
Accounting Database Design
(Limited Version)

Derek Liew Lei Mun

Published by Derek Liew at Smashwords
Copyright 2010

Copyright © 2010 by Derek Liew Lei Mun. All rights reserved.

All rights reserved. No part of this work may be reproduced or transmitted in any form
or by any means, electronic or mechanical, including photocopying, recording, or by any
information storage or retrieval system, without the prior written permission of the
copyright owner.

Trademarked names may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, the names are use only in an editorial fashion
and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The information in this book is on an “as is” basis, without warranty. Although every
precaution has been taken in the preparation of this work, the author is not liable to any
person or entity with respect to any loss or damage caused or alleged to be caused directly
or indirectly by the information contained in this work.

About the Author

The author is an ACCA qualified Accountant. He has vast technical knowledge in
database design and development, with more than 5 years research experience in database
design, especially in the area of accounting system design. The author is an experienced
user of various accounting application and ERP system.

Comments may be directed to the author at: derek@accountingdes.com
Complete version can be downloaded at : http://www.accountingdes.com
Register for a copy of an Accounting Software now for free at :
http://www.accountingdes.com

Table of Contents

Introduction
What Is This Book Is About?
Who This Book Is For?

Page 1

http://www.accountingdes.com/
http://www.accountingdes.com/
mailto:derek@accountingdes.com

What You Need To Use This Book
Conventions
How It Works

Chapter 1 Database Design

Database
Relational Database
Primary Key (PK)
Foreign Key (FK)
Normalization Concept
- First Normal Form
- Second Normal Form
- Third Normal Form
What is SQL?
Transact-SQL
Installing Microsoft SQL Server (Personal Edition)
Creating a Database

Chapter 2 Developing the Journals Table

Normalization Journal Table
- First Normal Form
- Second Normal Form
- Third Normal Form
Designing Chart of Account Table
Designing Journal Table
Designing Sales Table
Designing Product Table

Chapter 3 Developing the Inventory Table

Normalizing Inventory Table
- First Normal Form
- Second Normal Form
- Third Normal Form
Designing Stock Movement Table
Designing Stock Balance Table
Designing Product Account Set Table
Designing Product Category Table

Page 2

Chapter 4 Developing the Purchase Table

Normalizing Purchase Table
- First Normal Form
- Second Normal Form
- Third Normal Form
Designing Creditor Table

Chapter 5 Developing the Sales Table

Normalizing Sale Table
- First Normal Form
- Second Normal Form
- Third Normal Form
Designing Customer Table

Chapter 6 Developing the Cash Table

Normalizing Cash Table
- First Normal Form
- Second Normal Form
- Third Normal Form
Designing Bank Table

Chapter 7 Developing the Asset Table

Normalizing Asset Table
- First Normal Form
- Second Normal Form
- Third Normal Form

Chapter 8 Creating Reports from Journals Table

Using SQL to produce Trial Balance
How It Works – Select Query for Trial Balance Listing
Using SQL to produce Income Statement
How it Works – Select Query for Income Statement
Using SQL to produce Income Statement by Segment
How it Works – Select Query for Income Statement by Segment
Using SQL to produce Balance Sheet
How it Works – Select Query for Balance Sheet

Page 3

Using SQL to produce Transaction Listing
How it Works – Select Query for Transaction Listing

Chapter 9 Creating Reports from Inventory Table

Using SQL to produce Stock Movement Report
How It Works – Select Query for Stock Movement Report
Using SQL to produce Stock Ageing & Balance Report
How It Works – Select Query for Stock Ageing & Balance Report

Chapter 10 Creating Reports from Purchase Table

Using SQL to produce Accounts Payable Ageing Report
How It Works – Select Query for Accounts Payable Ageing Report
Using SQL to produce Accounts Payable Payment Status Report
How It Works – Select Query for Payable Payment Status Report

Chapter 11 Creating Reports from Sales Table

Using SQL to produce Accounts Receivable Ageing Report
How It Works – Select Query for Accounts Receivable Ageing Report
Using SQL to produce Accounts Receivable Collection Status Report
How It Works – Select Query for Accounts Receivable Collection
Status Report
Using SQL to produce Sales Analysis Report
How It Works – Select Query for Sales Analysis Report

Chapter 12 Creating Reports from Cash Table

Using SQL to produce Cash Flow Forecast
How It Works – Select Query for Cash Flow Forecast Report
Using SQL to produce Cash Flow Summary Statement
How It Works – Select Query for Cash Flow Summary
Statement Report
Using SQL to produce Cash Flow Periodic Statement
How It Works – Select Query for Cash Flow Periodic Statement Report
Using SQL to produce Bank Reconciliation Statement
How It Works – Select Query for Bank Reconciliation Statement

Chapter 13 Creating Reports from Asset Table

Page 4

Using SQL to produce Asset Summary
How It Works – Select Query for Asset Summary Report
Using SQL to produce Asset Movement Report
How It Works – Select Query for Asset Movement Report

Introduction

In our modern world today, it is undisputable fact, that most of the corporate world has
and is continuously changing and adapting to new technology, especially in the area of
computerization, in order to remain competitive in the business world. One of the greatest
importances in any corporate industry is adopting a robust and powerful accounting
application, that are not just user-friendly, but capable of providing the flexibility and
scalability needed in a rapid changing environment.

A powerful accounting application depends fundamentally on a well structured and
designed database. The traditional method of designing and creating a flat-file database is
no longer viable and economical, as it has numerous flaw and limitation comparing to a
relational database. Most of the existing database today, are developed using the
relational database management system (RDBMS) approach, of which it is capable of
enforcing greater data integrity and consistency, maximizing storage space efficiency and
eliminating redundant data.

What Is This Book Is About?

