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5.3 PIDE Solutions for Lévy Processes . . . . . . . . . . . . . . . . . . . . . . . 190
5.4 Forward PIDEs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

5.4.1 American Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
5.4.2 Down-and-Out and Up-and-Out Calls . . . . . . . . . . . . . . . . . 194

5.5 Calculation of g1 and g2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

6 Simulation Methods for Derivatives Pricing 203

6.1 Random Number Generation . . . . . . . . . . . . . . . . . . . . . . . . . . 205
6.1.1 Standard Uniform Distribution . . . . . . . . . . . . . . . . . . . . . 205

6.2 Samples from Various Distributions . . . . . . . . . . . . . . . . . . . . . . 206
6.2.1 Inverse Transform Method . . . . . . . . . . . . . . . . . . . . . . . . 206
6.2.2 Acceptance–Rejection Method . . . . . . . . . . . . . . . . . . . . . 208

6.2.2.1 Standard Normal Distribution via Acceptance–Rejection . 211
6.2.2.2 Poisson Distribution via Acceptance–Rejection . . . . . . . 212
6.2.2.3 Gamma Distribution via Acceptance–Rejection . . . . . . . 213
6.2.2.4 Beta Distribution via Acceptance–Rejection . . . . . . . . 213

6.2.3 Univariate Standard Normal Random Variables . . . . . . . . . . . . 214
6.2.3.1 Rational Approximation . . . . . . . . . . . . . . . . . . . . 214
6.2.3.2 Box–Muller Method . . . . . . . . . . . . . . . . . . . . . . 216
6.2.3.3 Marsaglia’s Polar Method . . . . . . . . . . . . . . . . . . . 217

6.2.4 Multivariate Normal Random Variables . . . . . . . . . . . . . . . . 218
6.2.5 Cholesky Factorization . . . . . . . . . . . . . . . . . . . . . . . . . . 219

6.2.5.1 Simulating Multivariate Distributions with Specific Corre-
lations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

6.3 Models of Dependence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
6.3.1 Full Rank Gaussian Copula Model . . . . . . . . . . . . . . . . . . . 222
6.3.2 Correlating Gaussian Components in a Variance Gamma Represen-

tation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
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Preface

“In order to make any progress, it is necessary to think of approximate techniques, and
above all, numerical algorithms ... Once again, what became a major endeavor of mine, the
computational solution of complex functional equations, was entered into quite diffidently. I
had never been interested in numerical analysis up to that point. Like most mathematicians
of my generation, I had been brought up to scorn this utilitarian activity. Numerical solution
was considered the last resort of an incompetent mathematician. The opposite, of course,
is true. Once working in this area, it is very quickly realized that far more ability and
sophistication is required to obtain a numerical solution than to establish the usual existence
and uniqueness theorems. It is far more difficult to obtain an effective algorithm than
one that stops with a demonstration of validity. A final goal of any scientific theory must
be the derivation of numbers.” This is an excerpt1 from Eye of the Hurricane [30] on
page 185 by Richard Bellman. It seems appropriate to start the preface with this quote
considering advances in quantitative finance would have been impossible without utilizing
computational/numerical techniques and their impact on the evolution of the field in recent
years.

In most applications and physical phenomena, we are in search of a solution that hap-
pens to be an approximation of the true solution. As a result, some sort of a computational
method/technique or a numerical procedure is a must. In quantitative finance, aside from
a few cases with an analytical or a semi-analytical solution, we typically wind up with an
approximation as well. As today’s financial products have become more complex, quanti-
tative analysts, financial engineers, and others in the financial industry now require robust
techniques for numerical solutions. Computational finance has been a field that has been
growing tremendously and intricacy of products and markets suggests there will be an even
higher demand in the field.

This book is based on lecture notes I have used in my courses at Columbia University
and my course at the Courant Institute of New York University. The selection of topics
has been influenced by students and market requirements throughout my teaching over the
years. Rama Cont, my colleague and friend, suggested to incorporate these notes into a
textbook and referred me to the publisher.

My goal has been to write a textbook on computational methods in finance bringing
together a full-spectrum of methods and schemes for pricing of derivatives contracts and
related products, simulation, model calibration and parameter estimation with many practi-
cal examples. This book is intended for first/second year graduate students in the financial
engineering or mathematics of finance field as well as practitioners, quants, researchers,
technologists implementing models, and those who are interested in the field. My intention
has been to keep the book self-contained and stand-alone.

Overall I have been pretty informal about theory.2 The aim has not been to get into detail
on stochastic calculus or martingales pricing as they are not prerequisites for understanding

1This quote was brought up to my attention by Michael Johannes, a colleague and friend, of Columbia
Business School.

2An example of this is the Itô lemma for semi-martingales without defining semi-martingales or the
Girsanov theorem without stating the theorem.
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the procedures in the book. Yet in some cases it has been unavoidable, and I try to give
sufficient explanation so that the reader can proceed without any need to delve into the
derivation or the theory behind it.

This book is composed of two parts. The first part of the book describes various methods
and techniques for the pricing of derivative contracts and the valuation of a variety of
models and processes. In the second part, the book focuses on model calibration, calibration
procedure, filtering, and parameter estimation.

Chapter 1 reviews some basic concepts, principally relating to the construction of the
characteristic function of stochastic processes. It then shows how the characteristic function
can be used to generate the moments of the resulting distribution and some methods used in
our derivations of the characteristic functions of different processes. In addition, it reviews
various characteristic functions of standard distributions. I then provide a self-contained list
of some of the most commonly used stochastic processes that practitioners employ to model
assets for derivative pricing applications. However, this list is by no means comprehensive
and will certainly not cover every stochastic process used in practice. In describing these
processes, I provide as detailed a mathematical description of each process as possible,
including the characteristic function for every process, in closed form where available, as
well as the stochastic differential equation where a closed form exists. Finally, the chapter
contains a basic review of risk-neutral pricing and change of measure. When combined with
a model of the stochastic evolution of the underlying asset, this forms the basis for all the
derivative pricing algorithms in this book.

Chapters 2–6 cover many computational approaches for pricing derivatives contracts,
including (a) transform techniques, (b) the finite difference method for solving partial dif-
ferential equations and partial-integro differential equations, and (c) Monte Carlo simu-
lation. Chapter 2 presents a range of transform techniques that comprise the fast Fourier
transform, fractional fast Fourier transform, the Fourier-cosine (COS) method, and the sad-
dlepoint method. I discuss the pros and cons of each approach and provide plenty of cross
comparison. Chapter 3 introduces the finite difference method used for numerically solving
partial differential equations. This chapter focuses on the most commonly used finite dif-
ference techniques utilized to solve partial differential equations, namely, explicit, implicit,
Crank–Nicolson, and multi-step schemes. I discuss stability analysis of those schemes and
different structure for the stiffness matrix arising from the discretization of partial differ-
ential equations and provide routines for solving the linear equations. A generic approach
to derivative approximation by finite differences is also provided. Chapter 4 utilizes finite
differences introduced in Chapter 3 to price vanilla and exotic derivatives under models for
which a partial differential equation describing derivative prices can be formulated such as
the Black–Scholes model and the local volatility models in the one-dimensional case and the
Heston stochastic volatility model in the two-dimensional case. I discuss how to implement
boundary conditions and exercise boundaries, setting up non-uniform grid points and coor-
dinate transformation as well as dealing with jump conditions. Chapter 5 covers numerical
solutions of partial-integro differential equations via finite differences for pricing various
different derivative contracts. I look at PIDEs which arise in the pure jump framework, for
instance, variance gamma (VG) and CGMY processes.

Not having the characteristic function in closed form, having a fairly complex payoff
structure for the derivative contract under consideration, having a non-Markov process, or a
high dimensional process or model, we have to utilize Monte Carlo simulation for pricing and
valuation as the method of last resort. Chapter 6 covers Monte Carlo simulation. I discuss
different sampling methods and sampling from various different distributions. I also go
over Monte Carlo integration and numerical integration of stochastic differential equations.
The output from simulation is associated with a variance that limits the accuracy of the
simulation results. It is the major drawback to simulation and, naturally, various reduction
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techniques are studied and examined in this chapter. I also delve into simulation of some
pure jump processes.

In the second part, the book focuses on essential steps in real-world derivatives pricing
and estimation. In Chapter 7, I discuss how to calibrate model parameters so that model
prices will be compatible with market prices. Construction of the local volatility surface
and calibration of various different models in diffusion or pure-jump framework used for
equity, foreign exchange, or interest rate modeling are discussed. The two essential steps in
the calibration procedure, namely, the objective function and the optimization methodology
are addressed in detail. I also discuss the notation of model risk. Chapter 8, the last chapter
of the book covers various filtering techniques and their implementations used on the time
series of data to unravel the best parameter set for the model under consideration and
provide examples in filtering and parameter estimation of various different models and
processes.

The book provides plenty of problems and case studies to help readers and students test
their level of understanding in pricing, valuation, scenario analysis, calibration, optimiza-
tion, and parameter estimation.

I would like to express my gratitude to several people who have influenced me directly
or indirectly on this book. I owe a particular debt to my PhD advisor and co-author Dilip
B. Madan. Special thanks to my co-authors Peter Carr, Georges Courtadon, and Massoud
Heidari. I gained enormously from our many discussions and working together on a variety
of different topics. I am thankful to Alireza Javaheri, Michael Johannes, and Nicholas G.
Polson; I benefited tremendously on joint work with them regarding filtering and parameter
estimation. I learned a great deal from my PhD advisor Howard C. Elman, Ricardo H.
Nochetto, R. Bruce (Royal) Kellogg, and Jeffrey Cooper on numerical analysis and scientific
computing; without their teaching and guidance I would not have been able to reach the
level I am today.
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Pricing and Valuation

1





Chapter 1

Stochastic Processes and Risk-Neutral
Pricing

Derivatives pricing begins with the assumption that the evolution of the underlying asset,
be it a stock, commodity, interest rate, or exchange rate, follows some stochastic process. In
this chapter, we will review a number of processes that are commonly used to model assets
in different markets and explore how derivatives contracts written on these assets can be
valued. In describing the many different computational methods which can be used to price
derivatives and how they apply under different assumptions of an underlying stochastic
process, we will often refer back to this chapter.

We begin this chapter by reviewing some basic probability, principally relating to the
construction of the characteristic function of stochastic processes. We review how the char-
acteristic function can be used to generate the moments of the resulting distribution and
some methods used in our derivations of the characteristic functions of different processes.
In addition, we review various characteristic functions of standard distributions.

Next, we provide a self-contained list of some of the most commonly used stochastic pro-
cesses that practitioners employ to model assets for derivative pricing applications. However,
this list is by no means comprehensive and will certainly not cover every stochastic process
used in practice. In describing these processes, we will provide as detailed a mathematical
description of each process as possible, including the characteristic function for every pro-
cess, in closed form where available, as well as the stochastic differential equation (SDE)
where a closed form exists.

Finally, this chapter contains a basic review of risk-neutral pricing and change of mea-
sure. When combined with a model of the stochastic evolution of the underlying asset, this
forms the basis for all the derivative pricing algorithms in this book.

1.1 Characteristic Function

This section provides a basic review of the characteristic function of a distribution or a
process. These concepts will be essential in our derivation of the characteristic functions of
the stochastic processes reviewed in this chapter.

Definition 1 Fourier transform and inverse Fourier transform

For function f(x), its Fourier transform is defined as

Φ(ν) =

∫ ∞

−∞
eiνxf(x)dx (1.1)

3
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Having the Fourier transform of a function, Φ(ν), the function f(x) can be recovered via
inverse Fourier transform

f(x) =
1

2π

∫ ∞

−∞
e−iνxΦ(ν)dν (1.2)

Definition 2 Characteristic function

If f(x) is the probability density function (PDF) of a random variable x, its Fourier trans-
form is called the characteristic function

Φ(ν) =

∫ ∞

−∞
eiνxf(x)dx (1.3)

= E(eiνx) (1.4)

and as before probability density function f(x) can be recovered from its characteristic
function via the inverse Fourier transform.

1.1.1 Cumulative Distribution Function via Characteristic Function

As shown, the probability density function (PDF) can be recovered from the character-
istic function. By integrating the PDF we can recover the cumulative distribution function
(CDF). Thus, having characteristic function Φ(u) =

∫ +∞
−∞ eiuxf(x)dx, the probability den-

sity function, f(x), can be computed by inverting Φ(u).

f(x) =
1

2π

∫ +∞

−∞
e−iuxΦ(u)du

and the cumulative distribution function, F (x), can be calculated.

