24 2 -3 8 H
6| C 13 3 -1 12 L
7 1] -42 4 -20 10 J
L8 | E -2 5 22 5 E
12] F 37 B -24 2 B
10 B 3 7 -3 [F
1] H 3 B 42 4 1]
12 I -44] -43 3 C
(13 J -20 10 -44 3 |
| 14] '3 -45 1 -45 1 K
[15] L -1 12 A5 1 A
16

We can combine SMALL with COUNTIF and COUNT to tackle a common modelling prob-
lem. In this example we will consider a series of annual debt service cover ratios (DSCR) over
a long forecast period, during which the debt will be fully paid off. For financial

Practical Financial Modelling

management purposes we need to identify any periods in which the DSCR falls to critical
levels, that is potentially in breach of the loan covenant. Simply put, we need the lowest
DSCR. Unfortunately, because of the zero values which follow the repayment of the loan,
we cannot use the MIN function. Instead we can use the COUNTIF function to tell us how
many values above zero are in the DSCR row.

—COUNTIF(DSCR,">0")

This then returns a value of 8. We can use a plain COUNT (DSCR) function to tell us that
there are 30 cells in the row. If we then subtract the 8 from the 30 we see that there are 22
cells which contain zero values. The MIN of this range would be zero, so we would like to
know the next biggest number after zero, so the following formula would do the trick:

—SMALL(DSCR,COUNT(DSCR)-COUNTIF(DSCR,“>1")+1)

I would prefer to break the above logic into four separate cells to reduce the risk of error.

DSCRSmallest [= T A =SMALLIDSCR DSCRMlank+) e s S S T O T
=70 S RS SIS S a R I J Kenl=:k i P R BT o] 9

| Yarar 1 Yoaar 7 Yo 3 Yo 4 Yom & Yo B Yo 7 Yizar B Yoar 9 Year W0 Year 11 Year 127 Year 13 Year 14
|D3CR 1.42 125 166 1.3 1.47 1.53 118 155 1] 0 L] 0 0 ']

8 DECAMverTen
A OSCRG o
2 OSCRBRiNk

7
B | Blank DSCRs

3] Smallest DSCR CTEloscrsmattest
[

RAND

I often find myself having to create sequences of numbers in order to demonstrate or test
a routine, and this can be rather time consuming. The RAND function generates random
numbers between 0 and 1 at up to 15 decimal places, which in itself is moderately useful.
You can multiply by 10 or 100 to generate more meaningful numbers, but this usually
results in a wide range of values. To generate numbers within a particular range, say
between 10 and 20, try the following:

—RAND()*(20-10)+10

This formula generates a random number between 0 and 1 and multiplies it by 10, and
adds 10 to the result. The value therefore cannot be below 10 or above 20. Substitute in
your own values.

The random numbers change every time Excel recalculates, so you may want to convert
the formulae to values by using Copy and Edit, Paste Special, Paste Values.

To really crank this up, select the range first, type the RAND formula and press
Ctrl+Enter. Then press Ctrl+Shift+1 to format to two decimals, followed by Ctrl+C to
copy, and Shift+F10, S, V, Enter, to paste values.

ISTEXT

Cell comments (Shift+F2) are a useful means for storing additional information in the
spreadsheet. However, under Tools, Options, View, Comments they can be disabled and

Mainly functions

the user may not realise they are there. In the old days of Lotus 1-2-3, we were able to
write comments directly into formulae, and we can still do it using Excel. The trick here
uses the ISTEXT function. This is one of the IS family of functions which return a logical
TRUE or FALSE depending on the test. The syntax is simple:

=|STEXT(“text string”) returns TRUE
=|STEXT(calculation) returns FALSE

As we saw previously, TRUE has a value of 1, FALSE of 0. We can therefore write an anno-
tated formula such as:

=NPV(DiscountRate, CashFlow)*ISTEXT(“DiscountRate is the company’s real terms
cost of capital, and CashFlow is the project cash flow in real terms”)

In this case, the ISTEXT formula multiplies the NPV by 1.

CONCATENATION

Concatenation is the method of linking together a series of text strings, cell references
and/or values. It can be used for reporting results, as in the following:

="The NPV of the project is” & NPVResult & “using a” & DiscountRate & “discount rate”

The & ampersand character is referred to as the concatenation operator and each element
of the formula needs to be prefixed with this symbol. Note that each text string must be
enclosed in quotes, and spaces should be included for readability.

Alternatively, we can use the Excel CONCATENATE function:

=CONCATENATE(“The NPV of the project is”, NPVResult, “using a”, DiscountRate,
“discount rate”)

Needless to say, concatenation should be thought of as generating a text string and so
should not be used for calculations. This is not strictly true, as you can prove using

=CONCATENATE(1, 2, 3)*10

TEXT

The concatenation example above does not actually look very tidy when complete, because
Excel loses the number formatting of the original cells. To apply the number format within
the concatenation formula, we can use the TEXT function, which has the following syntax:

=TEXT(number, “format text”)

Number is the value or cell reference containing a value to be formatted; ‘Format text’ is
one of Excel’s number formats written in quotes (see Chapter 5)

Practical Financial Modelling

With the NPV example above, I would like to format the NPV value in £000s, with no
decimal places, and the cost of capital as percentage, two decimals. Assuming that we are not
going to use the usual formatting techniques, we could write the individual formulae as:

=TEXT(NPVResult, “#,##0”); and
=TEXT(DiscountRate, “0.00%")

Combining this with the concatenation routine we get:

=CONCATENATE(“The NPV of the project is”, TEXT(NPVResult, “###0"), “using a”,
TEXT(DiscountRate, “0.00%"), “discount rate”)

Is this worth the effort? And just in case it isn’t obvious, the result of the formula is now
text and cannot be used for subsequent calculations.

INT and MOD

INT or integer rounds a number down to the nearest integer, or whole number’. MOD
returns the modulus or remainder when one number is divided by another. When I am not
teaching or writing about financial modelling I like to run marathons, and I wrote a neat
little marathon calculator to help me work out my predicted time when running at a par-
ticular rate.

If I run an 8-min mile (apologies for the non-metric units), it would take me 26.2*
8 =209.6 min to run the full marathon, which I would like to express in hours and
minutes.

1 Use the INT function to divide 209.6 by 60, which is 3 (hours).
=INT(TotalMinutes/60).

2 Use the MOD function to return the remainder, which is 30 (minutes).
=MOD(TotalMinutes, 60).

Note that we do not need the division operator in the MOD function.

3 To show off, we can concatenate the two results together and format the output by
writing:

=CONCATENATE(Hours,":”, TEXT(Minutes,“#,#00"))

This gives the result 3:30

*There is also the ROUND (value, number of places) function, which will round a number up or down to the spec-

ified number of decimal places. You might also look at the Excel ROUNDUP and ROUNDDOWN functions.

CHAPTER Model use

Introduction

The test of a good model is ultimately how the users respond to it. Back in Chapter 1 we
recognised the need to engage with the users at the outset to find out exactly what their
requirements are, and this may involve both discussion and iteration to refine the purpose
and function of the model. We must also ensure that expectations are realistic and that the
limitations of the model are known. The users must be able to comprehend how the model
works but without getting overwhelmed with detail. As model developers we may be quite
confident about examining a workings sheet that contains several hundred rows of code,
or perusing the structure of the pro forma financial statements covered with telephone
number-sized figures, but our users may not feel quite the same way. Have you ever
watched someone looking at a model for the first time? See how long it is before they check
their email, or their mobile phone, or fetch a glass of water, or engage in any other form of
displacement activity before actually getting down to the task at hand.

The demonstration workbooks for this Chapter are in Chapter 5: Model Use folder on
the CD-ROM.

Grouping and outlining

Even a relatively simple model may contain many rows of detail which serve to distract or
confuse (or intimidate) the user. Although it is possible to simply hide the appropriate
rows, it is more helpful to allow the user to hide or expand the detail as required through
the use of grouping and outlining. For a model that has been laid out in a sensible and
meaningful way this is fairly straightforward. I shall refer to rows but the same principles
apply equally to columns.

1 Select the rows to be grouped. You should decide if the heading should appear above
or below the group when the outline is collapsed.

2 Use the Data, Group and Outline, Group command. The left hand edge of the screen
expands to show the outlining buttons.

3 Repeat as necessary.

Practical Financial Modelling

(8] B BR Yew Dl Fumd Tk [Dela | Wieke b

RN = MW IS MW < e o B L2 = - o &L g o - 6

 fnal -w - B £ y |3 B "Taaafﬂ%'-!%'-fld_-'i‘-"*ﬁ.'!
Ald - & Walidation..,

.‘.l’.A|B|c|Jlahle--- S el T o [o i o) (o |
1 9 :
2] [T - oyl Oitioo ¥ "Ei‘. e ool 5 Yearls Year /! Yeard Yeard Year 1U
|3 |London [T |9F showpel

7] it | 3 1] |4,' o iR 4 A b7 12 A
i Pitie | | | Lngrongs....

s 1= 2| sales | 121 b3 fiuto Quting 185 144 11 1w 144 14/
|10 costs 142 105 A S 79 146 2] 120 135 124
=1 |11 tatal - m s n7 -4 m 7 7 Pl

EF] settings. ..
13 Roma
sales 118 198 154 197 142 112 196 158 108 133
costs 114 115 132 118 e} (£} 11/ 852 12 /8
|16 | Tatal | 4 o 77 ™ 7] 7] 73 7h B[]]
17
| 18 |Madrid
9] sales | 148 13 163 102 149 190 171 139 108 171
(.10 costs | (0] 110 =1 =74 W 4 i fJ Pl gLIE]
[21] tatal an a 11 m m i3 a4 fil ” fil
2]
I3 |Berlin
|24 sales 179 104 118 78 145 137 127 173 183 159
[25] costs | | 6 150 [} 145 1w 7] 13 13 04 1w
126 | total | | 0J -4G 10 4 45 o6 -1 24 79 £
7

Grouping sections of the model to make them more manageable

It is possible to get Excel to Auto Outline your work, but Excel will assume that the
summary rows are at the bottom of the group; to amend this, use the Data, Group and
Outline menu and choose Settings.

We can create up to eight levels of grouping within a section, each one being numbered
on the outlining toolbar to the left of the screen. Clicking the outline level buttons will
expand and collapse individual groups, and clicking on the outline number buttons will
collapse or expand all groups at that level.

Use the Data, Group and Outline, Clear Outlines command to clear the outlines if not
required.

The benefit of outlining is that information can be collapsed and expanded as needed.
In large models this can be very reassuring as the amount of information on screen is much
reduced, but can be easily revealed. Be aware that audit techniques (F2, Ctrl+[etc.) may
point to cells in collapsed ranges. If the outline symbols are not shown, the collapsed rows
are hidden and can be revealed by selecting the row above and below and using Format,
Row, Unhide, but note that rows and columns can be hidden independently of outlining.
If outline symbols are restored, these rows are still grouped and can be collapsed or
expanded as before. The disappearance of the outline symbols is the commonest source of
difficulty so make sure that the worksheet contains appropriate documentation to advise
users to use Tools, Options, View and Outline symbols should this happen.

As might be expected, there are a number of keyboard shortcuts in relation to outlining:

Group rows (or columns) Alt+Shift+right arrow
Ungroup rows (or columns) Alt+Shift+left arrow
Display or hide outline symbols ~ Ctrl+8

Hide rows Ctrl+9

Unhide selected rows Ctrl+Shift+(

Model use

Hide columns Ctrl+0
Unhide columns Ctrl+Shift+)
Do not use the number keypad for these shortcuts.

Data inputs

Once a model has been developed and tested it can be handed over to the users. Assuming
we have put in appropriate protections for the workings calculations and the output
reports, we may still need to restrict the data being used to drive the model. There are
several techniques we can use to restrict data entry to the model.

Data validation

We can set constraints on the boundaries of the values that the user has to enter. This is a
simple exercise.

1 Select the cell(s) for which the validation will apply.

2 Use the Data, Validation command.

3 Under the Validation criteria we can specify the constraints to apply — whole number,
decimal, etc.

4 In the Data section we can identify the criteria to use (between, not between, equal
to, and so on).

5 Ifyou have chosen the Between criterion, you then specify the lower and upper values.
With the other criteria you must identify the threshold value.

6 You may wish to enter an Input Message or prompt to guide the user. This will appear
when the user selects the cell or cells with the validation. There is no other visual indi-
cation in the worksheet that validation is in use.

7 You can also set up an Error Alert or warning if the user attempts to enter invalid data.
There are three styles of alert: Stop, which offers the user the opportunity to Retry or
Cancel; Warning, which does allow the user to continue with the invalid data, and
Information, which gives the options to OK or Cancel.

Custom validation

I may wish to set the unit price of my product as being between 10 and 20, which is easily
done with the data validation options of Whole Number, Between ... I would also like to
restrict prices to even numbers.

1 Select the range.
Use Data, Validation, and choose Custom.
3 Enter the following formula:

=MOD(first cell in range, 2)=0

The MOD (modulus) function returns the remainder after a value has been divided by
a number, in this case 2. The data validation requires that each number entered in the
specified range must be exactly divisible by 2.

4 Test that the data validation works.

Practical Financial Modelling

In the depreciation masking exercise in Chapter 4, it was noted that the technique only
worked if there was only one investment, regardless of when it occurred. We can use data
validation to ensure that only one value is typed in a range.

1 Select the range.

2 Use Data, Validation, and again choose Custom.

3 Enter the following formula, using the appropriate absolute cell references (not range
names):

=COUNTIF(Investment,“>0")=1

The COUNTIF function counts the number of values in the range which have a value
greater than zero. If the count exceeds 1, then the validation restricts further entry.

4 Test that the validation works. Note that zero values and negative numbers could be
entered without comment — amend the formula as required.

Problems with validation

If a user copies or fills values from cells outside the validation range, no error is generated
if the values breach the validation rule. If validation is applied to existing formulae, and
these formulae subsequently evaluate to invalid numbers, the validation mechanism will
not activate. Validation should therefore be restricted to data entry (inputs) only.