This book will introduce the concept of normalization, adopting the first normal form
to third normal form approach in designing and developing an accounting database. We
begin to learn how to design and build a group of fundamental tables, representative of
each accounting modules that forms the foundation of an accounting database. We learn
how to normalize tables, by continuously adding and changing key fields, as we progress
from one chapter to the next.

We’ll then discuss the function of primary key (PK) and foreign key (FK) in each
tables, and the use of building relationship in the Database Diagram. Finally, we’ll walk
you through creating query to produce report using the SQL Query Analyzer.

Who This Book Is For?

This book is targeted for database developer, database administrator, accountant and
university students, who wants to increase their knowledge and skill set in designing and
developing a relational accounting database, and have interest in writing SQL query for
accounting reports.

This book assumes you are an inexperienced user of Microsoft SQL Server, and will
guide you how to install Microsoft SQL Server and how to use SQL Query Analyzer to
create query to generate accounting reports.

A basic understanding of relational database concepts will be advantageous, but is not
assumed, as it is covered in this book. It is also not assumed that the reader of this book

Page 5

has any experience working with SQL, but will be helpful if you already have the
knowledge.

What You Need To Use This Book

You will need a copy of Microsoft SQL Server (at least version 7.0 and above),
depending on the type of operating system installed in your workstation. In our exercise,
Microsoft SQL Server 2000 for Personal Edition is used. Your workstation can be
Windows 98, Window NT 4.0, Windows 2000 and Windows XP if you wish to install
Microsoft SQL Server 2000 for Personal Edition.

All code and samples in this book were developed and tested on workstation running
Windows XP Professional Edition (SP2).

Conventions

To help you in better understanding this book, different typefaces is used to
differentiate between SQL code and regular English, and also help you to identify key
concepts.

Text that you will type on your screen should appear in courier new type.

How It Works

After trying out the queries, there will be a further explanation, to help you relate what
you have done to what you have just learned.

Chapter 1

Database Design

Database

A database is a place where data are stored in columns, and rows in a table, just like a
spreadsheet, a database consist of one or several tables. A table consists of many
columns, known as fields, and each field consist of many rows, called records. Data
stored in a table, can be retrieved, updated or even deleted through executing a set of
instruction to a database. This set of instruction is what we call SQL statement.

When the first database was created, its design was not in perfect form. The model of
the design was to store data in a single stream of bytes. This is known as a flat-file
database. A flat-file database is inefficient, given the lack of scalability and storage
capacity.

Relational Database

Page 6

A relational database model is designed to contain several tables that can be joined
together via the use of common related fields. The link of two or more tables is achieved
through the use of primary key and foreign keys, known as a relationship. The advantage
of a relational database over a flat-file database is its ability to store data in different
tables, with minimal duplication.

Primary Key (PK)

A primary key is an identifier that uniquely identifies a record stored in a table. By
assigning a primary key to a particular field in a table, we can uniquely retrieve, update or
delete certain records from a table. A primary key, can relate to other primary key created
in another table. A primary field cannot be null, means it must be populated with value. A
user cannot insert a value in a primary field twice, as a primary field is a unique field, and
it cannot contain two rows of records with the same value.

Foreign Key (FK)

A primary key is known as a foreign key, if it links to a primary key of another table.
A value entered in a foreign field, should be the same value entered in the primary field
of another table. You could not enter a value as a foreign key that are not initially entered
or exist in a primary field of another table.

Normalization Concept

Normalization is a process that shows the method or way of designing a well-
structured database. Under normalization methodology, we can restructure database by
simply following the below main three steps:

1) First Normal Form
2) Second Normal Form
3) Third Normal Form

1) First Normal Form

In the first normal form, a database designer is required to identify the type and group
of data that each data item will fall in, and then decide which data should be used as the
basis of creating individual table to contain them. Let’s take an example of creating a
phone book database. A phone book, generally consist of name, date of birth, address,
phone number, place of work, and other details. We know that our main item data is
Name and Location. So, we create a table called Name_T to store the name, date of birth,
and phone number of each individual. We also create a table called Location_T to hold
data on address and place of work.

Our next task, under the first normal form, is to eliminate repeating groups of data. We
know that, under the Name_T table, it is very likely that two or more person, may share
the same name, and as for the address, it is possible that more than one person could be
staying in the same place, therefore we could end up typing the same name or address

Page 7

twice in each of the tables. In order to ensure there is no duplication of data in each table,
we need to identify a particular field to be a primary key.

A primary key is a unique identifier that identifies particular records in a table, and it
ensures that a value entered in its field can never be re-entered twice. This enforces data
integrity and consistency. In our Name_T table, we assign the field Name to be a primary
field, and set it as primary key, and change the fieldname Name to Name_ID. We then,
set the field address as a primary key, changing its fieldname address to Address_ID. We
then create another table called, Customer Details_T table to store the Name_ID and
Address_ID field. By assigning the Name and Address as a primary key, we can now
have more than one record that shares the same name and location.

2) Second Normal Form

No other non-key field is independent of the primary key. We must ensure that all
existing fields in a table must depend on the primary key. We know that the Name_T
table, contains the date of birth field, and it is possible that more than one person has the
same date of birth, thus, we need to create a separate table specifically to hold the date of
birth data, and we rename the date of birth to DOB_ID, and set it as a primary key.

3) Third Normal Form

When we reached the second normal form, we almost complete normalizing our
database structure. In the third normal form, it’s basically ensuring that all non-key fields
are now fully dependent on the primary key. We identify one more field that brings us to
our third normal form. We could have more than one person working in the same place,
thus, it is logical to create the field place of work as a separate table. We rename the
existing fieldname place of work to POW_ID, giving reference to a primary key created
in a new table called Place_of_Work_T table.

What is SQL?

