ANALYZE BIG FINANCIAL DATA

Yves Hilpisch

www.it-ebooks.info

http://www.it-ebooks.info/

Python for Finance
Yves Hilpisch

OREILLY"

Beijing « Cambridge * Farnham « Kéln * Sebastopol * Tokyo

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

Not too long ago, Python as a programming language and platform technology was
considered exotic — if not completely irrelevant — in the financial industry. By contrast,
in 2014 there are many examples of large financial institutions — like Bank of America
Merrill Lynch with its Quartz project, or JP Morgan Chase with the Athena project — that
strategically use Python alongside other established technologies to build, enhance, and
maintain some of their core IT systems. There is also a multitude of larger and smaller
hedge funds that make heavy use of Python’s capabilities when it comes to efficient
financial application development and productive financial analytics efforts.

Similarly, many of today’s Master of Financial Engineering programs (or programs
awarding similar degrees) use Python as one of the core languages for teaching the
translation of quantitative finance theory into executable computer code. Educational
programs and trainings targeted to finance professionals are also increasingly
incorporating Python into their curricula. Some now teach it as the main implementation
language.

There are many reasons why Python has had such recent success and why it seems it will
continue to do so in the future. Among these reasons are its syntax, the ecosystem of
scientific and data analytics libraries available to developers using Python, its ease of
integration with almost any other technology, and its status as open source. (See Chapter 1
for a few more insights in this regard.)

For that reason, there is an abundance of good books available that teach Python from
different angles and with different focuses. This book is one of the first to introduce and
teach Python for finance — in particular, for quantitative finance and for financial
analytics. The approach is a practical one, in that implementation and illustration come
before theoretical details, and the big picture is generally more focused on than the most
arcane parameterization options of a certain class or function.

Most of this book has been written in the powerful, interactive, browser-based IPython
Notebook environment (explained in more detail in Chapter 2). This makes it possible to
provide the reader with executable, interactive versions of almost all examples used in this
book.

Those who want to immediately get started with a full-fledged, interactive financial
analytics environment for Python (and, for instance, R and Julia) should go to
http://oreilly.quant-platform.com and try out the Python Quant Platform (in combination
with the IPython Notebook files and code that come with this book). You should also
have a look at DX analytics, a Python-based financial analytics library. My other book,
Derivatives Analytics with Python (Wiley Finance), presents more details on the theory
and numerical methods for advanced derivatives analytics. It also provides a wealth of
readily usable Python code. Further material, and, in particular, slide decks and videos of
talks about Python for Quant Finance can be found on my private website.

If you want to get involved in Python for Quant Finance community events, there are
opportunities in the financial centers of the world. For example, I myself (co)organize
meetup groups with this focus in London (cf. http://www.meetup.com/Python-for-Quant-

www.it-ebooks.info

http://oreilly.quant-platform.com
http://dx-analytics.com
http://hilpisch.com
http://www.meetup.com/Python-for-Quant-Finance-London/
http://www.it-ebooks.info/

Finance-L.ondon/) and New York City (cf. http://www.meetup.com/Python-for-Quant-
Finance-NYC/). There are also For Python Quants conferences and workshops several

times a year (cf. http://forpythonquants.com and http://pythonquants.com).

I am really excited that Python has established itself as an important technology in the
financial industry. I am also sure that it will play an even more important role there in the
future, in fields like derivatives and risk analytics or high performance computing. My
hope is that this book will help professionals, researchers, and students alike make the
most of Python when facing the challenges of this fascinating field.

www.it-ebooks.info

http://www.meetup.com/Python-for-Quant-Finance-NYC/
http://forpythonquants.com
http://pythonquants.com
http://www.it-ebooks.info/

Conventions Used in This Book
The following typographical conventions are used in this book:
Italic

Indicates new terms, URLSs, and email addresses.
Constant width

Used for program listings, as well as within paragraphs to refer to software packages,
programming languages, file extensions, filenames, program elements such as
variable or function names, databases, data types, environment variables, statements,
and keywords.

Constant width italic

Shows text that should be replaced with user-supplied values or by values determined
by context.

TIP

This element signifies a tip or suggestion.

WARNING

This element indicates a warning or caution.

www.it-ebooks.info

http://www.it-ebooks.info/

Using Code Examples

Supplemental material (in particular, [IPython Notebooks and Python scripts/modules) is
available for download at http://oreilly.quant-platform.com.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not need to
contact us for permission unless you’re reproducing a significant portion of the code. For
example, writing a program that uses several chunks of code from this book does not
require permission. Selling or distributing a CD-ROM of examples from O’Reilly books
does require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Python for Finance by Yves Hilpisch
(O’Reilly). Copyright 2015 Yves Hilpisch, 978-1-491-94528-5.”

If you feel your use of code examples falls outside fair use or the permission given above,

feel free to contact us at permissions@oreilly.com.

www.it-ebooks.info

http://oreilly.quant-platform.com
mailto:permissions@oreilly.com
http://www.it-ebooks.info/

Safari® Books Online

NOTE

Safari Books Online is an on-demand digital library that delivers expert content in both book and video form from
the world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and creative
professionals use Safari Books Online as their primary resource for research, problem
solving, learning, and certification training.

Safari Books Online offers a range of plans and pricing for enterprise, government,
education, and individuals.

Members have access to thousands of books, training videos, and prepublication
manuscripts in one fully searchable database from publishers like O’Reilly Media,
Prentice Hall Professional, Addison-Wesley Professional, Microsoft Press, Sams, Que,
Peachpit Press, Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan
Kaufmann, IBM Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New Riders,
McGraw-Hill, Jones & Bartlett, Course Technology, and hundreds more. For more
information about Safari Books Online, please visit us online.

www.it-ebooks.info

http://safaribooksonline.com
https://www.safaribooksonline.com/explore/
https://www.safaribooksonline.com/pricing/
https://www.safaribooksonline.com/enterprise/
https://www.safaribooksonline.com/government/
https://www.safaribooksonline.com/academic-public-library/
https://www.safaribooksonline.com/our-library/
http://safaribooksonline.com/
http://www.it-ebooks.info/

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/python-finance.

To comment or ask technical questions about this book, send email to

bookquestions@oreilly.com.

For more information about our books, courses, conferences, and news, see our website at
http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia
Watch us on YouTube: http://www.youtube.com/oreillymedia

www.it-ebooks.info

http://bit.ly/python-finance
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia
http://www.it-ebooks.info/

Acknowledgments

I want to thank all those who helped to make this book a reality, in particular those who
have provided honest feedback or even completely worked out examples, like Ben Lerner,
James Powell, Michael Schwed, Thomas Wiecki or Felix Zumstein. Similarly, I would
like to thank reviewers Hugh Brown, Jennifer Pierce, Kevin Sheppard, and Galen
Wilkerson. The book benefited from their valuable feedback and the many suggestions.

The book has also benefited significantly as a result of feedback I received from the
participants of the many conferences and workshops I was able to present at in 2013 and
2014: PyData, For Python Quants, Big Data in Quant Finance, EuroPython, EuroScipy,
PyCon DE, PyCon Ireland, Parallel Data Analysis, Budapest BI Forum and CodeJam. I
also got valuable feedback during my many presentations at Python meetups in Berlin,
London, and New York City.

Last but not least, I want to thank my family, which fully accepts that I do what I love
doing most and this, in general, rather intensively. Writing and finishing a book of this
length over the course of a year requires a large time commitment — on top of my usually
heavy workload and packed travel schedule — and makes it necessary to sit sometimes
more hours in solitude in front the computer than expected. Therefore, thank you Sandra,
Lilli, and Henry for your understanding and support. I dedicate this book to my lovely
wife Sandra, who is the heart of our family.

Yves Saarland, November 2014

www.it-ebooks.info

http://www.it-ebooks.info/

Part 1. Python and Finance

This part introduces Python for finance. It consists of three chapters:

e Chapter 1 briefly discusses Python in general and argues why Python is indeed well
suited to address the technological challenges in the finance industry and in financial
(data) analytics.

e Chapter 2, on Python infrastructure and tools, is meant to provide a concise overview
of the most important things you have to know to get started with interactive
analytics and application development in Python; the related Appendix A surveys
some selected best practices for Python development.

e Chapter 3 immediately dives into three specific financial examples; it illustrates how
to calculate implied volatilities of options with Python, how to simulate a financial
model with Python and the array library NumPy, and how to implement a backtesting
for a trend-based investment strategy. This chapter should give the reader a feeling
for what it means to use Python for financial analytics — details are not that
important at this stage; they are all explained in Part II.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1. Why Python for Finance?

Banks are essentially technology firms.
— Hugo Banziger

www.it-ebooks.info

http://www.it-ebooks.info/

What Is Python?

Python is a high-level, multipurpose programming language that is used in a wide range of
domains and technical fields. On the Python website you find the following executive
summary (cf. https://www.python.org/doc/essays/blurb):

Python is an interpreted, object-oriented, high-level programming language with dynamic semantics. Its high-
level built in data structures, combined with dynamic typing and dynamic binding, make it very attractive for
Rapid Application Development, as well as for use as a scripting or glue language to connect existing components
together. Python’s simple, easy to learn syntax emphasizes readability and therefore reduces the cost of program
maintenance. Python supports modules and packages, which encourages program modularity and code reuse. The
Python interpreter and the extensive standard library are available in source or binary form without charge for all
major platforms, and can be freely distributed.

This pretty well describes why Python has evolved into one of the major programming
languages as of today. Nowadays, Python is used by the beginner programmer as well as
by the highly skilled expert developer, at schools, in universities, at web companies, in
large corporations and financial institutions, as well as in any scientific field.

Among others, Python is characterized by the following features:
Open source

Python and the majority of supporting libraries and tools available are open source
and generally come with quite flexible and open licenses.

Interpreted

The reference cPython implementation is an interpreter of the language that
translates Python code at runtime to executable byte code.

Multiparadigm

Python supports different programming and implementation paradigms, such as
object orientation and imperative, functional, or procedural programming.

Multipurpose

Python can be used for rapid, interactive code development as well as for building
large applications; it can be used for low-level systems operations as well as for high-
level analytics tasks.

Cross-platform

Python is available for the most important operating systems, such as windows,
Linux, and Mac 0S; it is used to build desktop as well as web applications; it can be
used on the largest clusters and most powerful servers as well as on such small
devices as the Raspberry Pi (cf. http://www.raspberrypi.org).

Dynamically typed

Types in Python are in general inferred during runtime and not statically declared as
in most compiled languages.

Indentation aware

In contrast to the majority of other programming languages, Python uses indentation

www.it-ebooks.info

https://www.python.org/doc/essays/blurb
http://www.raspberrypi.org
http://www.it-ebooks.info/

for marking code blocks instead of parentheses, brackets, or semicolons.
Garbage collecting

Python has automated garbage collection, avoiding the need for the programmer to
manage memory.

When it comes to Python syntax and what Python is all about, Python Enhancement
Proposal 20 — i.e., the so-called “Zen of Python” — provides the major guidelines. It can
be accessed from every interactive shell with the command import this:

$ ipython
Python 2.7.6 |Anaconda 1.9.1 (x86_64)| (default, Jan 10 2014, 11:23:15)
Type “copyright”, “credits” or “license” for more information.

IPython 2.0.0-An enhanced Interactive Python.
-> Introduction and overview of IPython’s features.
%qu1ckref -> Quick reference.
help -> Python’s own help system.
object? -> Details about ‘object’, use ‘object??’ for extra details.

In [1]: import
The Zen of Python, by Tim Peters

Beautiful is better than ugly.

Explicit is better than implicit.

Simple is better than complex.

Complex is better than complicated.

Flat is better than nested.

Sparse is better than dense.

Readability counts.

Special cases aren’t special enough to break the rules.

Although practicality beats purity.

Errors should never pass silently.

Unless explicitly silenced.

In the face of ambiguity, refuse the temptation to guess.

There should be one—and preferably only one—obvious way to do it.
Although that way may not be obvious at first unless you’re Dutch.
Now is better than never.

Although never is often better than *right* now.

If the implementation is hard to explain, it’s a bad idea.

If the implementation is easy to explain, it may be a good idea.
Namespaces are one honking great idea—let’s do more of those!

Brief History of Python

Although Python might still have the appeal of something new to some people, it has been
around for quite a long time. In fact, development efforts began in the 1980s by Guido van
Rossum from the Netherlands. He is still active in Python development and has been
awarded the title of Benevolent Dictator for Life by the Python community (cf.
http://en.wikipedia.org/wiki/History of Python). The following can be considered
milestones in the development of Python:

Python 0.9.0 released in 1991 (first release)
Python 1.0 released in 1994
Python 2.0 released in 2000
Python 2.6 released in 2008
Python 2.7 released in 2010
Python 3.0 released in 2008
Python 3.3 released in 2010
Python 3.4 released in 2014

www.it-ebooks.info

http://en.wikipedia.org/wiki/History_of_Python
http://www.it-ebooks.info/

It is remarkable, and sometimes confusing to Python newcomers, that there are two major
versions available, still being developed and, more importantly, in parallel use since 2008.
As of this writing, this will keep on for quite a while since neither is there 100% code
compatibility between the versions, nor are all popular libraries available for Python 3.x.
The majority of code available and in production is still Python 2.6/2.7, and this book is
based on the 2.7.x version, although the majority of code examples should work with
versions 3.x as well.

The Python Ecosystem

A major feature of Python as an ecosystem, compared to just being a programming
language, is the availability of a large number of libraries and tools. These libraries and
tools generally have to be imported when needed (e.g., a plotting library) or have to be
started as a separate system process (e.g., a Python development environment). Importing
means making a library available to the current namespace and the current Python
interpreter process.

Python itself already comes with a large set of libraries that enhance the basic interpreter
in different directions. For example, basic mathematical calculations can be done without
any importing, while more complex mathematical functions need to be imported through
the math library:

In [2]: 100 * 2.5 + 50

out[2]: 300.0

In [3]: log(1)

NameError: name ‘log’ is not defined
In [4]: from import *

In [5]: log(1l)

Out[5]: 0.0

Although the so-called “star import” (i.e., the practice of importing everything from a
library via from library import *)is sometimes convenient, one should generally use
an alternative approach that avoids ambiguity with regard to name spaces and
relationships of functions to libraries. This then takes on the form:

In [6]: import

In [7]: math.log(1)
Out[7]: 0.0

While math is a standard Python library available with any installation, there are many
more libraries that can be installed optionally and that can be used in the very same
fashion as the standard libraries. Such libraries are available from different (web) sources.
However, it is generally advisable to use a Python distribution that makes sure that all
libraries are consistent with each other (see Chapter 2 for more on this topic).

The code examples presented so far all use IPython (cf. http://www.ipython.org), which is
probably the most popular interactive development environment (IDE) for Python.
Although it started out as an enhanced shell only, it today has many features typically
found in IDEs (e.g., support for profiling and debugging). Those features missing are
typically provided by advanced text/code editors, like Ssublime Text (cf.
http://www.sublimetext.com). Therefore, it is not unusual to combine IPython with one’s

www.it-ebooks.info

http://www.ipython.org
http://www.sublimetext.com
http://www.it-ebooks.info/

text/code editor of choice to form the basic tool set for a Python development process.

IPython is also sometimes called the killer application of the Python ecosystem. It
enhances the standard interactive shell in many ways. For example, it provides improved
command-line history functions and allows for easy object inspection. For instance, the
help text for a function is printed by just adding a ? behind the function name (adding ??
will provide even more information):

In [8]: math.log?

Type: builtin_function_or_method
String Form:<built-in function log>
Docstring:

log(x[, base])

Return the logarithm of x to the given base.
If the base not specified, returns the natural logarithm (base e) of x.

In [9]:

IPython comes in three different versions: a shell version, one based on a QT graphical
user interface (the QT console), and a browser-based version (the Notebook). This is just
meant as a teaser; there is no need to worry about the details now since Chapter 2
introduces IPython in more detail.

Python User Spectrum

Python does not only appeal to professional software developers; it is also of use for the
casual developer as well as for domain experts and scientific developers.

Professional software developers find all that they need to efficiently build large
applications. Almost all programming paradigms are supported; there are powerful
development tools available; and any task can, in principle, be addressed with Python.
These types of users typically build their own frameworks and classes, also work on the
fundamental Python and scientific stack, and strive to make the most of the ecosystem.

Scientific developers or domain experts are generally heavy users of certain libraries and
frameworks, have built their own applications that they enhance and optimize over time,
and tailor the ecosystem to their specific needs. These groups of users also generally
engage in longer interactive sessions, rapidly prototyping new code as well as exploring
and visualizing their research and/or domain data sets.

Casual programmers like to use Python generally for specific problems they know that
Python has its strengths in. For example, visiting the gallery page of matplotlib, copying
a certain piece of visualization code provided there, and adjusting the code to their specific
needs might be a beneficial use case for members of this group.

There is also another important group of Python users: beginner programmers, i.e., those
that are just starting to program. Nowadays, Python has become a very popular language

at universities, colleges, and even schools to introduce students to programming.l!! A
major reason for this is that its basic syntax is easy to learn and easy to understand, even
for the nondeveloper. In addition, it is helpful that Python supports almost all

programming styles. 2!
The Scientific Stack

There is a certain set of libraries that is collectively labeled the scientific stack. This stack

www.it-ebooks.info

http://www.it-ebooks.info/

comprises, among others, the following libraries:
NumPy

NumPy provides a multidimensional array object to store homogenous or
heterogeneous data; it also provides optimized functions/methods to operate on this
array object.

SciPy

SciPy is a collection of sublibraries and functions implementing important standard
functionality often needed in science or finance; for example, you will find functions
for cubic splines interpolation as well as for numerical integration.

matplotlib

This is the most popular plotting and visualization library for Python, providing both
2D and 3D visualization capabilities.

PyTables

PyTables is a popular wrapper for the HDF5 data storage library (cf.
http://www.hdfgroup.org/HDF5/); it is a library to implement optimized, disk-based
I/O operations based on a hierarchical database/file format.

pandas

pandas builds on NumPy and provides richer classes for the management and analysis
of time series and tabular data; it is tightly integrated with matplotlib for plotting
and PyTables for data storage and retrieval.