Drop-down lists

There is one useful feature of validation which fixes the problem about the numbers them-
selves. We can provide a list of values (e.g. the prices as even numbers) which will then be
listed in the validation cell. Either type these values into the same worksheet or enter them

Data Validation

| Input Message i| Error Alert |

Yalidation criteria

Al

|List w | Ignore blank

L

Data: In-cell dropdown
Saource:

=Pricelisk

[] apply these changes to all other cells with the same settings

o) ow

Setting up simple dropdown list functionality with Data validation

Model use

directly into the dialog box. My own preference, as always, is to have the values accessible
in the worksheet for inspection and review. Note that the values should be listed on the
same sheet, which makes sense if we are using the inputs sheet approach. If you need to
refer to a list of values on another sheet you will have to use a range name, because data
validation will not accept cell references to other sheets.

1 Select the cell for validation.

2 Use the Data, Validation command and Allow List.

3 Specify the source cells; if using a range name prefix it with the equals sign, for
example, =PriceList

4 Make sure the In-cell dropdown checkbox is ticked.

5 Enter any input message and error alert as required — they may be redundant with this
technique as we have more control over what the user is doing.

6 Choose OK.

Click on the validated cell. The dropdown list indicator should appear, from which we can
select the value. It is still possible to type in a different value, at which point the error alert
will appear, but the user is fairly restricted now and may not consider typing in values of
their own. Note that with the validation list, the value selected from the list is the value
that is entered in the cell, and is used in the dependent calculations.

List and combo boxes

A more sophisticated form of controlled data entry can be achieved using list and combo boxes.
Most people associate these with macros, but they can be directly embedded in the worksheet.
They are not too dissimilar to data validation lists, but instead of entering the selected value
into the cell, they enter the position number of the value that was selected. We can explore this
using the price list mentioned previously, and again I recommend that the source data is writ-
ten into the worksheet. Unlike validation lists, these data can be on any sheet, and we can also
use text rather than just values. The data shown in the list and combo boxes cannot be edited.

The difference between a combo box and a list box is that the combo box produces a
dropdown list and if not active only shows one value from the list. The list box can be sized
so that the full list is permanently visible, and even if reduced in size will always show two

Aa ab| .

The List Box and Combo Box in the Forms toolbar

Practical Financial Modelling

values from the list, the others being accessed using the spin controls. Which value is
currently being used in the model?

A little thought needs to be given to the set up of the box. Both combo and list boxes require
an input range, which contains the source data, and a cell link — a reference to the cell in the
workbook which will contain the result of the selection and which can be anywhere in the
workbook. Range names are useful in this context. The box itself is a workbook object and sits
on top of the workbook, rather than in it. Both types of box are set up in the same way.

1 To set up the combo/list box, access the Forms toolbar by right-clicking on an existing
toolbar and choosing it from the list.

2 Click on the Combo or List box tool and click and drag in the workbook to draw

the box.

The box then appears with edit handles, and the box can be resized or repositioned at will.

Right-click on the box and choose Format Control.

5 In the dialog box, enter the input range (the source data) and the cell link (where the
information will be placed).

FENISN

Format Control E|
| size | Protection | Properties | web | Cankral |
Input range: |=F‘riceList
Celllink: | Ha

Selection type
(%) single

) Ml

) Extend

[] 30 shading

[Ok][Cancel]

The Input range contains the source information, the Cell link is where the result is to
be stored in the worksheet

6 With the Combo box you can specify how many lines you want to show when the box
is selected, and with both boxes you can specify if you want 2-D or 3-D effects.
7 Choose OK.

Model use

Click in the worksheet to take the selection off the box. Test the box by selecting an item
in the list, using either the drop down list (Combo box) or the spin control (List box).
Note that a number appears in the cell identified as the cell link. This number corre-
sponds to the position of the selected item in the list, and is not the item itself. This
number can then be used for lookup and other types of function, or for running scenarios
(Chapter 6).

If you need to edit the boxes you must right-click on them first. It is good practice to
name the boxes, which can be done by selecting the box and typing a name into the Name
Box on the formula bar. As worksheet objects you can group and ungroup them, and the
Select Objects tool from the Drawing toolbar is useful in this context.

Conditional formatting

The ability to change the appearance of cells based on logical conditions is a very useful
feature of Excel, although in my experience few modellers get beyond a trivial implemen-
tation of conditional formatting. The usual demonstrations for this technique involve
changing the cell colour of all negative numbers, which we can very quickly review before
looking at how we can really benefit from this feature.

Select the range to which the conditional format will apply.
Use the Format, Conditional Formatting command.

Set Condition 1 as being that the Cell Value Is, Less than, 0.
Click the Format button and select the Patterns tab.
Choose a colour such as red and choose OK, and OK again.

N 0N~

Conditional Formatting E|

Condition 1
|Cel| Yalue Is vi |Iess than v| iD

when condition is true:

[Add ==][Delete. ..] [QK][Cancel

Simple conditional formatting

Inspect your range and note the appearance of the cells containing negative numbers. Prove
that the formatting is dynamic by changing the values.

Now let us do something sensible. In the audit sheet section of Chapter 2, we saw how
we could use F5 Edit, Go To, Special to locate cells containing errors. We can also use con-
ditional formatting to highlight these cells. The basis for this is the ISERROR function.

1 Select the range to be audited. Make sure the active cell is the top left cell in the selection.
2 Use the Format, Conditional Formatting command.
3 Under Condition 1, change the Cell Value Is to Formula Is in the dropdown list.

Practical Financial Modelling

4 Type in the test condition as
=|ISERROR(Cell reference)

Where cell reference is a relative cell reference to the top left cell in the selected range.
Click the Format button and select the Patterns tab.
6 Choose a colour such as red and choose OK, and OK again.

N

Conditional Formatting rg|

Condition 1

Formula Is v| |=ISERROR(ALY
when condition is true:

[add=> | [pelte.. | [ok

A conditional format that colours in cells which contain error values

Now inspect the worksheet and note the appearance of the error cells. T suggest this makes
them somewhat easier to locate. As the errors are corrected, the colour automatically
disappears.

In Chapter 2 I suggested that we set up an audit summary cell that summarised all
the checks on the audit sheet, and that this cell is linked to the output sheets. This meant
that the outputs themselves document the audit status of the model, but in reality I might
only want to know if the audit has failed, rather than that it has passed. This is easy to
set up.

1 Select the output cell containing the link to the audit check cell.
2 In the conditional formatting dialog box, use the following formula (assuming the
audit check cell is named AuditCheck)

=AuditCheck

Because AuditCheck contains either the value TRUE or FALSE, we don’t need to spec-
ify further.

3 Set the format to white text (unethical, but it will serve for this purpose).

4 Optional: You may want to specify a second condition to emphasise the fact that the
audit check has failed, in which case you will need to confirm that this is the false out-
come:

=AuditCheck=FALSE

Select the appropriate format, and test.

Model use

Conditional Formatting E|

Candition 1

Formulals v | |=AuditCheck=TRUE
Preview DF_Fprmlat ko use
when condition is brue:

Condition 2
Formuals % | | =AuditCheck=FALSE
Preview of Format to use ~
when condition is krue: AaBbCcYyZz

[Add == J[Delete. ..] [Ok J[Cancel

The TRUE option applies a font colour of white, the FALSE option applies a bold, red font

We can use the last technique to good effect if we select the whole sheet and set the
AuditCheck=TRUE outcome to have no format, and AuditCheck=FALSE to have text
strikethrough. This means that the outputs sheets are unusable if the model has failed an
audit check.

In Chapter 2 we considered the use of the base or initialisation column down the
left hand edge of the workings calculations. Its purpose is to handle initialisation and time-
independent values, and I would normally recommend that it should be coloured, to
distinguish it as having a different function to the adjacent calculations. We can use
conditional formatting to do this. The condition formula is:

—COLUMN()=4

This assumes that column D is the base column. Amend as required, and set an appropri-
ate fill colour.

We can extend this logic further in the context of the quarterly/annual modelling prob-
lem described in Chapter 3. The rolling sum and the corkscrew methods were both
described, in which the annual figure appears in every fourth cell in the row. We can use
custom formatting to emphasise this.

1 Select the sheet (Ctrl+A).
Use Format, Conditional Formatting.
3 The Condition 1, Formula s,

=MOD(COLUMN(),4)=0

Choose an appropriate colour format.

4 Choose OK.

The COLUMN function returns the column number, and the MOD function divides this
number by 4. If the remainder is zero, the format is applied. The sheet should now have
coloured stripes every fourth column. When applied to the output sheets, we should be

Practical Financial Modelling

able to prove that the reports are based on the annual figures because if the quarterly
columns have been hidden there should be no unformatted columns.

1
2|

a

A

5 |

B

z

0 | Conditional Farmatting

|9 | Condtion |

HD. | v | | ~won(counasi=n -
2] rovonfamato e ARGty]
14|

i5 [Casis>) [Loneies | B0k Y[cocel .]

BEEE

5

N

A visual differentiation of time periods

Problems with conditional formatting

One of the issues with conditional formatting is that the condition is not explicit in the
worksheet itself. Conditional formatting takes priority over any other formatting of the same
type, so in the examples above, it would not be possible to apply a different fill colour to a
column or cell. When using multiple conditions it is important to get the sequence right:

Cell value Lessthan 10 Blue
Cell value Lessthan 100 Green
Cell value Lessthan 1000 Red

This sequence gives the expected results.

Cell value Less than 1000 Red
Cell value Lessthan 100 Green
Cell value Less than 10 Blue

This sequence gives unexpected results - any value below 1000 is coloured red, and the
subsequent criteria are not applied.

Excel only allows three conditional formats on each sheet, so with a couple of sheet level
formats you may find yourself running out of functionality.

Custom formatting

Excel offers a number of useful number formats and of course you have learnt the short-
cuts for the most common:

Ctrl+Shift+! Thousands, 2 decimal places
Ctrl+Shift+$ Currency, 2 decimal places

Ctrl+Shift+%

Model use

Percentage, 2 decimal places

Ctrl+Shift+~ Exponential format
Ctrl+Shift+~ General number format (only on US/UK keyboards)
Ctrl+1 Format cells dialog box

Microsoft has never yet offered a shortcut to reduce (or increase) the number of decimals.
You will know that having applied a format you can select the next range and repeat the
format command using F4.

The principle

In the following example the results on the outputs sheet are some very big positive and
negative numbers.

“Good enough for government work”

The accountants teach us that more than three digits tends to
helpful if we could display the number in the format shown.

A 3 ¢ [0 e | e s [[o o e |] iy o [|
1
2 |Financial year ending Decamlrar 2005 2006 2007 2008 2009 2010 1 iz 2013 2011
3
| 4 |Revenue 0 0] 20140670, 21517553 34GESI0° 30136239 41560501 45305666 40924432 52043124
| 5 |Operating costs 1] 0/ 10305035 11541633 12695803 13965753| 15222268 185092272 17919654 1935326
& |Depreciation 0 0] 7354127.5 BGIOTIAT 62791213 GOX13G0 6197620.4| 50004222 63901246 61226030
T
@ |Operating Profa o 0| 104015100 13057199, 15694384 17649456, 2014DE08| 227DEST2. 24619591 27373064
I
10| Med ifteresl BOOTYA | BET23) ATN207 2| 36353004 36972 Z35/43.2 1U3ATBE 13341 SEEIM0S 47907 7B
[11 |FXLoss 0! 16269338/ 51455270 3751047 5 250844497 1929573 1286332 0B47BE 4D 47167233 24B556.05
12 |Profits bifoem fas HIT14 455RHN AH4774 93 BERMEAS & 1N7E747 1ESRGED TEEVAT AMEPHAd HIRMDY URRA7EI
13
:‘1 Tax al 30% 1] 1] U] 332431 31 IEM0E NSN3 Y9 AIYERDS 1 B147855 3 HE4EBAH 1 Fc i)
| 15 |Profits: after tax B00714) 4555906 59477493 53375181 7086510.4 53536654 11345003 14344991 16213973 18853110
16
jzl:ll\lidend o 1] 0 542971.14 51235243 00046226 10717530 13256754 13025703 12361076
18
19 [Retained earnings for the year ZE00714 4565506 504774.90 4704547 19630945 1260042.0 1128089.0) 10802374 2110189.7 62920041
0

confuse, so it would be

SE A = == e = E oy == k| 1 N
il
2 [Financial yeat ending Docomber 2005 FLC A T T 3 N T M T3 F M 3 1]
3
."._‘;ﬂm!\uu W14 N5 MET 0.4 CIE-"8 453 40 52285
5| Operating costs 1031 1154 1270 1397 152 658 v 1935
& |Depreciation 7% 6862 628 652 620 593 640 612
7
8 |Operating Prafn 1048 EE] 15E8 7 Es s F7RE]) FIT] P
(]
Mot intorest 080 pL] an am am 2% 194 133 ns 048
A0 [P Loss . 16 518 ars 25 19 12 06 n4r (¥
Protty before Lax 1 [ES] B 012 EE T (- =]
[Tax at 0% I [o 4 508 615 535 79
Profts ater {ax 058 CED 708 EE) LS] [F] 13
17 |Dividand 054 512 808 m7z 3% 1310 123%
Hstamed earmngs for the pear [ES] [¥E) 3 (i 113 i ERF] [¥:]

The effect of custom formatting

It is not really worth the effort to simply divide all the results by 1,000,000, because Excel
has enough work to do on the underlying calculations without worrying about these trivial
divisions. Instead, we use a custom format. The cells will be formatted so that they are
shown as decimal values, with negative numbers in parentheses and coloured red, and with
zero values replaced with hyphens. We will build the format in steps:

B o~

8

9

Practical Financial Modelling

Select the range to be formatted.

Use Ctrl+1 Format, Cells.

Select the Category of Custom and tab to the Type box.

Type in 0.0,, and choose OK. All the values in the range are now shown in decimal for-
mat. The commas in the format code are instructions to divide by a thousand, twice.
Please note that this is the UK/US thousands notation: use the appropriate characters
for your own regional style, so for example, when working in Germany I write 0,0...
(When working in Turkey I might write 0.0,,, to handle the billions).