SQL, an abbreviation for Structured Query Language, is a language used to execute a
set of instruction directed to a database. When you go to an auto-teller machine, to
withdraw money, you need to press certain button, to instruct the machine what to do,
when you go to the Internet, you use your keyboard or mouse to navigate or search for
your favorite website, you are telling your machine what to do. All this are possible with
the help of SQL.

It is a universal language that receives instruction from a “front-end” object that will
then compile and send the instruction back to a “back-end” object. The front-end object is
an application tool, such as VB, C++, and the back-end object, is a database system, that
helps to store data. The instruction received from a front-end application, generally
perform the following task:

1) Select existing data
2) Insert new data
3) Update existing data
4) Delete existing data

Page 8

SQL is a language governed by the American National Standards Institute (ANSI), a
standard committee that consists of database experts from industry and software vendors.
Thus, SQL is a universal and open language, meaning that, it is not owned by any
industry.

Transact-SQL

DBMS, or database management system, is a software product that holds and store
data. A number of famous DBMS worth noting, are, IBM DB2, MySQL, Sybase
Adaptive Server, Oracle, Microsoft Access, and Microsoft SQL Server. These various
DBMS, would have their own type of SQL version, generally differ in terms of syntax
and features, but, they all complied to the American National Standards Institute (ANSI)
SQL Standard.

In our exercise contained in this book, we will be using Microsoft SQL Server as our
DBMS in employing the use of Transact Structured Query Language (T-SQL),
Microsoft’s version of SQL.

Installing Microsoft SQL Server 2000 (Personal Edition)

In order to try out some of the query that we are going to build in subsequent chapter,
we need to install the Microsoft SQL Server, at least version 7.0 or higher. For the
purpose of our case study, Microsoft SQL Server 2000 for Personal Edition would be
used. You can choose to install other version in your workstation, but you need to check
the minimum requirement before you begin installing other version of Microsoft SQL
Server.

1. To install Microsoft SQL Server 2000 (Personal Edition), insert the SQL Server
2000 CD. If Auto run is not enabled, double-click the Autorun.exe program to
begin the installation process.

2. Next, you will see a pop-up Welcome screen that will lead you to installing
Microsoft SQL Server. Click on the Next button to proceed to the next step.

Page 9

3. The next step allows us to select the name of the computer on which you want to
install Microsoft SQL Server. By default, the installation Wizard will select the
Local Computer option. As this is where we want to install our Microsoft SQL
Server, we will accept the default on this screen.

Page 10

4. Click on the Next button to proceed to the Installation Selection screen. Under
this screen, we will accept the default option, which will create a new instance of
SQL Server in your selected local computer. Click on the Next button to proceed
to the next dialog box.

5. In the User Information screen, by default the name and company name will be
automatically filled with the same information you have given when you first
installed your operating system. If you prefer, you can change the name and
company name before you click on the Next button. Click on the Next button
once you have changed the name and the company name.

Page 11

6. In this screen, you will be required to read the terms and condition of the License
Agreement. Press the Page Down key to see the rest of the agreement. Once you
have read and agreed to the License Agreement, proceed to the next step by
clicking on the Yes button.

Page 12

7. Under the Installation Definition screen, you need to select the type of installation
that you want to install in your local computer. For our purpose, we will accept
the default second option, as we want to make use of the Server and Client tools
with administration capabilities. Click the Next button to move to the next screen.

8. The Installation Wizard will detect any installed version of SQL Server on your
desktop. If this is your first installation, the default checkbox will be checked by
default. If you have previously installed SQL Server, the default checkbox would
be grayed out, and you would have to give an instance name for this current
installation. The new instance name must be 16 characters or less and should
begin with a letter or other acceptable character. Proceed to our next screen once
your have given an instance name.

Page 13

9. On this screen, you are required to select the type of setup. For our purpose, we
would want to customize our installation, so let’s choose the third option. By
default, the program files and data files are directed to windows C drive. If you
prefer to relocate the installation folder, you can do so by clicking on the Browse
button. Click the Next button once you have completed this step.

Page 14

10.Under the Select Component screen, you can view all the main and sub-
component that allows you to select and install in your local computer. For our
purpose, we will select all components; together will its individual sub-
components. Under the Description label, you can view the function of each sub-
component by checking on each of the sub-component checkbox. Click next, once
you have selected all components.

Page 15

11.Under the Services Accounts screen, you will have the option of selecting
different account for each service or assigning the same account for each service.
For our purpose, we choose the first option, as this would eliminate any
unnecessary problem that a domain user account would normally encounter. Click
on the Next button to proceed to our next screen.

Page 16

12.This screen allows you to configure the type of authentication mode that you
prefer in order to gain access to SQL Server. If you choose the first option, SQL
Server will use windows domain user account to verify the authenticity of the
user, before granting access to SQL Server. If you choose the second option, SQL
Server will require an additional level of validation that would require a user login
password. For our purpose, we will select the windows authentication mode
option.

13.Under the Collation Settings, will allow you to specify a set of guidelines that
determine how information is being compared and collated in SQL Server. For
our purpose, we select the SQL Collations option.

Page 17

14.SQL Server uses network libraries to pass network packets of information
between SQL Server and its clients. By default, SQL Server is configured to listen
to packets from clients via the Named Pipes shown on below textbox. If you are
installing a named instance, the instance name would appear on the textbox, with
a 0 port number specified. If you are installing SQL Server for the first time, the
port number 1433 is specified, by default. Once you have specified the Named
Pipe name and the port number click on the Next button to move to our next step.

Page 18

15.This is the last setup screen that will begin installing your SQL Server 2000 in
your local computer. Click the next button to begin the installation, or click the
Back button if you want to change some of the previous setting.

Page 19

Creating a Database

Before we begin to discuss how to create tables, we need to create a database first.