F (x) =

∫ x

−∞
f(η)dη

=
1

2π

∫ x

−∞

∫ ∞

−∞
e−iuηΦ(u)dudη

However, in most cases the PDF is recovered only in parametric form, not analytically. Thus,
recovering the CDF often requires a numerical integration of the parametric form of the
PDF. We would prefer to recover cumulative distribution function F (x) directly from the
characteristic function Φ(u) to avoid the need to perform numerical integration twice. To
do this we do not use the Fourier transform directly, as this would lead to non-convergence,
but instead we use the Fourier transform of exp(−αx)F (x) where exp(−αx) is a damping
factor with α > 0.

∫ +∞

−∞
eiuxe−αxF (x)dx =

∫ +∞

−∞
e−(α−iu)xF (x)dx

Using integration by parts on
∫ +∞
−∞ e−(α−iu)xF (x)dx and noting that the first term vanishes

gives us
∫ +∞

−∞
e−(α−iu)xF (x)dx =

1

α− iu

∫ +∞

−∞
e−(α−iu)xf(x)dx

=
1

α− iu

∫ +∞

−∞
ei( u+ iα )xf(x)dx

=
1

α− iu
Φ(u+ iα)
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Therefore
∫ +∞

−∞
eiux e−αxF (x) dx =

1

α− iu
Φ(u + iα)

Using the Fourier inversion of this gives us

e−αxF (x) =
1

2π

∫ ∞

−∞
e−iux 1

α− iu
Φ(u+ iα)du

or equivalently

F (x) =
1

2π
eαx

∫ ∞

−∞
e−iux 1

α− iu
Φ(u+ iα)du

Thus we can recover the cumulative distribution function directly from the characteristic
function using a single numerical integration.

1.1.2 Moments of a Random Variable via Characteristic Function

Another useful property of the characteristic function of a distribution is that it allows
us to recover an arbitrary number of moments of that distribution. Suppose we have the
characteristic function of a random variable X as

φ(u) = E
[
eiuX

]
(1.5)

It is easy to see that the nth derivative of φ(u) is given by the expression

φ(n)(u) = E
[
(iX)neiuX

]
(1.6)

To find its moments, substitute zero for u to obtain

φ(n)(0) = E
[
(iX)nei(0)X

]

= E [(iX)n]

= inE [Xn]

Therefore
E [Xn] = i−nφn(0) (1.7)

For example, the first moment of X , mean of X , is

E [X ] = −iφ′(0)

1.1.3 Characteristic Function of Demeaned Random Variables

Assume we are interested in finding the characteristic function of a demeaned random
variable Y = X − E[X ] given the characteristic function of X . Using the result from 1.1.2,
it can be done as follows:

E
[
eiuY

]
= E

[
eiu(X−E[X])

]

= E
[
eiu(X+iφ′(0))

]

= e−uφ′(0)E
[
eiuX

]

= e−uφ′(0)φ(u)
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1.1.4 Calculating Jensen’s Inequality Correction

We can generally express the evolution of an underlying price process St using the
following geometric law:

St = S0e
(r−q)t+ωt+Xt

where r − q is the mean rate of return on the asset under a risk-neutral measure and Xt is
the stochastic process of the underlying asset return which may follow any of the stochastic
processes discussed in this chapter. We assume we know the characteristic function of the
process φ(u) = E(eiuXt). The last term, ω, is the so-called Jensen’s inequality correction to
ensure that the mean rate of return on the asset under a risk-neutral measure is r − q. As
will be shown in the next chapter, in almost all applications of derivatives pricing, we need
the characteristic function of the log of the underlying process rather than the characteristic
function of the underlying process itself. Using the following derivation we can obtain ω and
also calculate the characteristic function of the log of the underlying process:

Ψ(u) = E
(
eiu lnSt

)

= E
(
eiu(lnS0+(r−q)t+ωt+Xt)

)

= eiu(lnS0+(r−q)t+ωt)E
(
eiuXt

)

= eiu(lnS0+(r−q)t+ωt)φ(u)

Substituting −i for u yields

E(St) = S0e
(r−q)teωtφ(−i).

Knowing that under risk-neutral measure we have

E(St) = S0e
(r−q)t

comparing two equations implies that

eωtφ(−i) = 1

or equivalently

ω = −1

t
ln(φ(−i))

and the characteristic function of the log of the underlying process

Ψ(u) = E
(
eiu lnSt

)

= eiu(lnS0+(r−q)t) φ(u)

φ(−i)

1.1.5 Calculating the Characteristic Function of the Logarithmic of a
Martingale

Assume the random variable Mt is a martingale under some measure and we want
to find the characteristic function of the log of Mt under that measure, namely, Ψ(u) =
E(exp(iu lnMt)). Observe that if we substitute −i for u we obtain

Ψ(−i) = E(exp(i(−i) lnMt))

= E(Mt)

= M0 (1.8)
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Let lnMt = Nt + At, where At and Nt are deterministic and stochastic components of
the process, respectively. Assume that the stochastic components of the process are known,
but the exact expression for the deterministic component is not known, as is often the
case. Moreover, we will assume the characteristic function of the stochastic component,
ΦN (u) = E(exp(iuNt)), is known. We can derive the deterministic component as follows:

Ψ(u) = E(exp(iu lnMt))

= E(exp(iuNt + iuAt))

= exp(iuAt)E(exp(iuNt))

= exp(iuAt)ΦN (u)

where ΦN (u) is the characteristic function of Nt. Substitute −i for u in Ψ(u) and we get

Ψ(−i) = exp(At)ΦN (−i) (1.9)

Therefore (1.8) and (1.9) imply that

M0 = ΦN (−i) exp(At)

Solving for At we get

At = ln
M0

ΦN (−i)

Substituting for At we finally get the following expression for the characteristic function of
the logarithmic of Mt:

E(exp(iu lnMt)) = ΦN (u) exp(iuAt)

= ΦN (u)

(
M0

ΦN (−i)

)iu

1.1.6 Exponential Distribution

The exponential distribution with mean λ is the distribution of the time between jumps
of a Poisson process with rate 1

λ . It has probability distribution function

f(x) = λe−λx, x ≥ 0 (1.10)

and cumulative distribution function

F (x) = 1− exp(−x/θ), x ≥ 0 (1.11)

Its characteristic function is

φ(u) = E(eiux) =
∫ ∞

0
eiuxλe−λx

This is a complex integral and its solution relies on the knowledge of how to integrate
contours on R2 [124]. The solution can be derived in this case, and the characteristic function
is as follows:

φ(u) =
λ

λ− iu
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1.1.7 Gamma Distribution

A gamma random variable has the following probability distribution function:

f(x) =
1

Γ(α)
βαxα−1e−βx

where α is the shape parameter and β is the scale parameter and we write it as x ∼
gamma(α, 1

β ). The characteristic function of a gamma process is obtained by evaluating the
following complex integral:

φ(u) = E(eiux) =
∫ ∞

0
eiux

1

Γ(α)
βαxα−1e−βxdx

As for the exponential distribution, routine methods of complex analysis [124] yield

φ(u) =

(
β

β − iu

)α

(1.12)

This is similar to the result of the exponential distribution, not surprisingly because if α
is an integer then gamma(α, 1

β ) represents the sum of α independent exponential random

variables, each of which has a mean of β, which is equivalent to a rate parameter 1
β .

The chi-squared distribution χ2(d) is actually a special case of the gamma distribution,
gamma(12d,

1
2 ), and thus has a characteristic function that can be easily derived from the

previous results.

φ(u) = (1 − 2iu)−d/2

1.1.8 Lévy Processes

The class of the Lévy process consists of all stochastic processes with stationary, in-
dependent increments. The Lévy-Khintchine theorem [148] provides a characterization of
Lévy processes in terms of the characterization of the underlying process. It states that
there exists a measure ν such that for all u ∈ R and t non-negative, the characteristic
function of a Lévy process can be written as

E(eizXt) = exp(tφ(z)) (1.13)

where

φ(z) = iγz − σ2z2

2
+

∫ ∞

−∞
(eizx − 1− izx |x|≤1)dν(x) (1.14)

where σ is non-negative, γ ∈ R and ν is a measure on R such that ν(0) = 0 and

∫ ∞

−∞
(min(1, x2)dν(x)

is bounded.

1.1.9 Standard Normal Distribution

One of the most important distributions in finance is the standard normal distribution.
It is the main component of a diffusion process and thus is absolutely central to most of the
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models we will be discussing. If Z ∼ N (0, 1), then its characteristic function is calculated
as

ΦZ(ν) = E(eiνZ ) =
∫ ∞

−∞

1√
2π

exp

(
iνz − 1

2
z2

)
dz

Following the argument in [124] we instead consider the following integral:

E(esZ) =
∫ ∞

−∞

1√
2π

exp

(
sz − 1

2
z2

)
dz

Complete the square in the integrand
∫ ∞

−∞

1√
2π

exp

(
sz − 1

2
z2

)
dz =

∫ ∞

−∞

1√
2π

exp

(
−1

2
(z2 − 2sz)

)
dz

=

∫ ∞

−∞

1√
2π

exp

(
−1

2
(z − s)2 +

1

2
s2
)
dz

=
1√
2π

e
1
2 s

2
∫ ∞

−∞
exp

(
−1

2
(z − s)2

)
dz

and using the fact that
∫ ∞

−∞
e−

1
2u

2du =
√
2π

to get

E(esZ) = exp

(
s2

2

)

As argued in [124] we can substitute iν for s by the theory of analytic continuation of
functions of a complex variable to get

ΦZ(ν) = E(eiνZ) = e−
ν2

2

1.1.10 Normal Distribution

A normal random variable with mean µ and standard deviation σ can be constructed
from a standard normal variable using X = µ + σZ, so that X ∼ N (µ,σ2). Thus its
characteristic function can be derived as follows:

ΦX(ν) = E(eiνX)

= E(eiν(µ+σZ))

= eiνµE(ei νσ Z)

= eiνµe−
(σν)2

2

= eiµν−
σ2ν2

2

Brownian motion Wt is a key component in many models of asset prices. We know that

Wt −W0 = Wt ∼ N (0, t)

Therefore, if Xt = Wt, its characteristic function is

E(eiνXt) = E(eiνWt) = E(eiν
√
tZ) = e−

ν2t
2 (1.15)
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1.2 Stochastic Models of Asset Prices

To price any derivative, we need to model the statistics of an asset at every point in time
which constitutes either a payoff date or a date at which an investment decision needs to be
made. Practically, this means describing the evolution of an asset price using a stochastic
process, and a number of different stochastic models for asset prices exist to accurately
price different derivatives across different markets. In this section we outline a number of
the most common models for asset prices.

1.2.1 Geometric Brownian Motion — Black–Scholes

One of the oldest and most commonly used models of asset prices in finance is geometric
Brownian motion. First proposed by Black and Scholes in 1973, the model’s creation was one
of the pivotal moments in quantitative finance and is the standard by which most modern
derivative pricing models are judged. Its invention helped to create an enormous and liquid
market in options and by extension the multi-trillion modern derivatives market. In this
section we will give a very brief description of the derivation of the model, as well as its
stochastic differential equation and its characteristic function.

1.2.1.1 Stochastic Differential Equation

When modeling asset prices using this model we assume the underlying process, the
asset price St, at time t, satisfies the following stochastic differential equation, known as
the Black–Scholes SDE:

dSt = (r − q)Stdt+ σStdWt (1.16)

where r, q and σ are a continuous risk-free interest rate, a continuous dividend rate and
the instantaneous volatility respectively1. This equation models the asset’s log returns as
growing at a constant rate of r − q and having a volatility of σ.

By means of Itô’s lemma,2 the solution to the stochastic differential equation is given
by

ST = S0e
(r−q−σ2

2 )T+σWT

= S0e
(r−q−σ2

2 )T+σ
√
TZ

1In case of writing the evolution of the exchange rate under this model we would replace r by rd, the
domestic rate, and q by rf , the foreign rate.