At the moment the format does not clearly differentiate between positive and negative
numbers. Return to the Format cells dialog box. After the existing 0.0,, type a semi-
colon ; and then the format for the negative numbers, which will be in red with paren-
theses. The code for this is:

0.0,,;[red](0.0,,)

The first part of the format code is for positive numbers, the second part for negative
numbers. The colour is enclosed in square brackets, and again use the appropriate lan-
guage to name the colour. Excel has eight named colours: black, blue, green, red, yel-
low, cyan, magenta, and white. It is considered unethical to format values or text with
white. Click OK to inspect the results in the worksheet.

On careful inspection you may note that the decimal points of the positive and negative
values no longer line up. On the grand scheme of things, this may not be anything to
worry about, but some people, usually fairly senior in the organisation, like to see every-
thing lined up all neat and tidy. The problem here is that the closing bracket of the
negative value has pushed the value into the cell, whereas the positive numbers are still
hard up against the right-hand edge of the cell. We need to fix this, so select the numbers
again and press Ctrl+1.

To allow for the bracket of the negative numbers, we need to move the positive numbers
into the cell by the same distance. Amend the positive part of the format code with an
underscore followed by a bracket:

0.0,,_);[red](0.0,,)

The underscore_ character is the code to make the following character invisible.
Click OK to see the very minor effect on screen, but verify that the decimal points of
both positive and negative numbers do in fact line up. I am often asked if we could
just use a space in the format code, rather than the nonsense of the invisible charac-
ter, and indeed a space would do the trick just as well. The difficulties are that firstly
the space is then difficult to see in the format code, and secondly that spaces do not
have a fixed measurement — if you have ever tried to line up text on two different
lines in Microsoft Word you will have discovered this.

The results now look quite attractive in the worksheet, but we still have zero values
displayed. These just clutter up the screen, and it would be helpful if they could be
converted into hyphens. Select the cells and return to the Format Cells dialog box.
The first part of the format code is for positive numbers, the second part is for nega-
tive numbers, and the third part is for zero values. For neatness the hyphen needs to

Model use

be in the same position as the decimal point. Type another semi-colon and the fol-
lowing code:

0.0,,_);[red](0.0,,);-_0_)

The hyphen is the character to represent the zeros (if omitted the cells would appear
blank), the _0 hides the decimal value and the _) hides the bracket, the combined
effect of which is to push the underscore into the same position as the decimal point.

Click OK.

Format Cells

iMumber || alignment | Font | Border || Patterns | Pratection |
Cateqary: Sample

General =

Murnber

Currency Tvpe:

hemping 0.00,,);[Red0.0,,3-_0)

Time IR RO R0 R - A
Percentage 0.0 E
Frackion 0.0%

Scientific #,##0.0

Texk

SEeciaI

e

Type the number Format code, using one of the existing codes as a starting
poink,

[] 4][Cancel]

The completed custom format code

10 For completeness I will mention that there is a fourth component of the custom for-
mat which is for text. Type a further semi-colon and, for example, a colour (in square
brackets). Type an @ sign, and click OK. If you omit the @, Excel substitutes the word
General into the code. I do not have much use for this format option as my text is to
the left and right of the workings area.

At this stage you will probably want to stampede off to your other output sheets to format
them as well. There are a couple of useful techniques here. You probably already know
about the Format Painter tool, where you click on a cell containing the source format, click
the Format Painter, and then click and drag over the destination cells. A little known trick
is to double-click the Format Painter, after which the tool stays active as you repeat the

Practical Financial Modelling

click and drag action over cells on different sheets (it normally switches itself off). You will

lose any borders and colours on the destination sheets but they are easy to restore.
Alternatively note that your custom formats will appear at the very bottom of the cus-

tom format list in the Format cells dialog box, while the formatted workbook is open.

Style

A more sophisticated solution is to set up a Style.

1. Select a cell that contains the custom format, and run Format, Style.
2. Type in a style name, such as Millions. Switch off all options other than Number.
3. Choose OK.

Style name: | Millons i | Ok

Style Includes (By Example)

Number 0.00,, J;[Red](0.0,,);-_0)
[] aligrrnent
P ()
[]Border sy

|:| Patterns

Clear the check boxes that do not apply to the Millions style

To apply the format to other sheets, select the destination cells and use the Format, Style
command (or Alt+’), and select the style from the list. You can also customise your toolbar
with the Style dropdown list. To use the Millions style in other workbooks, you can use the
Format, Style, Merge command.

Reporting

When using the Millions format we recognise that Excel is rounding the numbers quite
shamelessly, so we should change the page footer to include the standard caveat ‘Numbers
may not agree due to rounding’. Also, Excel treats any value of 49,999 or less as zero — if
this magnitude of number is significant for your purposes, amend the format code to 0.00
etc. I would also strongly recommend that you only use this formatting on your output
sheets: the inputs sheet values must be in the same units as expressed in the data book or
source documentation (Chapter 2). The workings values should be left as they are, with
perhaps comma formatting to make them readable. Over the time you have spent devel-
oping your model, you have probably become quite familiar with some of the numbers and

Model use

would recognise them easily. If you were to apply the millions format they become diffi-
cult to appreciate, particularly when Excel starts rounding them.

Currency

Another example of the use of custom formatting is to include a currency symbol in
the cell, but showing the symbol on the left hand side rather than immediately adjacent to
the value. Using Ctrl+1 we enter the currency symbol followed by an asterisk * and a space,
followed by the appropriate number format. This odd combination instructs Excel to show
the symbol and then to repeat the space character as many times as possible before show-
ing the value. Remember to include the currency symbol and the repeater on both sides of
the format, otherwise negative values will be unaffected.

€% # ##0_):[red]€ * (#,##0)

In some circumstances we might want to show the currency abbreviation rather than the
symbol, for example GBP for British Pounds, or USD for US dollars. We find that we can
happily enter GBP as the currency prefix but not USD. This is because certain letters are
reserved characters, and in this case the S is reserved for Seconds in the date and time
formats, so we find that the letters M, D, H, and E are not available. The workaround is
simply to enclose the string in quotes:

“USD”™ #,##0_);[red]"USD"* (#,##0)

A type of conditional format

We can also use custom formatting for a basic type of conditional formatting. If we need
to flag up numbers that are above a particular value, for example cash balances in excess of
100,000, we can select the range and apply the following format:

[blue][>=100,000]0:0

The zero outside the square brackets represents the number format to be applied to values
above 100,000. The zero after the semi-colon represents the formatting of numbers which
are below 100,000. We can add a second condition, which in combination give three
potential formats.

[blue][>=100,000]0:[green][>=50,000]0:[red]0

Values above 100,000 appear blue, above 50,000 green, and below 50,000 red. Take care
in putting the conditions in the correct order. I think this is of marginal interest.

Protection

Workbook and worksheet protection allows us to prevent users from opening files or
changing the contents of a sheet, unless they have the password. You should be aware that

Practical Financial Modelling

if you forget or lose the password, not even Microsoft will be able to help you. There are
third party codebreakers who may be able to help, but their services are at a premium.
I prefer to use the techniques described previously to restrict the way users can interact with
my models and I only use protection as a last resort. Even then, I make sure that the pass-
word is known, and I have even written it in the model documentation. If the user knows
that they are not supposed to change anything and yet they go ahead and unprotect the
worksheet, it suggests that they are acting wilfully and deliberately and must therefore take
the responsibility if anything goes wrong.

Sheet protection

With sheet level protection there are two steps. The first is to identify those cells which will
remain unprotected when protection is switched on, and then there is the protection com-
mand icself.

1 Select the cells which will be unprotected. The use of a fill colour may be appropriate
as there are no visible differences between protected and unprotected cells.

2 Use Ctrl+1 Format, Cells and go to the Protection tab.

3 Uncheck the Locked box.

Format Cells

[] Hidden

Locking cells ar hiding formulas has no effect unless the
warksheet is protected, To protect the worksheet, choose
Prokection fram the Tools menu, and then choose Protect
Sheet, & password is optional,

O] [Cancel

Protection#1: unprotect the cells

4 This has no effect until the worksheet is protected.

5 Use the Tools, Protection, Protect Sheet command.

6 The options relate to Contents, Objects and Scenarios. Select or deselect as required.
(Objects are things like embedded graphs and macro buttons). Click OK.

Model use

If you now attempt to edit a protected cell Excel will respond with a dialog box notifying
of the protection.

There is also a slightly unethical option at step 3, in which the other option is that the
cell content is Hidden when the worksheet is protected. If this is applied the user cannot
see the formula on the formula bar. It is probably worthwhile deselecting the Hidden box
while setting up protection.

Workbook

Workbook protection is used to prevent structural changes to the file. Users will not be
able to move, delete, or insert sheets, but they will be able to write, edit, and delete values
and formulae unless worksheet protection has also been applied. A protected workbook
does not require a password to open it, but a password may be required to disable the
protection.

Workbook protection is a one step process. Use Tools, Protection and Protect
Workbook. Provide a password if required, and re-enter the password at the prompt.

Protect Workbook [§|

Praotect workbook For

Skructure
[] windaows

Passward (opkional):

[Ok][Cancel J

Protection#2: protect the workbook

Use Tools, Protection, and Protect Workbook to undo the protection.

Password protection

A different way of approaching protection is to save the file and set up a password for the
workbook to be opened or modified. This command sequence relates to the more recent
versions of Excel/Windows.

Run the File, Save As command (F12).

Click the Tools button in the dialog box.

Choose General Options from the list.

Enter a password in the Password to Open and/or Password to Modify box, click OK
and confirm the password.

N =

Practical Financial Modelling

Save Options E|

[] always create backup
File sharing

Password to open: || | [Advanced...]

Password to modify; | |

Read-only recommended

[Ok][Cancel]

Setting the read-only attribute

5 The file can be made Read-only, which will allow users to open and modify the file but
they will be unable to save the file with the same name.

With Password to Open, the user is prompted for the password and cannot open the file
without it. Password to Modify, if provided correctly, allows the user to open the file and
amend the file. If they do not supply the password they can open a read-only version of the
file and will be prompted for a new filename if they attempt to save their work.

With the modelling methodology and structure proposed in Chapter 1, it would be
appropriate to protect the workings and outputs sheets because there should be no reason
for the user to modify the calculations or the results. The inputs sheet would remain unpro-
tected so that the users can run sensitivities and generally flex the assumptions. But given
such a clear layout, the use of protection is practically redundant.

Problems with Excel commands

Under certain conditions your users will complain that Excel isn't working properly. Menu
commands and other tools may not be available if:

+ the workbook is protected

+ Group mode is active

+ Tools, Options, View, Show all is off

+ Print Preview mode

+ the window is frozen

- Edit mode is active (you never know...)

Documentation may be required to support users if such techniques have been applied.

CHAPTER Sensitivity analysis and
scenarios

Introduction

Almost by definition, the purpose of any financial model is to explore the effects of changing
the input assumptions. Sensitivity analysis, also referred to as what-if analysis, tends to refer
to the process of adjusting one or two key drivers and observing or recording the results; sce-
nario management refers to the process of changing several drivers to create specific opera-
tional or economic situations. A further refinement involves the assessment of likelihood or
risk involved with a particular scenario. It is worth emphasising that we should only use the
one model for analysis. It is often tempting to develop scenarios in a series of copies of the
original workbook, but this can lead to immense problems in the future if one of the com-
mon assumptions or calculation routines is then revised. Even a relatively trivial adjustment
can then take several hours or days to distribute to the suite of scenario specific workbooks,
and even with the development of the change tracking functionality in Excel it can be diffi-
cult to reconcile one workbook with another.

In this chapter we will look at a number of techniques for manipulating or flexing finan-
cial models, but before we start, backup your work first. It is not helpful to embark on a
review of the model’s assumptions and then to lose the original figures. For sensitivity and
Goal Seek analysis, cell comments may be sufficient. We will consider other techniques for
scenario management.

The demonstration workbooks for this chapter are in Chapter 6: Sensitivity Analysis and
Scenarios folder on the CD-ROM.

Goal Seek

A good starting point is the Goal Seek tool. You have built your model and generated a
result, RI. Assuming you need result R2, what should input / be in order to obtain this
result? You can change the input manually and then inspect the result (which is fine if you
are on billable time), but a more efficient way is to use Goal Seek.

Select the cell containing the result you wish to specify. This cell must contain a formula.
Run the Tools, Goal Seek command, and identify this result cell as the Set Cell. Next,

Practical Financial Modelling

specify the result you would like in the To value box. Finally, identify the By changing cell
reference. This cell must contain an input value. Click OK.

Goal Seek rzj

Sef cell: lDzzﬁ =3

To walue! iEI.EIEu |

By changing cel: | InputstgD$13) [T

[Ok][Cancel]

The Set cell and changing cell can be on any sheet

Note the use of the singular throughout. We cannot specify the results for a range of
cells, neither can we obtain the results by changing several inputs, although one workaround is
to put link formulae on the inputs sheet, such that the value generated by Goal Seek is copied
across the row. It does not matter which sheets contain the Set Cell or the Changing Cell.

Excel uses an iterative technique to obtain the result. If you recall the discussion con-
cerning the use of iteration in Chapter 3, the Tools, Options, Calculation dialog offers the
constraints of either 100 iterations, or until the maximum change is 0.01 (the defaults).
Goal Seek therefore follows whichever of these constraints apply. Make sure that this is not
obscured by formatting, if needs be retype the number generated by Goal Seek with
appropriate rounding and common sense.

If you are also using iteration for circular code elsewhere in your model, Goal Seek can
produce absurd results as it iterates its own iterations, even if the results under analysis are
not involved in the circularity.

Data tables

Data tables have been around since the earliest versions of Lotus 1-2-3 and Excel, and although
they are very useful tools they contain several limitations which have never been addressed.
These will be considered below. The concept of the data table is simple — Goal Seek offers the
ability to specify one input variable and to see the effect on one formula. The data table allows
us to provide a range of input values and to record the results as these values are run through
the model. We can use either a one-way analysis, in which one variable is tested and the results
of one or more formulae are recorded, or a two-way analysis, in which two variables are tested
against each other and the results of a single dependent formula are displayed. Lotus 1-2-3 had
the facility for three-way analysis, but Microsoft has never pursued this.