1. First, open your Enterprise Manager

2. Next, expand the Microsoft SQL Servers root, SQL Server group and then the
instance of SQL Server 2000 that you installed.

3. Click on the Database folder, and select Tools from the Menu bar, and then click
on Wizard.

4. Expand the Database, and then select Create Database Wizard. You would see a
screen as shown below. Next Click on the OK button to proceed to the next step.

5. The next step of the Wizard will show you a summary of the installation guide
that we will go through in the following setup process. Click the Next button to
proceed to the next screen.

Page 20

6. In our next screen, we specify a name for our database. Give a name of AIS,
which represent the abbreviation of Accounting Information System in the
Database name textbox. We can change the default location directory for the
database and transaction log file, if you want to, by clicking on the three dotted
button beside the textbox. For our purpose, we shall accept the default location for
both database and transaction log file. The transaction log file is used to record all
transactions performed in your database and can be used for recovery purposes.

Page 21

7. Next, we specify the name and the size of our database files. By default, 1
megabyte size is allocated, but we change it to 5 megabytes for our current
database. Click on the Next button to proceed to the next screen.

Page 22

8. We want to allow our database to grow automatically and with unrestricted file
size, thus we accept the default options as specified on the below screen. Proceed
to the next step by clicking on the Next button.

9. We are required to specify the size for our transaction log file. The default 1
megabyte is sufficient for us, thus proceed to the next step by clicking on the Next
button.

Page 23

10.Similarly, we also need to specify the size for our transaction log files. By default,
the below setting is specified and it should be sufficient for our purpose. Click on
the Next button to proceed to the next screen.

Page 24

11.This is the last screen in the Database Wizard. You can now begin to create your
first database by clicking on the Finish button, or if you decide to change your
previous setting, you can do so by moving backward. Click the Finish button once
you are ready to create your database.

Summary

In this Chapter, we have learned what are a database, how to create relationship
between tables, and the concept of normalization. We then learned how to install SQL
Server and creating a database.

To summaries, in this chapter, we have discussed:

 The advantages of relational database versus a flat-file database

 Normalization Concept (First Normal Form to Third Normal Form)

 The use of Primary and foreign keys

 What is SQL, and its functionality

 How to install SQL Server 2000 (Personal Edition)

 How to create database with Database Wizard

Page 25

Chapter 2

Developing the Journals Table

Normalizing Journal Table

This chapter will illustrate how an accounting database is being designed. We will
begin to adopt the normalization concept to break our table into several tables (First
Normal Form to Third Normal Form). Above table contains a list of fields that holds
information that consist duplication of data. This table is not normalized and we will
begin to identify the key elements that are to become the primary key in a table and as a
foreign key in a separate table.

The Journal table would contain the double-entry information of an entry performed by
a user. MaxCorp is in the business of trading computer hardware and software. It needs to
have a system to keep track on all its business transaction, and also a system that can
produce relevant accounting reports on every close of each month. Dave, the Accountant,
would normally raise an invoice to a customer on a Sales Form screen, and information
such as date of invoice, product, customer name, pricing would be entered on the face of
the Sales Form screen, and would be stored in the above fields created in the Journal
Table.

First Normal Form

We understand that, MaxCorp’s customer may receive several invoices in a week from
its billing department, and some, merely once in a year, depending on the number of
purchases made by its customer. As shown on the table above, currently the Journal
Table can only fit in two transactions for each customer and Dave would have to insert a
new line of records, having entering the Customer name again, if the same customer buy
from MaxCorp for the third time. This is inefficient, as Dave, is repeating groups of data,
by entering the customer name twice. To begin our first step of normalization, we will
break the Journal Table into a Sales Table and a Journal Table. We will then, assign an
Inv_ID_VC fieldname as the primary key in the Sale Table.

By creating a separate Sales Table, Dave would be able to raise as many invoice to a
customer without having to repeat its customer name again. By creating a separate Sale
Table, we are eliminating duplication of data and making use of the storage space of each
field more efficiently, as each customer’s name are only created once.

Page 26

Second Normal Form

We aware that, a customer can buy more than one type of product from MaxCorp,
thus, we need to further break up the Journals Table into a Product Table, a Sales Table
and a Journals Table. We will assign the fieldname, Pdt_ID_VC as the primary key in the
Product Table, and as a foreign key in the Sales Table referencing to a particular product
residing in the Product Table. We are establishing a many-to-many relationship between
the Sales and Product Table, by connecting these tables via a common field, where a
customer may buy different types of products from MaxCorp, and a product could be
purchased by different types of customers.

Third Normal Form

So far, we have created two tables out of Journals Table, the Sale Table and Product
Table. At this point, our task is incomplete, Dave has voiced his concern on the issue of
data integrity. He is worried, especially on numerical fields that hold important figures,
vital to the preparation of logical and comprehensive financial reports to MaxCorp’s
management. He wants to have a database that runs on a real-time basis, where whenever
an invoice is issued, an entry would be automatically posted in the Journals, when a
collection is made from a customer or payment made to a creditor, an entry would also be
posted in the Journals, without having the need for manual entry, simply said, a real-time
processing system.

Having understood Dave requisition, we need to redefine the structure of the database
design; we know that, he wants a real-time processing for all the posting of journals, the
self-creating double-entry records for each level of order processing performed by Dave.

After a brainstorming session with Dave, we understood that, he wants a database that
consist a group of tables, representative of each accounting module, to have a direct
interface with the Journals Table. The Journal Table is the central repository that records
all back-end double-entries performed by the client-application for all order processing
transaction, and all front-end transaction performed by the user.

Dave explained, that, for each double-entry performed, a debit, and a credit entry
would take place, example, if MaxCorp need to bill a customer, a debit and credit amount
would be posted in the Journal Table, debiting an X amount in a Debtor account and
crediting the corresponding amount in the Sales account. When he collects from its
customer, and then making payment to its creditors on its purchase due, all these
transaction would be recorded also as a double-entry in the Journals Table.