2Itô’s lemma [183] — Assume Xt satisfies

dXt = µdt + σdBt

Let g(t, x) ∈ C2([0,∞)× R). Then

Yt = g(t, Xt)

is a stochastic integral and

dYt =
∂g

∂t
(t, Xt)dt +

∂g

∂x
(t, Xt)dXt +

1

2

∂2g

∂x2
(t, Xt)(dXt)

2

where

(dt)2 = dt.dBt = dBt.dt = 0, dBt.dBt = dt
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or equivalently

sT = lnST = s0 + (r − q − σ2

2
)T + σ

√
TZ

where s0 = lnS0; therefore

sT ∼ N
(
s0 + (r − q − σ2

2
)T,σ2T

)

1.2.1.2 Black–Scholes Partial Differential Equation

The Black–Scholes partial differential equation (1.17) is used to price derivatives whose
underlying asset follows geometric Brownian motion. There are various ways to derive the
Black–Scholes equation. The report in [164] gives an overview of various derivations of
the Black–Scholes equation via (a) standard derivation of the Black–Scholes equation by
constructing a replicating portfolio [177], (b) an alternative derivation using the Capital
Asset Pricing Model, (c) using the return form of Arbitrage Pricing Theory, (d) an alter-
native derivation using Risk-Neutral Pricing. The resulting partial differential equation is
as follows:

∂v

∂t
+

σ2S2

2

∂2v

∂S2
+ (r − q)S

∂v

∂S
= rv(S, t) (1.17)

The closed-form solution to this equation for various derivative contracts is available (for
example, see [32] and [202] for European call options).

1.2.1.3 Characteristic Function of the Log of a Geometric Brownian Motion

We already solved the SDE for a geometric Brownian motion to get

sT ∼ N
(
s0 + (r − q − σ2

2
)T,σ2T

)
(1.18)

Using the characteristic function of a normal random variable, we can easily derive the
characteristic function of the log of the asset price as

ΦsT (ν) = ei(s0+(r−q−σ2

2 )T )ν− σ2ν2

2 T (1.19)

1.2.2 Local Volatility Models — Derman and Kani

The Black–Scholes model is still the most widely used benchmark in options pricing, so
much so that many markets quote option prices in the model’s implied volatility. However,
its assumption of a constant volatility for the underlying asset has proven to be incom-
patible with market prices, leading to the so-called volatility surface of implied volatilities
for different option strikes and maturities. While the Black–Scholes model along with the
volatility surface are sufficient to price vanilla options, more complex methods are needed
to better capture market implied volatilities in order price more complex derivatives. The
simplest addition to Black–Scholes is the local volatility model, which relaxes the constant
volatility assumption and allows volatility to be a function of both time and the asset price.

1.2.2.1 Stochastic Differential Equation

The stochastic differential equation under the local volatility model is almost exactly
the same as the SDE for geometric Brownian motion. The only differences are that volatil-
ity is now parameterized on the asset price and time and the drift components are now
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parameterized by time.

dSt = (r(t) − q(t))Stdt+ σ(St, t)StdWt (1.20)

1.2.2.2 Generalized Black–Scholes Equation

The generalized Black–Scholes partial differential equation (1.21) prices derivatives
whose underlying asset follows the local volatility model. It also closely follows the nor-
mal Black–Scholes equations, except for the additional parameterization.

∂v

∂t
+

1

2
σ2(St, t)S

2
t
∂2v

∂S2
t

+ (r(t) − q(t))St
∂v

∂St
= r(t)v(S, t) (1.21)

1.2.2.3 Characteristic Function

In general, there is no analytical form available for the characteristic function of the local
volatility model because the additional parameterization of the SDE components precludes
it.

1.2.3 Geometric Brownian Motion with Stochastic Volatility — Heston
Model

While the local volatility model can successfully fit the volatility surface of options prices
more realistically than the standard Black–Scholes model, the volatility function can be very
complex and thus not parsimonious in its use of variables. The effort to model volatility as
a non-constant variable without a fully specified volatility function led to the creation of
the Heston stochastic volatility model.

1.2.3.1 Heston Stochastic Volatility Model — Stochastic Differential Equation

Under the Heston stochastic volatility model, asset prices St follow a stochastic process
described by the following set of SDEs:

dSt = rStdt+
√
vtStdW

(1)
t

dvt = κ(θ − vt)dt+ σ
√
vtdW

(2)
t

where the two Brownian components W (1)
t and W (2)

t are correlated with rate ρ. The variable
vt represents the mean reverting stochastic volatility, where θ is the long term variance, κ
is the mean reversion speed, and σ is the volatility of the variance. The presence of the√
vt term in the diffusion component of this equation prevents the volatility from becoming

negative by forcing the diffusion component to zero as the volatility approaches zero.

1.2.3.2 Heston Model — Characteristic Function of the Log Asset Price

The characteristic function for the log of the asset price under the Heston stochastic
volatility model is given by

Φ(u) = E(eiu lnSt)

=
exp{iu lnS0 ++iu(r − q)t+ κθt(κ−iρσu)

σ2 }
(cosh γt

2 + κ−iρσu
γ sinh γt

2 )
2κθ
σ2

exp

{
−(u2 + iu)v0

γ coth γt
2 + κ− iρσu

}

where γ =
√
σ2(u2 + iu) + (κ− iρσu)2 and S0 and v0 are the initial values for the price

process and the volatility process, respectively.
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There are various different ways of deriving the characteristic function of the Heston
model, one of which is manifested in Problem 3 at the end of this chapter. We provide an
alternative derivation to its characteristic function below. This derivation is quite generic
and can be used to derive the characteristic function of the log of asset prices under various
different processes. Derivations similar to the one presented can be seen in [132] and [138].

We define the joint characteristic function of (x, v) at time t, 0 < t < T as

φ(t, ξ,ϕ) = E
[
eiξxT+iωvT |xt = x, vt = v

]
(1.22)

where (ξ,ϕ) are the transform variables. It is conjectured that the characteristic function
at time t = 0 has a solution of the form

φ(0, ξ,ϕ) = e−a(T )−b(T )x−c(T )v

Therefore by the Markov property it must be the case that

φ(t, ξ,ϕ) = e−a(T−t)−b(T−t)x−c(T−t)v

The first thing to notice is that evaluating this at t = T gives the following boundary
conditions:

φ(T, ξ,ϕ) = e−a(0)−b(0)x−c(0)v

= E
[
eiξxT+iωvT |xT = x, vT = v

]

= eiξxT+iωvT

which implies

a(0) = 0

b(0) = iξ

c(0) = −iϕ

If we define G(t) to be

G(t) = φ(t, ξ,ϕ) (1.23)

G(t) is a martingale because it is a conditional expectation of a terminal random variable.
Therefore its derivative with respect to t, the dt term, must be identically zero.

As stated earlier, for the Heston stochastic volatility model, we assume that St evolves
according to the following SDE:

dSt = rStdt+
√
vtStdW

(1)
t

dvt = κ(θ − vt)dt+ σ
√
vtdW

(2)
t

We define xt = lnSt = F (t, St) and apply Itô’s lemma to derive dxt.

dxt =
∂F

∂t
dt+

∂F

∂St
dSt +

1

2

∂2F

∂S2
t

(dSt)
2

= 0 +
1

St
(rStdt+

√
vtStdW

(1)
t )− 1

2

1

S2
t

(rStdt+
√
vtStdW

(1)
t )2

= rdt+
√
vtdW

(1)
t − 1

2
vtdt

= (r − 1

2
vt)dt+

√
vtdW

(1)
t
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where

dvt = κ(θ − vt)dt+ σ
√
vtdW

(2)
t

Thus we have

dxt = (r − 1

2
vt)dt+

√
vtdW

(1)
t

dvt = κ(θ − vt)dt+ σ
√
vtdW

(2)
t

The goal is to find

EQ
t

(
eiu lnST

)
= EQ

t

(
eiuxT

)

It is clear that φ(t, ξ = u,ω = 0) = E
[
eiuxT

]
. Because G(t) = φ(t, ξ,ω) is a martingale, we

have

dG(t) =
∂G(t)
∂t

dt+ . . .

= 0dt+ . . .

because its derivatives with respect to time must be zero and this leads to the expression

∂G(t)
∂t

= φt + φx(r −
1

2
vt) + φv(κ(θ − vt)) (1.24)

+
1

2
Trace(φxxvt) +

1

2
φvvσ

2vt + ρσ2(t)vtφxv = 0

As mentioned, it is conjectured that φ(t, ξ,ϕ) can be expressed as

φ(t, ξ,ϕ) = e−a(T−t)−b(T−t)x−c(T−t)v

and therefore its derivatives would be

φt = (−a′(T − t)− b′(T − t)x− c′(T − t)v)φ

φx = −b(T − t)φ

φv = −c(T − t)φ

φxx = b2(T − t)φ

φvv = c2(T − t)φ

φvx = b(T − t)c(T − t)φ

Substituting all derivatives into (1.24) we get

φ

(
−a′(T − t)− b′(T − t)x− c′(T − t)v − b(T − t)(r − 1

2
v) (1.25)

−c(T − t)κ(θ − v) +
1

2
b2(T − t)v +

1

2
c2(T − t)σ2v + ρσvb(T − t)c(T − t)

)
= 0

Since this holds for all (x, v), we get three simpler equations, namely, the Riccati equations,
by grouping x, v, and the remaining terms
⎧
⎨

⎩

a′(T − t)− c(T − t)κθ − rb(T − t) = 0
b′(T − t) = 0
c′(T − t) + 1

2b(τ) + c(T − t)κ+ 1
2b

2(T − t) + 1
2c

2(T − t)σ2 + ρσb(T − t)c(T − t) = 0
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Define τ = T − t and we get
⎧
⎨

⎩

a′(τ) − c(τ)κθ − rb(τ) = 0
b′(τ) = 0
c′(τ) + 1

2b(τ) + c(τ)κ + 1
2b

2(τ) + 1
2c

2(τ)σ2 + ρσb(τ)c(τ) = 0

The second Riccati equation, b′(τ) = 0, implies that b(tau) is constant and the boundary
condition implies

b(τ) = −iξ

Substituting it in the third equation we have

c′(τ) =
1

2
iξ − c(τ)κ − 1

2
(−iξ)2 − 1

2
c2(τ)σ2 − ρσ(−iξ)c(τ)

= −1

2
σ2c2(τ) + (iξρσ − κ)c(τ) + (

1

2
iξ +

1

2
ξ2)

dc(τ)

dτ
= −1

2
σ2

[
c2(τ) +

2

σ2
(κ− iξρσ)c(τ) − iξ + ξ2

σ2

]

dc(τ)

c2(τ) + 2
σ2 (κ− iξρσ)c(τ) − iξ+ξ2

σ2

= −1

2
σ2dτ

We solve this equation using partial fractions. The roots of the equation in the denominator

c2(τ) +
2

σ2
(κ− iξρσ)c(τ) − iξ + ξ2

σ2

are

c1 =
β − γ

σ2

c2 =
β + γ

σ2

where

β = κ− iξρσ

γ =
√
(κ− iξρσ)2 + σ2(ξ2 + iξ)

We can find A and B such that

1

c2(τ) + 2
σ2 (κ− iξρσ)c(τ) − iξ+ξ2

σ2

=
A

c(τ) − c1
+

B

c(τ) − c2

We see that A and B should satisfy the following equation:

A

(
c(τ) − β − γ

σ2

)
+B

(
c(τ) − β + γ

σ2

)
= 1

Or equivalently

A+B = 0

−A(β − γ)−B(β + γ) = σ2



16 Computational Methods in Finance

and we get A = σ2

2σ and B = −σ2

2σ . Now substituting and integrating we get

∫ σ2

2γ

c(τ)− β+γ
σ2

dc(τ) +

∫ −σ2

2γ

c(τ) − β−γ
σ2

dc(τ) = −1

2
σ2τ + constant

σ2

2γ
ln

(
c(τ) − −β + γ

σ2

)
− σ2

2γ
ln

(
c(τ) − −β − γ

σ2

)
= −1

2
σ2τ + constant

or

ln

(
c(τ) − −β+γ

σ2

c(τ)− −β−γ
σ2

)
= −γτ + constant

c(τ)− −β+γ
σ2

c(τ) − −β−γ
σ2

= αe−γτ

The boundary condition for c(τ) is

c(τ = 0) = c(0) = −iϕ = −i(0) = 0

Applying this we obtain

α =
0− −β+γ

σ2

0− −β−γ
σ2

=
β − γ

β + γ

We substitute this back into 1.26 and solve for c(τ).