The one-way data table

The one-way or one-variable data table allows you to specify a range of values to be sub-
stituted into a single input variable cell, and to record the results of the analysis. On the
inputs sheet (or equivalent), locate the cell which contains the variable to be tested. If this
is at the start of a row or column, you should enter link formulae in the rest of the range.

Sensitivity analysis and scenarios

Further down the sheet, either write the formula you wish to use, or put in a link to the
formula if it is located elsewhere in the workbook (it can be helpful to split the screen or
open a new window). With a one-way table you can test several formulae. In the row begin-
ning in the cell above and to the right of the first formula cell, enter the list of values you
wish to run through the model. If you have more than 255 of them, you will need to trans-
pose the range such that the formula cell is above and to the right of the column of values.
In either case there should be a blank cell in the top left position. Select the blank cell, the
formula cell(s), the row (column) of inputs, and the cells in which the results are to appear,
and then run the Data, Table command.

In the dialog box, specify the Row input cell as the cell into which the row of numbers
are to be placed (Excel is not asking you for the location of the data table — you have already
done that). Click OK. Inspect the data table.

|l g [O | 5 | | - S 570 O | SO | g | O
53

54 |Daga table 32 325 3 335 340 345 350 355 360 B>
E5 1 757% 3.68% 4.25% 4.82% 5.39% 5.94% 5.49% 7.04% T57% B.10% BE2%
6

5]

58

5| :

80| Row input cell sog13

61} Cokumn input cell: [l

y o) (o)

A one-way data table. The input cell is off screen but on the same sheet

If the data table is showing the same result across the row (or down the column), press
F9 (see below). If this has not helped, check that you have appropriate link formulae in the
input row, that the input row actually feeds into the model, and that the formula under
test is actually dependent on this particular input.

The two-way data table

The two variable data table allows us to test the interaction of two input variables, but we
are restricted to one formula. The basic structure is as above, but the formula cell is placed
at the intersection of the input row and the input column.

[fE] ir £ =IRRProjectReal

__{A B e o i e e o | - o [g i i
52
53 |Dula lubly
7 &% 2 305 K] 3B E] 345 ELT] AE5 EIT) EL 37
1,000
1,500
2000
2500 Bt gt coll: $051% %
2000 G
Cohmnrgue ek | §0f19 B
] (o)

Two way data table. The formula is at the intersection of the row and column input values

Observations

Once a data table has been set up the values in the input row/column can be changed at will.

Practical Financial Modelling

Unlike Goal Seek, data tables must be set up on the same sheet which contains the
input variable under analysis. Several of the other modelling rules proposed earlier in the
book are also redundant when using data tables.

The data table formula is an example of an array formula (Chapter 3). This type of for-
mula is recognised by the curly brackets { }. Although an efficient way of writing code,
problems arise if the user attempts to edit the formula. On pressing Enter, we are informed
that ‘That function is not valid’. The immediate solution is to press Esc. Array formulae
can only be edited as a whole range, so any action such as inserting or deleting columns,
or deleting cells, will generate the error message. The data table, or more specifically the
results of the data table, must be deleted if other such actions are required. The TABLE
formula itself cannot be written manually.

Table recalculation

Data tables can be very memory intensive, as Excel will recalculate the data table along with
all the other calculations in the model every time something changes. This can slow down the
model’s functionality considerably, so you can change the recalculation options under Tools,
Options, Calculation, and choosing Automatic Except Tables. This will allow the model
proper to recalculate as before, and recalculation of the data table is forced by pressing F9
(Recalculate). This can lead to problems if, for example, the data table is printed without
having been updated. The solution is to recognise that the formula driving the data table is
not subject to the recalculation exception and calculates normally. You should make sure that
the current model input for the data table (the value in the row or column input cell) also
appears in the data table input row or column. The result underneath or next to this value
should be the same as the driving formula. If it is not, press F9.

Bear in mind that recalculation options are persistent and remain in effect if other work-
books are opened in this session; they are also workbook attributes and will be saved in the
file, to be put into effect automatically when the workbook is next opened.

As with Goal Seek, data tables only allow for one row input cell and one column input
cell. If the variable is to be used across the forecast period, then make sure you have link
formulae in the relevant row, otherwise the table will show only the sensitivity to changing
the first value. A disadvantage of this limitation is that it is not possible to model trends or
manipulate values in other ways. For example, if I were looking at the sensitivity of my new
product to price, I could create a data table to show the effect of price change on NPV. I
could put an escalator formula in the input row to increase the price by 2% each quarter,
but would I actually want to pursue this strategy at the higher price end of my data table
values? Likewise, the data table would not allow me to explore price skimming and other
techniques.

Scenarios

Scenarios are used for more sophisticated analysis, where the effects and interactions of mul-
tiple variables need to be explored. These can be set up as formal, defined, scenarios — worst
case/most likely/best case, in which the variables in each scenario have been chosen to repre-
sent a particular position. Alternatively the model can be used to test particular permutations

Sensitivity analysis and scenarios

of the variables, which can be either controlled, by using data validation/dropdown lists to
restrict the analysis to a specific set of variables, or uncontrolled, in which the user can change
any and all variables.

Setting up a scenario requires some careful thought beforehand. The first point is that the
values used in the base model must be documented, so that the user can always undo their
changes. Second, how are the results to be used? It is difficult to display the results of two or
more scenarios for comparison without using Paste Value techniques. Third, make sure that
the relationships between the variables are clearly understood and, if needed, fully docu-
mented. Inflation, for example, has a creeping effect over a period of time, but it tends to
manifest itself in step changes — retail prices, for example, tend to go up in whole units (and
the marketing types will be sensitive to the 9.99 barrier!). Similarly most wages are adjusted
annually, and this would need to be addressed if using a quarterly model (see Chapter 3 and
the use of masks). Make sure that linkages are recognised:the total variable cost should vary
with changes in production levels, but the fixed costs should remain the same. And one that
I still find slips through — interest rates are a function of inflation.

Finally, the user should be clear about the cells and ranges which are allowed to be
changed. The inputs/workings/outputs structure would restrict the user to the inputs sheet
only, and the sensible use of colour, cell comments, dropdown lists and the like, should
guide the user into the safe use of the model. A further development of the model structure
might be a variation on the usual layout — many models contain large numbers of inputs, of
which only a few may be identified as key drivers for scenario analysis. In this case it might
be worthwhile setting up a separate scenario inputs sheet which contains the relevant vari-
ables which then feed into the workings. A further development would be to link the key
outputs back to this sheet, so that the results of the scenario can be seen alongside/
underneath the assumptions. This can be quite effective if set up propetly.

There are several techniques we can use to set up scenarios.

Scenario Manager

This is a tool that comes with Excel and lives under Tools, Scenarios. It has some neat
functionality, but is rather restricted in what it does and generally does not conform with
the principles of good modelling practice. The Scenario Manager is restricted to a maxi-
mum of 32 changing cells, which can be worked around by using link formulae to copy
the changing cells across the row. Furthermore, the Scenario Manager is strictly sheet spe-
cific which means that although we might expect all the inputs to be on one sheet anyway,
we cannot run the scenario from an output sheet, for example. It is possible to produce
summaries and pivot tables of scenarios, but this requires the results cells to be on the same
sheet as well. Another point against the Scenario Manager is that the values used for the
changing cells are stored in the dialog box itself and are not visible in the spreadsheet until
the specific scenario is run (the “black box approach”). This means that the significance of
a particular value cannot be directly documented. A further dimension of this problem is
that it can be difficult to identify the changing cells in the worksheet, although this can be
easily solved by the use of cell colour while setting up the scenario in the first place. Is it
worth mentioning that it is perfectly possible to create a group of scenarios which each have
a different number of changing cells, or indeed use different changing cells? And in the
absence of the scenario toolbar, which scenario is currently in use?

Practical Financial Modelling

Scenario Manager

SCenatios:

s

Beskt case

\Waorsk case

Changing cells: Merge. .. |
iTariFFBaseIn,'-.-'nIumeIn |

Carmment:
Current price, low production levels

Excel’s Scenario Manager — the black box

The key issue arising from the consideration of Excel’s Scenario Manager is that the
variables are stored in the dialog box and not in the workbook and therefore are not imme-
diately available for inspection or audit. The need for such transparency is addressed by the
use of other techniques, such as the CHOOSE function and the LOOKUP functions.

CHOOSE

This function is fairly widely used and might be described as a quick and dirty approach
to scenarios. The syntax of the function is:

=CHOOSE(number, first item, second item, third item, ..., twenty ninth item)

Number is a value (or reference to a cell or formula which returns a value) representing the
position of an item in a list

First item is the item returned from the list if number is 15 and so on up to 29. The item
could be a value, reference, formula, or text.

In the following example, we will look at the use of the CHOOSE function to test three
pricing scenarios: a constant price across the forecast period, a loss-leading scenario (low
initial price then increase), and a price skimming scenario (high initial price, followed by a
reduction).

For the original input variable on the inputs sheet, we can now add additional rows to
reflect each scenario. Make sure each row is numbered so that we can crosscheck the sce-
nario number against the scenario row (we will see this again in the lookup section further
on). The assumptions underlying each scenario can also be documented.

Sensitivity analysis and scenarios

A

2|

B 18 18 18 i) 18 18 18 18 Frcelonstantin
B 5 14 14 18 7 17 18 18 18 Priced aand aading/n
8 | 3 price skimrning 2 i) 1| L] 16, 16 16 16 PriceSkimmingin
g

The three scenarios as described on the inputs sheet

We then set up a cell which will contain the scenario number. As this contains an input
value it should be located on the inputs sheet, and documented as such. It is well worth
using the dropdown list/data validation functionality from Chapter 5 in this context.

On the workings sheet the original formulae that linked to the input need to be updated.
The CHOOSE function can be written:

=CHOOSE((PriceCell,PriceConstant,PriceLossLeading,PriceSkimming)

L2 - & =CHODSE PriceCall PriceConstant PricalossLeading PriceSkimming)
A B |] E E I G | H] 1 J 3 | B

1 [Financial year ending 2005 2006 2007 2008 2000 2010 2011 2012 Years

)

|3 | Price scenain number ! PricaCell

4

5 |Price
Iﬁ | constant 18 18 10 1] 18 10 18 10| ProeConstant
7| loss-leading 4 14 16 17 7 18 18 18 Pricelossieading
a price skimaming 20 20 10 10 16 16 16 16| PrceSkimming
8| scenaio price 18 18 18 12 1’ 18 18 Price

10

The corresponding workings sheet, with the PriceCell switch

By changing the PriceCell value, each scenario can be run rapidly and reliably.
A further elegant touch is to set up an additional cell which returns the name of the
scenario:

=CHOOSE((PriceCell,"Constant price”,“Loss leading”,“Market skimming”)

If the output sheets are linked to this cell, we can solve the problem of documenting the
name of the scenario in current use.

Care is needed when using CHOOSE. If the user enters an invalid scenario number,
#VALUE! errors are generated (hence the suggestion to use dropdown lists/data validation).
If the order of the scenarios listed on the inputs sheet should change, or if a scenario is
added or removed, the dependent CHOOSE functions will need updating. This is some-
thing we generally wish to avoid. However, it is very simple to use, and if set up sensibly
can prove to be robust and reliable.

We can easily extend the use of CHOOSE such that each of the key drivers identified can
have its own CHOOSE functionality. For each of these inputs we can prepare a scenario list
and scenario cell. In this way, for example, we could test the price skimming scenario with
corresponding high promotion/low promotion scenarios, with PriceCell set to 3 and
PromotionCell set to 1, and so on into a number of permutations. Alternatively, with the
example of best case/most likely/worst case, we could set up three scenario lines for each
driver, such that on entering a 1 in the scenario cell the model assembles the best case
scenario.

Practical Financial Modelling

LOOKUP

Another way of running scenarios is to use the LOOKUP functions in place of CHOOSE.
We can use the same example as before, but this time we recognise that the rows containing
the price scenarios are effectively lookup tables. I suggested that the rows were numbered,
but this technique works just as well with the row heading text. We keep the price cell as
before. We will need to put a column number in each column so that the VLOOKUP can
offset accordingly (see Chapter 4)

S = ¥ o & =VLOOKUP(PrceCell $456:5K53 Calumnhumber J)
Ta] B e | E F T 5] T 0]] | 1 3 (T
I |Financlal year ending 2005 2006 007 2008 2004 2010 11 2012 Years

| | Price scenario number ||PriceCell

e

|Price | 4 7 3 £} 10 1]
6 | 1/ canstant 18 10 18 18 10 16| PresConstant
7 | 2/lpsz-leading 4 17 17 18 18 18|Pricelnsst eading
8 |3 price skimrning 20 10 16 16 16 16)PrceShimmuing
_gj SCRNEMD Price |=‘\r1_Cﬁ3I»<IJF‘-1"r|ca-I=.|I,‘,] 18 18 18| Pce

=

Using a lookup table. Note the numbering in column A, which forms part of the lookup table itself

Instead of the CHOOSE function, write:
=VLOOKUP(PriceCell,PriceTable,ColumnNumber, 0)

This works by looking for the value (or text) in the PriceCell in the first row of the lookup
table or scenario block. VLOOKUP then counts across ColumnNumber columns and
returns the scenario price.

This technique takes the same caveats as CHOOSE, concerning invalid scenario num-
bers and re-arranging the scenario order, but is still effective and reliable if due considera-
tion is given when setting up. It can also be used to create the scenario permutations and
the fixed scenarios described above.