With the above knowledge shared by Dave, we need to break the Journals Table
further, into another table, known as a Chart of Accounts Table (COA). This Table
allows Dave to create account code (GL_ID) that uniquely identify each elements of
accounts name, that eventually make up as one of the elements in the COA Table.

Before any transaction is being posted as a double-entry in the Journals Table, user
would need to drill-down the dropdown list box, to select the appropriate account code
(GL_ID), if it does not exist, user would be prompted to create the account code
beforehand in the COA Table. Some of the posting can be pre-defined by the user during
set-up stage, for example, double-entry for a customer billing can be pre-defined to debit
and credit to a fix Sales and Debtors account, and some transaction would require user
selection of account code during order processing process.

Page 27

A list of important fields with their data type attribute, has been identified in the COA
Table, which would have the GL_ID field assigned as primary key, referencing the
Journal Table as a foreign key.

Now, Create the COA Table by first Opening the SQL Server 2000, then, select
Database | AIS | Table, right click on your mouse, and select New Table as illustrated on
below snapshot:

Key in the following fieldnames, data-type, length, and its Allow Null attributes in the
COA_T Table as shown below:

Designing Chart of Accounts Table

The GL_Name_VC field would hold the different type of account name, in which are
uniquely identified by an account code located in the GL_ID field. The BS_Category_VC
field would hold the types of accounts category, to which each individual accounts name
will fit in. Segment_VC field stores the different type of business units to be created in
MaxCorp. Lastly, user has the option to freeze the account code, by changing its status
from active to a non-active account code, preventing the selection of the account code for
posting purposes.

Page 28

Key in the following fieldnames, data-type, length, and its Allow Null attributes in the
Journal_T Table as shown below:

Designing Journal Table

The Journal table would have a field, called Doc_No_VC that will hold a set of
double-entry records performed by a user or by an auto-generated entry performed by the
system. Each journal entry would require the following information to be provided, in the
remaining fieldnames, the GL_ID field, that will capture the account code of each journal
entry, the invoice number (under Inv_ID_VC field) that is assigned as a foreign key,
referencing to a particular set of records in the Sale_T table, amount of each transaction
posting (under Amount_NU), date of the transaction posting (under Date_DT),
Description, Period and Year.

Key in the following fieldnames, data-type, length, and its Allow Null attributes in the
Sale_T Table as shown below:

Designing Sales Table

This table contains information on sales transacted with each customer, holding
information on product, customer and invoice number. We assign the Inv_ID_VC field as
a primary field, as invoice number would be the best candidate for being a unique
identifier and as a foreign key in the Journal_T table that will uniquely identify a row of
records related to a transaction’s double-entry located separately in the Journal Table.
The Sales Table merely hold a number of key identifier that are linked to several other
tables, namely, the Pdt_ID_VC would link to a Product Table, giving further details, on
name, description, category and supplier of each product items. We shall explore further
on this table as we develop further in our database design under Chapter 5.

Page 29

Designing Product Table

We will assign Pdt_ID_VC as the primary key field for Product Table, which holds
key information of each product’s name. We will get to know the usefulness of account
set field, as we touches on Chapter 3 onwards.

Summary

In this Chapter, we have created the Journal Table, and then we learned how to
normalize this table into several tables, going through the normalization process, from
first normal form to third normal form. In Chapter 3, we will discuss how to normalize
the Product Table further, giving us an insight on the types of fields needed in a Product
table.

To summaries, in this chapter, we have discussed:

 The Normalization Concept (First Normal Form to Third Normal Form)

 The use of Primary and foreign keys

 The purpose of a Chart of Accounts and its relevant fields

 The purpose of a Journal Table and its relevant fields

 The purpose of a Sales Table and its relevant fields

 The purpose of a Product Table and its relevant fields

Chapter 3

Developing the Inventory Table

Page 30

Normalizing Inventory Table

As discussed in Chapter 2, the Product Table was created to keep track on each
product item’s name, description, supplier code and its account set code. This table is still
not in perfect form, as Dave, would also want to keep track on the movement of each of
the product sold, the costing method applied on each product items and the pricing of
each of its product items. We will again, follow the step-by-step normalization process to
further identify key elements that should be broken down further away from the Product
Table.

First Normal Form

We know that, not all products in MaxCorp are purchased from the same source of
supplier, it could be a product sourced from different supplier or a supplier could also be
supplying MaxCorp more than one product type. It is logical, at this point, to create a
separate table for supplier, referencing the Product Table via a foreign key named
Cred_ID_VC, being a primary key assigned in the Creditor Table.

Second Normal Form

At this stage, we have further identified another key element, the product category, as
MaxCorp will also need to group its sale by category, in order to better analyze the
marketability and profitability of each product type. We branch out the Pdt_Category_VC
field, to create a separate table, named, Product Table_Category, assigning the field
Pdt_Category_VC, as the primary key, having linked to the Product Table, as a foreign
key.

Third Normal Form

We have not created any field to capture the quantity movement and balance of each
product items. Create a table named, Stock_Movement Table to capture the physical
movement of each product sold by MaxCorp, and a table named, Stock_Balance Table to
monitor the current quantity balance of each product items.

Inventory Table

Page 31

Designing Stock Movement Table

This table would keep track of each product movement in MaxCorp warehouse. A row
of records would be inserted into this table when MaxCorp delivers products to its
customer, receiving incoming goods from its supplier, or even transferring goods
between different warehouse locations. In our table, we only maintain one location for
storing MaxCorp’s goods, and should MaxCorp expands its business further in future, it
may establish branches that would require more than one warehouse to store its product,
then MaxCorp may need to create a separate table just to store warehousing information.
The Descrip_VC field would accommodate the delivery note and goods receive note
numbering for each product items moving in and out from MaxCorp’s warehouse.