c(τ) =
γ − β

σ2

1− e−γτ

1− αe−γτ

Having c(τ), we can solve for a(τ).

a′(τ) = c(τ)κθ + rb(τ)

= κθ
γ − β

σ2

1− e−γτ

1− αe−γτ
− iξr

a(τ) = κθ
γ − β

σ2

∫
1− e−γτ

1− αe−γτ
dτ − iξr

∫
dτ

= κθ
γ − β

σ2

[∫
1

1− αe−γτ
dτ −

∫
e−γτ

1− αe−γτ
dτ

]
− iξr

∫
dτ

= κθ
γ − β

σ2

[
τ +

1

γ
ln(1− αe−γτ )− 1

αγ
ln(1− αe−γτ )

]
− iξrτ + constant

= κθ
γ − β

σ2

[
τ + ln(1− αe−γτ )

α−1
αγ

]
− iuξrτ + constant

To find the constant, we know that a(τ = 0) = 0 and that implies

a(0) = κθ
γ − β

σ2

[
0 + ln(1 − α)

α−1
αγ

]
+ constant = 0

and we obtain

constant = −κθγ − β

σ2

[
ln(1− α)

α−1
αγ

]
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Substituting it into a(τ) we get

a(τ) = κθ
γ − β

σ2

[
τ + ln

(
1− αe−γτ

1− α

)α−1
αγ

]
− iurτ

Now that we have all loadings a(τ), b(τ), and c(τ) explicitly we can calculate the charac-
teristic function

E
(
eiuxT

)
= φ(t = 0, ξ = u,ϕ = 0)

= e−a(τ)−b(τ)x0−c(τ)v0

where

a(τ) = κθ
γ − β

σ2

[
τ + ln

(
1− αe−γτ

1− α

)α−1
αγ

]
− iurτ

b(τ) = −iu

c(τ) =
γ − β

σ2

1− e−γτ

1− αe−γτ

and β = κ− iuρσ, γ =
√

(κ− iξρσ)2 + σ2(ξ2 + iξ), and α = β−γ
β+γ . Thus the full character-

istic function is as follows:

Et

(
eiuxT

)
= exp

{
−κθγ − β

σ2
τ − ln

(
1− αe−γτ

1− α

)κθ γ−β

σ2
α−1
αγ

}

× exp

{
iurτ + iux0 −

γ − β

σ2

1− e−γτ

1− αe−γτ
v0

}

= exp

{
−κθγ − β

σ2
τ − ln

(
1− αe−γτ

1− α

) 2κθ
σ2

+ iurτ + iux0

}

× exp

{
−γ − β

σ2

1− e−γτ

1− αe−γτ
v0

}

= exp

{
κθτ

β

σ2
+ iux0 + iurτ

}

× exp

{
− ln

(
1− αe−γτ

1− α

) 2κθ
σ2

− κθτ
γ

σ2

}

× exp

{
−γ − β

σ2

1− e−γτ

1− αe−γτ
v0

}
(1.26)
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The last term in Equation (1.26) can be simplified as follows:

exp

{
β − γ

σ2

1− e−γτ

1− αe−γτ
v0

}
= exp

{
β2 − γ2

β + γ

1

σ2

eγτ(1 − e−γτ)

eγτ (1− αe−γτ )
v0

}

= exp

{
−u2 + iu

β + γ

eγτ − 1

eγτ − α
v0

}

= exp

{
−(u2 + iu)v0

eγτ − 1

eγτ − β−γ
β+γ

1

β + γ

}

= exp

{
−(u2 + iu)v0

eγτ − 1

β(eγτ − 1) + γ(eγτ + 1)

}

= exp

{
−(u2 + iu)v0

1
β(eγτ−1)+γ(eγτ+1)

eγτ−1

}

= exp

{
−(u2 + iu)v0

1

γ eγτ+1
eγτ−1 + β

}

= exp

{
− (u2 + iu)v0
γ coth γτ

2 + β

}

In addition, the second to last term in Equation (1.26) can also be simplified.

exp

{
− ln

(
1− αe−γτ

1− α

) 2κθ
σ2

− κθ

σ2
γτ

}
=

(
e

γτ
2
1− αe−γτ

1− α

)− 2κθ
σ2

=

(
e

γτ
2
1− αe−γτ

2γ
γ+β

)− 2κθ
σ2

=

(
(γ + β)e

γτ
2

2γ
(1− αe−γτ )

)− 2κθ
σ2

=

(
(γ + β)e

γτ
2 + (γ − β)e

−γτ
2

2γ

)− 2κθ
σ2

=

(
γ(e

γτ
2 + e

γτ
2 ) + β(e

γτ
2 − e

γτ
2 )

2γ

)− 2κθ
σ2

=

(
cosh

γτ

2
+

β

γ
sinh

γτ

2

)− 2κθ
σ2

Putting them all together we get

Et

(
eiuxT

)
=

exp
{
iu lnS0 + iu(r − q)τ + κθτ β

σ2

}
× exp

{
−(u2+iu)v0
γ coth γτ

2 +β

}

(
cosh γτ

2 + β
γ sinh γτ

2

) 2κθ
σ2

1.2.4 Mixing Model — Stochastic Local Volatility (SLV) Model

Stochastic local volatility model is an extension of the local volatility model that incor-
porates an independent stochastic component to volatility (e.g. [153],[191],[209], and [171]).
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The independent stochastic component is modeled by a stochastic process (V (t), t ≥ 0)
starting at one. In this model the evolution of the stock price is given by

dSt = (r − q)Stdt+ L(St, t)V (t)StdW
1
t

where (W 1
t , t ≥ 0) is standard Brownian motion and L(St, t) is a deterministic function of

the stock price and calendar time which represents average volatility. In [191], they assume
V (t) follows a mean-reverting lognormal

d lnVt = κ(θ(t)− lnVt)dt+ λdW 2
t

where as in Heston κ is the rate of mean reversion, θ(t) is the long-term deterministic drift,
and λ is the volatility of volatility. Considering that σ2(St, t) is interpreted as the average
local variance, they put a constraint on the unconditional expectation of V (t)2 to be unity
which implies

θ(t) =
λ2

2κ

(
1 + e−2κt

)

In [209], they consider the following process for Vt

dVt = κ(θ(t) − Vt)dt+ λVtdW
2
t

One may assume correlation between the Brownian motion driving the stochastic component
of volatility and the Brownian motion driving the stock price. However, in [191] they assume
zero correlation for simplicity. Note that if L(St, t) has no dependence on the stock price,
the model is very Heston-like and by letting λ = 0 the model degenerates to a local volatility
model.

1.2.5 Geometric Brownian Motion with Mean Reversion — Ornstein–
Uhlenbeck Process

While geometric Brownian motion, local volatility, and stochastic volatility models are
very popular for modeling assets where the primary concern is modeling the volatility
of the underlier, their constant drift assumption is incompatible with market prices in
markets where long-term price movements revert to a long-term mean. In markets where
mean reversion is a common feature, including interest rates, currency exchange rates, and
commodity prices, the Ornstein–Uhlenbeck (OU) process is a popular model.

The OU process is an instance of a Gaussian process that has a bounded variance
and admits a stationary probability distribution, in contrast to the Wiener process. The
difference between the two is in their drift term. For the Wiener process the drift term is
constant, whereas for the OU process it is dependent on the current value of the process: if
the current value of the process is less than the (long-term) mean, the drift will be positive;
if the current value of the process is greater than the (long-term) mean, the drift will be
negative. In other words, the mean acts as an equilibrium level for the process. This gives
the process its mean-reverting characteristics.

1.2.5.1 Ornstein–Uhlenbeck Process — Stochastic Differential Equation

The Ornstein–Uhlenbeck (OU) process is a stochastic process rt which can be described
by the following stochastic differential equation:

drt = κ(η − rt)dt+ λdWt
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where κ > 0, η, and λ > 0 are model parameters and Wt denotes the Wiener process.
The parameter η represents the equilibrium or mean value supported by fundamentals,

λ the degree of volatility around it caused by shocks, and κ the rate by which these shocks
dissipate and the variable reverts toward the mean.

1.2.5.2 Vasicek Model

The oldest and most direct application of the OU process in finance is the Vasicek
model. Under this model the instantaneous spot interest rate (the short rate) follows an
OU process. This model is advantageous in that, unlike geometric Brownian motion, the
short rate vacillates around a long-term mean as market rates have done historically. This
causes the long-term variance to be bounded, which is also an empirical feature of the
interest rate markets; market rates very rarely grow exponentially to very large levels. The
disadvantage of using this process for interest rates is that it allows the short rate to become
negative, a condition not often seen in the market.

Applying Itô’s lemma to rteκt, we can solve the stochastic differential equation to get

rt = r0e
−κt + η(1 − e−κt) + σe−κt

∫ t

0
λeκsdWs (1.27)

While in most of the previous cases the characteristic function of the stochastic random
variable or its log was most interesting to us, when modeling instantaneous interest rates
the integral of the process over time is the most critical component for pricing. If r(t) is the
instantaneous interest rate, then the realized interest rate is given by R(t) where

R(t) =

∫ t

0
r(u)du.

We can show that Rt ∼ N (µ,σ2) where

µ =
η − r0

κ
(e−κt − 1) + ηt

σ2 =
λ2

2κ2

(
4e−κt − e−2κt − 3

2κ
+ t

)

And we know that the characteristic function of a normal random variable, N (µ,σ2), is

φ(u) = E(eiuXt ) (1.28)

= eiµu−
σ2u2

2 (1.29)

Substituting µ and σ into the above equation, we get the characteristic function for R(t) as

E(eiuR(t)) = eA(t,u)−B(t,u)r(0)

where

A(t, u) = (η +
λ2

2κ2
iu)(B(t, u) + iut)− λ2

4κ
B2(t, u)

B(t, u) =

(
e−κt − 1

κ

)
iu

If we are interested in computing the term structure of bond prices, P (t, T ), in the Vasicek
model, we can use

P (t, T ) = E(e−
∫ T
0 rt) = E(e−RT ) (1.30)

which we obtain by simply substituting −i for u in its characteristic function.
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1.2.6 Cox–Ingersoll–Ross Model

The Cox–Ingersoll–Ross (CIR) model is a modification of the Vasicek model which
is meant to maintain all of its advantages while preventing the short interest rate from
becoming negative. To do this, a

√
rt term is added to the volatility term of the SDE. This

causes the volatility to go to zero as our process approaches zero, which prevents the process
from resulting in negative interest rates.

1.2.6.1 Stochastic Differential Equation

Thus, the stochastic differential equation describing the CIR model is as follows:

drt = κ(η − rt)dt+ λ
√
rtdWt

where W (t) is a Brownian motion, η is the long term rate of time change, κ is the rate of
mean reversion and λ is the volatility of the time change.

1.2.6.2 Characteristic Function of Integral

As in the Vasicek model, we are interested in the characteristic function of the realized
interest rate R(t) where

R(t) =

∫ t

0
r(u)du.

It can be shown that the characteristic function for R(t) is

E(eiuR(t)) = φ(u, t, r(0),κ, η,λ)

= A(t, u)eB(t,u)r(0)

where

A(t, u) =
exp

(
κ2ηt
λ2

)

(
cosh(γt/2) + κ

γ sinh(γt/2)
)2κη/λ2

B(t, u) =
2iu

κ+ γ coth(γt/2)

with

γ =
√
κ2 − 2λ2iu

As in the Vasicek model, if we are interested in computing the term structure of bond prices
in the CIR model, we can use

P (t, T ) = E(e−
∫ T
0 rt) = E(e−RT ) (1.31)

and simply substitute −i for u in its characteristic function.

1.2.7 Variance Gamma Model

All the previous models we have discussed have concentrated on modifying the volatility
of the underlying process in order to better capture a dynamic volatility structure or modi-
fying the drift in order to introduce market observed mean reverting behavior. However, real
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financial markets contain prices and rates which do not move smoothly through time, but in
fact jump to different levels instantaneously. The effects of these types of price movements
can be seen in the market prices for options. Indeed, the importance of introducing a jump
component in modeling stock price dynamics has been noted by experts in the field, who
argue that pure diffusion-based models have difficulties in explaining the very steep smile
effect in short-dated option prices. Thus a concerted effort has been made to design models
which admit price jumps, and Poisson-type jump components in jump diffusion models are
designed to address these concerns.