Both CHOOSE and VLOOKUP are limited in that the inputs sheet can fill up rapidly
with row after row of scenario variables. Theoretically each one should be documented and
with reference to the issue of linkages mentioned above, it may be necessary to advise that
certain permutations of variables may not be valid (e.g. high interest/low inflation).
Furthermore, the standard auditing checks (F2 Edit Cell, Ctrl+[Select Precedents) do
not indicate which specific cells are used in each calculation. However, all the information
is available in the workbook, and it should be fairly easy to see the differences between one
scenario row and the next. The main problem is that particularly in the scenario which has
been assembled from several different drivers (constant price, low promotion, low volume,
etc.), it can be difficult to see the specific numbers being used in the scenario, and in some
cases the scenario can be difficult to reconstruct. These methods are best used when the
number of scenarios and their permutations are small.

Multiple input sheets

One solution to the problem of creating more complex scenarios is to model them separately
on individual sheets. Each sheet contains just the assumptions related to that scenario, with

Sensitivity analysis and scenarios

appropriate documentation. This gives more control and reduces the potential for multi-
ple and/or invalid permutations. I mentioned in the introduction to this chapter that we
should use the original model when carrying out scenario analysis, rather than multi-
ple copies of the workbook, and this argument extends to the use of a single workings
sheet. The implication of this is that each of the scenario specific inputs sheets should, at
the user’s request, feed into the workings sheet and through to the outputs. Multiple
workings sheets, as with multiple workbooks, would be difficult to update, modify, or
audit.

I have used and taught the following technique for several years, but unlike the other
techniques I have described in this book, I have never had any feedback about it. I can only
assume either that my exposition of it is so clear and concise that analysts are able to
instantly comprehend the elegance of the technique and apply it themselves, or alterna-
tively that people prefer CHOOSE and VLOOKUP. I rather suspect the latter.

There are two versions of this technique, one which uses cell references and one which
uses range names. The former is the simplest and we will explore it first. Step one in
either method is to copy the original inputs sheet within the same workbook. Use Edit,
Move or Copy Sheet (or Ctrl+click and drag the sheet tab). Give the copied sheet a sen-
sible name.

The cell reference method

If you have used the methods described in Chapter 2 you should have formulae on your
workings sheet which link to the inputs, and you will have avoided calculations which
combine references from different sheets, for example,

This
Cell E3 contains =inputs!E4 Link to inflation rate on inputs
Cell E4 contains =D4*(1+E3) Inflation index calculation

Rather than this
Cell E3 contains =D3*(1+inputs!E4)

If you have used this mixed referencing (three-dimensional calculations) you can still use
this technique but be careful. Also if you have the habit of prefixing all your formulae with
a plus sign (=+inputs!E4) you should proceed with care.

To force the formulae to read from the new (copied) inputs sheet, we can simply run a
Replace command on the workings sheet which will convert all references to the old
input sheet name to the new input sheet name. Use Edit, Replace (or Ctrl+H). My
own preference is to use the exact sheet name specific string = inputs! and replace
with =BaseCase! If you have mixed referencing and/or the plus sign prefix then just use
the sheet name! syntax itself — your need for care here is because sometimes the sheet name
description may have been used legitimately as text elsewhere in the sheet and you may not
wish to replace it. If this is likely to be the case, select all the calculations on the workings
sheet, because Edit, Replace will then only work within the selection. Before considering
the extended use and functionality of this technique, we will look at the rather more arcane
range name method.

Practical Financial Modelling

The range name method

You may find it helpful to refer back to the treatment of range names in Chapter 3, especially
the topic of sheet level names. You should also ensure that you have not used any three-
dimensional calculations, otherwise the following technique will not work:

So this...
Cell E3 contains =InflationIn Link to inflation rate on inputs
Cell E4 contains =D4*(1+InflationRate) Inflation index calculation

Rather than this...
Cell E3 contains ~ =D3*(1+InflationIn)

If you have the habit of prefixing your formulae with the + sign you may find it helpful
to run a quick Ctrl+H (Edit Replace) to convert all your =+ formulae prefixes with the
simple =.

When you created the copy of the original inputs sheet, you also copied all the range
names on that sheet. The names on the original inputs sheet are global names and those on
the copy are local, or sheet level, names. If you inspect the formulae on the workings sheet,
the references to original inputs still stand. To pick up the new inputs, the range name must
be prefixed with the sheet name.

e B e e | R - S
Dil price

7
L8 | |real |=Exéan5iun!OiI_F'riceIn| [18 15

Switching scenarios with sheet level (or local) names

If we were to attempt the same Replace command used with the cell references, we are
immediately struck by the problem of the search string — if you have used the conventions
suggested in earlier chapters you may have differentiated your input range names using the
suffix —In (Inflationin etc.). But the sheet name needs to prefix the formula. We don't have
the time to waste on searching manually through the workings sheet to identify all formu-
lae containing In (which might include inflation and interest!).

We need a method which will allow us to identify all cells which contain references to
the inputs sheet. In Chapter 1 we looked at several techniques for locating cells and infor-
mation, one of which was the Ctrl+] (Select Dependents) shortcut. However, we noted
that it was formula driven: if an input value was selected and there was no dependent for-
mula on that sheet, the shortcut would not work. This leads to the big step: we now select
all the inputs on the original (global names) inputs sheet and Cut and Paste them onto the
bottom of the workings sheet.

When named areas are cut and pasted the name moves with range. The global input
names are now all located in the workings sheet, and at this stage should all be highlighted.
If you now press Ctrl+] you should find that Excel highlights all formulae that contain ref-
erences to these ranges.

Sensitivity analysis and scenarios

] = B =infationin_
T

A B T = e e e e e e [[) T
a4 rate A B 3% 3% 3% % L) 3% IethalwmFaie
[6 | indox 1 103 106 108 113 116 119 123 1.37 Inflationdndan
)
T il price
8 real 18 12 13 18 18 8 18 18 DiiPrcafeal
9 maney 1HA4 14910 LT Fik M 2149 4 T2 80 Py
i}
11 Production
i TED o 4 4 4 4 4 4 0 ProductionTED
days x5 35 365 35 x5 385 05 35 ProductionDays
B Harmulstyear 0 14NN 1ABNMEN| 1ARNMED| TARDMEN| 14RO 14BN 1) Prochucti B
|16 Revenue 0 7pa0q52 2B 716PE6 29570372 30465721 31 7964|3231 085 0 Revenue
1T
| 18 Vanable costs
1 it ral < 3 3 et VS
[20| total, manoy 0 apas7er agoe] T | Feoe CantaVanabioMonoy
2 Frdwhe = e
22 Fixed cosls = &
23] resl 0/ 1010000001 0ipo0pop | "eoee e [=Erpencion] | | costsfissaresl
';1!-3_'_ ey 0 WERED 0E7 20 [ortne 55 | | GontaFomtitomy
| 26 |Total cash coste 0 15256742 15713414 - ~ | CostsTutal
2 [Revtocett] [oogtoce | [Ayt] [ttt] [ce]
2B Receivables
28] e collichon fime a0 £l & £l @ a0 a 30 Recenabied e
30 ef 0 229154 2360290 24NPe3| ISM0T| 2579151 2pSGSM 0 RacenabiesCs
| 32 |Payables
133] sverage settlement time 7 7 7 7 7 7 7 T Payabieslsys
appheabile costs 0 15742 1513013 GIB4AEZ| BRI 17170470 17 FBS S 0 Pabrboeslioetes
of 0 20576 M 353 10,394 314706 09,747 1176 0 PayahiasCr

Switching from global names to sheet level names

Having differentiated input links from workings calculations, you can now run Ctrl+H
(Edit, Replace), using the equals = sign as the search string. The Replace string is (e.g.)
=Expansion! Test to see that it works.

The final step is to delete the (now blank) original inputs sheet, the pasted inputs at the
bottom of the workings sheet, and the redundant names in the Ctrl+F3 Insert, Names,
Define dialog box.

Complete the sequence by making a copy of the new inputs sheet. Both of these con-
tain sheet level names.

Using multiple inputs sheets

Whether you have used cell references or range names, you should now have a model with
two inputs sheets. You should now change the content of each sheet to reflect the scenario
it is intended to represent, and you can change the sheet tab name accordingly.

If you inspect the formulae on the workings sheet, you can immediately identify which
scenario is being used, because the formulae contain the relevant scenario sheet names.

| _|Al B | © . = | F | & |
o]
11 |Production

TBD |=E}<éansinn!F‘rgductinnln 4 B

[days 365 365 365 365
14| barrels/year D 1460000 1,460,000 2,190,000

The scenario formulae are now self-documenting

To flick from one scenario to the other, simply run the Ctrl+H Replace command
again. If you want to set up multiple scenarios, copy one of the inputs sheets as many times
as required. If you want to document the scenario name on the outputs, you can set up a

Practical Financial Modelling

cell on the workings which will read the scenario name from the appropriate inputs sheet
=BestCase!ScenarioNameln

This method is arguably better than the CHOOSE/LOOKUP approach in that the workings
formulae themselves describe the scenario being used. The Edit, Replace command is sim-
ple to run, and can be easily driven by macros (see Chapter 7).

As each input sheet has the same layout it may be difficult to see what is changing from
one scenario sheet to the next, so the use of colour and cell comments is helpful in this

context. The issue of rearranging, modifying, and removing scenarios is far simpler to
manage than is the case with the CHOOSE/LOOKUP functions.

Printing scenarios

We are often required to print reports in which we compare two or more scenarios. The
problem is that Excel can only calculate one scenario at a time, which is not much use. One
option, is to have multiple versions of the same file, but this is inherently unreliable as any
amendments to one file then need to be replicated in all the others.

Before looking at possible solutions, make sure that the name of the scenario is embed-
ded in the worksheet. Do not rely on putting it into the page header or footer, because in
the heat of the moment users forget to change the settings. We have previously introduced
techniques which can be used here, using range names or concatenation, depending how
the scenario is driven. With the CHOOSE and VLOOKUP type routines, simply set up a
formula that will return the appropriate scenario name depending on the input number or
selection from the dropdown list, for example:

=CHOQOSE(ScenarioNumber,“Best Case”,“"Most Likely”,“Worst Case”)

Give this cell a name, such as ScenarioName, and put a link to this on each of the outputs
sheets/ranges.

The concatenation trick (see page 115) is used to set up the sheet title so that it includes
the scenario name:

="“Cash Flow:"&ScenarioName

If we are using the multiple input sheet scenario method, set up cells on each input sheet
which contain the scenario name, and give each cell the same name, using the sheet level
name technique, for example, Base!Scenarioln, MostLikely!Scenarioln, and so on. On
the workings sheet set up the usual link to the current scenario, such that when the Edit,
Replace command is run the range name picks up the correct scenario name.

The solution to the problem of printing scenarios is to decide if the results are to be
stored permanently in the model or if they are to be discarded after printing. In the latter
case it is then simply a process of running the scenario, printing, resetting and running the
next scenario, a process that calls out for macro automation. In the former case, where the
results are to be stored, or perhaps even displayed alongside each other, we need to think
about copying sheets with pasted values. I would always be cautious when thinking about

Sensitivity analysis and scenarios

generating large numbers of sheets, for despite their apparent simplicity and limited con-
tent they can increase the size of the file quite considerably.

1 Set up the outputs as required, with appropriate sheet tabs and page settings.

2 Run the scenario.

3 Make a copy of each sheet, either by Ctrl + click and drag, or by grouping the sheets
and right-click Move or Copy.

4 Use Ctrl + A to select the whole sheet, then Ctrl + C (Copy) and then Edit, Paste
Special, Values over the formulae.

5 Repeat 2—4 for each scenario.

We can adapt the Paste Values technique if the key results from each scenario need to be
presented on the same page.

Bear in mind that if the model is changed in any way the results are instantly outdated
and the scenarios will need to be run again. This naturally points us towards setting up
some macro functionality to achieve this.

Solver

Excel has an add-in called Solver. This tool allows a Goal Seek functionality but with
multiple input cells (up to 200) for which you can specify constraints, to calculate a single
dependent formula. As my intention has been to offer modelling solutions using native
Excel tools, I will not go further at this point, other than to offer the usual caveat that
Solver is effectively a black box and that the assumptions underpinning the input cells are
not documented in the worksheet. The precedent cells used by Solver must be on the same
sheet as the target formula, which would breach the inputs—workings—outputs structure in
the same way as do the data table and the Scenario Manager techniques.

The way I normally deal with Solver is to explain that if you do the sort of modelling
that requires the use of Solver, you probably do not need me to explain how to use it; and
therefore if you do not do this type of modelling you are unlikely to need it!

Risk

Risk is a topic that is much abused in financial modelling and a proper exploration of the
subject is outside the scope of this book. However, we do encounter the basic ideas of risk
analysis in our modelling, and we should be able to understand why risk modelling is not
as straightforward as it might seem. When carrying out sensitivity analysis, the presump-
tion is that each of the values in the data table is equally likely. Using our professional
judgement and experience we will of course recognise that this is not the case, and that
within the population of values used in the table some are indeed more likely than others.
When we start assigning probability to these values we are starting to think about risk.
The exact definitions vary, but risk implies that all outcomes can be predicted and that we
can predict the likelihood of one outcome over another. If a risk factor has a value of zero

Practical Financial Modelling

then it will never happen, and a factor with a value of 1 is guaranteed to happen. When
assigning risk to a set of values, for example in a data table, the total of the probabilities
must equal 1. If it is less than 1, then there is an outcome which has not been predicted,
and this leads into the concept of uncertainty. If we have not identified all the outcomes
that might arise, or we are not able to assess the likelihood of their occurrence, then we
are dealing with uncertainty.

Where do we obtain the information from which to derive our probabilities? With
operational factors we may be able to draw on significant previous experience, for exam-
ple, that we incur a 3% wastage rate in the manufacture of a type of biscuit, but with
financial factors this becomes much less precise — what exactly is the interest rate risk? The
risk modellers refer to objective and subjective probability — the former is based on past
experience, the latter on expert opinion. We can improve the wastage rate at the biscuit
factory if the food scientists apply their knowledge of the interaction of flour, water, fat,
sugar, and heat to the manufacturing process — the results will be measurable and repro-
ducible. But what about the interest rates? In the United Kingdom advertising for per-
sonal financial products always carries the strapline to the effect that ‘investments may go
down in value, as well as up’. What will the interest rate be next month? Next year? In 10
years?