Enter the following fieldnames, data-type, length, and its Allow Null attributes as shown
above:

Designing Stock Balance Table

This table will hold the latest balance of each product items, after accumulating or
deducting the previous balance of each product items, to illustrate this further, assuming
that, MaxCorp purchase 2 units of item A at $1.50 each. The system would record this
information in this table after updating the Stock_Movement Table. When item A is sold
to a customer, the system would then insert a new record in the Stock_Movement Table
and will update the balance of item A in Stock_Balance Table simultaneously. For each
update in the Stock_Balance Table, the system will first identify the matching product
item in the Stock_Balance Table, if it exist, the system would update its quantity and unit
price, by replacing its current quantity and unit price, and if, it is a new product item, a
new record would then be inserted. This table plays a significant influence on product

Page 32

pricing. We will have a better understanding, as we discuss further on the costing method
field created in the Product AccountSet Table.

Enter the following fieldnames, data-type, length, and its Allow Null attributes as shown
below:

Designing Product Account Set Table

The Cost_Method_VC field plays an important role in determining how a product item
should be priced, when a product is sold to a customer. At present, we have two
alternative in pricing MaxCorp product, the first-in-first-out (FIFO) method and the cost
average method. Applying the first method, would price MaxCorp’s goods on the oldest
price first, as for the latter, at an average price. The quantity and pricing of each product
item is referenced to the Stock_Balance Table.

Besides determining the pricing method of its out-going goods, Dave would also want
the double-entries to flow into the Journal Table, to record the cost of the out-going
goods and the cost of purchasing the goods from its suppliers. To achieve this, we need to
assign a default inventory account code to record the cost of in-coming and out-going of
each product item. In the Stock_IN field, a clearing account (Payable_IN) would need to
be assigned to place its purchase cost temporarily, while awaiting billing from respective
supplier and a clearing account (Shipment_IN) is assigned to capture its shipment cost,
while pending subsequent billing to its customer.

Enter the following fieldnames, data-type, length, and its Allow Null attributes as shown
below:

Designing Product Category Table

Page 33

This table contains three important fields, with the last field requiring Dave, to assign
two default account code for effecting the double-entries into the Journal Table, each
time a user raises an invoice to its customer. We will assign the field Pdt_Category_VC
as the primary key, having reference to the Product Table. Firstly, under each product
category, Dave would need to assign a default account code for the cost of goods sold
amount, to record the pricing cost of its product, secondly, a default account code to
record the sales amount of each invoices raised from the client application. We will
illustrate this further, using a case study, as we turn to Chapter 11.

Summary

In this Chapter, we have created five Tables that made up the inventory group, the
Product_Table,Product_AccountSet_Table,Product_Category_Table,Stock_Movement_T
and the Stock_Balance_Table.

To summaries, in this chapter, we have discussed:

 How to normalize the inventory table by breaking up into several tables.

 The purpose of creating GL_ID field in Product Category Table

 The purpose of creating Stock_IN, Payable_IN and Shipment_IN fields in
Product_AccountSet Table

 The purpose of creating the Stock_Balance Table

 The purpose of creating the Stock_Movement Table

Chapter 4

Developing the Purchase Table

Normalizing Purchase Table

The Purchase table would hold information on product code, supplier name, unit price
and the date of purchase, transacted by MaxCorp. As you can see from the above table,

Page 34

the field Product_1_ID and Product_2_ID allows Dave to assign two type of product
supplied by each of its supplier, while this might comes useful, but, how about those
suppliers that only provide one type of product, the second field, would remain idle, and
unpopulated. What if a supplier supply more than 2 types of product? Again, this would
result in the inefficient use of storage space. To restructure the design of the above table,
we again, would run through the normalization procedure, breaking down the table one at
a time.

First Normal Form

As discussed previously, we would need to replace the two product_ID fields with a
foreign key, referencing a many-to-many relationship between the Product and the
Purchase Table. We will name this field, Pdt_ID_VC, which is a primary key assigned in
the Product Table. Now, this table would be able to hold as many types of product that
are stored in the Product Table. We would also want to truncate the field Unit_Price off
the Purchase Table, as this information has already been created under the Stock Balance
Table.

Second Normal Form

We understand that, MaxCorp purchase many types of product from its supplier,
assuming, if a supplier supply more than two types of products to MaxCorp, it would
have to insert another new records in the Purchase Table, having repeating the supplier
name twice. This would result in duplication of information, and to eliminate this, we
would have to create a separate table specifically to store information on supplier. Thus,
we have to replace the CreditorName_VC field with Cred_ID_VC, and assign this field
as a foreign key referencing to the Creditor Table.

Third Normal Form

Notice that the above table, does not have a primary key field, and we know that a
primary key should be one that uniquely identify a row of record residing in the Purchase
Table. We will assign the purchase invoice number as the primary key, as it holds the key
to accessing and identifying each individual records maintained in the Purchase Table.
Do not forget, we will also need to create a field to hold the journal number, dictating the
double-entries for each purchase transaction.

Enter the above Column names, data type, length and allow null attributes for the
Purchase Table, shown below:

Purchase Table

Page 35

We will set the fieldname Inv_ID_VC as a primary key, which would be a suitable
unique identifier to each individual row of records maintained in the Purchase Table, in
our case, we shall insert the purchase invoice number in this field. We will create the
Cred_ID_VC field, and assign this field as a foreign key, referencing to the Creditor
Table. We have now, established a one-to-many relationship between Purchase Table and
Creditor Table, where one creditor may refer to more than one purchase records residing
in the Purchase Table. Similarly, we would also want to assign the field Pdt_ID_VC as a
foreign key, as one product can have more than one reference to the Purchase Table. We
shall include a field to keep track on the payment status of each supplier, with an attribute
of 1, denoting a paid status, and 0 for unpaid status.