Depending on the specific domain or problem, this stack is enlarged by additional
libraries, which more often than not have in common that they build on top of one or more
of these fundamental libraries. However, the least common denominator or basic building
block in general is the NumPy ndarray class (cf. Chapter 4).

Taking Python as a programming language alone, there are a number of other languages
available that can probably keep up with its syntax and elegance. For example, Ruby is
quite a popular language often compared to Python. On the language’s website you find
the following description:

A dynamic, open source programming language with a focus on simplicity and productivity. It has an elegant
syntax that is natural to read and easy to write.

The majority of people using Python would probably also agree with the exact same
statement being made about Python itself. However, what distinguishes Python for many
users from equally appealing languages like Ruby is the availability of the scientific stack.
This makes Python not only a good and elegant language to use, but also one that is
capable of replacing domain-specific languages and tool sets like Matlab or R. In addition,
it provides by default anything that you would expect, say, as a seasoned web developer or
systems administrator.

www.it-ebooks.info

http://www.numpy.org
http://www.scipy.org
http://www.matplotlib.org
http://www.pytables.org
http://www.hdfgroup.org/HDF5/
http://pandas.pydata.org
http://www.ruby-lang.org
http://www.it-ebooks.info/

Technology in Finance

Now that we have some rough ideas of what Python is all about, it makes sense to step
back a bit and to briefly contemplate the role of technology in finance. This will put us in
a position to better judge the role Python already plays and, even more importantly, will
probably play in the financial industry of the future.

In a sense, technology per se is nothing special to financial institutions (as compared, for
instance, to industrial companies) or to the finance function (as compared to other
corporate functions, like logistics). However, in recent years, spurred by innovation and
also regulation, banks and other financial institutions like hedge funds have evolved more
and more into technology companies instead of being just financial intermediaries.
Technology has become a major asset for almost any financial institution around the
globe, having the potential to lead to competitive advantages as well as disadvantages.
Some background information can shed light on the reasons for this development.

Technology Spending

Banks and financial institutions together form the industry that spends the most on
technology on an annual basis. The following statement therefore shows not only that
technology is important for the financial industry, but that the financial industry is also
really important to the technology sector:

Banks will spend 4.2% more on technology in 2014 than they did in 2013, according to IDC analysts. Overall IT

spend in financial services globally will exceed $430 billion in 2014 and surpass $500 billion by 2020, the
analysts say.

— Crosman 2013

Large, multinational banks today generally employ thousands of developers that maintain
existing systems and build new ones. Large investment banks with heavy technological
requirements show technology budgets often of several billion USD per year.

Technology as Enabler

The technological development has also contributed to innovations and efficiency
improvements in the financial sector:
Technological innovations have contributed significantly to greater efficiency in the derivatives market. Through
innovations in trading technology, trades at Eurex are today executed much faster than ten years ago despite the

strong increase in trading volume and the number of quotes ... These strong improvements have only been
possible due to the constant, high IT investments by derivatives exchanges and clearing houses.

— Deutsche Borse Group 2008

As a side effect of the increasing efficiency, competitive advantages must often be looked
for in ever more complex products or transactions. This in turn inherently increases risks
and makes risk management as well as oversight and regulation more and more difficult.
The financial crisis of 2007 and 2008 tells the story of potential dangers resulting from
such developments. In a similar vein, “algorithms and computers gone wild” also
represent a potential risk to the financial markets; this materialized dramatically in the so-
called flash crash of May 2010, where automated selling led to large intraday drops in
certain stocks and stock indices (cf. http://en.wikipedia.org/wiki/2010_Flash_Crash).

Technology and Talent as Barriers to Entry

www.it-ebooks.info

http://en.wikipedia.org/wiki/2010_Flash_Crash
http://www.it-ebooks.info/

On the one hand, technology advances reduce cost over time, ceteris paribus. On the other
hand, financial institutions continue to invest heavily in technology to both gain market
share and defend their current positions. To be active in certain areas in finance today
often brings with it the need for large-scale investments in both technology and skilled
staff. As an example, consider the derivatives analytics space (see also the case study in
Part III of the book):

Aggregated over the total software lifecycle, firms adopting in-house strategies for OTC [derivatives] pricing will
require investments between $25 million and $36 million alone to build, maintain, and enhance a complete
derivatives library.

— Ding 2010

Not only is it costly and time-consuming to build a full-fledged derivatives analytics
library, but you also need to have enough experts to do so. And these experts have to have
the right tools and technologies available to accomplish their tasks.

Another quote about the early days of Long-Term Capital Management (LTCM), formerly
one of the most respected quantitative hedge funds — which, however, went bust in the
late 1990s — further supports this insight about technology and talent:

Meriwether spent $20 million on a state-of-the-art computer system and hired a crack team of financial engineers

to run the show at LTCM, which set up shop in Greenwich, Connecticut. It was risk management on an industrial
level.

— Patterson 2010

The same computing power that Meriwether had to buy for millions of dollars is today
probably available for thousands. On the other hand, trading, pricing, and risk
management have become so complex for larger financial institutions that today they need
to deploy IT infrastructures with tens of thousands of computing cores.

Ever-Increasing Speeds, Frequencies, Data Volumes

There is one dimension of the finance industry that has been influenced most by
technological advances: the speed and frequency with which financial transactions are
decided and executed. The recent book by Lewis (2014) describes so-called flash trading
— i.e., trading at the highest speeds possible — in vivid detail.

On the one hand, increasing data availability on ever-smaller scales makes it necessary to
react in real time. On the other hand, the increasing speed and frequency of trading let the
data volumes further increase. This leads to processes that reinforce each other and push
the average time scale for financial transactions systematically down:

Renaissance’s Medallion fund gained an astonishing 80 percent in 2008, capitalizing on the market’s extreme

volatility with its lightning-fast computers. Jim Simons was the hedge fund world’s top earner for the year,
pocketing a cool $2.5 billion.

— Patterson 2010

Thirty years’ worth of daily stock price data for a single stock represents roughly 7,500
quotes. This kind of data is what most of today’s finance theory is based on. For example,
theories like the modern portfolio theory (MPT), the capital asset pricing model (CAPM),
and value-at-risk (VaR) all have their foundations in daily stock price data.

In comparison, on a typical trading day the stock price of Apple Inc. (AAPL) is quoted
around 15,000 times — two times as many quotes as seen for end-of-day quoting over a

www.it-ebooks.info

http://www.it-ebooks.info/

time span of 30 years. This brings with it a number of challenges:
Data processing

It does not suffice to consider and process end-of-day quotes for stocks or other
financial instruments; “too much” happens during the day for some instruments
during 24 hours for 7 days a week.

Analytics speed

Decisions often have to be made in milliseconds or even faster, making it necessary
to build the respective analytics capabilities and to analyze large amounts of data in
real time.

Theoretical foundations

Although traditional finance theories and concepts are far from being perfect, they
have been well tested (and sometimes well rejected) over time; for the millisecond
scales important as of today, consistent concepts and theories that have proven to be
somewhat robust over time are still missing.

All these challenges can in principle only be addressed by modern technology. Something
that might also be a little bit surprising is that the lack of consistent theories often is
addressed by technological approaches, in that high-speed algorithms exploit market
microstructure elements (e.g., order flow, bid-ask spreads) rather than relying on some
kind of financial reasoning.

The Rise of Real-Time Analytics

There is one discipline that has seen a strong increase in importance in the finance
industry: financial and data analytics. This phenomenon has a close relationship to the
insight that speeds, frequencies, and data volumes increase at a rapid pace in the industry.
In fact, real-time analytics can be considered the industry’s answer to this trend.

Roughly speaking, “financial and data analytics” refers to the discipline of applying
software and technology in combination with (possibly advanced) algorithms and methods
to gather, process, and analyze data in order to gain insights, to make decisions, or to
fulfill regulatory requirements, for instance. Examples might include the estimation of
sales impacts induced by a change in the pricing structure for a financial product in the
retail branch of a bank. Another example might be the large-scale overnight calculation of
credit value adjustments (CVA) for complex portfolios of derivatives trades of an
investment bank.

There are two major challenges that financial institutions face in this context:
Big data

Banks and other financial institutions had to deal with massive amounts of data even
before the term “big data” was coined; however, the amount of data that has to be
processed during single analytics tasks has increased tremendously over time,
demanding both increased computing power and ever-larger memory and storage
capacities.

Real-time economy

www.it-ebooks.info

http://www.it-ebooks.info/

In the past, decision makers could rely on structured, regular planning, decision, and
(risk) management processes, whereas they today face the need to take care of these
functions in real time; several tasks that have been taken care of in the past via
overnight batch runs in the back office have now been moved to the front office and
are executed in real time.

Again, one can observe an interplay between advances in technology and
financial/business practice. On the one hand, there is the need to constantly improve
analytics approaches in terms of speed and capability by applying modern technologies.
On the other hand, advances on the technology side allow new analytics approaches that
were considered impossible (or infeasible due to budget constraints) a couple of years or
even months ago.

One major trend in the analytics space has been the utilization of parallel architectures on
the CPU (central processing unit) side and massively parallel architectures on the GPGPU
(general-purpose graphical processing units) side. Current GPGPUs often have more than
1,000 computing cores, making necessary a sometimes radical rethinking of what
parallelism might mean to different algorithms. What is still an obstacle in this regard is
that users generally have to learn new paradigms and techniques to harness the power of

such hardware.[2!

www.it-ebooks.info

http://www.it-ebooks.info/

Python for Finance

The previous section describes some selected aspects characterizing the role of technology
in finance:

Costs for technology in the finance industry

Technology as an enabler for new business and innovation
Technology and talent as barriers to entry in the finance industry
Increasing speeds, frequencies, and data volumes

The rise of real-time analytics

In this section, we want to analyze how Python can help in addressing several of the
challenges implied by these aspects. But first, on a more fundamental level, let us examine
Python for finance from a language and syntax standpoint.

Finance and Python Syntax

Most people who make their first steps with Python in a finance context may attack an
algorithmic problem. This is similar to a scientist who, for example, wants to solve a
differential equation, wants to evaluate an integral, or simply wants to visualize some data.
In general, at this stage, there is only little thought spent on topics like a formal
development process, testing, documentation, or deployment. However, this especially
seems to be the stage when people fall in love with Python. A major reason for this might
be that the Python syntax is generally quite close to the mathematical syntax used to
describe scientific problems or financial algorithms.

We can illustrate this phenomenon by a simple financial algorithm, namely the valuation
of a European call option by Monte Carlo simulation. We will consider a Black-Scholes-
Merton (BSM) setup (see also Chapter 3) in which the option’s underlying risk factor
follows a geometric Brownian motion.

Suppose we have the following numerical parameter values for the valuation:

e Initial stock index level S, = 100

Strike price of the European call option K = 105
Time-to-maturity T'= 1 year

Constant, riskless short rate r = 5%

Constant volatility =20%

In the BSM model, the index level at maturity is a random variable, given by Equation 1-1
with z being a standard normally distributed random variable.

Equation 1-1. Black-Scholes-Merton (1973) index level at maturity

St =35, exp r—%az T+0oVTz

www.it-ebooks.info

http://www.it-ebooks.info/

The following is an algorithmic description of the Monte Carlo valuation procedure:

1. Draw I (pseudo)random numbers z(i), i € {1, 2, ..., I}, from the standard normal
distribution.
2. Calculate all resulting index levels at maturity S(i) for given z(i) and Equation 1-1.

Calculate all inner values of the option at maturity as h{(i) = max(SH{i) — K,0).

4. Estimate the option present value via the Monte Carlo estimator given in Equation 1-
2.

w

Equation 1-2. Monte Carlo estimator for European option

Cy~e L Zh (i)

We are now going to translate this problem and algorithrn into Python code. The reader
might follow the single steps by using, for example, IPython — this is, however, not
really necessary at this stage.

First, let us start with the parameter values. This is really easy:

SO = 100.
K = 105.
T=1.0

r =0.05

sigma = 0.2

Next, the valuation algorithm. Here, we will for the first time use NumPy, which makes life
quite easy for our second task:

from import *
I = 100000

z = random.standard_normal(I)

ST = SO * exp((r - 0.5 * sigma ** 2) * T + sigma * sqrt(T) * z)
hT = maximum(ST - K, 0)
Co = exp(-r * T) * sum(hT) / I

Third, we print the result:

print “Value of the European Call Option %5.3f"” % CO

The output might be:[!

Value of the European Call Option 8.019
Three aspects are worth highlighting:
Syntax

The Python syntax is indeed quite close to the mathematical syntax, e.g., when it
comes to the parameter value assignments.

Translation

Every mathematical and/or algorithmic statement can generally be translated into a

www.it-ebooks.info

http://www.it-ebooks.info/

single line of Python code.
Vectorization

One of the strengths of NumPy is the compact, vectorized syntax, e.g., allowing for
100,000 calculations within a single line of code.

This code can be used in an interactive environment like IPython. However, code that is
meant to be reused regularly typically gets organized in so-called modules (or scripts),
which are single Python (i.e., text) files with the suffix .py. Such a module could in this
case look like Example 1-1 and could be saved as a file named bsm_mcs_euro.py.

Example 1-1. Monte Carlo valuation of European call option

#

Monte Carlo valuation of European call option
in Black-Scholes-Merton model

bsm_mcs_euro.py

#

import as

Parameter Values

SO = 100. # initial index level
K 105. # strike price

T 1.0 # time-to-maturity

r 0.05 # riskless short rate
sigma = 0.2 # volatility

I = 100000 # number of simulations

Valuation Algorithm

z = np.random.standard_normal(I) # pseudorandom numbers

ST = SO * np.exp((r - 0.5 * sigma ** 2) * T + sigma * np.sqrt(T) * z)
index values at maturity

np.maximum(ST - K, 0) # inner values at maturity

np.exp(-r * T) * np.sum(hT) / I # Monte Carlo estimator

hT
co

Result Output

print “Value of the European Call Option %5.3f” % CO

The rather simple algorithmic example in this subsection illustrates that Python, with its
very syntax, is well suited to complement the classic duo of scientific languages, English
and Mathematics. It seems that adding Python to the set of scientific languages makes it
more well rounded. We have

e English for writing, talking about scientific and financial problems, etc.

e Mathematics for concisely and exactly describing and modeling abstract aspects,
algorithms, complex quantities, etc.

e Python for technically modeling and implementing abstract aspects, algorithms,
complex quantities, etc.

MATHEMATICS AND PYTHON SYNTAX

There is hardly any programming language that comes as close to mathematical syntax as Python. Numerical
algorithms are therefore simple to translate from the mathematical representation into the Pythonic
implementation. This makes prototyping, development, and code maintenance in such areas quite efficient with
Python.

In some areas, it is common practice to use pseudocode and therewith to introduce a
fourth language family member. The role of pseudocode is to represent, for example,
financial algorithms in a more technical fashion that is both still close to the mathematical

www.it-ebooks.info

http://www.it-ebooks.info/

representation and already quite close to the technical implementation. In addition to the
algorithm itself, pseudocode takes into account how computers work in principle.

This practice generally has its cause in the fact that with most programming languages the
technical implementation is quite “far away” from its formal, mathematical representation.
The majority of programming languages make it necessary to include so many elements
that are only technically required that it is hard to see the equivalence between the
mathematics and the code.

Nowadays, Python is often used in a pseudocode way since its syntax is almost analogous
to the mathematics and since the technical “overhead” is kept to a minimum. This is
accomplished by a number of high-level concepts embodied in the language that not only
have their advantages but also come in general with risks and/or other costs. However, it is
safe to say that with Python you can, whenever the need arises, follow the same strict
implementation and coding practices that other languages might require from the outset. In
that sense, Python can provide the best of both worlds: high-level abstraction and rigorous
implementation.

Efficiency and Productivity Through Python
At a high level, benefits from using Python can be measured in three dimensions:
Efficiency

How can Python help in getting results faster, in saving costs, and in saving time?
Productivity

How can Python help in getting more done with the same resources (people, assets,
etc.)?

Quality
What does Python allow us to do that we could not do with alternative technologies?

A discussion of these aspects can by nature not be exhaustive. However, it can highlight
some arguments as a starting point.

Shorter time-to-results

A field where the efficiency of Python becomes quite obvious is interactive data analytics.
This is a field that benefits strongly from such powerful tools as IPython and libraries like
pandas.

Consider a finance student, writing her master’s thesis and interested in Google stock
prices. She wants to analyze historical stock price information for, say, five years to see
how the volatility of the stock price has fluctuated over time. She wants to find evidence
that volatility, in contrast to some typical model assumptions, fluctuates over time and is
far from being constant. The results should also be visualized. She mainly has to do the
following:

e Download Google stock price data from the Web.
e Calculate the rolling standard deviation of the log returns (volatility).

www.it-ebooks.info

http://www.it-ebooks.info/

e Plot the stock price data and the results.

These tasks are complex enough that not too long ago one would have considered them to
be something for professional financial analysts. Today, even the finance student can
easily cope with such problems. Let us see how exactly this works — without worrying
about syntax details at this stage (everything is explained in detail in subsequent chapters).