Another point is that certain sets of figures do not show the features of random varia-
tion and therefore are not subject to chance or probability. Staying with the biscuit factory
for a moment, the production capacity does not fluctuate in itself. Capacity is a variable
(described as deterministic) in that we can increase or decrease production levels, but we
would not claim that there is a 10% chance of production exceeding 1,000 boxes/day. It is
the management who make this decision. Although the production capacity is determinis-
tic, the appetite or demand for my biscuits is highly variable (described as stochastic), and
in consultation with marketing colleagues we may be able to assign probabilities to the level
of demand for the product over a particular forecast period.

When looking at carrying out any form of risk analysis careful thought needs to be given
to relationships: if we are going to run a sensitivity or other analysis on a factor, are there
any related factors which would be affected? The classis example is the relationship between
interest rates and inflation, and we have seen models in which one has been tested inde-
pendently of the other. Similarly, does inflation have an equal effect on revenues and on
costs? Before carrying out any such analysis we must make sure that the correlations and
dependencies of the elements of the model are fully understood if the results are to have
any value.

Monte Carlo simulation

For some analysts, Monte Carlo simulation is the acme of the modelling process. We use
third-party software to perform this analysis, the two leading products being @RISK from
Palisade,* and Crystal Ball from Decisioneering.*™ The analysis requires the modeller to

*htep:/[www.palisade-europe.com/
**http://www.decisioneering.com/

Sensitivity analysis and scenarios

define each input in terms of a statistical population and there are many populations to
choose from. When the simulation is run, the software generates a random number from
within the population, enters it into the input cell, recalculates the model, and stores the
results. It then repeats the process up to several thousands of times, for each input speci-
fied. In this way the model can simulate the millions of permutations that can result from
the interaction of the selected inputs. In my opinion this is fine for scientific and engi-
neering purposes, but of little use for financial modelling. In simple terms, the financial
variables we use in our modelling do not fit into the population distributions used by the
software. Although they may have a stochastic appearance, with randomness of sorts, the
only meaningful constraints that can be applied relate to the triangular distribution of low-
est value-most likely value-highest value. Unfortunately, the very ease with which the soft-
ware allows the modeller to set up the Monte Carlo simulation, leads us into problems.

Most people have had little exposure to statistics other than at college or at university,
and most such courses are based around the statistics of the normal distribution.

a —
[- L] 15 -] n] £

Statistics 101: the normal distribution

From this we learn expressions such as:

1 Arithmetic mean: The sum of all the observations in a sample, divided by the number
of observations in the sample.

2 Mode: The most frequent, or common, value in a sample.

3 Median: The middle value of a sample.
The blanket expression ‘average’ is often used to with reference to these three definitions.

4 Standard deviation is used to describe the spread of the numbers in the sample about
the mean (or more correctly, the square root of the arithmetic mean of the squares of
the deviations from the arithmetic mean). One standard deviation of each side of the
mean will include 68% of the sample, two standard deviations covers 95%, and three
standard deviations covers 98% of the sample.

The moment we consider a different population distribution we realise that these terms no
longer have the same meaning and must be used with much more care.

Practical Financial Modelling

Most likaly

Mean?
Madian?
Mode?

" Lowsst value iaghest vaius

1 2 3 a 5 " 7 8 8 1 1 12 1 " 15 %

The triangular distribution: best/worst/most likely. If you must
define a distribution, this is probably the easiest to justify

But when looking at models using the Monte Carlo technique we often find a casual
disregard for what is very specific terminology and indeed we often find that the analyst
has chosen the wrong population distribution, failed to identify the correlating factors, or
has assigned a distribution to what should be a deterministic element. Quite often we note
that Monte Carlo analysis has been performed simply because the software was available,
and the analyst thought that it would add value to the model. There are indeed certain
kinds of model in which specialist risk techniques are required, and risk modelling is a spe-
cialism in itself, but our general recommendation is for the general modeller to be aware of
the techniques but to use them with caution.

CHAPTER Automation

Introduction

Macros are predefined sequences of commands and events that the user can run as
required, and are typically used to execute repetitive or complex tasks. They can either be
recorded, which requires the user or developer to carry out the appropriate command
sequence first, or they can be written using the Visual Basic Editor in Excel. Visual Basic is
the macro command language used in Microsoft products.

In the early days of spreadsheets, the first macro commands were easily learned and
applied by the expert spreadsheet modeller. Lotus 1-2-3 release 3, for example, had some
eighty commands. It was a straightforward task to both write and debug the code. With
the introduction of Windows the situation grew rather more complex. Both Lotus and
Microsoft introduced macro languages (Lotus Script and a form of Visual Basic, respec-
tively) which were considerably more advanced, and allowed for the creation and use of
dialog boxes, as well as offering the ability to interrogate other applications for informa-
tion. Although these languages and their successors could be learned by the expert user,
their inherent complexity meant that the writing of macro code became a task better suited
to the programmer, rather than the modeller.

However, some modellers believe that a model is not finished unless it has a library of
macros. Certainly there are times when the use of macros is unavoidable, but using the
principle of error reduction, their use should be limited. Programmers are trained to write
code, and have systems and methodologies concerning specification, development, docu-
mentation, and quality control. Financial analysts and modellers tend not to have this
discipline, and the archives of the investment banks are full of half-finished macro modules
which were begun with the best of intentions but the developers lacked the time or expert-
ise to see the job through to completion.

The worst type of macro-driven model is what we call the ‘black box’. On opening the file,
the user is confronted with an attractive ‘user input screen’, from which selections can be
made or data entered. On clicking the OK button, the screen freezes and after a few moments
the nearest printer starts spewing out paper. In the meantime, the user suspects that the macro
may have ground to a halt and starts hitting the Escape key. Up pops a dialog warning that
‘Code execution has been interrupted’. Should you continue, end, or debug? If you end, what
has happened in the model so far — what is the effect of Undo at this point?

Practical Financial Modelling

The demonstration workbooks for this chapter are in the Chapter 7: Automation folder
on the CD-ROM.

Recorded macros

The simplest way to get started with macros is to record a straightforward command sequence
and then to inspect the resulting code in the Visual Basic Editor. The starting point, as always,
is to decide what exactly the macro is supposed to do and then to write down the steps you
will need to carry out. Remember the top-down methodology introduced in Chapter 12

Recorded macro options

The command for recording a macro is Tools, Macro, Record New Macro. The dialog box
contains the following options:

1 Name: use the range name convention of compound words — Excel will not accept
spaces in macro names. Please develop the discipline of providing meaningful names,
even if you are just experimenting.

2 Shortcut key: Ctrl+ - enter a keyboard shortcut used to run the macro. Hold down the
Shift key for further permutations. Note that this shortcut will over-ride any existing
Excel shortcut in this workbook.

3 Store macro in: this offers three choices

a This workbook (default): the macro can only be run whilst this workbook is open;
it could be used in another workbook if both are open at the same time.

b Personal macro workbook: the macro will be stored in a workbook called PER-
SONAL.XLS. This is a hidden file which loads up when you launch Excel. It is
stored in your XLSTART folder. The macro will then be available in any workbook
that you then open or create. However, if you attempt to edit the macro (see
below), Excel will warn you that you cannot edit a macro in a hidden workbook.
You must use the Window, Unhide command first.

¢ New workbook: means exactly that.

Record Macro [Z|
Macro name:
iMacru:ul |
Shortcut kesy: Stare macra in:

Ctrl+l:i |This WWorkbook, hd |
Description:

Macro recarded 170062004 by Jonathan Swan

[4] [Cancel

Not much information provided here. Develop the habit of documenting your macros from the start

Automation

4 Description: as with the macro name, develop the discipline of noting the purpose
and function of the macro. You can use up to 255 characters. This information is
stored in the macro header which you will see when we open the Visual Basic Editor
shortly.

Iteration macro

Let us revisit the Iteration command sequence used in Chapter 3. We used iteration to
calculate a routine that involved a circularity, and we noted that it is not advisable to
leave iteration switched on all the time as it masks any accidental circularity. We set up
a mechanism such that if the iteration was on, we set the Switch to TRUE and this acti-
vated the circular formula. When iteration was switched off, we set the Switch to FALSE
and this suspended the circularity.

Let’s identify the steps involved in switching the Iteration on, and then switching

it off:

1 Activate the sheet that contains the Switch cell.

2 Go to the Switch cell.

3 Run Tools, Options, go to the Calculation tab and click on the lteration check box,
then OK.

4 Enter TRUE into the Switch cell.

Next,

5 Activate the sheet that contains the Switch cell.

6 Go to the Switch cell.

7 Enter FALSE into the Switch cell.

8 Run Tools, Options, go to the Calculation tab and click off the Iteration check box,

then OK.

In both cases, the first step is to activate the sheet that contains the Switch cell. This is
because the user may run the macro from any sheet in the workbook. If we have not iden-
tified the relevant sheet, the macro may run on another sheet, with no result. We also select
the Switch cell for a similar reason — we do not want the TRUE or FALSE dropping into
the active cell if it is on another sheet.

I have also changed the order of events slightly. The ON macro switches on iteration
before it changes the Switch cell contents. If the TRUE was entered first, Excel would com-
plain about the circularity and generate an error message. Likewise, the OFF macro inserts
the FALSE into the Switch cell before switching off the iteration. (In reality the errors
would not appear during macro execution, but it shows that we are thinking the matter

through).

Practical Financial Modelling

Now we are in a position to carry out the command sequence and record it. In some
cases it is worthwhile running through the sequence once or twice to rehearse it — bear in
mind that any digressions or errors will also be recorded. This will lead to messy code, and
it could slow down the execution of the finished macro. For some reason the Stop
Recording toolbar does not always appear when you start recording a macro, so you may
find it helpful to use View, Toolbars, Customize and choose the Stop Recording toolbar.
Do it now, rather than recording it into your macro!

A N S R

(@)}

Skop Recnrdingl

The Stop Recording toolbar

Use Tools, Macro, Record New Macro.

Give the macro a name such as IterationOn.

Assign a shortcut if you wish.

Store the macro in this workbook.

Wrrite a description for the macro (Recorded macro, for switching on the iteration to
calculate a circular routine).

Click OK.

Press F5 (Go To) and type in the destination Switch (assuming you have set up the
appropriate name previously). Click OK.

Use the Tools, Options command and switch on lteration on the Calculation tab.
Click OK.

Type TRUE into the Switch cell, and press Enter.

Stop the macro recorder by either clicking on the Stop Recording button or by using
Tools, Macros, Stop Recording.

Repeat the process to record the macro to turn off the iteration.

NN =

(@)

Use Tools, Macro, Record New Macro.

Give the macro a name such as IterationOff.

Assign a shortcut if you wish.

Store the macro in this workbook.

Wrrite a description for the macro (‘Recorded macro, for switching off the iteration
to suspend a circular routine’).

Click OK.

Press F5 (Go To) and type in the destination Switch (assuming you have set up the
appropriate name previously). Click OK.

Type FALSE into the Switch cell, and press Enter.

Automation

9 Use the Tools, Options command and switch off lteration on the Calculation tab.
Click OK.
10 Stop the macro recorder by either clicking on the Stop Recording button or by using
Tools, Macros, Stop Recording.

You can test the macros by using Tools, Macro, Macros (Alt+F8), and selecting them from
the list, or by using your keyboard shortcut, if you assigned one. See below for running
macros from buttons and menus.

Assigning macros

Macros can be run by using keyboard shortcuts, worksheet buttons, toolbar buttons, or
from a menu. Before deciding which technique to use, you should consider where the
macro has been stored. If the macro is in your personal macro workbook it will be avail-
able in all workbooks and can be assigned to menus and buttons. If the macro is stored
in a specific workbook, it will only be available if that workbook is open, and the macros
should be assigned to keyboard shortcuts and/or worksheet buttons only; if you have
assigned them to the toolbars or to a menu the commands may not work if the work-
book is closed or not available. Excel will attempt to open the file containing the macro
but problems will occur if the macro requires specific structures and features in the

workbook.

Keyboard shortcuts

On recording a macro you will be invited to assign the macro to a shortcut before pro-
ceeding. The shortcut automatically includes Ctrl, and is followed by a letter. Further com-
binations are allowed, holding down Shift-+letter (do not press Ctrl). The use of Alt+ is not
permitted.

If you recorded the macro without choosing a shortcut, or wish to assign new shortcut
to an existing macro, use the Tools, Macro, Macros (Alt+F8) command and choose
Options. This allows you to specify the shortcut required.

Note that the shortcut assigned to the macro takes precedence over the default Excel
shortcuts; even if you are not a shortcut user your colleagues may be, and it can be frus-
trating (and dangerous) to find that a favourite shortcut such as Ctrl+P (print) or Ctrl+S
(save) has apparently been hijacked for some other purpose. This especially applies to
shortcuts for macros in your personal macro workbook, which are available for any and all
subsequent workbooks.

It is good modelling practice to include a list of keyboard shortcuts in the documenta-
tion of your model.

Workbook buttons

Workbook buttons are graphic objects stored in the workbook. To create a button, right-
click on any toolbar and choose the Forms toolbar. Locate the Button button, and click.

Practical Financial Modelling

Aﬂ_ ab|
~F ®

The Button button on the Forms toolbar

The mouse pointer changes from the arrow to a crosshair: you can either simply click in
the worksheet for a default button, or click and drag to draw a button of your own sizing.
Hold down Alt while dragging to ‘snap to’ cell gridlines. On doing so, the Assign Macro
dialog box appears, from which you can select the macro to assign to the button.

Note that the button is selected and has edit handles; whilst this is the case you can edit
the button text and by right-clicking carry out other commands from the shortcut menu.
If you lose the selection, perhaps by clicking back in the worksheet, DO NOT left-click the
new button — this will only run the macro. To work with the macro button, right-click
it first.

Edit the button text as required, and use the edit handles to resize or reposition the but-
ton. It can be helpful to name the button. Use Ctrl+F3 (Define Name) or alternatively
click in the Name Box and enter a name there.