Designing Creditor Table

Enter the below Column names, data type, length and allow null attributes for the
Creditor Table, shown below:

As mentioned previously, a creditor may have several purchase records residing in the
Purchase Table; therefore, we will create a separate table for the supplier of MaxCorp.
We set the Cred_ID_VC as the primary key for this table and as a foreign key in the
Purchase Table. The fieldname, Credit_Term_TI, would record the credit term, in days
given for every purchase made by MaxCorp. This field will hold the key, to calculating
the ageing period of each purchase invoice. We shall discuss more on this area, when we
move towards Chapter 10. The fieldname Cred_Code_IN allows Dave to assign the
default account code for each supplier. This will be useful, when Dave begin to process
its suppliers’ invoices. As for now, we shall maintain one account code across all
suppliers. The amount posted for each invoice will interface with the clearing account, as
defined in Product_AccountSet_Table under the fieldname: Payable_TI.

Page 36

Summary

In Chapter 4, we have learned how to break down the Purchase Table into three
separate tables, the Purchase Table, the Product Table and the Creditor Table.

To summaries, in this chapter, we have discussed:

 How to normalize the Purchase Table by breaking up and eliminating some
duplicated field.

 The process and motive of creating a separate table for Supplier

 The purpose of creating Credit_Term_TI field in Creditor Table

 The purpose of creating Cred_Code_IN field in Creditor Table

Chapter 5

Developing the Sales Table

Normalizing Sale Table

In Chapter 2, we have learned how to create Sale Table for MaxCorp, now; it is time
to break down this table as we discover more missing elements that we will include in the
Sale table, as we progress further from here.

First Normal Form

It is generally logical, to have repeated sale coming from any of MaxCorp’s customer,
and Dave would need to record the billing transaction details in the Sale Table. Notice,
the above table has one field created for each customer, and Dave would have to repeat
entering the same customer name again if there is recurring sale coming from the same
customer. This would significantly consume a great amount of space, and would
definitely slow down the performance of your database server. What we witness here, is
duplication of unnecessary information. We can reduce the amount of unnecessary space
consumption by restructuring the above Sale Table. We can start, by, replacing the

Page 37

Cust_ID_VC field with an identity fieldname that identify a particular customer name
residing in the Customer Table. Before we go into replacing the original field, we need to
create a separate Customer Table to store all customer name and details that has trading
activity with MaxCorp.

Second Normal Form

Again, the above table would have a field that would be assigned a primary key
element, here, we adopt similar concept as what we have achieved in identifying the
primary key for the Purchase Table. We will assign the sales invoice number as the
default primary key element. Right click on the Inv_ID_VC field, and set it as primary
key. We have to link the fieldname Pdt_ID_VC to its primary key, by highlighting the
row on the Product Table, left-click on your mouse, while holding it, drag your mouse
towards the Sale Table and release.

Third Normal Form

While MaxCorp is cautious in making timely payment to its supplier, it is equally
important as well in ensuring that all debts due are collected in time. Currently, MaxCorp
do not have field that store credit term allocated for each of its sales transaction, we will
create this field to allow the user to keep track on the ageing of all debts due to MaxCorp.
We will include this field in the Customer Table.

Enter the above fieldnames, data type, length and the allow nulls attribute in the Sale
Table.

Sale Table

As mentioned under the second normal form, we will assign the Inv_ID_VC as the
primary key and unique identifier to individual sale record stored in Sale Table. We could
keep track on the collection status of each customer’s invoices, by setting the Status_BT
field as a bit data type, specifying 1 as paid, and 0 as unpaid status.

Enter the below fieldnames, data type, length and the allow nulls attribute in the
Customer Table.

Designing Customer Table

Page 38

Notice, that, this table has similar attribute as in the Creditor Table. It contains
customer details elements, name, address, contact and credit term. The Cust_Code_VC
field will hold the user defined account code for capturing the debtor amount in the
Journal Table. We could assign a different debtor account code for each customer, but,
the code would need to be created in the COA Table beforehand.

Summary

In Chapter 5, we have discovered the key element that makes up the Sale Table, the
importance of creating a customer table and the functions of each fields created in the
Sale and Customer Table.

 To summaries, in this chapter, we have discussed:

 How to normalize the Sale Table by breaking up and eliminating some duplicated
field.

 The purpose of creating a separate table for customer

 The purpose of creating Credit_Term_TI field in Customer Table

 The purpose of creating Cust_Code_VC field in Customer Table

Chapter 6

Developing the Cash Table

Normalizing Cash Table

Page 39

The Cash Table would hold information on payment and collection. Dave has
mentioned the key elements that he wants, as shown on the Cash Table drawn above.
This table looks simple, but beyond its surface, it holds duplicate information, and some
key elements are missing. In the following discussion, we will analyze further on how we
can reshape the design of the Cash Table that would benefit MaxCorp more in terms of
speed and space efficiency.

First Normal Form

We will attempt to filter out duplicated data contained in the Cash Table. The
Amt_MO and Date_DT have been created in the Journal Table, thus we can remove these
two fields. We can also do away with the Descrip_VC column, as we have included it in
the Journal Table too. We will include the Doc_No_VC field in the Cash Table, as this
field would allow us access to the three fields that we have removed from the Cash Table.

Second Normal Form

Dave requested, that, he would like to have some cash flow reports generated for
MaxCorp. He would like to review reports that cover on MaxCorp’s forecast and bank
reconciliation. For this special purpose, we will include two additional key fields in the
Cash Table, the Cash_Type_VC and the Cash_Category_VC fields. The Cash_Type_VC
field will categories the type of expenditure or income arising from MaxCorp payment
and collection. The Cash_Category_VC would be the sub category of the main category
type created in the Cash_Type_VC. We will discover this in depth, when we go to
Chapter 12.