The variance gamma (VG) process is a pure jump process that accounts for high activity,
in keeping with the normal distribution, by having an infinite number of jumps in any
interval of time. Unlike many other jump models, it is not necessary to introduce a diffusion
component for the VG process, as the Black–Scholes model is a parametric special case
already and high activity is already accounted for. Unlike normal diffusion, the sum of
absolute log price changes is finite for the VG process. Since VG has finite variation, it can
be written as the difference of two increasing processes, the first of which accounts for the
price increases, while the second explains the price decreases. In the case of the VG process,
the two increasing processes that are subtracted to obtained the VG process are themselves
gamma processes.

1.2.7.1 Stochastic Differential Equation

The variance gamma process is a three parameter generalization of a Brownian motion
as a model for the dynamics of the logarithm of some underlying market variable. The
variance gamma process is obtained by evaluating a Brownian motion with a constant drift
and constant volatility at a random time change given by a gamma process, that is,

b(t,σ, θ) = θt+ σWt

X(t;σ, ν, θ) = b(γ(t; 1, ν),σ, θ)

= θγ(t; 1, ν) + σW (γ(t; 1, ν))

Each unit of calendar time may be viewed as having an economically relevant time length
given by an independent random variable that has a gamma density with unit mean and
positive variance, which we write as γ(t; 1, ν). Thus we can view this model as accounting
for different levels of trading activity during different time periods. As stated in [54], the
economic intuition underlying the stochastic time change approach to stochastic volatil-
ity arises from the Brownian scaling property. This property relates changes in scale to
changes in time and thus random changes in volatility can alternatively be captured by
random changes in time. Thus the stochastic time change of the variance gamma model is
an alternative way to represent stochastic volatility in a pure jump process.

Under the variance gamma model the unit period continuously compounded return is
normally distributed conditional on the realization of a random process — a random time
with a gamma density. The resulting process and associated pricing model provide us with
a robust three parameter generalization of the standard Brownian motion model. The log
of the asset price process under the variance gamma model is given by

lnSt = lnS0 + (r − q + ω)t+X(t;σ, ν, θ)

or equivalently

St = S0e
(r−q+ω)t+X(t;σ,ν,θ)

ω is determined so that

E(St) = S0e
(r−q)t
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The density of the log asset price under the variance gamma model at time t can be expressed
conditional on the realization of gamma time change g as a normal density function. The
unconditional density may then be obtained on integrating out g.

f(x;σ, ν, θ) =

∫ ∞

0
φ(θg,σ2g)× gamma(

t

ν
, ν)dg

=

∫ ∞

0

1

σ
√
2πg

exp(− (x− θg)2

2σ2g
)
gt/ν−1e−g/ν

νt/νΓ(t/ν)
dg

The generalization of this model allows for parameters which control not only the volatility
of the Brownian motion, but also (i) kurtosis fat tailedness, a symmetric increase in the
left and right tail probabilities, relative to the normal for the return distribution and (ii)
skewness that allows for the asymmetry of the left and right tails of the return density.

An additional attractive feature of VG is that it nests the lognormal density and the
Black–Scholes formula as a parametric special case.

1.2.7.2 Characteristic Function

The characteristic function of a VG process can be obtained by first conditioning on the
gamma time g.

E(eiuXt |g) = E
(
eiu(θg+σWg)

)

= eiuθgE
(
eiuσWg

)

= eiuθgE
(
eiuσ

√
gZ

)

= eiuθge−
(uσ

√
g)2

2

= eiuθge
−u2σ2g

2

= ei(uθ+iu
2σ2

2 )g

Now to calculate the characteristic function of a VG process, we have to integrate over g.

E(eiuXt) = Eg(e
i(uθ+iu

2σ2

2 )g)

=

∫ ∞

0
eiuθge

−u2σ2g
2

gt/ν−1e−g/ν

νt/νΓ(t/ν)
dg

which is the characteristic function of a gamma process with shape parameter t
ν and scale

parameter ν evaluated at uθ + iu
2σ2

2 . Following expression in Equation (1.12) we obtain

Eg

(
ei(uθ+iu2σ2

2 )g
)

=

(
1
ν

1
ν − i(uθ + iu

2σ2

2 )

) t
ν

=

(
1

1− iuθν + u2σ2ν
2

) t
ν

(1.32)

Therefore the characteristic function of the VG process with parameters σ, ν, and θ at time
t is

E(eiuX(t)) =

(
1

1− iuθν + σ2u2ν/2

) t
ν

(1.33)
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In the following chapters we will cover pricing derivatives under the VG model both
analytically via transform methods and numerically via partial integro-differential equation
solutions depending on the type of the option under consideration. Yet at this point it should
be obvious that pricing European options under the VG model involves first conditioning
on the random time g, then simply using a Black–Scholes type formula to solve for the
conditional option value. Thus, the VG European option price, C(S0,K, T ). is obtained on
integrating with respect to the gamma density.

C(S0,K, T ) =

∫ ∞

0
Black–Scholes(S0,K, g)

gt/ν−1e−g/ν

νt/νΓ(t/ν)
dg

Also, by applying equations (1.13) and (1.14) from the Lévy–Khintchine theorem [148] it
can be shown that the Lévy measure for the variance gamma process can be written as
dν(x) = k(x)dx where k(x) is given by

dν(x) = k(x)dx

k(x) =
e−λpx

νx
x>0 +

e−λn|x|

ν|x| x<0

λp =

(
θ2

σ4
+

2

σ2ν

) 1
2

− θ

σ2

λn =

(
θ2

σ4
+

2

σ2ν

) 1
2

+
θ

σ2

1.2.8 CGMY Model

In this book we consider many different models, some pure diffusion models (e.g., the
Black–Scholes model), some pure jump models (e.g., the VG model), and some which com-
bine the two. The CGMY model attempts to accommodate all of these behaviors by intro-
ducing a model parameterized in such a way to allow pure diffusion or pure jumps, infinite
or finite variation, and infinite or finite arrival rates.

The CGMY process [53] is defined by its Lévy measure, which can be written as dν(x) =
k(x)dx where k(x) is written as

dν(x) = k(x)dx

k(x) = C
e−Gx

x1+Y x>0 +
e−M|x|

|x|1+Y x<0

for constants C > 0, G ≥ 0, M ≥ 0 and Y < 2.
We can demonstrate that CGMY generalizes Kou’s jump diffusion model [166] (Y = −1),

and the variance gamma model [175] (Y = 0). The CGMY process is a particular case of the
Kobol process studied by Boyarchenko and Levendorskii in [36] and Carr, Geman, Madan,
and Yor in [54], where constant C is allowed to take on different values on the positive and
negative semi axes. The extension to VG is very interesting as it allows for control of the
sign of large and small jumps.

By raising Y above zero, one may induce greater activity near zero and less activity
further away from zero. There are also some critical values of Y which are of interest: (a)
Y = 1 separates finite variation Y < 1 from Y > 1 infinite variation, (b) Y = 0 separates
finite arrival rate Y < 0 from Y > 0 infinite arrival rate, (c) Y = −1 separates activity
concentrated away from zero Y < −1 from Y > −1 activity concentrated at zero. For
Y > −1 we have a completely monotone Lévy measure [34].
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1.2.8.1 Characteristic Function

The CGMY process model is too general to be described by a single SDE; its description
is known only through its characteristic function. The characteristic function of the CGMY
process with parameters C,G,M, and Y can be computed explicitly as [53]

E
[
eiuXt

]
= eCtΓ(−Y )((M−iu)Y −MY +(G+iu)Y −GY )

1.2.9 Normal Inverse Gaussian Model

The normal inverse Gaussian distribution and process were introduced by Barndorff-
Nielsen in [27] and [28]. The process is a time-changed Brownian motion with drift, where the
time change is generated via an inverse gamma process, in contrast to the VG model, which
uses a gamma process. This makes NIG a pure-jump Lévy process with infinite variation,
unlike the VG process, which has finite variation. The parameters of this process are the
drift and the volatility of the Brownian motion and the variance of the inverse Gaussian
distribution whose expectation is assumed to be one. In the limiting case, when the variance
is set to zero the NIG process coincides with Brownian motion and the probability density
is normal. For other values of the variance, the NIG probability density has nonzero excess
kurtosis and skewness similar to variance gamma. Thus in most cases the tails of the NIG
distribution decrease more slowly than the normal distribution.

1.2.9.1 Characteristic Function

The characteristic function of the NIG process with parameters σ, ν, and θ is shown to
be:

E
[
eiuXt

]
= e

(
ν−σ

√
ν2

σ2 + θ2

σ4−( θ
σ2 +iu)2

)
t

1.2.10 Variance Gamma with Stochastic Arrival (VGSA) Model

As discussed in section (1.2.7), the variance gamma model implements stochastic volatil-
ity through the use of the stochastic time change. However, the stochastic volatility in the
VG model does not allow for volatility clustering, which is a feature of asset prices in many
different markets. Volatility clustering can only be achieved in this type of model if ran-
dom time changes persist, which requires that the rate of time change be mean reverting.
The classic example of a mean-reverting positive process is the Cox–Ingersoll–Ross (CIR)
process discussed previously. To allow for clustering, the variance gamma with stochastic
arrival (VGSA) model was developed in [54]. We construct the VGSA process by taking
the VG process, which is a homogeneous Lévy process, and build in stochastic volatility by
evaluating it at a continuous time change given by the integral of a Cox–Ingersoll–Ross [82]
(CIR) process representing the instantaneous time change. The mean reversion of the CIR
process introduces the clustering phenomena often referred to as volatility persistence. This
enables us to calibrate to option price surfaces across both strike and maturity simultane-
ously, unlike the VG model, which we can only calibrate across strike for a fixed maturity.
The VGSA process also admits an analytical expression for its characteristic function.
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1.2.10.1 Stochastic Differential Equation

As shown earlier, we define the CIR process y(t) as the solution to the stochastic differ-
ential equation

dyt = κ(η − yt)dt+ λ
√
ytdWt

where W (t) is a Brownian motion, η is the long-term rate of time change, κ is the rate of
mean reversion, and λ is the volatility of the time change. The process y(t) is the instanta-
neous rate of time change and so the time change is given by Y (t) where

Y (t) =

∫ t

0
y(u)du

The SDE of the log of the market variable is the same as the VG process with the above
time change.

1.2.10.2 Characteristic Function

As shown in Section (1.2.6.2), the characteristic function for the time change Y (t) is
given by

E(eiuY (t)) = φ(u, t, y(0),κ, η,λ)

= A(t, u)eB(t,u)y(0)

where

A(t, u) =
exp

(
κ2ηt
λ2

)

(
cosh(γt/2) + κ

γ sinh(γt/2)
)2κη/λ2

B(t, u) =
2iu

κ+ γ coth(γt/2)

with

γ =
√
κ2 − 2λ2iu

The stochastic volatility Lévy process, termed the VGSA process, is defined by

ZV GSA(t) = XV G(Y (t);σ, ν, θ)

where σ, ν, θ, κ, η, and λ are the six parameters defining the process. Its characteristic
function is given by

E(eiuZV GSA(t)) = φ(−iΨV G(u), t,
1

ν
,κ, η,λ)

where ΨV G is the log characteristic function of the variance gamma process at unit time,
namely,

ΨV G(u) = −
1

ν
log

(
1− iuθν + σ2νu2/2

)

We define the asset price process at time t as follows:

S(t) = S(0)
e(r−q)t+Z(t)

E[eZ(t)]
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We note that

E[eZ(t)] = φ(−iΨV G(−i), t,
1

ν
,κ, η,λ)

Therefore the characteristic function of the log of the asset price at time t is given by

E[eiu logSt ] = exp(iu(logS0 + (r − q)t))×
φ(−iΨV G(u), t,

1
ν ,κ, η,λ)

φ(−iΨV G(−i), t, 1
ν ,κ, η,λ)

iu

Thus we have a closed form for the VGSA characteristic function for the log asset price.

1.3 Valuing Derivatives under Various Measures

1.3.1 Pricing under the Risk-Neutral Measure

In the preceding sections we have described a number of different models for asset
prices and their various representations. However, valuing derivatives requires more than
a model of asset prices. The value of a derivative can be calculated as the expectation
of the derivative payoff over all possible asset price paths which affect the payoff. The
measure under which this expectation is taken is critical, determining whether the pricing of
derivatives is in line with the standard no-arbitrage assumptions present in almost all models
of derivative pricing. The fundamental theorem of asset pricing tells us that a complete
market is arbitrage free if and only if there exists at least one risk-neutral probability
measure. Under this measure all assets have an expected return which is equal to the risk-
free rate.