First, make sure to have available all necessary libraries:

In [1]: import as
import as
import as

Second, retrieve the data from, say, Google itself:

In [2]: goog = web.DataReader(‘GO0G’, data_source=‘google’,
start='3/14/2009', end='4/14/2014")
goog.tail()

out[2]: Open High Low Close Volume
Date
2014-04-08 542.60 555.00 541.61 554.90 3152406
2014-04-09 559.62 565.37 552.95 564.14 3324742
2014-04-10 565.00 565.00 539.90 540.95 4027743
2014-04-11 532.55 540.00 526.53 530.60 3916171
2014-04-14 538.25 544.10 529.56 532.52 2568020

5 rows x 5 columns

Third, implement the necessary analytics for the volatilities:

In [3]: goog[‘Log Ret’] = np.log(goog[‘Close’] / goog[‘Close’].shift(1))
goog[‘Volatility’] = pd.rolling_std(goog[‘Log_Ret’],
window=252) * np.sqrt(252)
Fourth, plot the results. To generate an inline plot, we use the IPython magic command
%matplotlib with the option inline:

In [4]: %matplotlib inline
goog[[‘Close’, ‘Volatility’]].plot(subplots=True, color=‘blue’,
figsize=(8, 6))
Figure 1-1 shows the graphical result of this brief interactive session with IPython. It can
be considered almost amazing that four lines of code suffice to implement three rather
complex tasks typically encountered in financial analytics: data gathering, complex and
repeated mathematical calculations, and visualization of results. This example illustrates
that pandas makes working with whole time series almost as simple as doing
mathematical operations on floating-point numbers.

www.it-ebooks.info

http://www.it-ebooks.info/

700

500

400

o s

100

Date
0.32

. | ﬁ;‘m =]

0.28 -

026 f

024 J“‘--L E

0221

0.20 i

0.1B - 1 1 1]
..LQ,"!.-% .'tl_:;‘-k ..Lla":l' ..Lla_':&' .Lla'\-h
Date

Figure 1-1. Google closing prices and yearly volatility

Translated to a professional finance context, the example implies that financial analysts
can — when applying the right Python tools and libraries, providing high-level abstraction
— focus on their very domain and not on the technical intrinsicalities. Analysts can react
faster, providing valuable insights almost in real time and making sure they are one step
ahead of the competition. This example of increased efficiency can easily translate into
measurable bottom-line effects.

Ensuring high performance

In general, it is accepted that Python has a rather concise syntax and that it is relatively
efficient to code with. However, due to the very nature of Python being an interpreted
language, the prejudice persists that Python generally is too slow for compute-intensive
tasks in finance. Indeed, depending on the specific implementation approach, Python can
be really slow. But it does not have to be slow — it can be highly performing in almost
any application area. In principle, one can distinguish at least three different strategies for
better performance:

Paradigm

In general, many different ways can lead to the same result in Python, but with rather
different performance characteristics; “simply” choosing the right way (e.g., a
specific library) can improve results significantly.

Compiling

Nowadays, there are several performance libraries available that provide compiled
versions of important functions or that compile Python code statically or dynamically
(at runtime or call time) to machine code, which can be orders of magnitude faster;
popular ones are Cython and Numba.

Parallelization
Many computational tasks, in particular in finance, can strongly benefit from parallel

execution; this is nothing special to Python but something that can easily be

www.it-ebooks.info

http://www.it-ebooks.info/

accomplished with it.

PERFORMANCE COMPUTING WITH PYTHON

Python per se is not a high-performance computing technology. However, Python has developed into an ideal
platform to access current performance technologies. In that sense, Python has become something like a glue
language for performance computing.

Later chapters illustrate all three techniques in detail. For the moment, we want to stick to
a simple, but still realistic, example that touches upon all three techniques.

A quite common task in financial analytics is to evaluate complex mathematical
expressions on large arrays of numbers. To this end, Python itself provides everything
needed:

In [1]: loops = 25000000
from import *
a = range(1l, loops)
def f(x):
return 3 * log(x) + cos(x) ** 2
%timeit r = [f(x) for x in a]

Out[1]: 1 loops, best of 3: 15 s per loop

The Python interpreter needs 15 seconds in this case to evaluate the function f 25,000,000
times.

The same task can be implemented using NumPy, which provides optimized (i.e., pre-
compiled), functions to handle such array-based operations:

In [2]: import as
a = np.arange(1, loops)
%timeit r = 3 * np.log(a) + np.cos(a) ** 2

Out[2]: 1 loops, best of 3: 1.69 s per loop
Using NumPy considerably reduces the execution time to 1.7 seconds.

However, there is even a library specifically dedicated to this kind of task. It is called
numexpr, for “numerical expressions.” It compiles the expression to improve upon the
performance of NumPy’s general functionality by, for example, avoiding in-memory copies
of arrays along the way:

In [3]: import as
ne.set_num_threads(1)
f = ‘3 * log(a) + cos(a) ** 2’
%timeit r = ne.evaluate(f)

Out[3]: 1 loops, best of 3: 1.18 s per loop

Using this more specialized approach further reduces execution time to 1.2 seconds.
However, numexpr also has built-in capabilities to parallelize the execution of the
respective operation. This allows us to use all available threads of a CPU:

In [4]: ne.set_num_threads(4)
%timeit r = ne.evaluate(f)

Out[4]: 1 loops, best of 3: 523 ms per loop

This brings execution time further down to 0.5 seconds in this case, with two cores and
four threads utilized. Overall, this is a performance improvement of 30 times. Note, in
particular, that this kind of improvement is possible without altering the basic
problem/algorithm and without knowing anything about compiling and parallelization
issues. The capabilities are accessible from a high level even by nonexperts. However, one
has to be aware, of course, of which capabilities exist.

www.it-ebooks.info

http://www.it-ebooks.info/

The example shows that Python provides a number of options to make more out of
existing resources — i.e., to increase productivity. With the sequential approach, about 21
mn evaluations per second are accomplished, while the parallel approach allows for
almost 48 mn evaluations per second — in this case simply by telling Python to use all
available CPU threads instead of just one.

From Prototyping to Production

Efficiency in interactive analytics and performance when it comes to execution speed are
certainly two benefits of Python to consider. Yet another major benefit of using Python for
finance might at first sight seem a bit subtler; at second sight it might present itself as an
important strategic factor. It is the possibility to use Python end to end, from prototyping
to production.

Today’s practice in financial institutions around the globe, when it comes to financial
development processes, is often characterized by a separated, two-step process. On the one
hand, there are the quantitative analysts (“quants™) responsible for model development
and technical prototyping. They like to use tools and environments like Matlab and R that
allow for rapid, interactive application development. At this stage of the development
efforts, issues like performance, stability, exception management, separation of data
access, and analytics, among others, are not that important. One is mainly looking for a
proof of concept and/or a prototype that exhibits the main desired features of an algorithm
or a whole application.

Once the prototype is finished, IT departments with their developers take over and are
responsible for translating the existing prototype code into reliable, maintainable, and
performant production code. Typically, at this stage there is a paradigm shift in that
languages like c++ or Java are now used to fulfill the requirements for production. Also, a
formal development process with professional tools, version control, etc. is applied.

This two-step approach has a number of generally unintended consequences:
Inefficiencies

Prototype code is not reusable; algorithms have to be implemented twice; redundant
efforts take time and resources.

Diverse skill sets

Different departments show different skill sets and use different languages to
implement “the same things.”

Legacy code

Code is available and has to be maintained in different languages, often using
different styles of implementation (e.g., from an architectural point of view).

Using Python, on the other hand, enables a streamlined end-to-end process from the first
interactive prototyping steps to highly reliable and efficiently maintainable production
code. The communication between different departments becomes easier. The training of
the workforce is also more streamlined in that there is only one major language covering
all areas of financial application building. It also avoids the inherent inefficiencies and
redundancies when using different technologies in different steps of the development

www.it-ebooks.info

http://www.it-ebooks.info/

process. All in all, Python can provide a consistent technological framework for almost all
tasks in financial application development and algorithm implementation.

www.it-ebooks.info

http://www.it-ebooks.info/

Conclusions

Python as a language — but much more so as an ecosystem — is an ideal technological
framework for the financial industry. It is characterized by a number of benefits, like an
elegant syntax, efficient development approaches, and usability for prototyping and
production, among others. With its huge amount of available libraries and tools, Python
seems to have answers to most questions raised by recent developments in the financial
industry in terms of analytics, data volumes and frequency, compliance, and regulation, as
well as technology itself. It has the potential to provide a single, powerful, consistent
framework with which to streamline end-to-end development and production efforts even
across larger financial institutions.

www.it-ebooks.info

http://www.it-ebooks.info/

Further Reading

There are two books available that cover the use of Python in finance:

e Fletcher, Shayne and Christopher Gardner (2009): Financial Modelling in Python.
John Wiley & Sons, Chichester, England.
e Hilpisch, Yves (2015): Derivatives Analytics with Python. Wiley Finance, Chichester,

England. http://derivatives-analytics-with-python.com.

The quotes in this chapter are taken from the following resources:

e Crosman, Penny (2013): “Top 8 Ways Banks Will Spend Their 2014 I'T Budgets.”

Bank Technology News.

e Deutsche Borse Group (2008): “The Global Derivatives Market — An Introduction.”
White paper.

¢ Ding, Cubillas (2010): “Optimizing the OTC Pricing and Valuation Infrastructure.”
Celent study.

e Lewis, Michael (2014): Flash Boys. W. W. Norton & Company, New York.
e Patterson, Scott (2010): The Quants. Crown Business, New York.

[1] Python, for example, is a major language used in the Master of Financial Engineering program at Baruch College of
the City University of New York (cf. http://mfe.baruch.cuny.edu).

[2] Cf. http://wiki.python.org/moin/BeginnersGuide, where you will find links to many valuable resources for both
developers and nondevelopers getting started with Python.

3] Chapter 8 provides an example for the benefits of using modern GPGPUs in the context of the generation of random
numbers.

[4] The output of such a numerical simulation depends on the pseudorandom numbers used. Therefore, results might
vary.

www.it-ebooks.info

http://derivatives-analytics-with-python.com
http://mfe.baruch.cuny.edu
http://wiki.python.org/moin/BeginnersGuide
http://www.it-ebooks.info/

Chapter 2. Infrastructure and Tools

Infrastructure is much more important than architecture.
— Rem Koolhaas

You could say infrastructure is not everything, but without infrastructure everything can be
nothing — be it in the real world or in technology. What do we mean then by
infrastructure? In principle, it is those hardware and software components that allow the
development and execution of a simple Python script or more complex Python
applications.

However, this chapter does not go into detail with regard to hardware infrastructure, since

all Python code and examples should be executable on almost any hardware.! Nor does it
discuss different operating systems, since the code should be executable on any operating
system on which Python, in principle, is available. This chapter rather focuses on the
following topics:

Deployment

How can I make sure to have everything needed available in a consistent fashion to
deploy Python code and applications? This chapter introduces Anaconda, a Python
distribution that makes deployment quite efficient, as well as the Python Quant
Platform, which allows for a web- and browser-based deployment.

Tools

Which tools shall I use for (interactive) Python development and data analytics? The
chapter introduces two of the most popular development environments for Python,
namely IPython and Spyder.

There is also Appendix A, on:
Best practices

Which best practices should I follow when developing Python code? The appendix
briefly reviews fundamentals of, for example, Python code syntax and
documentation.

www.it-ebooks.info

http://www.it-ebooks.info/

Python Deployment

This section shows how to deploy Python locally (or on a server) as well as via the web
browser.

Anaconda

A number of operating systems come with a version of Python and a number of additional
libraries already installed. This is true, for example, of Linux operating systems, which
often rely on Python as their main language (for packaging, administration, etc.).
However, in what follows we assume that Python is not installed or that we are installing
an additional version of Python (in parallel to an existing one) using the Anaconda
distribution.

You can download Anaconda for your operating system from the website
http://continuum.io/downloads. There are a couple of reasons to consider using Anaconda
for python deployment. Among them are:

Libraries/packages

You get more than 100 of the most important Python libraries and packages in a
single installation step; in particular, you get all these installed in a version-consistent

manner (i.e., all libraries and packages work with each other).[5!

Open source

The Anaconda distribution is free of charge in general,! as are all libraries and
packages included in the distribution.

Cross platform
It is available for windows, Mac 0S, and Linux platforms.
Separate installation

It installs into a separate directory without interfering with any existing installation;
no root/admin rights are needed.

Automatic updates

Libraries and packages included in Anaconda can be (semi)automatically updated via
free online repositories.

Conda package manager

The package manager allows the use of multiple Python versions and multiple
versions of libraries in parallel (for experimentation or development/testing
purposes); it also has great support for virtual environments.

After having downloaded the installer for Anaconda, the installation in general is quite
easy. On windows platforms, just double-click the installer file and follow the instructions.
Under Linux, open a shell, change to the directory where the installer file is located, and
type:

$ bash Anaconda-1.x.x-Linux-x86[_64].sh

www.it-ebooks.info

http://continuum.io/downloads
http://www.it-ebooks.info/

Replacing the file name with the respective name of your installer file. Then again follow
the instructions. It is the same on an Apple computer; just type:

$ bash Anaconda-1.x.x-MacOSX-x86_64.sh

making sure you replace the name given here with the correct one. Alternatively, you can
use the graphical installer that is available.

After the installation you have more than 100 libraries and packages available that you can
use immediately. Among the scientific and data analytics packages are those listed in
Table 2-1.

Table 2-1. Selected libraries and packages included in Anaconda

Name Description
BitArray Object types for arrays of Booleans
Cubes OLAP Framework for online Analytical Processing (OLAP) applications
Disco mapreduce implementation for distributed computing
Gdata Implementation of Google Data Protocol
hspy Python wrapper around HDFS5 file format
HDF5 File format for fast I/O operations
IPython Interactive development environment (IDE)
1xml Processing xML and HTML with Python
matplotlib Standard 2D and 3D plotting library
MPI4Py Message Parsing Interface (MPI)implementation for parallel computation
MPICH2 Another MPI implementation
NetworkX Building and analyzing network models and algorithms
numexpr Optimized execution of numerical expressions

www.it-ebooks.info

http://www.it-ebooks.info/

NumPy Powerful array class and optimized functions on it
pandas Efficient handling of time series data

PyTables Hierarchical database using HDF5

SciPy Collection of scientific functions

Scikit-Learn Machine learning algorithms

Spyder Python IDE with syntax checking, debugging, and inspection capabilities

statsmodels Statistical models

SymPy Symbolic computation and mathematics

Theano Mathematical expression compiler

If the installation procedure was successful, you should open a new terminal window and
should then be able, for example, to start the Spyder IDE by simply typing in the shell:

$ spyder

Alternatively, you can start a Python session from the shell as follows:

$ python

Python 2.7.6 |Anaconda 1.9.2 (x86_64)| (default,
[GCC 4.0.1 (Apple Inc. build 5493)] on darwin
Type “help”, *“copyright”, “credits” or “license” for more information.
>>> exit()

$

Feb 10 2014, 17:56:29)

Anaconda by default installs, at the time of this writing, with Python 2.7.x. It always
comes with conda, the open source package manager. Useful information about this tool
can be obtained by the command:

$ conda info
Current conda install:

platform : osx-64
conda version : 3.4.1
python version : 2.7.6.final.o
root environment : /Library/anaconda (writable)
default environment : /Library/anaconda

envs directories :
package cache :
channel URLs :

config file :
is foreign system :

/Library/anaconda/envs
/Library/anaconda/pkgs
http://repo.continuum.io/pkgs/free/osx-64/
http://repo.continuum.io/pkgs/pro/osx-64/
None

False

www.it-ebooks.info

http://www.it-ebooks.info/

conda allows one to search for libraries and packages, both locally and in available online
repositories:

$ conda search pytables

Fetching package metadata:
pytables npl7py27_0 defaults
np17py26_0 defaults
nplépy27_0 defaults
nplépy26_0 defaults
npl7py27_0 defaults
npl7py26_0 defaults
nplépy27_0 defaults
nplépy26_0 defaults
npl7py33_1 defaults
npl7py27_1 defaults
npl7py26_1 defaults
nplépy27_1 defaults
npl6épy26_1 defaults
np18py33_0 defaults
npl18py27_0 defaults
npl8py26_0 defaults
npl18py34_0 defaults
np18py33_0 defaults
npl8py27_0 defaults
npl8py26_0 defaults

WWWWWWWWWwWwWwwWwwWwwWwwNNNN
PRPRRPRPRPRPPOOOOOOOOOAAMDIMD
Ll Sl o NoNoNoNoNoNoNoNoNoNoNoNoNoNoNo

The results contain those versions of PyTables that are available for download and
installation in this case and that are installed (indicated by the asterisk). Similary, the 1ist
command gives all locally installed packages that match a certain pattern. The following
lists all packages that start with “pyt”:

$ conda list Apyt
packages in environment at /Library/anaconda:

#

pytables 3.1.0 np18py27_0
pytest 2.5.2 py27_0
python 2.7.6 1
python-dateutil 1.5 <pip>
python.app 1.2 py27_1
pytz 2014.2 py27_0

More complex patterns, based on regular expressions, are also possible. For example:

$ conda list ~p.*les$

packages in environment at /Library/anaconda:

#

pytables 3.1.0 npl8py27_0
$

Suppose we want to have Python 3.x available in addition to the 2.7.x version. The
package manager conda allows the creation of an environment in which to accomplish this
goal. The following output shows how this works in principle:

$ conda create -n py33test anaconda=1.9 python=3.3 numpy=1.8

Fetching package metadata:

Solving package specifications:

Package plan for installation in environment /Library/anaconda/envs/py33test:

The following packages will be downloaded:

package | build

_________ |______

anaconda-1.9.2 | npl8py33_0 2 KB
xlsxwriter-0.5.2 | py33_0 168 KB

The following packages will be linked:
package | build

_________ |______
anaconda-1.9.2 | npl8py33_0 hard-1link

www.it-ebooks.info

http://www.it-ebooks.info/

z1lib-1.2.7 1 hard-1link
Proceed ([y]/n)?
When you type y to confirm the creation, conda will do as proposed (i.e., downloading,
extracting, and linking the packages):

*******UPDATE**********

Fetching packages ..
anaconda-1.9.2-np18py33_0.tar.bz2 100% |##########| Time: 0:00:00 173.62 kB/s

xlsxwriter-0.5.2-py33_0.tar.bz2 100% |############| Time: 0:00:01 131.32 KkB/s
Extracting packages ..

Linking packages ..