If you have several buttons, it can be easier to manipulate them if they are grouped
together. You will need to show the Drawing toolbar, and click on the Select Objects but-
ton. Click and drag a marquee around the buttons and select the group. Edit handles
should appear around all selected buttons (note that Ctrl+clicking does not work in this
context). Right-click on any button and choose Grouping, Group. The grouped buttons
can now be edited and formatted together. Buttons can be ungrouped by right-clicking and
using Grouping, Ungroup. Having been grouped previously, individual buttons can be
regrouped using Grouping, Regroup.

Toolbar buttons

If your macro is to be available to other workbooks, you can assign it to a custom button
on a toolbar. Use View, Toolbars, Customize, or right-click an existing toolbar and choose
Customize from the shortcut menu. Click on the Commands tab in the dialog box, and
scroll down the list to Macros. Click and drag the smiley face Custom button onto an
existing toolbar. With the button selected, either click the Modify Selection button or
right-click the new button itself. The first step is to give the button a name — this name (or

Automation

description) appears in the ToolTip when the user points at the button. The & ampersand
character offered by default is not necessary and can be deleted. Next click Assign Macro
and select the macro to be associated with the button. Then the fun starts:either Change
Button Image, and select a graphic from the list; or Edit Button Image to launch the Button
Editor. You can design the image for your button at a pixel level.

Menus

Macros can be assigned to menus as required. You can use either the existing menus, or set
up a new one. Note that a new menu can be assigned to the main menu bar, or docked
into a toolbar.

Use the View, Toolbars, Customize command. Scroll down to New Menu, and click and
drag the New Menu button onto either the main menu bar or to a toolbar. Right-click on
the new menu and enter a name for the menu. Note the use of the & ampersand charac-
ter — this provides the underline to a character so that the menu can be pulled down using
the keyboard, for example, lter&ation would appear as Iteration; this could be accessed
using Alt+A (check that the letter you use does not conflict with any of the existing menu
shortcuts). You could assign a macro directly to this new menu, but it makes more sense
to add further menu commands by dragging the New Menu button from the Customize
dialog box. Set up appropriate names and assign the macros as required.

Bear in mind that custom menus and toolbar buttons will reappear when you next open
Excel; unless the associated macros are stored in your personal macro workbook you are
likely to experience errors if the menus or buttons are used in the wrong context.

Written macros

A basic understanding of macro code allows more complex macros to be written, and
allows access to the many macro commands and routines that are simply not available
through recording. However, writing Visual Basic code can be daunting and difficult; in
this section we will consider some of the basic concepts which might then lead into more
complex code*.

Once you have recorded a few macros, you may find that the Visual Basic Editor serves
as a useful introduction to writing code. The Tools, Macro, Macros, Edit (Alt+F11) com-
mand launches the VB Editor, allowing the underlying code of the macro to be inspected.
(If you chose to store the macro in your personal macro workbook, you will need to unhide
this file first, using the Window, Unhide command).

One feature of the recorded macro is the inclusion of spurious code; for example, in
the literation macro recorded previously, the command sequence was Tools, Options,
Calculation, and Iteration on/off. The VB code records two additional commands, that the
Maximum Change constraint of iteration has a value of 0.01, and that the Precision As
Displayed command is FALSE.

*Although not essential, you may find it helpful to check that you have Help for VB installed.

Practical Financial Modelling

- Microsoft Visual Basic - Booké - [Module1 (Code)]

teff Fe Edt Vew et Fomat Debug Bun Took Adddns Window Hep -8 x
HIE e ™ IR o oy MU T - SIS e N A< P S ;
Praject= ject x| (General) | |Meration - I
02 l 2 Bub Iteration()
ﬁgVﬂAij:tt(Dka] -~ Proced
= € Micrusuf L Excel Obje — " Iteration Hactuo
B sheet (Sheetl) v ‘ Macro recorded 17/06/Z004 by Jonachan Swan
£ | &
ties ndule x|
| Modulel Modus | With hpplication
Alphabetic Catugotizodl «Iteration = Truc
«MaxChange = 0.001
Modude1 End Witk
ActiveWorkbook.FrecislonAsDisplayed = False
End Sub
==l | 12

The Visual Basic Editor

Where did these two instructions come from? Why did not the macro record all the
options on the Calculation tab? You can safely delete these two lines of code without affect-
ing the macro. In fact, the With Application section can also be removed, and the Go To
sequence simplified. The final macro is simply:

Sub IterationOn()
Application.lteration = True
Application.Goto “Switch”
ActiveCell.Formula = “TRUE”

End Sub

You can learn a fair amount of VB using recorded macros and some trial and error. If you
have cut out too much from the code, Excel will throw up error messages and return you
from the workbook to the VB Editor. The error dialog box may not be particularly inform-
ative, but usually the Editor will highlight the offending code. If you can supply the cor-
rection, you can then press F5 to continue with the execution of the code. Alternatively,
you may be able to cancel the macro using Ctrl+Break. If the macro does not appear to
work in the manner you think it should, you can enter Step mode using F8. Each time you
press the key, one line of the macro is carried out.

It is good practice to document your work. Comments can be inserted anywhere in and
around the macro, as long as you use the single apostrophe " prefix.

Branching macros

The iteration exercise serves as a useful introduction to written macros — we might want to
combine the functionality of the two separate macros into just one — if iteration is off,
switch it on, and if it is on, switch it off.

Automation

We considered the use of the IF function in Chapter 4: we specify the test condition, the
outcome to show if the condition evaluates to TRUE, and the outcome when the condition is
FALSE. We can write the same functionality into the macro, using an IF THEN ELSE sequence.

As with the recorded macro, it is good practice to write down what you want the macro
to achieve and the steps required. In this case:

1 If the iteration is OFF,
a Switch iteration on;
b Set the Switch to True,
2 If the iteration is ON,
a Set the Switch to False;
b Switch the iteration off.

As we will run this macro from a worksheet button, we will have the button itself confirm
the iteration status, so in each case above we will have a third step in which the text on the
button changes.

Writing the macro

Use Tools, Macro, Visual Basic Editor (or Alt+F11 but caution — Shift+F11 inserts a new
worksheet). Use the Project Explorer window to check where the current module will be
stored (current workbook or personal workbook).

In the code window, write the following:

Command Explanation
Comments can be entered into
the macro if they are prefixed
with * (single apostrophe)

Sub IterationSwitch() ‘Name of macro
IterationValue=Application.lteration ‘Returns the current content of
the Switch cell
If IterationValue = TRUE Then ‘Test condition
ActiveSheet.Shapes(“lterationButton”).Select ‘Selects the workbook macro
button
Selection.Characters.Text = “Iteration is OFF” ‘Changes the text on the button
Application.Goto “Switch” ‘Select the Switch cell
ActiveCell.Formula = “FALSE” ‘Enters FALSE in the Switch cell
Application.lteration = False ‘Switches off the iteration
Else ‘If SwitchValue = False
ActiveSheet.Shapes(“lterationButton”).Select ‘Selects the button
Selection.Characters.Text = “Iteration is ON” ‘Changes the text
Application.lteration = True ‘Switches on the iteration
Application.Goto “Switch” ‘Selects the Switch cell
ActiveCell.Formula = “TRUE” ‘Enters TRUE in the Switch cell
End If

End Sub

Practical Financial Modelling

I am assuming that this macro will only be run from the button on the sheet; if it is likely
that it could be run from a keyboard shortcut, toolbar button, or menu, we would need to
include an instruction to go to the appropriate sheet. Note that the location of the button
itself is not an issue, provided that you have named it IterationButton (use the Name Box).

Now test the macro and its operation in the workbook. If you have errors, use the F8
Step and F5 Resume commands as required.

Quarterly/annual macro

In Chapter 3 we looked at techniques to set up our outputs in such a way so that we could
either report on an annual or a quarterly basis. With either the rolling sum or the corkscrew
technique we have to hide the Q1, Q2, and Q3 columns, which can prove rather time con-
suming. We can automate this process with a simple written macro. This macro also intro-
duces the use of the ScreenUpdating property, which allows us to stop the screen from
redrawing while the macro runs.

Command Explanation

Sub QuartersToAnnual()

‘Quarterly to Annual Macro

‘Macro written 25/05/2004 by jswan ‘Usual documentation
‘Converts a quarterly report to an annual report

‘by hiding each Q1-Q3 column,

‘then unhides row headings

Application.ScreenUpdating = False ‘Stops the screen
flickering while the macro
runs

For Each Col In Worksheets(“Sheet1”).Columns ‘ Substitute sheet names
as required

If Col.Column Mod 4 <> 0 Then ‘If the column number is
not exactly divisible by 4
Col.Select ‘Select the column
Selection.EntireColumn.Hidden = True ‘Hide the column
End If
Next Col ‘Repeat for next column
Range("A1:D1”).Select ‘Select first four columns
Selection.EntireColumn.Hidden = False ‘Unhide the columns
Range("A1”).Select ‘Move active cell to A1
End Sub

Error handling

VBA is now a very robust tool and will trap errors as they are written, or on execution. As
mentioned above, the step mode and other debug features of the VBA editor are useful,

Automation

provided you can understand what Excel is telling you! In some cases it can be helpful to
build your own error handling routine if you want to test your code for yourself, or to trap
events like the user pressing the Escape key whilst the macro is running.

This example also introduces a call to a simple subroutine and uses a message box.

On Error GoTo Error_Report ‘Code at top of macro,
which will run the
Error_Report subroutine

on error

Application.EnableCancelKey = xIErrorHandler ‘This recognizes the
Escape key

CODE ‘This is your macro

Exit Sub ‘This ends the macro if
Nno errors occur

If Err = 18 Then See if we can write a

resume routine
MsgBox “You pressed Escape”

Error_Report: ‘Start of subroutine; note
the colon:

MsgBox “Error: “ & ErrNumber & “ “ & ‘Displays a message box

Err.Description with the error number and
description.

End Sub ‘The macro terminates

User-defined functions

With its various add-in packs and third-party add-ins Excel can offer several hundred
functions, which is still not enough for some users and so Excel allows us to write our
own. As with macros I am generally cautious about the use of user-defined functions
(UDFs) as their management can be a problem, especially if the function does not reside
in the workbook itself. I have seen too many models in which the UDF is resident on the
analyst’s PC back in the office. Do make sure that the UDF is stored in the workbook,
and bear in mind that the recipient’s macro security settings may not accept it (Excel
2003/XP). I have also noticed that writing UDFs can be addictive and that some people
end up creating functions that effectively duplicate existing Excel functionality. Bear in
mind from the outset that functions return values — they cannot carry out instructions to
perform tasks. In this section we will consider some very simple examples of UDFs, but
without going into very much detail. Remember that if you are looking for help about
UDFs, use the Visual Basic Help and search for ‘Function Statement’.

Random numbers

In Chapter 4 we looked at the use of the Excel RAND function to return a random number
between two values, such as between 10 and 20.

—RAND()*(20-10)+10

Practical Financial Modelling

We can write a UDF to perform this operation.

1 Use the Tools, Macro, Visual Basic Editor command (or press Alt+F11).

2 Use the Insert, Module command.

3 Write the following code:

Function RandomNumberBetween(lower As Integer, upper As Integer)
RandomNumberBetween =Rnd()* (upper—Ilower) + lower
End Function.

4 Alt+Tab back to the worksheet and write the function in a cell:
=randomnumberbetween(10, 20)

5 Test the operation of the function. Note that it does not recalculate automatically (or
on pressing F9). If you want to fix this, insert the following line after the function def-
inition: Application.Volatile True

6 Test that this amendment works. You may need to press F2 to edit the function in the
worksheet first.

The function name is RandomNumberBetween, and we have specified that the required
arguments are the lower value (as an integer) and the upper value (as an integer). Excel then
generates a random number using the VB Rnd function (as opposed to the worksheet
RAND function — it took me a while to work that one out), and performs the arithmetic
to ensure that the number is between the upper and lower values. The Volatile instruction
makes Excel run the function on recalculation. Note that despite the use of upper case
in the function name in the VB editor, the worksheet uses lower case only. You will
have noticed that as you write the function, Excel will attempt to fill in key words and
capitalise according to its own rules. As with macros, if you make errors you can use the
F8 Step mode to run through the function. Remember to reset after debugging any
mistakes.

If you save the file which contains your UDFs with a name such as functions.xls, you
can access these functions from your other models by prefixing the function name with the

(path and) filename:
=functions.xls!randomnumberbetween(10,20)

You can also write the function by using the Insert, Function command, where it will be
listed in the User Defined category. It will not contain a description, but you can fix this
by using Tools, Macro, Macros. The dialog box only lists macros, but if you type the func-
tion name you should be able to click on the Options button. Write the appropriate
description for the function, and close the dialog box.

Automation

Macro E| [Z|

Macro name:

I RandomMurmberBetween -

lteration]

Cancel

Skep Inko

Edit

Delete

i

Macros in: All Open Warkbooks w | Options. ..

Description

The user-defined function is not listed, so you must type in the function name

Local range names

One of the problems with using range names is when the user accidentally creates local
names which conflict with existing global names. In the modelling methodology set out in
the first part of this book, I suggested that names on the inputs sheet should have the suf-
fix ...In" to differentiate the input names from those on the workings sheet. If, however,
the ‘In’ is omitted, and the same range name is created on the workings sheet, the latter
name becomes a local or sheet level name and can only be referenced on that sheet. To refer
to the range from another sheet, we must include the sheet name along with the range
name (e.g.=Workings!UnitPrice). This can lead to problems — the Paste Name and Go To
commands do not identify conflicting names and list only the names on the current sheet,
which may then be a mixture of global and local names. The following UDF attempts to
resolve this, and is used with the Paste List command.

Function LocalNameCheck(TestName As String, Reference)
NameVerify = Names(TestName).RefersTo
IF NameVerify = Reference then
LocalNameCheck =0
Else
LocalNameCheck = NameVerify
End If
End Function

Practical Financial Modelling

The function is written into the worksheet alongside the list of names. The TestName is
the cell reference of the range name in the list, and the Reference is the range reference.
NameVerify returns the global name reference, and the IF checks that it matches with the
reference from the list in the worksheet. If they are the same, the function returns zero, but
if they are different (because the name in the worksheet references a local range name) the
function returns the conflicting global range reference. The function works reliably in the
inputs/workings model structure if the check is run on the workings sheet, but is less reli-
able in other model layouts.