The history of the development of risk-neutral pricing is one that spans decades and
largely follows the development of quantitative finance. We will not present a full account
of these developments in this text, but refer the reader to [99] and [208] for more exposition.
The most general expression of risk-neutral pricing for a derivative whose payoff depends
only on the terminal price of the underlying asset can be stated as follows:

ST is the T -time price of the underlying security

fT (S) ≡ f(ST |S0) is the risk-neutral density of ST

V (ST ) is the payoff of a derivative with maturity T

CT is the price of a T -maturity derivative with payoff V (ST )

We can express the derivative price using risk-neutral pricing as follows:

CT = e−rTEQ [V (ST )]

= e−rT

∫ ∞

−∞
V (ST )fT (ST )dST

The first derivative to be priced in the risk-neutral framework was the European call
option and we will illustrate its construction here. Let Q be the equivalent martingale
measure corresponding to taking the cash account, Bt = e

∫ t
0 rudu, as numeraire. That means
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under Q any traded security deflated by Bt is a martingale or equivalently that any security
has a return equal to the cash account. This implies a call price at time t with maturity T
and strike K is

Ct(K)

Bt
= EQ

t

(
(ST −K)+

BT

)

where ST is the time-T level of the underlying process. Assuming a constant risk-free interest
rate, a call price at time t can be written as

Ct(K) = e−r(T−t)EQ
t

(
(ST −K)+

)
(1.34)

1.3.2 Change of Probability Measure

The risk-neutral measure provides the fundamental link between the no-arbitrage con-
dition in a complete market and the pricing of derivatives. However, for many pricing
algorithms it is inconvenient to work in the risk-neutral measure directly. In this case, we
apply a change of measure in order to take expectations in a more convenient measure while
still remaining consistent with risk-neutral pricing.

Let Q be a given probability measure and Mt a strictly positive Q-martingale such that
EQ[Mt] = 1 for all t ∈ [0 T ]. We may then define a new equivalent probability measure, P,
by defining

P(A) = EQ[MT A] =

∫
MT (ω) AdQ(ω) =

∫

A
MT (ω)dQ(ω)

or in short hand notation dP = MTdQ, noting that P(Ω) = 1. Expectations with respect to
P then satisfy

EP(X) =

∫
X(ω)dP(ω)

=

∫
X(ω)MT (ω)dQ(ω)

= EQ[MTX ]

When we define a change in measure this way, we use the notation dP
dQ to refer to MT so

that we often write

EP(X) = EQ
(
dP
dQX

)

The following result explains how to switch between Q and P when we are taking conditional
expectations.

EP
t (X) =

EQ
t

(
dP
dQX

)

EQ
t

(
dP
dQ

)

=
EQ
t

(
dP
dQX

)

EQ
t (MT )

=
EQ
t

(
dP
dQX

)

Mt

given that Mt is a Q-martingale.



Stochastic Processes and Risk-Neutral Pricing 29

1.3.3 Pricing under Forward Measure

While the risk-neutral measure is the most common measure used in derivatives pricing,
it is not the only one. Derivatives pricing under models with a stochastic interest rate is
made tractable when we can eliminate all terms but (XT −K)+ (for a call option) in the
expectation under Q. Thus we need to do some manipulation in order to get rid of any
terms inside the expectation but this one and we accomplish this by means of change of
measure.

We start with the assumption that P (t, T ) is the time t price of a zero-coupon bond
maturing at time T ≥ t with face value $1. We assume B0 = $1 and now use P (t, T ) as a
numeraire to define a new probability measure; therefore we can write

Ct

P (t, T )
= EPT

t

[
CT

P (T, T )

]
(1.35)

The new probability measure PT we call the T -forward probability measure. We can
compute the change of measure from the risk-neutral measure to PT by noting that

EQ
0

[
P (T, T )

BT

]
=

P (0, T )

B0

By the fact that P (T, T ) = 1 and B0 = 1 and P (0, T ) is known at time zero we get

EQ
0

[
1

BTP (0, T )

]
= 1 (1.36)

with 1
BTP (0,T ) > 0. Therefore we set

MT =
dPT

dQ =
1

BTP (0, T )

We also note that

EQ
t

[
P (T, T )

BT

]
=

P (t, T )

Bt

and again by the fact that P (T, T ) = 1 and P (0, T ) is known at time zero we have

EQ
t

[
1

P (0, T )BT

]
=

P (t, T )

P (0, T )Bt
(1.37)

Now let Ct denote the time t price of a derivative that expires at time T . Following the
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discussion in section (1.3.2) we then have

Ct

Bt
= EQ

t

[
CT

BT

]

Ct = BtEQ
t

[
CT

BT

]
(1.38)

= Bt

EPT

t

[
dQ
dPT

CT
BT

]

EPT

t

[
dQ
dPT

]

= Bt

EPT

t

[
BTP (0, T )CT

BT

]

EPT

t [BTP (0, T )]

= BtP (0, T )
EPT

t [CT ]

EPT

t [BTP (0, T )]

= BtP (0, T )
EPT

t [CT ]

EQ
t [1] /EQ

t [1/BTP (0, T )]

= P (t, T )EPT

t [CT ] (1.39)

We can now calculate the time-t value of the derivative Ct either through Equation (1.38)
or through Equation (1.39) where we use the cash account as numeraire. Computing Ct

through (1.38) is our usual method and is often very convenient. When pricing equity
derivatives, for example, we usually take interest rates, and hence the cash account, to be
deterministic. This means that the factor 1

BT
in (1.38) can be taken outside the expectation

so only the Q-distribution of CT is needed to compute Ct. When interest rates are stochastic
we cannot take the factor 1

BT
outside the expectation in (1.38) and we therefore need to

find the joint Q-distribution of (BT , CT ) in order to compute Ct. On the other hand, if we
use Equation (1.39) to compute Ct, then we only need the PT -distribution of CT , regardless
of whether or not interest rates are stochastic.

Working with a univariate distribution is generally much easier than working with a
bivariate distribution so if we can easily find the PT -distribution of CT , then it can often
be very advantageous to work with this distribution. The forward measure is therefore
particularly useful when studying term structure models.

1.3.3.1 Floorlet/Caplet Price

To demonstrate the utility of the forward measure we will derive the price of a floorlet
using expectation under the forward measure, which will illustrate how much more tractable
the change of measure makes floorlet pricing.

We know that the forward LIBOR rate can be described in terms of the forward zero
coupon bond price as

LIBOR(T, T + h) =
1

h

(
1

P (T, T + h)
− 1

)

where as before P (t, T ) is the zero-coupon bond price at time t with maturity T , and
LIBOR(t, T ) is the LIBOR rate at time t with period [t, T ].

We assume the payment is made in arrears and the notional is L, so the time-t value of
a floorlet is given by

floorletit = LEQ
t

[
e−

∫ T+h
t r(s)dsh (k − LIBOR(T, T + h))+

]

= LEQ
t

[
e−

∫ T
t r(s)dse−

∫ T+h
T r(s)dsh(k − LIBOR(T, T + h))+

]
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By the law of iterated expectations, we obtain

floorletit = LEQ
t

{
e−

∫ T
t r(s)dsEQ

T

[
e−

∫ T+h
T r(s)ds

]
h

[
k − 1

h
(

1

P (T, T + h)
− 1)

]+}

= LEQ
t

{
e−

∫ T
t r(s)dsP (T, T + h)

[
hk −

(
1

P (T, T + h)
− 1

)]+}

= LEQ
t

{
e−

∫ T
t r(s)ds [(1 + hk)P (T, T + h)− 1]+

}

= (1 + hk)LEQ
t

{
e−

∫ T
t r(s)ds

[
P (T, T + h)− 1

1 + hk

]+}

Letting k∗ = 1
1+hk , we have

floorletit = (1 + hk)LEQ
t

{
e−

∫ T
t r(s)ds [P (T, T + h)− k∗]+

}
(1.40)

Following the previous example, by changing the Q measure to forward measure PT we get

floorletit = (1 + hk)LP (t, T )EPT

t

[
(P (T, T + h)− k∗)+

]
(1.41)

where EPT

t [.] denotes the expectation under forward measure PT .
Define the forward discount factor κt,T as

κt,T =
P (t, T + h)

P (t, T )
(1.42)

=
1

1 + hL(t, T )
(1.43)

Then the future forward discount factor κT,T = P (T, T + h), so

floorletit = (1 + hk)LP (t, T )EPT

t [(κT,T − k∗)+] (1.44)

And so the expectation represents a call option with underlying κt,T and strike price k∗

under forward measure PT .

1.3.4 Pricing under Swap Measure

Another useful measure is the swap measure Pn+1,N , which uses as its numeraire
Pn+1,N (t), the forward zero coupon bond price, and which is very helpful in deriving a
tractable solution for swaption pricing, hence its name. To illustrate the use of the swap
measure we will construct swaption pricing as a simple vanilla option pricing problem un-
der the swap measure, which greatly simplifies the algorithms which can be used to price
swaptions.

The forward par swap rate, yn,N(t), is defined as

yn,N (t) =
P (t, Tn)− P (t, TN)
∑N

j=n+1 δP (t, Tj)
=

P (t, Tn)− P (t, TN )

Pn+1,N (t)

where Pn+1,N (t) is called the present value of a basis point (PVBP).
A swaption gives the holder the right, but not the obligation, to enter into a particular
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swap contract. A swaption with option maturity Tn and swap maturity TN is termed a
Tn × TN -swaption. The total time-swap associated with the swaption is then Tn + TN . A
payer swaption gives the holder the right, not the obligation, to enter into a payer swap
and can be seen as a call option on a swap rate. The option has the payoff at time Tn, the
option maturity, of

[
V Payer
n,N (Tn)

]+
= [{1− P (Tn, TN )}− κ

N∑

j=n+1

δP (Tn, Tj)]
+

= [yn,N (Tn)Pn+1,N (Tn)− κPn+1,N (Tn)]
+

= Pn+1,N (Tn) [yn,N (Tn)− κ]+

where κ denotes the strike rate of the swaption. The second line follows directly from the
definition of the forward swap rate. Let Bt = exp(

∫ t
0 rsds) be the money market account at

time t. Assuming absence of arbitrage, the value of a payer swaption at time t < Tn denoted
by PSt can be expressed by the following risk-neutral conditional expectation:

PSt

Bt
= EQ

t

⎧
⎪⎨

⎪⎩

[
V Payer
n,N (Tn)

]+

BTn

⎫
⎪⎬

⎪⎭

PSt

Bt
= EQ

t

{
Pn+1,N (Tn)

BTn

[yn,N(Tn)−K]+
}

We use Pn+1,N (t) as a numeraire to find a new probability measure, Pn+1,N , that we
call the swap measure. Under the swap measure we can show that

PSt = Pn+1,N (t)EPn+1,N

t

{
[yn,N (Tn)−K]+

}

Note that under this swap measure the corresponding swap rate, yn,N (t), is a martingale.
The change of numeraire shows explicitly why swaptions can be viewed as a call option on
swap rates.

1.4 Types of Derivatives

There are many types of derivatives: European versus American, path-dependent ver-
sus non-path-dependent, all with very different payoff structures. We will not attempt to
provide a full description of all the different derivative structures in this section, but will
instead provide some general guidance on which types of derivatives can be priced under
the different methods for derivative pricing discussed in this book. In later sections, when
discussing which methods are applicable to each derivative type, we will provide details on
why particular methods are well suited to certain derivatives.

In the following chapters we will be presenting three major methods for pricing deriva-
tives, namely, (a) transform methods, (b) numerical solution of partial differential equations
(PDEs) and partial integro-differential equations (PIDEs), and (c) Monte Carlo simulation.
We will explain how each method can be applied to different models and different products.
For example, if we have the characteristic function of the log of the underlying asset, we
can use transform methods to price many derivatives depending on their payoff structure.
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If the process is Markov but either there is no characteristic function or the derivative price
has path dependency, we can use numerical solutions to PDEs/PIDEs for pricing. In case
the process is non-Markov or high dimensional, or the derivative price and the payoff has
very complex path dependency, then we must use Monte Carlo simulation methods.