#

To activate this environment, use:

$ source activate py33test

#

To deactivate this environment, use:
$ source deactivate

#

Now activate the new environment as advised by conda:

$ source activate py33test
discarding /Library/anaconda/bin from PATH
prepending /Library/anaconda/envs/py33test/bin to PATH
(py33test)$ python
Python 3.3.4 |Anaconda 1.9.2 (x86_64)| (default, Feb 10 2014, 17:56:29)
[GCC 4.0.1 (Apple Inc. build 5493)] on darwin
Type “help”, *“copyright”, “credits” or “license” for more information.
>>> print “Hello Python 3.3” # this shouldn’t work with Python 3.3
File “<stdin>"”, line 1
print “Hello Python 3.3” # this shouldn’t work with Python 3.3
A

SyntaxError: invalid syntax

>>> print (“Hello Python 3.3”) # this syntax should work
Hello Python 3.3

>>> exit()

$

Obviously, we indeed are now in the Python 3.3 world, which you can judge from the
Python version number displayed and the fact that you need parentheses for the print
statement to work correctly.®!

MULTIPLE PYTHON ENVIRONMENTS

With the conda package manager you can install and use multiple separated Python environments on a single
machine. This, among other features, simplifies testing of Python code for compatibility with different Python
versions.

Single libraries and packages can be installed using the conda install command, either
in the general Anaconda installation:

$ conda install scipy

or for a specific environment, as in:

$ conda install -n py33test scipy

Here, py33test is the environment we created before. Similarly, you can update single
packages easily:

$ conda update pandas

The packages to download and link depend on the respective version of the package that is
installed. These can be very few to numerous, e.g., when a package has a number of

www.it-ebooks.info

http://www.it-ebooks.info/

dependencies for which no current version is installed. For our newly created
environment, the updating would take the form:

$ conda update -n py33test pandas
Finally, conda makes it easy to remove packages with the remove command from the main
installation or a specific environment. The basic usage is:

$ conda remove scipy

For an environment it is:

$ conda remove -n py33test scipy

Since the removal is a somewhat “final” operation, you might want to dry run the
command:

$ conda remove —dry-run -n py33test scipy

If you are sure, you can go ahead with the actual removal. To get back to the original
Python and Anaconda version, deactivate the environment:

$ source deactivate

Finally, we can clean up the whole environment by use of remove with the option —al1l:

$ conda remove —all -n py33test

The package manager conda makes Python deployment quite convenient. Apart from the
basic functionalities illustrated in this section, there are also a number of more advanced
features available. Detailed documentation is found at http://conda.pydata.org/docs/.

Python Quant Platform

There are a number of reasons why one might like to deploy Python via a web browser.
Among them are:

No need for installation

Local installations of a complete Python environment might be both complex (e.g., in
a large organization with many computers), and costly to support and maintain;
making Python available via a web browser makes deployment much more efficient
in certain scenarios.

Use of (better) remote hardware

When it comes to complex, compute- and memory-intensive analytics tasks, a local
computer might not be able to perform such tasks; the use of (multiple) shared
servers with multiple cores, larger memories, and maybe GPGPUs makes such tasks
possible and more efficient.

Collaboration

Working, for example, with a team on a single or multiple servers makes
collaboration simpler and also increases efficiency: data is not moved to every local
machine, nor, after the analytics tasks are finished, are the results moved back to
some central storage unit and/or distributed among the team members.

The Python Quant Platformis a web- and browser-based financial analytics and
collaboration platform developed and maintained by The Python Quants GmbH. You can

www.it-ebooks.info

http://conda.pydata.org/docs/
http://www.pythonquants.com
http://www.it-ebooks.info/

register for the platform at http://quant-platform.com. It features, among others, the
following basic components:

File manager
A tool to manage file up/downloads and more via a web GUI.
Linux terminal

A Linux terminal to work with the server (for example, a virtual server instance in the
cloud or a dedicated server run on-premise by a company); you can use Vim, Nano,
etc. for code editing and work with Git repositories for version control.

Anaconda

An Anaconda installation that provides all the functionality discussed previously; by
default you can choose between Python 2.7 and Python 3.4.

Python shell
The standard Python shell.
IPython Shell

An enhanced 1Python shell.
IPython Notebook

The browser version of IPython. You will generally use this as the central tool.
Chat room/forum

To collaborate, exchange ideas, and to up/download, for example, research
documents.

Advanced analytics

In addition to the Linux server and Python environments, the platform provides
analytical capabilities for, e.g., portfolio, risk, and derivatives analytics as well as for
backtesting trading strategies (in particular, DX analytics; see Part III for a simplified
but fully functional version of the library); there is also an R stack available to call,
for example, R functions from within IPython Notebook.

Standard APIs

Standard Python-based APIs for data delivery services of leading financial data
providers.

When it comes to collaboration, the Python Quant Platform also allows one to define —
under a “company” — certain “user groups” with certain rights for different Python
projects (i.e., directories and files). The platform is easily scalable and is deployed via
Docker containers. Figure 2-1 shows a screenshot of the main screen of the Python Quant
Platform.

www.it-ebooks.info

http://quant-platform.com
http://docker.com
http://www.it-ebooks.info/

(@) Pythan Quant Plaform

% | () The Pythen Quants

& - C || analytics.quant-platform.com/nbyportal/login#

THEPYTHON

WQUANTS

Notebooks
New Notebaok
home/quantshub

data

01 Python_Toolsipynb
02 Intraduction.ipynh
03 Data_Types.ipynb
04 Visualization.ipynb
(5 Time_Series.ipynb
06_Input Outputipynb
07 Performance.pynb

File Manager
File Manager
Shell access
Shell access
Chat
Chat

Delete
Delate

b o Avatyticsipynb

PYTHON QUANT PLATFORM

TP Notebook DX Analytics Lastcheoort s 1087 s

Filiy

Edit

View

Inseet Coll Kamel Help

B o x Ak 44+ kB C Makdown

4 Cell Toolbar: Sideshow

vt D

Largte_Finan|:ial_l‘.ii|ta.ip',rnl:iJt File fe‘lanagerIt Shell " Shell Chat

Logout

Figure 2-1. Screenshot of Python Quant Platform

www.it-ebooks.info

http://www.it-ebooks.info/

Tools

The success and popularity of a programming language result to some extent from the
tools that are available to work with the language. It has long been the case that Python
was considered a nice, easy-to-learn and easy-to-use language, but without a compelling
set of tools for interactive analytics or development. This has changed. There are now a
large number of tools available that help analysts and developers to be as productive as
possible with Python. It is not possible to give even a somewhat exhaustive overview.
However, it is possible to highlight two of the most popular tools in use today: IPython

and spyder.[2!
Python

For completeness, let us first consider using the standard Python interpreter itself. From
the system shell/command-line interface, Python is invoked by simply typing python:

$ python

Python 2.7.6 |Anaconda 1.9.2 (x86_64)| (default, Feb 10 2014, 17:56:29)

[GCC 4.0.1 (Apple Inc. build 5493)] on darwin

Type “help”, *“copyright”, “credits” or “license” for more information.

>>> print “Hello Python for Finance World.”

Hello Python for Finance World.

>>> exit()

$
Although you can do quite a bit of Python with the standard prompt, most people prefer to
use IPython by default since this environment provides everything that the standard

interpreter prompt offers, and much more on top of that.
IPython

IPython was used in Chapter 1 to present the first examples of Python code. This section
gives an overview of the capabilities of IPython through specific examples. A complete
ecosystem has evolved around IPython that is so successful and appealing that users of
other languages make use of the basic approach and architecture it provides. For example,
there is a version of IPython for the Julia language.

From shell to browser
IPython comes in three flavors:

Shell

The shell version is based on the system and Python shell, as the name suggests;
there are no graphical capabilities included (apart from displaying plots in a separate
window).

QT console

This version is based on the QT graphical user interface framework (cf. http:/qt-
project.org), is more feature-rich, and allows, for example, for inline graphics.

Notebook

This is a Javascript-based web browser version that has become the community
favorite for interactive analytics and also for teaching, presenting, etc.

The shell version is invoked by simply typing ipython in the shell:

www.it-ebooks.info

http://julialang.org
http://qt-project.org
http://www.it-ebooks.info/

$ ipython
Python 2.7.6 |Anaconda 1.9.2 (x86_64)| (default, Feb 10 2014, 17:56:29)
Type “copyright”, “credits” or “license” for more information.

IPython 2.0.0 — An enhanced Interactive Python.
-> Introduction and overview of IPython’s features.
%qu1ckref -> Quick reference.

help -> Python’s own help system.

object? -> Details about ‘object’, use ‘object??’ for extra details.
In [1]: 3 + 4 * 2

out[1]: 11

In [2]:

Using the option —pylab imports a large set of scientific and data analysis libraries, like
NumPy, in the namespace:

$ ipython —pylab
Python 2.7.6 |Anaconda 1.9.2 (x86_64)| (default, Feb 10 2014, 17:56:29)
Type “copyright”, “credits” or “license” for more information.

IPython 2.0.0 — An enhanced Interactive Python.

-> Introduction and overview of IPython’s features.
%qu1ckref -> Quick reference.
help -> Python’s own help system.
object? -> Details about ‘object’, use ‘object??’ for extra details.
Using matplotlib backend: MacOSX

In [1]: a = linspace(0, 20, 5) # linspace from NumPy
In [2]: a

Out[2]: array([©O., 5., 10., 15., 20.])

In [3]:

Similarly, the QT console of IPython is invoked by the following command:
$ ipython qtconsole —pylab inline

Using the inline parameter in addition to the —pylab option lets IPython plot all graphics
inline. Figure 2-2 shows a screenshot of the QT console with an inline plot.

Finally, the Notebook version is invoked as follows:
$ ipython notebook —pylab inline

Figure 2-3 shows a screenshot of an IPython Notebook session. The inline option again
has the effect that plots will be displayed in IPython Notebook and not in a separate
window.

All in all, there are a large number of options for how to invoke an IPython kernel. You
can get a listing of all the options by typing:
$ ipython -h

Refer to the IPython documentation for detailed explanations.

www.it-ebooks.info

http://www.ipython.org/documentation.html
http://www.it-ebooks.info/

806 Pthon

pict

Python 2.7.6 IAnaconda 1.8.0 (x86_64)| (default, Jan 10 2014, 11:23:15)

L] L]

Type "copyright", "credits" or "license" for more information.

IPython 1.1.@ -~ An enhanced Interactive Python.

7 -» Introduction and overview of IPython's features.
%quickref -» Quick reference.

help -> Python's own help system.

object? - Details about 'object’, use 'object??’ for extra details.
%guiref -> A brief reference about the graphical user interface.

In [1]: a = linspace(d, 16, 25)
In [2]: b = sin(a)

In [3]: plot(a, b, 'ro")
voos grid(True)

10

T ",
* .
& L]
05t :
L ®
. ®
oap ‘e
i ®
05} .
[
]
*
-10 L al i
]] 4 3 B 10
In [4]:

Figure 2-2. IPython’s QT console
Basic usage

In what follows, we describe the basic usage of the IPython Notebook. A fundamental
concept of the Notebook is that you work with different kinds of cells. These include the
following types:

Code

Contains executable Python code

Markdown

Contains text written in Markdown language and/or HTML
Raw text

Contains text without formatting!1?!
Heading (1-6)

www.it-ebooks.info

http://www.it-ebooks.info/

Headings for text structuring, e.g., section heads

ann Python, for_Finance i
J Py Python_for_Finance L+ l

et e R
() @ 127.00.15889/41107a11-ce25-4590-0179- 00336 chs6fe# ¢ [(B- Google Q)(@-][8](#)

TPyl Notebook Ppython_for_Finance Lestcreckpoint Feb 030738 fautosae)

File Edit View Inset Cel Kemel Help

B xan + 4 o »r B MaMuwnjCe[chnlhar: None J

In [1]: import numpy as np
import matplotlib.pyplot as plt

In [2]): a = np.linspace(0, 10, 25)
b = np.sin(a)

Inline comments can be easily placed between code cells.

In [3]): plt.plot(a, b, 'B"")
plt.grid(True)

10

05F

00k i

z 4 b B U]

Figure 2-3. IPython’s browser-based Notebook

The different cell types already indicate that the Notebook is more than an enhanced
Python shell only. It is intended to fulfill the requirements of a multitude of documentation
and presentation scenarios. For example, an IPython Notebook file, having a suffix of
.ipynb, can be converted to the following formats:

Python file

Generates a Python code file (.py) from an IPython Notebook file with noncode
cells commented out.

HTML page

Generates a single HTML page from a single IPython Notebook file.

www.it-ebooks.info

http://www.it-ebooks.info/

HTML5 slides

Making use of different cell markings for slide shows, a Notebook file is converted
into a presentation with multiple HTML5 slides (using the reveal. js framework).

LaTeX/PDF

Such a file can also be converted to a LaTeX file, which then can be converted into a
PDF document.

RestructuredText

RestructuredText (.rst) is used, for example, by the SPHINX documentation
package for Python projects.

ANALYTICS AND PUBLISHING PLATFORM

A major advantage of IPython Notebook is that you can easily publish and share your complete Notebook with
others. Once your analytics project with IPython is finished, you can publish it as an HTML page or a PDF, or use
the content for a slide presentation.

The format of an IPython Notebook file is based on the JavaScript Object Notation
(Json) standard. The following is the text version of the Notebook displayed in Figure 2-3
— you will notice some metadata, the different types of cells, and their content, and that
even graphics are translated into ASCII characters:

{

“metadata”: {
llnamell : "

}

“nbformat”: 3,

“nbformat_minor”: 0,

“worksheets”: [

“cells”: [

“cell_type”: “code”,
“collapsed”: false,
“input”: [
“import numpy as np\n”,
“import matplotlib.pyplot as plt”
1,
“language”: “python”,
“metadata”: {3},
“outputs”: [],
“prompt_number”: 1
+
{
“cell_type”: “code”,
“collapsed”: false,
“input”: [
np.linspace(0, 10, 25)\n”,
np.sin(a)”

“language”: “python”,
“metadata”: {},
“outputs”: [],
“prompt_number”: 2

3

{
“cell_type”: “markdown”,
“metadata”: {},
“source”: [

“Inline comments can be easily placed between code cells.”

1

iy

{
“cell_type”: “code”,
“collapsed”: false,
“input”: [

www.it-ebooks.info

http://lab.hakim.se/reveal-js/
http://sphinx-doc.org
http://www.it-ebooks.info/

“plt.plot(a, b, “bA’")\n”,
“plt.grid(True)”
1,
“language”: “python”,
“metadata”: {},
“outputs”: [

“metadata”: {3},

“output_type”: “display_data”,

“png”: “iVBORwWOKGgOAAAAN..SuQmCC\n”,

“text”: [

“<matplotlib.figure.Figure at 0x105812a10>"
]

}
1
“prompt_number”: 3
}
1
“metadata”: {3}

3

]

}
For example, when converting such a file to LaTeX, raw text cells can contain LaTeX code
since the content of such cells is simply passed on by the converter. All this is one of the
reasons why the IPython Notebook is nowadays often used for the composition of larger,
more complex documents, like scientific research papers. You have executable code and
documenting text in a single file that can be translated into a number of different output
formats.

In a finance context this also makes IPython a valuable tool, since, for example, the
mathematical description of an algorithm and the executable Python version can live in
the same document. Depending on the usage scenario, a web page (e.g., intranet), a PDF
document (e.g., client mailings), or a presentation (e.g., board meeting) can be generated.
With regard to the presentation option, you can, for example, skip those cells that may
contain text passages that might be too long for a presentation.

The basic usage of the Notebook is quite intuitive. You mainly navigate it with the arrow
keys and “execute” cells by using either Shift-Return or Ctrl-Return. The difference is that
the first option moves you automatically to the next cell after execution while the second
option lets you remain at the same cell. The effect of “executing” cells depends on the
type of the cell. If it is a code cell, then the code is executed and the output (if any) is
shown. If it is a Markdown cell, the content is rendered to show the result.

Markdown and LaTeX

The following shows a few selected examples for Markdown commands:

pold prints the text in bold
italic prints the text in italic
italic also prints it in italic
italic bold and italic
bullet point lists:

* first_bullet
* second_bullet

– renders to a dash

 inserts a line break

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 2-4 shows the same code both in a raw text cell (which looks the same as the
preceding text) and rendered in a Markdown cell. In this way, you can easily combine
Python code and formatted, nicely rendered text in a single document.

A detailed description of the Markdown language used for IPython Notebook is found at
http://daringfireball.net/projects/markdown/.

As mentioned before, the rendering capabilities of IPython are not restricted to the
Markdown language. IPython also renders by default mathematical formulae described on
the basis of the LaTeX typesetting system, the de facto standard for scientific publishing.
Consider, for example, from Chapter 1 the formula for the index level in the Black-
Scholes-Merton (1973) model, as provided in Equation 1-1. For convenience, we repeat it

here as Equation 2-1.
Equation 2-1. Black-Scholes-Merton (1973) index level at maturity

St =35, exp r—%az T+0oVTz

www.it-ebooks.info

http://daringfireball.net/projects/markdown/
http://www.it-ebooks.info/

I HaNG) Python_for_Finance ¥
u Py Python_for_Finance Lz'ﬁ]
@4 127.0.0,1:8889/41107a1{-ce25-4594-2179-009369¢h 5814 ¢ |{B- coogle Q} |ilr EJ @

I P [yl: Note b 00 k Python_for_Finance Last Checkpoint: Fab 03 07:39 (autosaved)

File Edt View Inset Cel Kemel Help

® OB A4 00 b B Coe :JCeIiToU!bar: None j

+pold+ prints the text in bold
italic prints the text in italie
_italic_also prints it in italic
*+ italic ** bold and italic
bullet point lists:

* first bullet
* gecond bullet

– renders to a dash

 inserts a line break

bold prints the text in bold
ftalic prints the text in italic
italic also prints it in italic
italic bold and italic

bullet point lists:

+ first_bullet
« second_bullet

- renders to a dash

inserts a line break

Figure 2-4. Screenshot of IPython Notebook with Markdown rendering
The LaTex code that describes Equation 2-1 looks roughly like the following:

S_T = S_0 \exp((r - 0.5\sigmanr2) T + \sigma \sqrt{T} z)

Figure 2-5 shows a raw text cell with Markdown text and the LaTex code, as well as the
result as rendered in a Markdown cell. The figure also shows a more complex formula: the
Black-Scholes-Merton option pricing formula for European call options, as found in
Equation 3-1 in Chapter 3.

www.it-ebooks.info

http://www.it-ebooks.info/

eoe -Pthorl_for Finance b L

& - C [} localhost: 8883/ notebooks /ipython/Python_for_Finance.ipynb Qﬁ =
I P [y]: NOt e bOOk Python_for_Finance Last Checkpoint: Sep 30 11:16 (autosaved)
File Edit View Inset Cell Kemal Help 0
B o xA B 4+ »p 0 C Gk 4 Cell Toolbar: None :

$5 T =5 0 \exp((r - 0.5 \sigma"2) T + \sigma \sqrt{T} z)$

The index level at maturity in the Black Scholes Merton (1973) model.
St = Syexp((r = 05627 + 0v/T2)

The **Black Scholes Merton (1973)*+* option pricing formula.