Third Normal Form

We also want to identify the bankers that, are servicing MaxCorp, for this reason, we
shall create an identity field for each of MaxCorp’s banker. Create a fieldname:
Bank_Code_VC, next create a new table called Bank_T, to store the name, address,
contact of each of MaxCorp’s bankers. We would also want to interface all payment and
collection with the Creditor Table and Customer Table, create the two fields named,
AR_Code_IN and AP_Code_IN in the Bank Table.

Enter the following column names, data type, length and allow null attributes in the Cash
Table as follows:

Page 40

Cash Table

We have redefined each of the fieldname created in the above Cash Table, with 4
newly created fieldnames. The first field constitutes a primary key field, as this field
would hold a row or a set of records of payment or collection contained in the Journal
Table, referencing it as a foreign key in the Journal Table. Each time, a payment or
collection transaction processing is made, the user, would have to define the type of
expenditure or income under the Cash_Type_VC field. We will go deeper on this topic
when we begin to create reports for Dave, under Chapter 12.

Enter the following column names, data type, length and allow null attributes in the Bank
Table as follows:

Designing Bank Table

Under this table, set the Bank_Code_VC as the primary key field. Next we would
want to provide Dave an option, to select the mode of transaction under the cash form
screen. Dave would want to have three choice of transaction, first, an option to select a
debtor account code, that will interface with the Cust_Code_VC field, created in the
Customer_Table for collection transaction, second, to select a creditor account code, to
interface with the Cred_Code_IN field located under the Creditor Table for effecting the
payment transaction, and, thirdly, an option to select account code from the COA Table
for each cash transaction purposes.

Summary

In Chapter 6, we learned, that, brainstorming with the user, would open up some new
ideas and requirement, as what Dave have personally shared his special needs of some
cash flow reports from the Cash Table. Then, we discovered the need to include some
mandatory fields, just to meet Dave’s expectation.

 To summarize, in this chapter, we have discussed:

 How to normalize the Cash Table by breaking up and eliminating some duplicated
field.

 The purpose of creating Cash_Category_VC field in the Cash Table.

Page 41

 The purpose of creating AR_Code_IN and AP_Code_IN field in Bank Table

Chapter 7

Developing the Asset Table

Normalizing Asset Table

Dave, have requested that MaxCorp, would want to have a master list for all of its
existing assets that would contain some relevant information as depicted on the above
table. The asset code, to identify the asset physically, their description, amount paid for
the asset, and also the name of its provider. It seems, that, we are close to achieving
Dave’s requirement, by looking at the above four fields. But, we are still far from
reaching our goal at this stage of our design. We will detect missing fields and expanding
the columns in the asset table, as we progress further in our below discussion.

First Normal Form

Notice the above table, contains a field that store value for each of MaxCorp’s asset, in
which we want to eliminate from this table. As mentioned, under Chapter 2, we will
contain all debit and credit amount in one central table, the Journal Table, in which a set
of double-entry are grouped under a journal number located in the Doc_No_VC fields.
Thus, we will include the Doc_No_VC field in the asset table, in replace of the
fieldname:FA_Amt_MO.

Second Normal Form

Moving forward, it is unlikely that, MaxCorp will purchase its asset from its same
source of supplier. We may want to create a separate table to keep the name and
addresses of each of its supplier. Wait, we have previously created a table for creditor, so,
let’s add the fieldname Cred_Code_IN, but, then again, we may even by pass this field,
as we can reference to the Creditor Table via the Doc_No_VC field. We will go into this
in more detail under Chapter 13, where we will start creating reports from the asset table.

Third Normal Form

Page 42

Dave has requested that, he would like to see a summary of all MaxCorp’s asset, by
type, segregated by different category of treatment. In order to achieve this, we need to
create the first field, to hold the asset type, and the second field to contain the treatment
category. We shall understand this clearly, as we begin developing the relevant report
under Chapter 13.

Enter the following column names, data type, length and allow null attributes in the Asset
Table as follows:

Asset Table

As we can see, from the table above, we have expanded the fields in the asset table, to
include one more important field, the Doc_No_VC that would allow user the access to
each particular asset’s value, date of purchase and its provider name. We can retrieve all
this, by joining the following table in our query, Asset table | Journal Table | Purchase
Table | Creditor Table. We will discuss this in more detail as we touches on creating
reports for Dave in Chapter 13.

Summary

In Chapter 7, we learned that, MaxCorp wants to maintain a master list of all of its
existing asset, then we start to create table to store all information related to its assets, and
created some additional fields to meet some of Dave’s required reports.

 To summarize, in this chapter, we have discussed:

 How to normalize the Asset Table by creating and eliminating some duplicated
field.

 The purpose of creating FA_Type_VC field in the Asset Table.

 The purpose of creating FA_Category_VC field in the Asset Table.

Introductory Chapters

Page 43

If you find the contents of this book interesting, and would like to find out how to
create SQL script to generate your own customized financial report, you may find the
following Chapters interesting in the author’s complete version on ‘Accounting Database
Design’.

The Complete version includes the following Chapters :

1. Chapter 8 : Creating Reports from Journals Table
2. Chapter 9 : Creating Reports from Inventory Table
3. Chapter 10 : Creating Reports from Purchase Table
4. Chapter 11 : Creating Reports from Sales Table
5. Chapter 12 : Creating Reports from Cash Table
6. Chapter 13 : Creating Reports from Asset Table

Download Link for Complete version : http://www.accountingdes.com

-End-

Page 44

http://www.accountingdes.com/