Problems

1. Derive the characteristic function for rt = ln(St/S0) where there are two possibilities
for rt: (a) a% with probability 0.52 (b) −a% with probability 0.48.

2. Derive the characteristic function of a normal inverse Gaussian (NIG) process using
a similar approach used to derive the characteristic function of the variance gamma
process.

3. An alternative and easy way of deriving the characteristic function of the Heston
stochastic volatility model is first to

(a) show that the Heston stochastic volatility model is geometric Brownian motion
with stochastic arrival (hence Heston stochastic volatility can be called GBMSA).

(b) After verifying that, utilize the approach that was used in deriving the charac-
teristic function for VGSA to calculate the characteristic function of the log of
the underlying process under Heston stochastic volatility.

4. Having the characteristic function of normal inverse Gaussian from Problem 2, utilize
the approach that was used in deriving the characteristic function for VGSA to cal-
culate the characteristic function of the log of the underlying process under normal
inverse Gaussian with stochastic arrival (NIGSA).

5. The characteristic function of CGMY is given in Section 1.2.8. Utilize the approach
that was used in deriving the characteristic function for VGSA to calculate the char-
acteristic function of the log of the underlying process under CGMYSA.





Chapter 2

Derivatives Pricing via Transform Techniques

In this chapter, we will discuss the use of transform techniques for pricing derivatives. As
discussed in Section 1.1, one of the primary representations of the distribution of prices for
a given asset is its characteristic function. The characteristic function of the distribution of
asset prices is merely the Fourier transform of its probability distribution function (PDF).
Thus its probability distribution function can be recovered from the characteristic function
through Fourier inversion. This is particularly important for many classes of models which,
as discussed in Section 1.2, have a closed form only in their characteristic function represen-
tation. We will outline techniques for pricing derivatives under a variety of different models
using transform methods, focusing on fast Fourier transform (FFT) based techniques, frac-
tional fast Fourier transforms, and the recently developed Fourier cosine (COS) method.
Finally we will consider the saddlepoint method.

2.1 Derivatives Pricing via the Fast Fourier Transform

The first major development in the pricing of derivatives using Fourier techniques was
proposed by Carr and Madan [60]. This technique 1 involves first deriving the Fourier
transform of the expected value of the derivative under the risk-neutral distribution. We can
then express this transform in terms of a known characteristic function and some constants.
Finally we can apply the inverse Fourier transform to recover the derivative price.

While this method was a considerable breakthrough in numerical options pricing, like
most of the methods discussed in this book, the fast Fourier transform (FFT) pricing method
involves a number of trade-offs. This method is very useful as it allows us to efficiently price
derivatives under any model with a known characteristic function, which encompasses most
of the models discussed in Section 1.2, some of which are only expressible in this form. Also,
this method is very fast when using FFT based Fourier inversion, solving derivatives pricing
problems in O(n ln(n)) time. Further, this method also allows us to compute not just the
desired option price in O(n ln(n)) time, but also the price for options at n different strikes.
While there are some restrictions on which option prices are computed for free, we are able
to extract more information from this method than many others, which is important for
calibration.

However, this method cannot be used to price all of the derivatives discussed in Section
1.4. In particular, the method as originally presented is restricted to the pricing of derivatives
with European payoffs which are completely path independent. Furthermore, the derivation

1Prior to work by Carr and Madan [60], Bakshi et al. [23] had developed a pricing algorithm which
involved calculating risk-neutral probabilities Π1 and Π1 that are recovered from inverting the respective
characteristic functions. Pricing in this framework involves two inversions as opposed to one in [60] and
calculation of the characteristic functions is not as straightforward as in the case of [60]. Similar treatments
can be seen in [134], [29] and [198].

35
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of this method is very dependent on the payoff type, with only two payoffs presented in the
original paper. Thus we are restricted to a small, but important, subset of derivative payoffs.
Also, to make this method work we need to define a damping factor α whose optimal value
must be determined. Finally, this method degrades in accuracy when the option to be priced
becomes very far out-of-the-money.

Models:
All models for which a characteristic function for the asset price distribution exists.

Option Types:
Strictly path independent European options. Restricted set of terminal payoffs.

Pros

1. Allows for pricing under any model with a characteristic function

2. Fast, n option prices in O(n ln(n)) time

3. Generates n option prices in a single run

Cons

1. Restricted to path independent European options

2. Restricted set of terminal payoffs, each needing to be rederived

3. Requires estimation of proper α

4. Inaccurate for highly out-of-the-money options

2.1.1 Call Option Pricing via the Fourier Transform

As we observed in Section 1.3, for a security which has a risk-neutral price distribution
with a known probability density function we can integrate the payoff via some numerical
integration procedure and get its option price. In most cases, we do not know the probability
density function analytically or in an integrated form. However, we can often find the
characteristic function of an underlying security price or rather the characteristic function
of the log of the underlying security price analytically or semi-analytically. It is shown
in [60] that if we have the characteristic function analytically, we can efficiently obtain
option premiums via the inverse Fourier transform. Following the work in [60], we begin by
formulating the option pricing problem for a European call in terms of the density of the
log asset price, which allows us to use Fourier transforms to obtain the option premium.

As shown in Section 1.3, many derivative instruments, including vanilla options, caps,
floors, and swaptions, can be expressed as a simple call or put option. For that reason, our
setup is presented in a very generic form.

We begin with the following definitions. Let

XT be T -time price of the underlying security

f(XT ) ≡ f(XT |X0) be the probability density function of XT under some equivalent
martingale measure

q(xT ) ≡ q(xT |x0) be the density of the log of the underlying security xT = ln(XT )



Derivatives Pricing via Transform Techniques 37

k = ln(K) be the log of the strike price

CT (k) be the price of a T -maturity call with strike K = ek

Φ(ν) be the characteristic function of the log of the underlying security xT , that is,

Φ(ν) =

∫ ∞

−∞
eiνxT q(xT )dxT

The European call option price CT (k) can be expressed as

C Et

[
(XT −K)+

]
= C

∫ ∞

K
(XT −K)f(XT )dXT

= C

∫ ∞

k
(exT − ek)q(xT )dxT

= C

∫ ∞

k
(ex − ek)q(x)dx

= CT (k)

where constant coefficient C depends on the equivalent martingale measure that we are
taking expectation under; see Section 1.3. Note that for simplicity we drop the subscript T
in the last integral equation. Now that we have expressed the option price CT (k) in terms
of the log price density, we use this representation to calculate the Fourier transform of
CT (k), which we define as ΨT (ν).

ΨT (ν) =

∫ ∞

−∞
eiνkCT (k)dk

=

∫ ∞

−∞
eiνk

(
C

∫ ∞

k
(ex − ek)q(x)dx

)
dk

= C

∫ ∞

−∞

∫ x

−∞
eiνk(ex − ek)q(x)dkdx

= C

∫ ∞

−∞
q(x)

(∫ x

−∞
eiνk(ex − ek)dk

)
dx

Here we have used Fubini’s theorem to change the order of integration. Now we can evaluate
the inner integral

∫ x

−∞
eiνk(ex − ek)dk =

∫ x

−∞
eiνkexdk −

∫ x

−∞
eiνkekdk = ex

eiνk

iν

∣∣∣∣
x

−∞
− e(iν+1)k

iν + 1

∣∣∣∣
x

−∞

We see that the first integral does not converge and thus the first term is undefined. As
discussed in [60], we reformulate the problem by defining

cT (k) = eαkCT (k)

the option premium multiplied by an exponential of the strike. This term becomes a damping
component in the inner integral which forces convergence and allows the Fourier transform
to be calculable. We redefine ΨT (ν) to be the characteristic function of the modified option
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price cT (k), and the derivation now becomes

ΨT (ν) =

∫ ∞

−∞
eiνkcT (k)dk

=

∫ ∞

−∞
eiνk

(
Ceαk

∫ ∞

k
(ex − ek)q(x)dx

)
dk

= C

∫ ∞

−∞

∫ x

−∞
e(α+iν)k(ex − ek)q(x)dkdx

= C

∫ ∞

−∞
q(x)

(∫ x

−∞
e(α+iν)k(ex − ek)dk

)
dx

However, with the damping factor the inner integral now converges.
∫ x

−∞
eαkeiνk(ex − ek)dk =

∫ x

−∞
e(α+iν)k(ex − ek)dk

= ex
e(α+iν)k

(α+ iν)

∣∣∣∣
x

−∞
− e(α+iν+1)k

(α+ iν + 1)

∣∣∣∣
x

−∞

Both terms now vanish at negative infinity for α > 0, and so we have
∫ x

−∞
e(α+iν)k(ex − ek)dk = ex

e(α+iν)x

(α+ iν)
− e(α+iν+1)x

(α+ iν + 1)

=
e(α+iν+1)x

(α+ iν)(α + iν + 1)

Now we can compute the characteristic function of the modified option premium using the
characteristic of the log asset price Φ(ν).

ΨT (ν) = C

∫ ∞

−∞
q(x)

e(α+iν+1)x

(α+ iν)(α + iν + 1)
dx

=
C

(α+ iν)(α + iν + 1)

∫ ∞

−∞
e(α+iν+1)xq(x)dx

=
C

(α+ iν)(α + iν + 1)

∫ ∞

−∞
ei(ν−(α+1)i)xq(x)dx

=
C

(α+ iν)(α + iν + 1)
Φ(ν − (α+ 1)i)

Thus, if we know the characteristic function of the log of an underlying security price, Φ(ν),
we can calculate ΨT (ν), the Fourier transform of the modified call,

ΨT (ν) =

∫ ∞

−∞
eiνkcT (k)dk (2.1)

=
C

(α+ iν)(α + iν + 1)
Φ(ν − (α+ 1)i) (2.2)

Because we have the characteristic function of the modified call price

ΨT (ν) =

∫ ∞

−∞
eiνkcT (k)dk (2.3)

=

∫ ∞

−∞
eiνkeαkCT (k)dk (2.4)
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we can use the inverse Fourier transform to get

CT (k) =
e−αk

2π

∫ ∞

−∞
e−iνkΨT (ν)dν (2.5)

But CT (k) is a real number, which implies that its Fourier transform ΨT (ν) is even in its
real part and odd in its imaginary part. Since we are only concerned with the real part for
the option price, we can treat this as an even function and thus we get

CT (k) =
e−αk

π

∫ ∞

0
e−iνkΨT (ν)dν (2.6)

which is the call option premium. Using Equation (2.2) for the characteristic function and
the inverse Fourier transform of ΨT (ν) we can calculate CT (k).

CT (k) =
e−αk

π

∫ ∞

0
e−iνkΨT (ν)dν (2.7)

where ΨT (ν) is a known function that will be determined and some suitable parameter
α > 0.

2.1.2 Put Option Pricing via the Fourier Transform

The put option price can also be calculated via the Fourier transform in a similar manner.
One might wonder why this formulation is necessary as the put price should be recoverable
from the call price and the forward underlier price via put-call parity. However, both put
and call options have bid and ask prices, and thus put-call parity does not hold absolutely
because there is no single price for the call or put, but in fact a range of possible true prices
between the bid and ask. Thus a formulation of the put price becomes necessary. If PT (k)
is the price of a T -maturity put with strike K = ek, it can be expressed as follows:

C Et

[
(K −XT )

+
]

= C

∫ K

0
(K −XT )f(XT )dXT

= C

∫ k

−∞
(ek − exT )q(xT )dxT

= C

∫ k

−∞
(ek − ex)q(x)dx

= PT (k)

As before, we reformulate the problem by defining

pT (k) = eαkPT (k)

the option premium multiplied by an exponential of the strike. This term becomes a damping
component in the inner integral which forces convergence and allows the Fourier transform
to be calculable. We redefine ΨT (ν) to be the characteristic function of the modified option
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price pT (k), and the derivation now becomes

ΨT (ν) =

∫ ∞

−∞
eiνkpT (k)dk

= C

∫ ∞

−∞
eiνk

(
eαk

∫ k

−∞
(ek − ex)q(x)dx

)
dk

= C

∫ ∞

−∞

∫ ∞

x
e(α+iν)k(ek − ex)q(x)dkdx

= C

∫ ∞

−∞
q(x)

(∫ ∞

x
e(α+iν)k(ek − ex)dk

)
dx

With the damping factor the inner integral now converges.
∫ ∞

s
eαkeiνk(ek − es)dk =

∫ ∞

s
e(α+iν)k(ek − es)dk

=
e(α+iν+1)k

(α+ iν + 1)

∣∣∣∣
∞

s

− es
e(α+iν)k

(α+ iν)

∣∣∣∣
∞

s

Both terms now vanish at infinity for α < 0, and so we have
∫ ∞

x
e(α+iν)k(ek − ex)dk = − e(α+iν+1)x

(α+ iν + 1)
+ ex

e(α+iν)s

(α+ iν)

=
e(α+iν+1)x

(α+ iν)(α + iν + 1)

Now we can compute the characteristic function of the modified option premium using the
characteristic of the log asset price Φ(ν).