$\begin{egnarrayt}

C(5.t, K, T, r, \sigma) &=& 5 {t} \cdot \mathbf{N}(d {1})-e"{-r(T-t)} \cdot K \cdot \mathbf{N}
(d_{2})\\

\mathbf{N}(d)s=s\frac{1}{\sqrt{2\pi}}\int_{-\infty}"{d}e"{-\frac{1}{2}x*{2}}dx \\
d_{1}e=s\frac{\log \frac{S_{t}}{K}+(r+\frac{\sigma*{2)}}{2})(T-t)}{\sigma \sqrt{T-t}} \\

d {2}e=e\frac{\log \frac{S {t}}{E}*(r-\frac{\sigma"{2}}{2})(T-t)}{\sigma \sqrt{T-t}}
\end{egnarray*}s

The Black Scholes Merton (1973) option pricing formula,
O, K. T,r,0) = 8, -Ndi) - e - K- Nidh)

L

logx-f- r+)(T 1)
oyl -t
&
log 3 +(r=)T'-)
oVl =t

J —

3=

Figure 2-5. Markdown and LaTeX for financial formulae

Magic commands

One of IPython’s strengths lies in its magic commands. They are “magic” in the sense that
they add some really helpful and powerful functions to the standard Python shell
functionality. Basic information and help about these functions can be accessed via:

In [1]: %magic

IPython’s ‘magic’ functions

The magic function system provides a series of functions which allow you to
control the behavior of IPython itself, plus a lot of system-type
features. There are two kinds of magics, line-oriented and cell-oriented.

A list of all available magic commands can be generated in an IPython session as follows:

In [2]: %lsmagic

www.it-ebooks.info

http://www.it-ebooks.info/

In interactive computing, magic commands can, for example, be used for simple profiling
tasks. For such a use case, you might use %time or %prun:

In [3]: import as

In [4]: %time np.sin(np.arange(1000000))
CPU times: user 31.8 ms, sys: 7.87 ms, total: 39.7 ms
wall time: 39 ms

Out[5]:
array([0. , 0.84147098, 0.90929743, .., 0.21429647,
-0.70613761, -0.97735203])

In [6]: %prun np.sin(np.arange(1000000))
3 function calls in 0.043 seconds

Ordered by: internal time
ncalls tottime percall cumtime percall filename:lineno(function)
1 0.041 0.041 0.043 0.043 <string>:1(<module>)
1 0.002 0.002 0.002 0.002 {numpy.core.multiarray.arange}

1 0.000 0.000 0.000 0.000 {method ‘disable’
of ‘_lsprof.Profiler’ objects}

There is yet another command, %timeit or %%timeit, for timing codes in a single line or a
whole cell in the IPython Notebook:

In [6]: %timeit np.sin(np.arange(1000000))
10 loops, best of 3: 27.5 ms per loop

This function executes a number of loops to get more reliable estimates for the duration of
a function call or a snippet of code.

It is not possible to explain in detail all the magic functions that IPython provides.
However, IPython itself strives to make it as easy as possible to interactively look up
information about IPython and its commands. Among the most helpful are those listed in

Table 2-2 (cf. http://bit.ly/ipython_tutorial).
Table 2-2. Selected help functions included in IPython

Name Description

? Introduction and overview of IPython features

%quickref Quick reference

help Python’s own help system

object? Details about the “object”; use object?? for extra details

Another feature of IPython is that it is highly configurable. Information about the
configuration capabilities is also found in the documentation.

A magic command that also helps with customizing IPython is %bookmark. This allows
the bookmarking of arbitrary directories by the use of your custom names such that you
can later — no matter where the I1Python kernel is invoked from and no matter what the
current directory is — navigate to any of your bookmarked directories immediately (i.e.,
you do not need to use cd). The following shows how to set a bookmark and how to get a

www.it-ebooks.info

http://bit.ly/ipython_tutorial
http://ipython.org/ipython-doc/stable/config/
http://www.it-ebooks.info/

list of all bookmarks:
In [6]: %bookmark py4fi

In [7]: %bookmark -1
Current bookmarks:
py4fi -> /Users/yhilpisch/Documents/Work/Python4Finance/

System shell commands

Yet another really helpful feature is that you can execute command-line/system shell
functions directly from an IPython prompt or a Notebook cell. To this end you need to use
the ! to indicate that the following command should be escaped to the system shell (or %%
when a complete cell should be handled that way). As a simple illustration, the following
creates a directory, moves to that directory, moves back, and deletes the directory:

In [7]: !mkdir python4finance

In [8]: cd python4finance/
/Users/yhilpisch/python4finance

In [9]: cd ..
/Users/yhilpisch

In [10]: !'rm -rf python4finance/

IPython provides you with all the functions you would expect from a powerful interactive
development environment. It is often the case that people, beginners and experts alike,
even find their way to Python via IPython. Throughout the book, there are a plentitude of
examples illustrating the use of IPython for interactive data and financial analytics. You
should also consult the book by McKinney (2012), and in particular Chapter 3, for further
information on how to use IPython effectively.

Spyder

While 1Python satisfies all of most users’ requirements for interactive analytics and
prototyping, larger projects generally demand “something more.” In particular, IPython

itself has no editor directly built into the application.'.3] For all those looking for a more
traditional development environment, Spyder might therefore be a good choice.

Similar to IPython, Spyder has been designed to support rapid, interactive development
with Python. However, it also has, for example, a full-fledged editor, more powerful
project management and debugging capabilities, and an object and variable inspector as
well as a full integration of the IPython shell version. Within Spyder you can also start a
standard Python prompt session.

The built-in editor of Spyder provides all you need to do Python development. Among
other features (cf. http://code.google.com/p/spyderlib/wiki/Features), it offers the
following:

Highlighting
Syntax coloring for Python, C/C++, and Fortran code; occurrence highlighting
Introspection

Powerful dynamic code introspection features (e.g., code completion, calltips, object
definition with a mouse click)

www.it-ebooks.info

http://code.google.com/p/spyderlib/wiki/Features
http://www.it-ebooks.info/

Code browser

Browsing of classes and functions
Project management

Defining and managing projects; generating to-do lists
Instant code checking

Getting errors and warnings on the fly (by using pyflakes, cf.
https://pypi.python.org/pypi/pyflakes)

Debugging

Setting breakpoints and conditional breakpoints to use with the Python debugger pdb
(cf. http://docs.python.org/2/library/pdb.html)

In addition, Spyder provides further helpful functionality:
Consoles

Open multiple Python and IPython consoles with separate processes each; run the
code from the active editor tab (or parts of it) in a console

Variable explorer

Edit and compare variables and arrays; generate 2D plots of arrays on the fly; inspect
variables while debugging

Object inspector

Display documentation strings interactively; automatically render, for example, rich
text formatting

Other features

History log; array editor similar to a spreadsheet; direct access to online help;
management and exploration of whole projects; syntax and code checking via

Pylint.

Figure 2-6 provides a screenshot of Spyder showing the text editor (on the left), the
variable inspector (upper right), and an active Python console (lower right). Spyder is a
good choice to start with Python programming, especially for those who are used, for
example, to such environments as those provided by Matlab or R. However, advanced
programmers will also find a lot of helpful development functionality under a single roof.

www.it-ebooks.info

https://pypi.python.org/pypi/pyflakes
http://docs.python.org/2/library/pdb.html
http://www.pylint.org
http://www.it-ebooks.info/

1s

2y Least-Squares Monte Carlo for Americon put
3 with Antithetic Paths and Moment Matching
A4 Using In-The-Money Paths Only for Regression

54 (c) or. Yees 2. Wilpisch - For Illustration Purposes Only.

5y

7 from pylab import *

Bfrom time import time

9 import warnings

16 yarnings.sinplefilter('ignore’, np.Rankkarning)
11 tgatine()

gsm (108280)

4y

15 parameters

16y

17 4 option Porameters

1850 = [36., 3., 40., 42, #4.] ¥ Initlal Index Levels
19yl = [8.2, 8.4] # Constont Volatil{ties

B¢l w 1.0, 2.0] # Tires-to-saturity

By aag, #5trive Price

gr « B.86 # Rish-Free Short Aate

My sinulgtion Farometers

Z54p = 50 # Tine Steps po.

g: « 50000 # Simulation Paths

B¢ yaridnee Rediction Technigues

29 antipaths = True # Antithetic Poths
gmuh = True & Moment Matching

T

% |

=g

3¢ Benchmark Values

33pL » (4,478, 4.848, 7.101, B.508,
3 3,250, 3.745, 6,148, 7.679,
35 2,314, 2.885, 5.312, 6.928,
36161, 2,012, 4582, 6.248,
: 1.118’ 1.&90, 3.948, ;o“?)
A

i
=
=
mEERERAELE

CEEEEESES
EEEEEBELS
S555585558
sEEiEEiii
FREEEEEEE
Ergeisied
EEEEEEEEE
rodiboedoo
EEERIEECE
FEEzzzEEz

Figure 2-6. Screenshot of Spyder

www.it-ebooks.info

http://www.it-ebooks.info/

Conclusions

If you are a beginner or casual Python developer or an expert coming from a different
programming background, getting started with Python is generally pretty easy in that only
a couple of simple steps are required. To begin, you should install an appropriate Python
distribution, like Anaconda, to have a consistent Python environment available and also to
simplify the regular updating procedures.

With a distribution like Anaconda you have available the most important tools to
interactively practice data and financial analytics, like with IPython, or to develop larger
applications in a more traditional implement-test-debug fashion, like with Spyder. Of
course, you can add to the mix your favorite editor, which probably already has Python
syntax highlighting included. If you additionally are looking for syntax and code checking
capabilities, you might consider the built-in Spyder editor or any other Python-focused
editor available.

Appendix A introduces a number of best practices in the areas of syntax, documentation,
and unit testing. In terms of syntax, spaces and blank lines play an important role, as well
as the indentation of code blocks. When it comes to documentation, you should consider
including documentation strings in any function or class, providing background and help
for such things as input parameters, output, and possible errors, as well as usage examples.
Finally, you should include unit tests in your development process from the beginning (at
least for larger projects or those shared with a broader user base) and use dedicated tools
to simplify the test procedures.

www.it-ebooks.info

http://www.it-ebooks.info/

Further Reading

The following web resources are helpful with regard to the topics covered in this chapter:

http://docs.continuum.io/anaconda/ for the Anaconda documentation
http://conda.pydata.org/docs/ for the conda documentation

http://ipython.org/ipython-doc/stable/ for the IPython documentation
http://daringfireball.net/projects/markdown/ for the Markdown language used by
IPython Notebook

e http://code.google.com/p/spyderlib for information about Spyder

A good introduction to Python deployment and the use of IPython as a development
environment is provided in:

e Wes McKinney (2012): Python for Data Analysis. O’Reilly, Sebastopol, CA.

5] They can, for example, in general be executed even on a Raspberry Pi for about 30 USD (cf.
http://www.raspberrypi.org), although memory issues quickly arise for some applications. Nevertheless, this can be
considered a rather low requirement when it comes to hardware.

(6] For those who want to control which libraries and packages get installed, there is Miniconda, which comes with a
minimal Python installation only. Cf. http://conda.pydata.org/miniconda.html.

7] There is also an Anaconda version available that contains proprietary packages from Continuum Analytics called
Accelerate. This commercial version, whose main goal is to improve the performance of typical operations with
Python, has to be licensed.

(8] This is only one subtle, but harmless, change in the Python syntax from 2.7.x to 3.x that might be a bit confusing to
someone new to Python.

(9] For windows users and developers, the full integration of Python in vVisual Studio is a compelling alternative. There
is even a whole suite of Python tools for visual Studio available (cf. http://pytools.codeplex.com).

[10] From IPython 2.0 on, these cells are called Raw NBConvert.

[11] However, you can configure your favorite editor for 1Python and invoke it by the magic command %editor
FILENAME.

www.it-ebooks.info

http://docs.continuum.io/anaconda/
http://conda.pydata.org/docs/
http://ipython.org/ipython-doc/stable/
http://daringfireball.net/projects/markdown/
http://code.google.com/p/spyderlib
http://shop.oreilly.com/product/0636920023784.do
http://www.raspberrypi.org
http://conda.pydata.org/miniconda.html
http://pytools.codeplex.com
http://www.it-ebooks.info/

Chapter 3. Introductory Examples

Quantitative analysis, as we define it, is the application of mathematical and/or statistical methods to market data.
— John Forman

This chapter dives into some concrete examples from quantitative finance to illustrate how
convenient and powerful it is to use Python and its libraries for financial analytics. The
focus lies on the flow of the exposition, and a number of details that might be important in
real-world applications are not touched upon. Also, details of Python usage are mainly
skipped because later chapters explain them further.

Specifically, this chapter presents the following examples:
Implied volatilities

Option quotes for certain maturity dates are taken to back out the implied volatilities
of these options and to plot them — a task option traders and risk managers, among
others, are faced with on a daily basis.

Monte Carlo simulation

The evolution of a stock index over time is simulated via Monte Carlo techniques,
selected results are visualized, and European option values are calculated. Monte
Carlo simulation is a cornerstone for numerical option pricing as well as for risk
management efforts involving value-at-risk calculations or credit value adjustments.

Technical analysis

An analysis of historical time series data is implemented to backtest an investment
strategy based on trend signals; both professional investors and ambitious amateurs
regularly engage in this kind of investment analysis.

All examples have to deal in some ways with date-time information. Appendix C
introduces handling such information with Python, NumPy, and pandas.

www.it-ebooks.info

http://www.it-ebooks.info/

Implied Volatilities

Given an option pricing formula like the seminal one of Black-Scholes-Merton (1973),
implied volatilities are those volatility values that, ceteris paribus, when put into the
formula, give observed market quotes for different option strikes and maturities. In this
case, the volatility is not an input parameter for the model/formula, but the result of a
(numerical) optimization procedure given that formula.

The example we consider in the following discussion is about a new generation of options,
namely volatility options on the VSTOXX volatility index. Eurex, the derivatives
exchange that provides these options on the VSTOXX and respective futures contracts,
established a comprehensive Python-based tutorial called “VSTOXX Advanced Services”

in June 2013 about the index and its derivatives contracts.[12]

However, before proceeding with the VSTOXX options themselves, let us first reproduce
in Equation 3-1 the famous Black-Scholes-Merton formula for the pricing of European
call options on an underlying without dividends.

Equation 3-1. Black-Scholes-Merton (1973) option pricing formula

(S, K.t Tr0) = §:Ndy-¢™"-K-Nd

d)
1 -4
E / e Ty

g 7+(r+ £)T-1

oV -1

g 34 (-)T - 1

oVl -1

Nd)

I-—‘LQ‘
1

E\J&‘
1l

www.it-ebooks.info

http://www.eurexchange.com/advanced-services/
http://www.it-ebooks.info/

The different parameters have the following meaning:

St
Price/level of the underlying at time t
Constant volatility (i.e., standard deviation of returns) of the underlying
K
Strike price of the option
T
Maturity date of the option
r

Constant riskless short rate

Consider now that an option quote for a European call option C* is given. The implied
volatility ™P is the quantity that solves the implicit Equation 3-2.

Equation 3-2. Implied volatility given market quote for option

cS, K, t, T, r, ") =C*

There is no closed-form solution to this equation, such that one has to use a numerical
solution procedure like the Newton scheme to estimate the correct solution. This scheme
iterates, using the first derivative of the relevant function, until a certain number of
iterations or a certain degree of precision is reached. Formally, we have Equation 3-3 for

. imp
some starting value % and for 0 <n < oo,

Equation 3-3. Newton scheme for numerically solving equations

""" = g C(o,") = C*
n+ n im im
0C(6"")] 06}

The partial derivative of the option pricing formula with respect to the volatility is called
Vega and is given in closed form by Equation 3-4.

Equation 3-4. Vega of a European option in BSM model

9E = SN(d\WT -1

www.it-ebooks.info

http://www.it-ebooks.info/

The financial and numerical tools needed are now complete — even if only roughly
described — and we can have a look into the respective Python code that assumes the
special case t = 0 (Example 3-1).

Example 3-1. Black-Scholes-Merton (1973) functions

Valuation of European call options in Black-Scholes-Merton model
incl. Vega function and implied volatility estimation
bsm_functions.py

R W R R

H*

Analytical Black-Scholes-Merton (BSM) Formula

def bsm_call value(SO, K, T, r, sigma):
7’ Valuation of European call option in BSM model.
Analytical formula.

Parameters
S0 : float
initial stock/index level
K : float
strike price
T : float
maturity date (in year fractions)
r : float

constant risk-free short rate
sigma : float
volatility factor in diffusion term

Returns

value : float

present value of the European call option
from math import log, sqrt, exp
from scipy import stats

S0 = float(S0)
di = (log(S® / K) + (r + 0.5 * sigma ** 2) * T) / (sigma * sqrt(T))
d2 = (log(S® / K) + (r - 0.5 * sigma ** 2) * T) / (sigma * sqrt(T))

value = (SO * stats.norm.cdf(di, 0.0, 1.0)
- K * exp(-r * T) * stats.norm.cdf(d2, 0.0, 1.0))
stats.norm.cdf —> cumulative distribution function
for normal distribution
return value

Vega function

def bsm _vega(Se, K, T, r, sigma):
”’ Vega of European option in BSM model.