Appendix

Keyboard shortcuts

This is a list of the keyboard shortcuts I think are most useful for routine modelling. Refer
to Excel Help for a full list, using “keyboard shortcut” as the search string, or read the
Using Shortcut Keys topic in the Contents of Help.

Toolbars

Press F10 to activate the main menu bar and then Ctrl+Tab to cycle through the toolbars,
using the arrow keys to move to the buttons and Enter to select.

General

Ctrl+Z Undo

Ctrl+Y Redo

F2 Edit Cell

F4 Repeat last action
Ctrl+R Fill Right
Ctrl+S Save

F12 Save As

Alt+= Autosum

F11 Create Chart
Ctrl+Shift+” Copy cell above
Ctrl+; Insert date
Shift+F10 Shortcut menu
Selection

Ctrl+A Select sheet
Shift+Space Select row

Ctrl+Space Select column

Practical Financial Modelling

Shift+arrow

Select in direction

Ctrl+* Select current region
Navigation

F5 Go to/Go back

Ctrl+PgUp Next sheet

Ctrl+PgDn Previous sheet

Ctrl+Home Go to Al/top left of sheet
Ctrl+End Go to bottom right of sheet
Auditing

Ctrl+[Select precedents

Ctrl+] Select dependents

Ctrl+* View formulas (toggle)
Formatting

Ctrl+Shift+1 Comma, two decimals
Ctrl+Shift+4 Currency, two decimals
Ctrl+Shift+5 Percentage, no decimals
Ctrl+Shift+~ General number format
Ctrl+# Date format

Ctrl+B Bold

Ctrl+1 Ttalic

Group and outline

Alt-+Shift+right arrow Group rows (or columns)
Alt+Shift+left arrow Ungroup rows (or columns)
Ctrl+8 (not number keypad) Display or hide outline symbols
Ctrl+9 (not number keypad) Hide rows

Ctrl+Shift+(Unhide selected rows
Ctrl+0 (not number keypad) Hide columns

Ctrl+Shift+) Unhide columns

Names

F3 Paste names

Ctrl+Shift+F3 Create names

Ctrl+F3 Define names

Appendix

The Principle of Error Reduction

The Principle of Error Reduction accepts that errors are inevitable. Some techniques
are more prone to error than others. We reduce the risk of error by using alternative
techniques and a consistent methodology that serves to enhance the detection of errors

when they occur.

The Rules of Good Modelling

The ‘rules’ and statements in this section are derived from various sections of this
book where they are discussed in detail. I summarise them here to offer a stimulus for

discussion.

Structure: general

Building models: design the output first
Using models: identify the outputs first
Separate inputs from workings and outputs

Use the same sheet layout throughout model (each column has the same function

on each sheet)

Use cell comments

Use colour consistently

Use colour for incomplete/temporary formulae

Create a ‘hard edge’ for the right hand edge of the model
Document your work

Make navigation simple and straightforward

Garbage in, garbage out

Inputs sheet

Numbers only — no formulae (except data tables)

Range names should have the suffix ‘...In" or similar, to indicate their origin
Document the sources of your assumptions — especially any ‘plug’ numbers
Cross-check your inputs against your data sources

Keep numbers in the same units that are given in the documentation

The input sheet drives the timing of events in the forecast period

Multiple inputs sheets are acceptable

Workings sheet

Only one workings (calculations) sheet
Formulae only — no numbers
Use links to bring the data from the inputs sheet(s)

Left-to-right consistency — formulae should be the same across the whole forecast

period
Use the base column to preserve the rule of left-to-right consistency
No 3-D calculations — no calculations which include references to other sheets

Practical Financial Modelling

. A general increase in complexity from top to bottom

. Use basic number formatting

. Keep formulae simple and short

. Sign — liabilities should be positive

. Use group and outline techniques to keep the workings manageable

Outputs sheets

. Contains links to workings sheet

. No links to other output sheets

. Summary formulae only

. No values

. Use appropriate number formatting
. Use consistent sign convention

. Use graphs to “tell the story”

Range names

. Use consistent and meaningful names
. Remember that many people do not like and distrust names

Audit sheet

. A rule-based methodology can only work if you have the techniques to detect and
locate exceptions (Chapter 2)

. 3D audit calculations are acceptable — audit check formulae are zbour the model,
not part of it

. Crosscheck workings calculations with the equivalent summary formulae on the
outputs sheets

. Crosscheck output sheets with each other

. Use past experience — if something has gone wrong before, think of an audit check
which might have identified it and use it in your future models

. Don't move on from a piece of modelling unless all audit checks are satisfied

. ‘Stress test’ the model — use extreme values

. Predictive outcomes — use values which generate known results

. Use ratios as rationality checks

Printing

. Set up the page layouts as early as possible
. Be ready to print at any stage
. Complete the outputs as you go

Saving

. Save frequently, and rename/renumber after major steps
. Don't save multiple copies of the same model

Appendix

Don't distribute copies of your model
Keep track of the versions

Formulae

Avoid long formulae

Keep formulae short

Break complex logic into simple steps

If today you cant immediately understand a formula which you wrote last week, it
is too complex

Avoid IFs: consider using MAX/MIN or the masking techniques

Avoid OFFSET: use INDEX and MATCH functionality

Clarify sign switching using =0-

Avoid circular formulae; if you have to, use iteration but make sure it is controlled
with a switch

Use range names

Do not use 3-D calculations

Do not prefix formulae with +. Use =

File links

Don’t link to other files; if you have to, put your file link formulae on a specific
sheet

Macros

Avoid using macros; if you have to, make sure they are documented, simple to use,
and thoroughly tested.
Don’t produce black boxes

& character

see ampersand character
3-D calculations

see three-dimensional calculations
3-D names

see three-dimensional names

ABS function, 43
AND function, 45
ALT key

see keyboard shortcuts
alteration errors, 27
ampersand character, 115
Apply Name command, 56
arithmetical checks, 42
array formula, 40-1, 88-9
array type functions, 60
assumption sheets

see input sheets
audit, 8-9
audit check, 33
audit sheet, 32-3
audit toolbar, 29
audit tools, 28
AuditCheck, 33
AutoComplete, 19

balance sheet, 7, 8, 43
base column, 18, 72—4
black box, 139-40, 151
blank cells, 35-6
BODMAS
see brackets, order, division, multiplication,
addition and subtraction
bottom-up approach, 2
brackets, order, division, multiplication, addition and
subtraction, 71
budgeting model, 2, 9, 10

calculation errors, 27
calculations sheets

see workings sheets
calculations, absence of, 5
calculations, time-dependent, 71
cascade effect, 6

Index

cash flow ratio analysis, 44
cell comments, 4, 19, 114
cell reference, 30—1, 49, 143
cells, editing, 56
change checks, 46
CHOOSE function, 140-2
circularities, 79—80
debugging, 80
and iteration, 79
tracking, 80
coercion, 89
COLUMN function, 125
columns, hidden, 39
combo boxes, 121
commission errors, 27
concatenation, 115-16
conditional formatting
see formatting, conditional
control key
see keyboard shortcuts
corkscrew, 73-5
corkscrew, loan, 75
compensating errors, 43
COUNT function, 67-8
COUNTIF function, 114, 120
see also SMALL function
Create Names command, 53—4
keyboard shortcuts, 53
currency symbol, 131
custom formatting
see formatting, custom
custom views, 16-17

data entry, 19, 119-21

data tables, 136, 138
one-way, 1367
recalculation, 138
two-way, 137

data validation, 119-21

date, 111-13

DATE function, 112

date series, 112

Define Name command, 54, 59, 63, 64, 65, 66
keyboard shortcuts, 54

dependent, 24, 141

documentation, 4, 10-11
domain errors, 28

editing, 28
error handling, 1601
error values, 38
#DIV/0! 32
#N/A, 32
#NAME? 31
#NUM! 32
#REF! 31
#VALUE! 31
for tracking circularities, 82
errors, 38
types of, 26-8

file links, 10, 38
files
new, 17
saving, 17
fill, 19
financial checks, 43
financial functions, 109
financial model
development, 17
map, 467
structure, 1, 3
use, 117
flags, 76
footers
see headers and footers
formatting, conditional, 1234,
126
problems with, 126
formatting, custom, 126
reporting, 130
style, 130

formulae, viewing, 29

global names, 63
Goal Seek, 135-6
grouping, 18, 117-18

hardcoded values, 34-5
headers and footers, 15-16
hidden columns and rows, 39
hidden sheets, 39
HLOOKUP, 32, 99
hyperlinks, 24-5

IF function, 90-1

INDEX function, 1024
and mask, 105

input sheets, 4

input sheets, multiple, 142-3

inputs

colour, 5

errors, 27

location of, 34
INT function, 116
‘intellectual challenge’” approach, 48
internal rate of return, 45, 111
intersection formula, 61
IRR

see internal rate of return
ISTEXT function, 11415
iteration, 79, 82—7
iteration macro, 153
iteration status check, 41

keyboard shortcuts, 155, 165-6
Alt + PgUp/Alt + PgDn, 20
Curl + [, 24
Curl + 1, 24
Crrl + Arrow, 22
Cul + End, 21
Cul + PgUp/Curl + PgDn, 20
F2, 28
Fo, 22
F9, 29-30
Go To, 22
Home/Ctrl + Home, 21
right-click scroll tab buttons, 21

LARGE function, 113
layout, 18, 33
left-to-right consistency, 36, 71
liabilities, 20
link formula, 5-6
list boxes, 121-2
loan calculator, 2, 9
local names
see sheet level names
logic cascade, 6

LOOKUP function, 101, 140, 142

macro buttons, 155-7
macros, 152
assigning, 155-7
keyboard shortcuts, 155
writing the, 157-8
macros, recording, 152-3
macros, written, 157-8
mask technique, 75-6, 93-8
and INDEX function, 101
MATCH function, 101
MAX function, 90
menus, 157
merged cells, 40
MIN function, 90

Index

Index

MOD function, 116, 125
Monte Catlo simulation, 148-50
multiple input sheets

see input sheets, multiple

name box, 23—4
Navigation techniques, 20-5
net present value, 2, 9, 45, 109
NOW() function, 112
NPV
see net present value
number format, 18
see also formatting, conditional
see also formatting, custom

OFFSET function, 67, 68, 108-9
omission errors, 27
OR function, 92
outlining, 117-18

keyboard shortcuts, 118-19
output sheets, 7

page setup, 14-15
password protection, 1334
pointing errors, 267

pool mechanism, 102-5
precedent, 24

print, 13-17, 19, 146

print area, 13-14
protection, 131-4

quarterly/annual calculation, 77
quarterly/annual macro, 160

RAND function, 114, 161
random numbers, generation of, 114,
161-2
range labels, 50
range names, 49, 144-5
advantages of, 52-3
converting to cell references, 58-9
creating, 53—4
defining, 54-5
deleting, 57-8
extending, 59
and functions, 60
listing, 68-70
in Lotus 1-2-3, 49, 58
moving, 59
naming conventions, 51
redundant, 58-9
using, 55-6
range names, dynamic, 66-8
range names, local, 163—4

Record Macro, 152

relative names, 64-5

relative totals, 79

Report Manager, 16

reports, 13, 16

reports, management, 2, 9, 10
risk analysis, 147-8

rolling total method, 77-9
ROUND function, 44

rows, hidden, 39

Scenario Manager, 139-40
scenarios, 138-9

printing, 146-7
Screen Updating property, 160
sensitivity analysis, 135
sheet level names, 63
sheet protection

see worksheet protection
signing conventions, 20
SMALL function, 113-14

see also COUNTIF function
Solver, 147
spaghetti modelling

see three-dimensional calculations
split window, 22
stream of consciousness approach

see bottom-up approach
structural checks, 34
SUM function, 44, 62
summary calculations, 7-8
switches, 76

text, 4
text box, 4
TEXT function, 115-16
three-dimensional calculations,
6, 37
three-dimensional names,
61-2
time periods, 71
changing, 76
timesheeting system, 2, 9
timing errors
see temporal errors
TODAY() function, 112
toolbar buttons, 156
top-down approach, 3, 13
Transition Formula entry, 59

UDF

see user-defined functions
unit columns, 18
user-defined functions, 161

validation, 119-21
Visual Basic Editor, 151, 152, 153, 157-9
VLOOKUP function, 99, 142

watch window, 30
what-if analysis

Index

see sensitivity analysis
workings sheets, 5-7

size of, 6
workbook protection, 133
workbook structure, 3
worksheet protection, 131-3

174 Index

	Practical Financial Modelling
	Contents
	Preface
	About the Author
	Context
	1 Model structure
	Introduction
	Two approaches
	Purpose
	Structure
	Workbook structure
	Inputs
	Workings
	Outputs
	Variations
	Documentation
	Reporting
	Reports
	Model development
	Navigation

	2 Quality control
	Introduction
	Taxonomies of error
	Audit tools
	Error values
	Audit sheet
	Structural checks
	Arithmetical checks
	Financial checks
	Model map

	3 Mainly formulae
	Introduction
	Range names
	Additional name functionality
	BODMAS
	Timing
	Changing time periods
	Circularities and iteration
	Array formulae
	Coercion

	4 Mainly functions
	Introduction
	Logical
	Lookup
	Financial
	Dates
	Other useful functions

	5 Model use
	Introduction
	Grouping and outlining
	Data inputs
	Conditional formatting
	Custom formatting
	Protection

	6 Sensitivity analysis and scenarios
	Introduction
	Goal Seek
	Data tables
	Scenarios
	Solver
	Risk
	Monte Carlo simulation

	7 Automation
	Introduction
	Recorded macros
	Iteration macro
	Assigning macros
	Written macros
	Branching macros
	Quarterly/annual macro
	Error handling
	User-defined functions

	Appendix: Keyboard shortcuts
	Index