Parameters
SO : float
initial stock/index level
K : float
strike price
T : float
maturity date (in year fractions)
r : float

constant risk-free short rate
sigma : float
volatility factor in diffusion term

Returns

vega : float
partial derivative of BSM formula with respect
to sigma, i.e. Vega

www.it-ebooks.info

http://www.it-ebooks.info/

”r

from import log, sqrt

from import stats
SO = float(S0)
dl = (log(S® / K) + (r + 0.5 * sigma ** 2) * T / (sigma * sqrt(T))

vega = SO * stats.norm.cdf(di, 0.0, 1.0) * sqrt(T)
return vega

Implied volatility function

def bsm_call imp vol(Se, K, T, r, CO, sigma_est, it=100):
77 Implied volatility of European call option in BSM model.

Parameters
SO : float
initial stock/index level
K : float
strike price
T : float
maturity date (in year fractions)
r : float

constant risk-free short rate
sigma_est : float

estimate of impl. volatility
it : integer

number of iterations

Returns

simga_est : float
numerically estimated implied volatility

for i in range(it):
sigma_est -= ((bsm_call value(S®, K, T, r, sigma_est) - CO)
/ bsm_vega(SO, K, T, r, sigma_est))
return sigma_est
These are only the basic functions needed to calculate implied volatilities. What we need
as well, of course, are the respective option quotes, in our case for European call options
on the VSTOXX index, and the code that generates the single implied volatilities. We will

see how to do this based on an interactive IPython session.

Let us start with the day from which the quotes are taken; i.e., our t = 0 reference day. This
is March 31, 2014. At this day, the closing value of the index was V, = 17.6639 (we
change from S to V to indicate that we are now working with the volatility index):

In [1]: VO = 17.6639

For the risk-free short rate, we assume a value of r = 0.01 p.a.:

In [2]: r = 0.01

All other input parameters are given by the options data (i.e., T and K) or have to be

calculated (i.e., ™P). The data is stored in a pandas DataFrame object (see Chapter 6) and
saved in a PyTables database file (see Chapter 7). We have to read it from disk into
memory:

In [3]: import as
h5 = pd.HDFStore(’./source/vstoxx_data_31032014.h5", ‘r")
futures_data h5[‘futures_data’] # VSTOXX futures data
options_data h5[‘options_data’] # VSTOXX call option data
h5.close()

We need the futures data to select a subset of the VSTOXX options given their (forward)
moneyness. Eight futures on the VSTOXX are traded at any time. Their maturities are the

www.it-ebooks.info

http://www.it-ebooks.info/

next eight third Fridays of the month. At the end of March, there are futures with
maturities ranging from the third Friday of April to the third Friday of November. TTM in
the following pandas table represents time-to-maturity in year fractions:

In [4]: futures_data

out[4]: DATE EXP_YEAR EXP_MONTH PRICE MATURITY TT™M
496 2014-03-31 2014 4 17.85 2014-04-18 0.049
497 2014-03-31 2014 5 19.55 2014-05-16 0.126
498 2014-03-31 2014 6 19.95 2014-06-20 0.222
499 2014-03-31 2014 7 20.40 2014-07-18 0.299
500 2014-03-31 2014 8 20.70 2014-08-15 0.375
501 2014-03-31 2014 9 20.95 2014-09-19 0.471
502 2014-03-31 2014 10 21.05 2014-10-17 0.548
503 2014-03-31 2014 11 21.25 2014-11-21 0.644

The options data set is larger since at any given trading day multiple call and put options
are traded per maturity date. The maturity dates, however, are the same as for the futures.
There are a total of 395 call options quoted on March 31, 2014:

In [5]: options_data.info()

Out[5]: <class ‘pandas.core.frame.DataFrame’>
Int64Index: 395 entries, 46170 to 46564
Data columns (total 8 columns):

DATE 395 non-null datetime64[ns]
EXP_YEAR 395 non-null int64
EXP_MONTH 395 non-null int64

TYPE 395 non-null object

STRIKE 395 non-null float64

PRICE 395 non-null float64
MATURITY 395 non-null datetime64[ns]
TT™M 395 non-null float64

dtypes: datetime64[ns](2), float64(3), int64(2), object(1)
In [6]: options_data[[‘DATE’, ‘MATURITY’, ‘TTM’, ‘STRIKE’, ‘PRICE’]].head()
out[6]: DATE MATURITY TTM STRIKE PRICE

46170 2014-03-31 2014-04-18 0.049 1 16.85
46171 2014-03-31 2014-04-18 0.049 2 15.85
46172 2014-03-31 2014-04-18 0.049 3 14.85
46173 2014-03-31 2014-04-18 0.049 4 13.85
46174 2014-03-31 2014-04-18 0.049 5 12.85

As is obvious in the pandas table, there are call options traded and quoted that are far in-
the-money (index level much higher than option strike). There are also options traded that
are far out-of-the-money (index level much lower than option strike). We therefore want to
restrict the analysis to those call options with a certain (forward) moneyness, given the
value of the future for the respective maturity. We allow a maximum deviation of 50%
from the futures level.

Before we can start, we need to define a new column in the options_data DataFrame
object to store the results. We also need to import the functions from the script in
Example 3-1:

In [7]: options_data[’IMP_VOL'] = 0.0
new column for implied volatilities

In [8]: from import *

The following code now calculates the implied volatilities for all those call options:

In [9]: tol = 0.5 # tolerance level for moneyness
for option in options_data.index:
iterating over all option quotes
forward = futures_data[futures_data[‘MATURITY'] == \
options_data.loc[option] [‘MATURITY']][‘PRICE’"].values[0]

picking the right futures value

if (forward * (1 - tol) < options_data.loc[option][‘STRIKE’]
< forward * (1 + tol)):
only for options with moneyness within tolerance

www.it-ebooks.info

http://www.it-ebooks.info/

imp_vol = bsm_call_imp_vol(
VO, # VSTOXX value
options_data.loc[option][‘STRIKE'],
options_data.loc[option][‘TTM"],
r, # short rate
options_data.loc[option][‘PRICE'],
sigma_est=2., # estimate for implied volatility
it=100)

options_data[‘IMP_VOL’].loc[option] = imp_vol

In this code, there is some pandas syntax that might not be obvious at first sight. Chapter 6
explains pandas and its use for such operations in detail. At this stage, it suffices to
understand the following features:

In [10]: futures_data[‘MATURITY']
select the column with name MATURITY

Out[10]: 496 2014-04-18
497 2014-05-16
498 2014-06-20
499 2014-07-18
500 2014-08-15
501 2014-09-19
502 2014-10-17
503 2014-11-21
Name: MATURITY, dtype: datetime64[ns]

In [11]: options_data.loc[46170]
select data row for index 46170

out[11]: DATE 2014-03-31 00:00:00
EXP_YEAR 2014
EXP_MONTH 4
TYPE c
STRIKE 1
PRICE 16.85
MATURITY 2014-04-18 00:00:00
TTM 0.049
IMP_VOL 0

Name: 46170, dtype: object

In [12]: options_data.loc[46170][‘STRIKE"]
select only the value in column STRIKE
for index 46170

Out[12]: 1.0

The implied volatilities for the selected options shall now be visualized. To this end, we
use only the subset of the options_data object for which we have calculated the implied
volatilities:

In [13]: plot_data = options_data[options_data[’IMP_VOL'] > 0]

To visualize the data, we iterate over all maturities of the data set and plot the implied
volatilities both as lines and as single points. Since all maturities appear multiple times,
we need to use a little trick to get to a nonredundent, sorted list with the maturities. The
set operation gets rid of all duplicates, but might deliver an unsorted set of the maturities.

Therefore, we sort the set object (cf. also Chapter 4):[13!

In [14]: maturities = sorted(set(options_data[‘MATURITY']))
maturities

out[14]: [Timestamp(‘2014-04-18 00:00:00'),
Timestamp(‘2014-05-16 00:00:00'),
Timestamp(‘2014-06-20 00:00:00'),
Timestamp(‘2014-07-18 00:00:00'),
Timestamp(‘2014-08-15 00:00:00'),
Timestamp(‘2014-09-19 00:00:00'),
Timestamp(‘2014-10-17 00:00:00'),
Timestamp(‘2014-11-21 00:00:00')]

The following code iterates over all maturities and does the plotting. The result is shown
as Figure 3-1. As in stock or foreign exchange markets, you will notice the so-called

www.it-ebooks.info

http://www.it-ebooks.info/

volatility smile, which is most pronounced for the shortest maturity and which becomes a
bit less pronounced for the longer maturities:

In [15]: import as

%matplotlib inline

plt.figure(figsize=(8, 6))

for maturity in maturities:
data = plot_data[options_data.MATURITY == maturity]

select data for this maturity
plt.plot(data[‘STRIKE"], data[’IMP_VOL'],
label=maturity.date(), lw=1.5)

plt.plot(data[‘STRIKE"], data[‘IMP_VOL'], ‘r.")

plt.grid(True)

plt.xlabel(’strike”)

plt.ylabel(‘implied volatility of volatility’)

plt.legend()

plt.show()
3.0 - - - ;
— 2014-04-18
— 2014-05-16
— 2014-06-20
2B : 2014-07-18 |1
. — 2014-08-15
g 2014-09-19
E 2ol 2014-10-17
5 2014-11-21
by
:
[=]
_; 15}
o
=
E
10}
05 I I I I
5 10 15 20 5 o
strike

Figure 3-1. Implied volatilities (of volatility) for European call options on the VSTOXX on March 31, 2014

To conclude this example, we want to show another strength of pandas: namely, for
working with hierarchically indexed data sets. The DataFrame object options_data has an
integer index, which we have used in several places. However, this index is not really
meaningful — it is “just” a number. The option quotes for the day March 31, 2014 are
uniquely described (“identified”) by a combination of the maturity and the strike — i.e.,
there is only one call option per maturity and strike.

The groupby method can be used to capitalize on this insight and to get a more meaningful
index. To this end, we group by MATURITY first and then by the STRIKE. We only want to
keep the PRICE and IMP_VOL columns:

In [16]: keep = [‘PRICE’, ‘IMP_VOL’]
group_data = plot_data.groupby([‘MATURITY’, ‘STRIKE’])[keep]
group_data

Out[16]: <pandas.core.groupby.DataFrameGroupBy object at 0x7faf483d5710>

The operation returns a DataFrameGroupBy object.14! To get to the data, we need to apply
an aggregation operation on the object, like taking the sum. Taking the sum yields the
single data point since there is only one data element in every group:

In [17]: group_data = group_data.sum()

www.it-ebooks.info

http://www.it-ebooks.info/

group_data.head()

out[17]: PRICE IMP_VOL
MATURITY STRIKE

2014-04-18 9 8.85 2.083386
10 7.85 1.804194
11 6.85 1.550283
12 5.85 1.316103
13 4.85 1.097184

The resulting DataFrame object has two index levels and two columns. The following
shows all values that the two indices can take:

In [18]: group_data.index.levels

Out[18]: FrozenList([[2014-04-18 00:00:00, 2014-05-16 00:00:00, 2014-06-20 00:00
100, 2014-07-18 00:00:00, 2014-08-15 00:00:00, 2014-09-19 00:00:00, 201
4-10-17 00:00:00, 2014-11-21 00:00:00], [9.0, 10.0, 11.0, 12.0, 13.0, 1
4.0, 15.0, 16.0, 17.0, 18.0, 19.0, 20.0, 21.0, 22.0, 23.0, 24.0, 25.0,
26.0, 27.0, 28.0, 29.0, 30.0]])

www.it-ebooks.info

http://www.it-ebooks.info/

Monte Carlo Simulation

Monte Carlo simulation is one of the most important algorithms in finance and numerical
science in general. Its importance stems from the fact that it is quite powerful when it
comes to option pricing or risk management problems. In comparison to other numerical
methods, the Monte Carlo method can easily cope with high-dimensional problems where
the complexity and computational demand, respectively, generally increase in linear
fashion.

The downside of the Monte Carlo method is that it is per se computationally demanding
and often needs huge amounts of memory even for quite simple problems. Therefore, it is
necessary to implement Monte Carlo algorithms efficiently. The example that follows
illustrates different implementation strategies in Python and offers three different
implementation approaches for a Monte Carlo-based valuation of a European option.1°!

The three approaches are:[16!
Pure Python

This example sticks with the standard library — i.e., those libraries and packages that
come with a standard Python installation — and uses only built-in Python
capabilities to implement the Monte Carlo valuation.

Vectorized NumPy

This implementation uses the capabilities of NumPy to make the implementation more
compact and much faster.

Fully vectorized NumPy

The final example combines a different mathematical formulation with the
vectorization capabilities of NumPy to get an even more compact version of the same
algorithm.

The examples are again based on the model economy of Black-Scholes-Merton (1973),
where the risky underlying (e.g., a stock price or index level) follows, under risk
neutrality, a geometric Brownian motion with a stochastic differential equation (SDE), as
in Equation 3-5.

Equation 3-5. Black-Scholes-Merton (1973) stochastic differential equation

dS,=rSdt+ 6S5,dZ,

The parameters are defined as in Equation 3-1 and Z is a Brownian motion. A
discretization scheme for the SDE in Equation 3-5 is given by the difference equation in
Equation 3-6.

Equation 3-6. Euler discretization of SDE

www.it-ebooks.info

http://www.it-ebooks.info/

5 =3,y exp ((r- %02 At+ oAty

The variable z is a standard normally distributed random variable, 0 < t < T, a (small
enough) time interval. It also holds 0 < t < T with T the final time horizon.!l1Z]

We parameterize the model with the values S, = 100, K = 105, T = 1.0, r = 0.05, =0.2.

Using the Black-Scholes-Merton formula as in Equation 3-1 and Example 3-1 from the
previous example, we can calculate the exact option value as follows:

In [19]: from import bsm_call _value
SO = 100.
K = 105.
T=1.0
r = 0.05
sigma = 0.2
bsm_call value(SO, K, T, r, sigma)

Out[19]: 8.0213522351431763

This is our benchmark value for the Monte Carlo estimators to follow. To implement a
Monte Carlo valuation of the European call option, the following recipe can be applied:

1. Divide the time interval [0,T] in equidistant subintervals of length t.
2. Start iterating i =1, 2,..., L.
1. Forevery timestept € { ¢ 2 t,..., T}, draw pseudorandom numbers z(i).
2. Determine the time T value of the index level Si{(i) by applying the pseudo-
random numbers time step by time step to the discretization scheme in

Equation 3-6.
3. Determine the inner value hy of the European call option at T as h{S(i)) =
max(S¢(i) — K,0).
4. Tterate until i = I.
3. Sum up the inner values, average, and discount them back with the riskless short rate
according to Equation 3-7.

Equation 3-7 provides the numerical Monte Carlo estimator for the value of the European
call option.

Equation 3-7. Monte Carlo estimator for European call option

Cy~e L ZhT(S (i)

Pure Python

Example 3-2 translates the parametrization and the Monte Carlo recipe into pure Python.
The code simulates 250,000 paths over 50 time steps.

www.it-ebooks.info

http://www.it-ebooks.info/

Example 3-2. Monte Carlo valuation of European call option with pure Python

#

Monte Carlo valuation of European call options with pure Python
mcs_pure_python.py

#

from time import time
from math import exp, sqrt, log
from random import gauss, seed

seed(20000)
to = time()

Parameters

S0 = 100. # initial value

K 105. # strike price

T 1.0 # maturity

r 0.05 # riskless short rate
sigma = 0.2 # volatility

M = 50 # number of time steps

dt =T/ M # length of time interval
I = 250000 # number of paths

Simulating I paths with M time steps

S =[]
for i in range(I):
path = []
for t in range(M + 1):
if t == 0:
path.append(S0)
else:

z = gauss(0.0, 1.0)
St = path[t - 1] * exp((r - 0.5 * sigma ** 2) * dt
+ sigma * sqrt(dt) * z)
path.append(St)
S.append(path)

Calculating the Monte Carlo estimator
Co = exp(-r * T) * sum([max(path[-1] - K, 0) for path in S]) / I

Results output

tpy = time() - tO

print “European Option Value %7.3f” % CO

print “Duration in Seconds %7.3f” % tpy

Running the script yields the following output:

In [20]: %run mcs_pure_python.py

Out[20]: European Option Value 7.999
Duration in Seconds 34.258
Note that the estimated option value itself depends on the pseudorandom numbers
generated while the time needed is influenced by the hardware the script is executed on.

The major part of the code in Example 3-2 consists of a nested loop that generates step-
by-step single values of an index level path in the inner loop and adds completed paths to
a list object with the outer loop. The Monte Carlo estimator is calculated using Python’s
list comprehension syntax. The estimator could also be calculated by a for loop:

In [21]: sum_val = 0.0
for path in S:
C-like iteration for comparison
sum_val += max(path[-1] - K, 0)
CO = exp(-r * T) * sum_val / I
round(CO, 3)

out[21]: 7.999

Although this loop yields the same result, the 1ist comprehension syntax is more compact
and closer to the mathematical notation of the Monte Carlo estimator.

www.it-ebooks.info

https://docs.python.org/2/tutorial/datastructures.html
http://www.it-ebooks.info/

Vectorization with NumPy

NumPy provides a powerful multidimensional array class, called ndarray, as well as a
comprehensive set of functions and methods to manipulate arrays and implement
(complex) operations on such objects. From a more general point of view, there are two
major benefits of using Numpy:

Syntax

NumPy generally allows implementations that are more compact than pure Python and
that are often easier to read and maintain.

Speed

The majority of NumPy code is implemented in C or Fortran, which makes NumPy,
when used in the right way, faster than pure Python.

The generally more compact syntax stems from the fact that NumPy brings powerful
vectorization and broadcasting capabilities to Python. This is similar to having vector
notation in mathematics for large vectors or matrices. For example, assume that we have a
vector with the first 100 natural numbers, 1, ..., 100:

|
— 2
y

100

Scalar multiplication of this vector is written compactly as:

2
4

200

Let’s see if we can do this with Python 1ist objects, for example:

— —
u =2-v =

In [22]: v = range(1, 6)
print v

out[22]: [1, 2, 3, 4, 5]

www.it-ebooks.info

http://www.it-ebooks.info/

In [23]: 2 * v
out[23]: [1, 2, 3, 4, 5, 1, 2, 3, 4, 5]

Naive scalar multiplication does not return the scalar product. It rather returns, in this case,
two times the object (vector). With NumPy the result is, however, as desired:

In [24]: import as
v = np.arange(l, 6)
\Y%

Out[24]: array([1, 2, 3, 4, 5])
In [25]: 2 * v
Out[25]: array([2, 4, 6, 8, 10])

This approach can be beneficially applied to the Monte Carlo algorithm. Example 3-3
provides the respective code, this time making use of NumPy’s vectorization capabilities.

Example 3-3. Monte Carlo valuation of European call option with NumPy (first version)

#
Monte Carlo valuation of European call options with NumPy
mcs_vector_numpy.py

#

import

import as

from import time

np.random.seed(20000)
to = time()

Parameters
SO = 100.; K = 105.; T =
M=50; dt=T/M; I=2

r = 0.05; sigma = 0.2

Simulating I paths with M time steps
S = np.zeros((M + 1, I))
S[0] = so
for t in range(1, M + 1):
z = np.random.standard_normal(I) # pseudorandom numbers
S[t] = S[t - 1] * np.exp((r - 0.5 * sigma ** 2) * dt
+ sigma * math.sqrt(dt) * z)
vectorized operation per time step over all paths

Calculating the Monte Carlo estimator
CO = math.exp(-r * T) * np.sum(np.maximum(S[-1] - K, 0)) / I

Results output

tnpl = time() - tO

print “European Option Value %7.3f"” % CO
print “Duration in Seconds %7.3f" % tnpl

Let us run this script:

In [26]: %run mcs_vector_numpy.py

Out[26]: European Option Value 8.037
Duration in Seconds 1.215

In [27]: round(tpy / tnpl, 2)
Oout[27]: 28.2

Vectorization brings a speedup of more than 30 times in comparison to pure Python. The
estimated Monte Carlo value is again quite close to the benchmark value.

The vectorization becomes obvious when the pseudorandom numbers are generated. In the
line in question, 250,000 numbers are generated in a single step, i.e., a single line of code:

z = np.random.standard_normal(I)

Similarly, this vector of pseudorandom numbers is applied to the discretization scheme at
once per time step in a vectorized fashion. In that sense, the tasks that are accomplished by

www.it-ebooks.info

http://www.it-ebooks.info/

the outer loop in Example 3-2 are now delegated to NumPy, avoiding the outer loop
completely on the Python level.

VECTORIZATION

Using vectorization with NumPy generally results in code that is more compact, easier to read (and maintain), and
faster to execute. All these aspects are in general important for financial applications.

Full Vectorization with Log Euler Scheme

Using a different discretization scheme for the SDE in Equation 3-5 can yield an even
more compact implementation of the Monte Carlo algorithm. To this end, consider the log
version of the discretization in Equation 3-6, which takes on the form in Equation 3-8.

Equation 3-8. Euler discretization of SDE (log version)

log §,= log §,_4,+{r- %02 At+ VAt

This version is completely additive, allowing for an implementation of the Monte Carlo
algorithm without any loop on the Python level. Example 3-4 shows the resulting code.

Example 3-4. Monte Carlo valuation of European call option with NumPy (second
version)

#
Monte Carlo valuation of European call options with NumPy (log version)
mcs_full _vector_numpy.py

#

import

from import *
from import time

star import for shorter code

random. seed(20000)
to = time()

Parameters
SO = 100.; K=105.; T = 1.0; r = 0.05; sigma = 0.2
M=50; dt =T/ M; I = 250000

Simulating I paths with M time steps
S = S0 * exp(cumsum((r - 0.5 * sigma ** 2) * dt
+ sigma * math.sqrt(dt)
* random.standard_normal((M + 1, I)), axis=0))
sum instead of cumsum would also do
if only the final values are of interest
S[0] = SO

Calculating the Monte Carlo estimator
CO = math.exp(-r * T) * sum(maximum(S[-1] - K, 0)) / I

Results output
tnp2 = time() - tO

print “European Option Value %7.3f” % CO
print “Duration in Seconds %7.3f" % tnp2

Let us run this third simulation script.

In [28]: %run mcs_full_vector_numpy.py

Out[28]: European Option Value 8.166
Duration in Seconds 1.439

The execution speed is somewhat slower compared to the first NumPy implementation.

www.it-ebooks.info

http://www.it-ebooks.info/

There might also be a trade-off between compactness and readability in that this
implementation approach makes it quite difficult to grasp what exactly is going on on the
NumPy level. However, it shows how far one can go sometimes with NumPy vectorization.

Graphical Analysis

Finally, let us have a graphical look at the underlying mechanics (refer to Chapter 5 for an
explanation of the matplotlib plotting library). First, we plot the first 10 simulated paths
over all time steps. Figure 3-2 shows the output:

In [29]: import as
plt.plot(S[:, :10])
plt.grid(True)
plt.xlabel(‘time step’)
plt.ylabel(‘index level’)

150

140

130 |

120

110

index level

100 p

o 10 20 30 40 50
time step

Figure 3-2. The first 10 simulated index level paths

Second, we want to see the frequency of the simulated index levels at the end of the
simulation period. Figure 3-3 shows the output, this time illustrating the (approximately)
log-normal distribution of the end-of-period index level values:

In [30]: plt.hist(S[-1], bins=50)
plt.grid(True)
plt.xlabel(‘index level’)
plt.ylabel(’frequency’)

The same type of figure looks completely different for the option’s end-of-period
(maturity) inner values, as Figure 3-4 illustrates:

In [31]: plt.hist(np.maximum(S[-1] - K, 0), bins=50)
plt.grid(True)
plt.xlabel(‘option inner value’)
plt.ylabel(’frequency’)
plt.ylim(0, 50000)

www.it-ebooks.info

http://www.it-ebooks.info/

25000

20000

15000

frequency

10000

5000

o 50 100 150 200 250 300
index level

Figure 3-3. Histogram of all simulated end-of-period index level values

50000

40000

30000

frequency

20000

10000

o 20 40 4] 80 ldﬂ 120 140 180 180
aption inner value

Figure 3-4. Histogram of all simulated end-of-period option inner values
In this case, the majority of the simluated values are zero, indicating that the European call
option expires worthless in a significant amount of cases. The exact number is generated
through the following calculation:
In [32]: sum(S[-1] < K)

out[32]: 133533

This number might vary somewhat, of course, from simulation to simulation.

www.it-ebooks.info

http://www.it-ebooks.info/

Technical Analysis

Technical analysis based on historical price information is a typical task finance
professionals and interested amateurs engage in. On Wikipedia you find the following
definition:

In finance, technical analysis is a security analysis methodology for forecasting the direction of prices through the
study of past market data, primarily price and volume.

In what follows, we focus on the study of past market data for backtesting purposes, and
not too much on using our insights to predict future price movements. Our object of study
is the benchmark index Standard & Poor’s 500 (S&P 500), which is generally considered
to be a good proxy for the whole stock market in the United States. This is due to the high
number of names included in the index and the total market capitalization represented by
it. It also has highly liquid futures and options markets.

We will read historical index level information from a web source and will implement a
simple backtesting for a trading system based on trend signals. But first we need the data
to get started. To this end, we mainly rely on the pandas library, which simplifies a
number of related technical issues. Since it is almost always used, we should also import

NumPy by default:
In [33]: import as
import as
import as

SCIENTIFIC AND FINANCIAL PYTHON STACK

In addition to NumPy and SciPy, there are only a couple of important libraries that form the fundamental scientific
and financial Python stack. Among them is pandas. Make sure to always have current (stable) versions of these
libraries installed (but be aware of potential syntax and/or API changes).

The sublibrary pandas.io.data contains the function DataReader, which helps with
getting financial time series data from different sources and in particular from the popular
Yahoo! Finance site. Let’s retrieve the data we are looking for, starting on January 1, 2000:

In [34]: sp500 = web.DataReader(‘~AGSPC’, data_source=‘yahoo’,
start='1/1/2000", end=‘4/14/2014")
sp500.info()

Out[34]: <class ‘pandas.core.frame.DataFrame’>
DatetimeIndex: 3592 entries, 2000-01-03 00:00:00 to 2014-04-14 00:00:00
Data columns (total 6 columns):

Open 3592 non-null float64
High 3592 non-null float64
Low 3592 non-null float64
Close 3592 non-null float64
Volume 3592 non-null int64

Adj Close 3592 non-null float64
dtypes: float64(5), int64(1)

DataReader has connected to the data source via an Internet connection and has given
back the time series data for the S&P 500 index, from the first trading day in 2000 until
the end date. It has also generated automatically a time index with Timestamp objects.

To get a first impression, we can plot the closing quotes over time. This gives an output
like that in Figure 3-5:

In [35]: sp500[‘Close’].plot(grid=True, figsize=(8, 5))

www.it-ebooks.info

http://en.wikipedia.org/wiki/Technical_analysis
http://finance.yahoo.com
http://www.it-ebooks.info/

2000

1800 -

1600 -

1400

1200

1000

800 |-

600

%

ik

A

B

Il
v -gﬁ3

1!
ol P

g o

T
Date

Figure 3-5. Historical levels of the S&P 500 index

The trend strategy we want to implement is based on both a two-month (i.e., 42 trading
days) and a one-year (i.e., 252 trading days) trend (i.e., the moving average of the index
level for the respective period). Again, pandas makes it efficient to generate the respective
time series and to plot the three relevant time series in a single figure. First, the generation

of the trend data:

In [36]: sp500[‘42d’] = np.round(pd.rolling _mean(sp500[‘Close’], window=42), 2)
sp500[“252d’] = np.round(pd.rolling_mean(sp500[‘Close’], window=252), 2)

In this example, the first line simultaneously adds a new column to the pandas DataFrame
object and puts in the values for the 42-day trend. The second line does the same with
respect to the 252-day trend. Consequently, we now have two new columns. These have
fewer entries due to the very nature of the data we have generated for these columns —
i.e., they start only at those dates when 42 and 252 observation points, respectively, are
available for the first time to calculate the desired statistics:

In [37]: sp500[[‘Close’,

out[37]:
Date
2014
2014
2014
2014
2014

-04-
-04-
-04-
-04-
-04-

08
09
10
11
14

Close

1851.
.18
1833.
1815.
1830.

1872

96

08
69
61

‘42d’, ‘252d

42d

1853.88
1855.66
1856.46
1856.36
1856.63

"11.tail()
252d

1728.
.79
1730.
1731.
.74

1729

1732

66

74
64

Second, the plotting of the new data. The resulting plot in Figure 3-6 already provides
some insights into what was going on in the past with respect to upward and downward

trends:

In [38]: sp50O[[‘Close’,

'42d", *252d’"]].plot(grid=True, figsize=(8, 5))

www.it-ebooks.info

http://www.it-ebooks.info/

2000

1800 -

1600 -
1400 4
1200
1000

800 |-

m{l 1 1 1 1 1 1 1

A Eoi el el o £ £

Date

Figure 3-6. The S&P 500 index with 42d and 252d trend lines

Our basic data set is mainly complete, such that we now can devise a rule to generate
trading signals. The rule says the following:

Buy signal (go long)

the 42d trend is for the first time SD points above the 252d trend.
Wait (park in cash)

the 42d trend is within a range of +/— SD points around the 252d trend.
Sell signal (go short)

the 42d trend is for the first time SD points below the 252d trend.

To this end, we add a new column to the pandas DataFrame object for the differences
between the two trends. As you can see, numerical operations with pandas can in general
be implemented in a vectorized fashion, in that one can take the difference between two
whole columns:

In [39]: sp500[‘42-252"] = sp500[‘42d’] - sp500[‘252d’]
sp500[‘42-252"].tail()

Out[39]: Date
2014-04-08 125.22
2014-04-09 125.87
2014-04-10 125.72
2014-04-11 124.72
2014-04-14 123.89
Name: 42-252, dtype: float64

On the last available trading date the 42d trend lies well above the 252d trend. Although
the number of entries in the two trend columns is not equal, pandas takes care of this by
putting NaN values at the respective index positions:

In [40]: sp500[‘42-252"] .head()

Out[40]: Date
2000-01-03 NaN
2000-01-04 NaN
2000-01-05 NaN
2000-01-06 NaN
2000-01-07 NaN
Name: 42-252, dtype: float64

To make it more formal, we again generate a new column for what we call a regime. We

www.it-ebooks.info

http://www.it-ebooks.info/

assume a value of 50 for the signal threshold:

In [41]: SD = 50
sp500[‘Regime’] = np.where(sp500[‘42-252"] > SD, 1, 0)
sp500[‘Regime’] = np.where(sp500[‘42-252"] < -SD, -1, sp500[‘Regime’])
sp500[‘Regime’].value_counts()

out[41]: 1 1489
(0] 1232

-1 871

dtype: int64
In words, on 1,489 trading dates, the 42d trend lies more than SD points above the 252d
trend. On 1,232 days, the 42d trend is more than SD points below the 252d trend.
Obviously, if the short-term trend crosses the line of the long-term trend it tends to rest
there for a (longer) while. This is what we call regime and what is illustrated in Figure 3-7,
which is generated by the following two lines of code:

In [42]: sp500[‘Regime’].plot(lw=1.5)
plt.ylim([-1.1, 1.1])

10

05

00

1 1 | 1 1 |
e S D

Date

Figure 3-7. Signal regimes over time

Everything is now available to test the investment strategy based on the signals. We
assume for simplicity that an investor can directly invest in the index or can directly short
the index, which in the real world must be accomplished by using index funds, exchange-
traded funds, or futures on the index, for example. Such trades inevitably lead to
transaction costs, which we neglect here. This seems justifiable since we do not plan to
trade “too often.”

Based on the respective regime, the investor either is long or short in the market (index) or
parks his wealth in cash, which does not bear any interest. This simplified strategy allows
us to work with market returns only. The investor makes the market return when he is long
(1), makes the negative market returns when he is short (—1), and makes no returns (0)
when he parks his wealth in cash. We therefore need the returns first. In Python, we have
the following vectorized pandas operation to calculate the log returns. Note that the shift
method shifts a time series by as many index entries as desired — in our case by one
trading day, such that we get daily log returns:

In [43]: sp500[‘Market’] = np.log(sp500[‘Close’] / sp500[‘Close’].shift(1))

Recalling how we constructed our regimes, it is now simple to get the returns of the trend-
based trading strategy — we just have to multiply our Regime column, shifted by one day,
by the Returns columns (the position is built “yesterday” and yields “today’s” returns):

In [44]: sp500[‘Strategy’] = sp500[‘Regime’].shift(1) * sp500[‘Market’]

www.it-ebooks.info

http://www.it-ebooks.info/

The strategy pays off well; the investor is able to lock in a much higher return over the
relevant period than a plain long investment would provide. Figure 3-8 compares the
cumulative, continuous returns of the index with the cumulative, continuous returns of our
strategy:

In [45]: sp50O[[‘Market’, ‘Strategy’]].cumsum().apply(np.exp).plot(grid=True,
figsize=(8, 5))

3.0 - ;

— Market
;5 || — Strategy | ﬁ‘ /I'“ L “nﬂﬂﬁn
20} . ---‘. Ty |

|} |:| 1 1 1 1 1 1 1

Iaﬁ*s. '&}{ﬁ ﬁﬁ‘:

g o

v o

“
. > g

Date

Figure 3-8. The S&P 500 index vs. investor’s wealth

Figure 3-8 shows that especially during market downturns (2003 and 2008/2009) the
shorting of the market yields quite high returns. Although the strategy does not capture the
whole upside during bullish periods, the strategy as a whole outperforms the market quite
significantly.

However, we have to keep in mind that we completely neglect operational issues (like
trade execution) and relevant market microstructure elements (e.g., transaction costs). For
example, we are working with daily closing values. A question would be when to execute
an exit from the market (from being long to being neutral/in cash): on the same day at the
closing value or the next day at the opening value. Such considerations for sure have an
impact on the performance, but the overall result would probably persist. Also, transaction
costs generally diminish returns, but the trading rule does not generate too many signals.

FINANCIAL TIME SERIES

Whenever it comes to the analysis of financial time series, consider using pandas. Almost any time series-related
problem can be tackled with this powerful library.

www.it-ebooks.info

http://www.it-ebooks.info/

Conclusions

Without going into too much detail, this chapter illustrates the use of Python by the means
of concrete and typical financial examples:

Calculation of implied volatilities

Using real-world data, in the form of a cross section of option data for a given day,
we calculate numerically the implied volatilities of European call options on the
VSTOXX volatility index. This example introduces some custom Python functions
(e.g., for analytical option valuation) and uses functionality from NumPy, SciPy, and
pandas.

Monte Carlo simulation

Using different implementation approaches, we simulate the evolution of an index
level over time and use our simulated end-of-period values to derive Monte Carlo
estimators for European call options. Using NumPy, the major benefits of vectorization
of Python code are illustrated: namely, compactness of code and speed of execution.

Backtesting of trend signal strategy

Using real historical time series data for the S&P 500, we backtest the performance
of a trading strategy based on signals generated by 42-day and 252-day trends
(moving averages). This example illustrates the capabilities and convenience of
pandas when it comes to time series analytics.

In terms of working with Python, this chapter introduces interactive financial analytics
(using the IPython interactive shell), working with more complex functions stored in
modules, as well as the performance-oriented implementation of algorithms using
vectorization. One important topic is not covered: namely, object orientation and classes in
Python. For the curious reader, Appendix B contains a class definition for a European call
option with methods based on the functions found in the code of Example 3-1 in this
chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

Further Reading

The major references used in this chapter are:

e Black, Fischer and Myron Scholes (1973): “The Pricing of Options and Corporate
Liabilities.” Journal of Political Economy, Vol. 81, No. 3, pp. 638-659.
e Hilpisch, Yves (2015): Derivatives Analytics with Python. Wiley Finance, Chichester,

England. http://www.derivatives-analytics-with-python.com.
e Hilpisch, Yves (2013): “Efficient Data and Financial Analytics with Python.”

Software Developer’s Journal, No. 13, pp. 56-65.

http://hilpisch.com/YH_Efficient Analytics_Article.pdf.
e Merton, Robert (1973): “Theory of Rational Option Pricing.” Bell Journal of

Economics and Management Science, Vol. 4, pp. 141-183.

[12] Chapter 19 also deals with options based on the VSTOXX volatility index; it calibrates an option pricing model to
market quotes and values American, nontraded options given the calibrated model.

[13] As we are only considering a single day’s worth of futures and options quotes, the MATURITY column of the
futures_data object would have delivered the information a bit more easily since there are no duplicates.

[14] Note that you can always look up attributes and methods of unknown objects by using the Python built-in function
dir, like with dir(group_data).

[15] Although not needed here, all approaches store complete simulation paths in-memory. For the valuation of standard
European options this is not necessary, as the corresponding example in Chapter 1 shows. However, for the valuation of
American options or for certain risk management purposes, whole paths are needed.

[16] These Monte Carlo examples and implementation approaches also appear in the article Hilpisch (2013).

[17] For details, refer to the book by Hilpisch (2015).

www.it-ebooks.info

http://www.derivatives-analytics-with-python.com
http://hilpisch.com/YH_Efficient_Analytics_Article.pdf
http://www.it-ebooks.info/

Part II. Financial Analytics and Development

This part of the book represents its core. It introduces the most important Python libraries,
techniques, and approaches for financial analytics and application development. The sheer
number of topics covered in this part makes it necessary to focus mainly on selected, and

partly rather specific, examples and use cases.

The chapters are organized according to certain topics such that this part can be used as a
reference to which the reader can come to look up examples and details related to a topic

of interest. This core part of the book consists of the following chapters:

Chapter 4 on Python data types and structures

Chapter 5 on 2D and 3D visualization with matplotlib

Chapter 6 on the handling of financial time series data

Chapter 7 on (performant) input/output operations

Chapter 8 on performance techniques and libraries

Chapter 9 on several mathematical tools needed in finance

Chapter 10 on random number generation and simulation of stochastic processes
Chapter 11 on statistical applications with Python

Chapter 12 on the integration of Python and Excel

Chapter 13 on object-oriented programming with Python and the development of
(simple) graphical user interfaces (GUIs)

Chapter 14 on the integration of Python with web technologies as well as the
development of web-based applications and web services

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4. Data Types and Structures

Bad programmers worry about the code. Good programmers worry about data structures and their relationships.
— Linus Torvalds

This chapter introduces basic data types and data structures of Python. Although the
Python interpreter itself already brings a rich variety of data structures with it, NumPy and
other libraries add to these in a valuable fashion.

The chapter is organized as follows:
Basic data types

The first section introduces basic data types such as int, float, and string.
Basic data structures

The next section introduces the fundamental data structures of Python (e.g., list
objects) and illustrates control structures, functional programming paradigms, and
anonymous functions.

NumPy data structures

The following section is devoted to the characteristics and capabilities of the NumPy
ndarray class and illustrates some of the benefits of this class for scientific and
financial applications.

Vectorization of code

As the final section illustrates, thanks to NumPy’s array class vectorized code is easily
implemented, leading to more compact and also better-performing code.

The spirit of this chapter is to provide a general introduction to Python specifics when it
comes to data types and structures. If you are equipped with a background from another
programing language, say C or Matlab, you should be able to easily grasp the differences
that Python usage might bring along. The topics introduced here are all important and
fundamental for the chapters to come.

www.it-ebooks.info

http://www.it-ebooks.info/

Basic Data Types

Python is a dynamically typed language, which means that the Python interpreter infers
the type of an object at runtime. In comparison, compiled languages like C are generally
statically typed. In these cases, the type of an object has to be attached to the object before

compile time.!18!
Integers

One of the most fundamental data types is the integer, or int:

In [1]: a = 10

type(a)

Out[1]: int
The built-in function type provides type information for all objects with standard and
built-in types as well as for newly created classes and objects. In the latter case, the
information provided depends on the description the programmer has stored with the class.
There is a saying that “everything in Python is an object.” This means, for example, that
even simple objects like the int object we just defined have built-in methods. For
example, you can get the number of bits needed to represent the int object in-memory by
calling the method bit_length:

In [2]: a.bit_length()

out[2]: 4

You will see that the number of bits needed increases the higher the integer value is that
we assign to the object:

In [3]: a = 100000
a.bit_length()

Out[3]: 17

In general, there are so many different methods that it is hard to memorize all methods of
all classes and objects. Advanced Python environments, like IPython, provide tab
completion capabilities that show all methods attached to an object. You simply type the
object name followed by a dot (e.g., a.) and then press the Tab key, e.g., a. tab. This then
provides a collection of methods you can call on the object. Alternatively, the Python
built-in function dir gives a complete list of attributes and methods of any object.

A specialty of Python is that integers can be arbitrarily large. Consider, for example, the

googol number 10'%. python has no problem with such large numbers, which are
technically long objects:
In [4]: googol = 10 ** 100
googol

Out[4]: 1000000000EECOC00000000000000000000000000000000OCOEEEAEEEEEEEEEEEEEEEEREO
00000000000000000O0BOOBEOOEOOL

In [5]: googol.bit_length()

out[5]: 333

LARGE INTEGERS
Python integers can be arbitrarily large. The interpreter simply uses as many bits/bytes as needed to represent the
numbers.

It is important to note that mathematical operations on int objects return int objects. This
can sometimes lead to confusion and/or hard-to-detect errors in mathematical routines.

www.it-ebooks.info

http://www.it-ebooks.info/

The following expression yields the expected result:

In [6]: 1 + 4
Out[6]: 5

HOWEVEF, the next case may return a somewhat SUFpFiSiDg result:
In [7]: 1/ 4
Out[7]: ©
In [8]: type(1l / 4)
out[8]: int

Floats

For the last expression to return the generally desired result of 0.25, we must operate on
float objects, which brings us naturally to the next basic data type. Adding a dot to an
integer value, like in 1. or 1.0, causes Python to interpret the object as a float.

Expressions involving a float also return a float object in general:[12]

In [9]: 1. / 4

Out[9]: 0.25

In [10]: type (1. / 4)
Out[10]: float

A float is a bit more involved in that the computerized representation of rational or real
numbers is in general not exact and depends on the specific technical approach taken. To
illustrate what this implies, let us define another float object:

In [11]: b = 0.35

type(b)

Out[11]: float
float objects like this one are always represented internally up to a certain degree of
accuracy only. This becomes evident when adding 0.1 to b:

In [12]: b + 0.1

Out[12]: 0.44999999999999996

The reason for this is that floats are internally represented in binary format; that is, a

decimal number 0 < n < 1 is represented by a series of the form " = 7+ % T § T - For
certain floating-point numbers the binary representation might involve a large number of
elements or might even be an infinite series. However, given a fixed number of bits used
to represent such a number — i.e., a fixed number of terms in the representation series —
inaccuracies are the consequence. Other numbers can be represented perfectly and are
therefore stored exactly even with a finite number of bits available. Consider the following
example:

In [13]: ¢ = 0.5
c.as_integer_ratio()

out[13]: (1, 2)
One half, i.e., 0.5, is stored exactly because it has an exact (finite) binary representation as
= L . . .
0.5 =7 However, for b = 0.35 we get something different than the expected rational

_ 1
number 0.35 = 20:

In [14]: b.as_integer_ratio()
Out[14]: (3152519739159347, 9007199254740992)

The precision is dependent on the number of bits used to represent the number. In general,

www.it-ebooks.info

http://www.it-ebooks.info/

all platforms that Python runs on use the IEEE 754 double-precision standard (i.e., 64
bits), for internal representation.[2%! This translates into a 15-digit relative accuracy.

Since this topic is of high importance for several application areas in finance, it is
sometimes necessary to ensure the exact, or at least best possible, representation of
numbers. For example, the issue can be of importance when summing over a large set of
numbers. In such a situation, a certain kind and/or magnitude of representation error
might, in aggregate, lead to significant deviations from a benchmark value.

The module decimal provides an arbitrary-precision object for floating-point numbers and
several options to address precision issues when working with such numbers:

In [15]: import
from import Decimal

In [16]: decimal.getcontext()

Out[16]: Context(prec=28, rounding=ROUND_HALF_EVEN, Emin=-999999999, Emax=999999
999, capitals=1, flags=[], traps=[Overflow, InvalidOperation, DivisionB
yZero])

In [17]: d = Decimal(1) / Decimal (11)
d
out[17]: Decimal(‘0.09090909090909090909090909091")

You can change the precision of the representation by changing the respective attribute
value of the context object:

In [18]: decimal.getcontext().prec = 4 # lower precision than default

In [19]: e = Decimal(1l) / Decimal (11)
e

Out[19]: Decimal(‘0.09091")
In [20]: decimal.getcontext().prec = 50 # higher precision than default

In [21]: f = Decimal(1l) / Decimal (11)
f

out[21]: Decimal(‘0.091")

If needed, the precision can in this way be adjusted to the exact problem at hand and one
can operate with floating-point objects that exhibit different degrees of accuracy:

In [22]: g=d +e + f
g
Out[22]: Decimal(‘0.27272818181818181818181818181909090909090909090909")
ARBITRARY-PRECISION FLOATS

The module decimal provides an arbitrary-precision floating-point number object. In finance, it might sometimes
be necessary to ensure high precision and to go beyond the 64-bit double-precision standard.

Strings

Now that we can represent natural and floating-point numbers, we turn to text. The basic
data type to represent text in Python is the string. The string object has a number of
really helpful built-in methods. In fact, Python is generally considered to be a good choice
when it comes to working with text files of any kind and any size. A string object is
generally defined by single or double quotation marks or by converting another object
using the str function (i.e., using the object’s standard or user-defined string
representation):

In [23]: t = ‘this is a string object’

With regard to the built-in methods, you can, for example, capitalize the first word in this
object:

www.it-ebooks.info

http://www.it-ebooks.info/

In [24]: t.capitalize()
Out[24]: ‘This is a string object’

Or you can split it into its single-word components to get a 1ist object of all the words
(more on 1list objects later):

In [25]: t.split()

Out[25]: [‘this’, ‘is’, ‘a’, ‘string’, ‘object’]
You can also search for a word and get the position (i.e., index value) of the first letter of
the word back in a successful case:

In [26]: t.find(‘string”)

out[26]: 10
If the word is not in the string object, the method returns -1:

In [27]: t.find('Python”)

out[27]: -1

Replacing characters in a string is a typical task that is easily accomplished with the
replace method:

In [28]: t.replace(’ “, ‘|")

Out[28]: ‘this]|is|a|string|object’
The stripping of strings — i.e., deletion of certain leading/lagging characters — is also
often necessary:

In [29]: ‘http://www.python.org’.strip(‘htp:/")

Out[29]: ‘www.python.org’

Table 4-1 lists a number of helpful methods of the string object.
Table 4-1. Selected string methods

Method Arguments Returns/result
capitalize () Copy of the string with first letter capitalized
count (sub[, start[, end]]) Count of the number of occurrences of substring
decode ([encoding[, errors]]) Decoded version of the string, using encoding (e.g., UTF-8)
encode ([encoding[, errors]]) Encoded version of the string
find (sub[, start[, end]]) (Lowest)index where substring is found
join (seq) Concatenation of strings in sequence seq
replace (old, new[, count]) Replaces old by new the first count times

www.it-ebooks.info

http://www.it-ebooks.info/

split ([sep[, maxsplit]]) List of words in string with sep as separator

splitlines ([keepends]) Separated lines with line ends/breaks if keepends is True
strip (chars) Copy of string with leading/lagging characters in chars removed
upper @) Copy with all letters capitalized

A powerful tool when working with string objects is regular expressions. Python
provides such functionality in the module re:

In [30]: import

Suppose you are faced with a large text file, such as a comma-separated value (csV) file,
which contains certain time series and respective date-time information. More often than
not, the date-time information is delivered in a format that Python cannot interpret
directly. However, the date-time information can generally be described by a regular
expression. Consider the following string object, containing three date-time elements,
three integers, and three strings. Note that triple quotation marks allow the definition of
strings over multiple rows:

In [31]: series = """
‘01/18/2014 13:00:00', 100, ‘1st’;
'01/18/2014 13:30:00’, 110, ‘2nd’;
‘01/18/2014 14:00:00’, 120, ‘3rd’

mn

The following regular expression describes the format of the date-time information
provided in the string object:[21!

In [32]: dt = re.compile(”’'[0-9/:\s]+'") # datetime

Equipped with this regular expression, we can go on and find all the date-time elements.
In general, applying regular expressions to string objects also leads to performance
improvements for typical parsing tasks:

In [33]: result = dt.findall(series)
result

Out[33]: [“‘01/18/2014 13:00:00’'", “‘01/18/2014 13:30:00'", “‘01/18/2014 14:00:0
0 ’ /I]
REGULAR EXPRESSIONS

When parsing string objects, consider using regular expressions, which can bring both convenience and
performance to such operations.

The resulting string objects can then be parsed to generate Python datetime objects (cf.
Appendix C for an overview of handling date and time data with Python). To parse the
string objects containing the date-time information, we need to provide information of
how to parse — again as a string object:

In [34]: from import datetime
pydt = datetime.strptime(result[0].replace(”"”, ""),
"%m/%d/%Y %H:%M: %S’)

pydt
Out[34]: datetime.datetime(2014, 1, 18, 13, 0)

In [35]: print pydt

www.it-ebooks.info

http://www.it-ebooks.info/

Out[35]: 2014-01-18 13:00:00
In [36]: print type(pydt)
Out[36]: <type ‘datetime.datetime’>

Later chapters provide more information on date-time data, the handling of such data, and
datetime objects and their methods. This is just meant to be a teaser for this important
topic in finance.

www.it-ebooks.info

http://www.it-ebooks.info/

Basic Data Structures

As a general rule, data structures are objects that contain a possibly large number of other
objects. Among those that Python provides as built-in structures are:

tuple

A collection of arbitrary objects; only a few methods available
list

A collection of arbitrary objects; many methods available
dict

A key-value store object

set

An unordered collection object for other unique objects

Tuples

A tuple is an advanced data structure, yet it’s still quite simple and limited in its
applications. It is defined by providing objects in parentheses:

In [37]: t = (1, 2.5, ‘data’)
type(t)
Out[37]: tuple

You can even drop the parentheses and provide multiple objects separated by commas:

In [38]: t =1, 2.5, ‘data’

type(t)

Out[38]: tuple
Like almost all data structures in Python the tuple has a built-in index, with the help of
which you can retrieve single or multiple elements of the tuple. It is important to
remember that Python uses zero-based numbering, such that the third element of a tuple
is at index position 2:

In [39]: t[2]

Out[39]: ‘data’

In [40]: type(t[2])

Out[40]: str

ZERO-BASED NUMBERING
In contrast to some other programming languages like Matlab, Python uses zero-based numbering schemes. For

example, the first element of a tuple object has index value 0.
There are only two special methods that this object type provides: count and index. The
first counts the number of occurrences of a certain object and the second gives the index
value of the first appearance of it:

In [41]: t.count(‘data’)
Out[41]: 1

In [42]: t.index(1)
Out[42]: ©

tuple objects are not very flexible since, once defined, they cannot be changed easily.

Lists

www.it-ebooks.info

http://www.it-ebooks.info/

Objects of type 1ist are much more flexible and powerful in comparison to tuple objects.
From a finance point of view, you can achieve a lot working only with 1ist objects, such
as storing stock price quotes and appending new data. A 1ist object is defined through
brackets and the basic capabilities and behavior are similar to those of tuple objects:

In [43]: 1 =[1, 2.5, ‘data’]
1[2]

Out[43]: ‘data’

list objects can also be defined or converted by using the function 1ist. The following
code generates a new list object by converting the tuple object from the previous

example:
In [44]: 1 = 1ist(t)
1
Out[44]: [1, 2.5, ‘data’]
In [45]: type(l)
Out[45]: list

In addition to the characteristics of tuple objects, 1ist objects are also expandable and
reducible via different methods. In other words, whereas string and tuple objects are
immutable sequence objects (with indexes) that cannot be changed once created, 1ist
objects are mutable and can be changed via different operations. You can append list
objects to an existing 1ist object, and more:

In [46]: l.append([4, 3]) # append list at the end
1

Out[46]: [1, 2.5, ‘data’, [4, 3]]

In [47]: l.extend([1.0, 1.5, 2.0]) # append elements of list
1

Out[47]: [1, 2.5, ‘data’, [4, 3], 1.0, 1.5, 2.0]

In [48]: l.insert(1, ‘insert’) # insert object before index position
1

Out[48]: [1, ‘insert’, 2.5, ‘data’, [4, 3], 1.0, 1.5, 2.0]

In [49]: l.remove(‘data’) # remove first occurrence of object
1

Out[49]: [1, ‘insert’, 2.5, [4, 3], 1.0, 1.5, 2.0]

In [50]: p = 1l.pop(3) # removes and returns object at index
print 1, p

Out[50]: [1, ‘insert’, 2.5, 1.0, 1.5, 2.0] [4, 3]

Slicing is also easily accomplished. Here, slicing refers to an operation that breaks down a
data set into smaller parts (of interest):

In [51]: 1[2:5] # 3rd to 5th elements
out[51]: [2.5, 1.0, 1.5]

Table 4-2 provides a summary of selected operations and methods of the 1ist object.

Table 4-2. Selected operatio