ΨT (ν) = C

∫ ∞

−∞
q(x)

e(α+iν+1)x

(α+ iν)(α + iν + 1)
dx

=
C

(α+ iν)(α + iν + 1)

∫ ∞

−∞
e(α+iν+1)xq(x)dx

=
C

(α+ iν)(α + iν + 1)

∫ ∞

−∞
ei(ν−(α+1)i)sq(x)dx

=
C

(α+ iν)(α + iν + 1)
Φ(ν − (α+ 1)i)

Thus, if we know the characteristic function of the log of an underlying security price, Φ(ν),
we can calculate ΨT (ν), the Fourier transform of the modified put,

ΨT (ν) =

∫ ∞

−∞
eiνkpT (k)dk (2.8)

=
C

(α+ iν)(α + iν + 1)
Φ(ν − (α+ 1)i) (2.9)

Because we have the characteristic function of the modified put price

ΨT (ν) =

∫ ∞

−∞
eiνkpT (k)dk (2.10)

=

∫ ∞

−∞
eiνkeαkPT (k)dk (2.11)
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we can use the inverse Fourier transform to get

PT (k) =
e−αk

2π

∫ ∞

−∞
e−iνkΨT (ν)dν (2.12)

Using the same argument as before, since PT (k) is a real number, this implies that its
Fourier transform ΨT (ν) is odd in its imaginary part and even in its real part. Since we are
only concerned with the real part for the option price, we can treat this as an even function
and thus we get

PT (k) =
e−αk

π

∫ ∞

0
e−iνkΨT (ν)dν (2.13)

which is the put option premium. Using Equation (2.9) for the characteristic function and
the inverse Fourier transform of ΨT (ν) we can calculate put option premium PT (k).

PT (k) =
e−αk

π

∫ ∞

0
e−iνkΨT (ν)dν (2.14)

where ΨT (ν) is a known function that will be determined and some suitable parameter
α < 0.

2.1.3 Evaluating the Pricing Integral

2.1.3.1 Numerical Integration

The Fourier techniques presented thus far give us a method for calculating option prices
for models where a closed form PDF is not available but where a closed form characteristic
function is. However, we still need to perform the integral to solve for the option premium. It
remains to be seen why we would use this method, as we still need to calculate the integral.
Note that

CT (k) =
e−αk

π

∫ ∞

0
e−iνkΨT (ν)dν (2.15)

This integral can be computed easily using simple numerical integration techniques. First
we approximate the integral by defining B to be the upper bound for the integration. We
can numerically integrate this truncated integral via a simple trapezoidal rule. We let N be
the number of equidistant intervals, ∆ν = B

N = η be the distance between the integration
points, and νj = (j− 1)η be the endpoints for the integration intervals for j = 1, . . . , N +1.
Applying the trapezoidal rule we get

CT (k) =
e−αk

π

∫ ∞

0
e−iνkΨT (ν)dν

≈ e−αk

π

∫ B

0
e−iνkΨT (ν)dν

≈ e−αk

π

(
e−iν1kΨT (ν1) + 2e−iν2kΨT (ν2) + · · ·+ 2e−iνNkΨT (νN )

+e−iνN+1kΨT (νN+1)
) η

2

Since the terms are decaying exponentially, we can just discard the final term to make it
suitable for fast Fourier transform. Thus, we end up with

CT (k) ≈
e−αk

π

N∑

j=1

e−iνjkΨT (νj)wj
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where wj =
η
2 (2− δj−1). For a somewhat more accurate result we could also use Simpson’s

rule, which would yield

CT (k) ≈
e−αk

π

N∑

j=1

e−iνjkΨT (νj)wj

where wj =
η
3 (3 + (−1)j − δj−N ). Here

δj =

{
1 j = 0
0 otherwise

2.1.3.2 Fast Fourier Transform

While the direct integration is sufficient, it is not an efficient method of evaluating
the pricing integral. The fast Fourier transform (FFT) algorithm developed by Cooley and
Tukey [78] and later extended by many others provides a more efficient algorithm for cal-
culating a set of discrete inverse Fourier transforms with sample points that are powers of
two. These transforms take the following form:

ω(m) =
N∑

j=1

e−i 2πN (j−1)(m−1)x(j) for m = 1, . . . , N (2.16)

These equations would appear to take N multiplications per inverse transform for a
total of N2 multiplications; however, the Cooley–Tukey FFT algorithm can reduce this to
N logN multiplications by using a divide and conquer algorithm to break down discrete
Fourier transforms (DFTs). This is crucial for approximating the Fourier integral as this
can greatly accelerate the speed at which we can compute option prices under the FFT
method.

We can convert our option pricing formula into the FFT form by creating a range of
strikes around the strike for which we wish to calculate an accurate option price. A typical
case would be an at-the-money option for a particular underlier, and in this case we define
the range of (log of) strikes as km = β+ (m− 1)∆k = β +(m− 1)λ, for m = 1, . . . , N with
β = lnX0 − λN

2 which will cause the at-the-money strike to fall in the middle of our range
of strikes. For CT (km) we now have

CT (km) ≈ e−αkm

π

N∑

j=1

e−iνjkmΨT (νj)wj for m = 1, . . . , N

=
e−αkm

π

N∑

j=1

e−i(j−1)η(m−1)∆ke−iβνjΨT (νj)wj

=
e−αkm

π

N∑

j=1

e−iλη(j−1)(m−1)e−iβνjΨT (νj)wj

So, we can see that if we set λη = 2π
N and x(j) = e−iβνjΨT (νj)wj with β = lnX0− λN

2 we get
back the original form of the FFT (2.16). Thus we see that we can generate N option prices
using only O(N logN) multiplications required by the FFT. This entire operation is slower
than the O(N) multiplications needed to get a simple option price using direct integration;
however, it is rare to only price a single option on an underlier by itself. With the FFT
method we have a clear advantage, as the O(N logN) multiplications, when amortized over
N options, are only O(logN) per option.
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However, these N options are not likely to be exactly the N options wanted, say for
producing a sensible implied volatility surface with points at market traded strikes. But
because the FFT method prices strikes determined by km = β+(m− 1)∆k = β+(m− 1)λ
we can modify η = B

N by modifying N , which will in turn change the strikes for which you
get option prices using the FFT method. This allows us to extract enough information to
interpolate a volatility surface with very small errors in considerably less time than direct
integration, which would take O(N2) for N strikes.

2.1.4 Implementation of Fast Fourier Transform

In brief, having the characteristic function of the log of the underlying process Xt that
is Φ(ν), choose η and N = 2n, calculate λ = 2π

Nη , νj = (j− 1)η, and set α. Now form vector
x.

x =

⎛

⎜⎜⎜⎝

x1

x2
...

xN

⎞

⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎜⎜⎝

η
2

C
(α+iν1)(α+iν1+1)e

−i(lnX0−λN
2 )ν1Φ (ν1−(α+ 1)i)

η C
(α+iν2)(α+iν2+1)e

−i(lnX0−λN
2 )ν2Φ (ν2−(α+ 1)i)

...

η C
(α+iνN )(α+iνN+1)e

−i(lnX0−λN
2 )νNΦ (νN−(α+ 1)i)

⎞

⎟⎟⎟⎟⎟⎠

where constant coefficient C depends on the equivalent martingale measure that we are
taking expectation under; e.g., for Q we have C = e−rT . Vector x is the input to the FFT
routine, and its output is vector y of the same size, y = fft(x); then call prices at strike km
for m = 1, . . . , N are

⎛

⎜⎜⎜⎝

CT (k1)
CT (k2)

...
CT (kN )

⎞

⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎜⎜⎝

e−α(lnX0−N
2 λ)

π Re(y1)
e−α(lnX0−(N

2−1)λ)

π Re(y2)
...

e−α(lnX0−(N
2−(N−1))λ)

π Re(yN )

⎞

⎟⎟⎟⎟⎟⎠

where Re(yj) is the real part of yj.

2.1.5 Damping factor α

The introduction of the damping factor α made it possible to solve the option pricing
problem via a Fourier transform. At a glance it seems that α does not come into the
calculation of the integrand as it is hidden in ΨT (ν). We already know that α has to
be positive for calls and negative for puts. Theoretically it seems that for any value of α
we should get roughly the same results. However, this is not the case. In this section we
demonstrate how sensitive the results are to the choice of α. We look for a suitable range
for its value and illustrate its dependence on the choice of stochastic model. Finally, we run
series of empirical studies on three processes, focusing on pricing calls using a positive α.
The processes we will consider are (a) geometric Brownian motion, (b) the Heston stochastic
volatility model, and (c) the variance gamma (VG) model.

For geometric Brownian motion we will use the following parameter set: spot S0 = 100,
strike K = 90, instantaneous risk-free interest rate r = 5%, maturity T = 1 year, and
volatility σ = 30%. Table 2.1 illustrates Black–Scholes premiums via FFT for various values
of α, N , and η. The exact Black–Scholes call premium value is 19.6974 for this parameter
set. For the Heston stochastic volatility model we will use the following parameter set: spot
S0 = 100, strike K = 90, risk-free rate r = 3%, maturity T = 0.5 years, κ = 2, σ = 0.5,
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TABLE 2.1: Black–Scholes premiums via FFT for various values of α, N , and η

η = 0.15 η = 0.1 η = 0.05
α N = 26 28 210 26 28 210 26 28 210

0.01 211.907 211.91 211.91 134.048 134.054 134.054 60.4539 59.4812 59.4812
0.5 19.6922 19.6974 19.6974 19.6264 19.6974 19.6974 19.7932 19.6973 19.6974
1 19.6911 19.6974 19.6974 19.5632 19.6974 19.6974 18.7819 19.6974 19.6974

1.5 19.6919 19.6974 19.6974 19.5162 19.6974 19.6974 17.8268 19.6974 19.6974
2 19.6950 19.6974 19.6974 19.4991 19.6974 19.6974 17.0632 19.6975 19.6974
5 19.7020 19.6974 19.6974 20.3240 19.6974 19.6974 19.7178 19.6968 19.6974

10 20.9053 19.6974 19.6974 2.4214 19.6974 19.6974 96.4300 19.6968 19.6974

θ = 0.04, v0 = 0.04, and correlation ρ = −0.7. Table 2.2 illustrates Heston premiums via
FFT for various values of α, N , and η. For reference, the Heston call premium value for this
parameter set is 13.4038 as calculated via Monte Carlo simulation. For the variance gamma

TABLE 2.2: Heston premiums via FFT for various values of α, N , and η

η = 0.15 η = 0.1 η = 0.05
α N = 26 28 210 26 28 210 26 28 210

0.01 205.05 205.413 205.415 127.489 127.576 127.5591 55.6651 52.745 52.9863
0.5 12.7379 13.2001 13.2023 12.8612 13.2222 13.2023 14.8195 12.9309 13.2025
1 12.6307 13.1998 13.2023 12.5494 13.2251 13.2023 13.5390 12.9010 13.2026

1.5 12.5201 13.1994 13.2023 12.2137 13.2281 13.2023 12.2191 12.8731 13.2027
2 12.4092 13.1990 13.2023 11.8667 13.2313 13.2023 10.9782 12.8484 13.2027
5 11.9182 13.1958 13.2023 10.1369 13.2509 13.2023 6.6138 12.8410 13.2032

10 12.9279 13.1922 13.2023 10.3712 13.2280 13.2023 5.9025 13.9336 13.2043

model we will use the following parameter set: spot S0 = 100, strike K = 90, risk-free rate
r = 10%, maturity T = 1/12 year, σ = 0.12, θ = −0.14, and ν = 0.2. Table 2.3 illustrates
variance gamma premiums via FFT for various values of α, N , and η. The variance gamma
call premium value for this parameter set is 10.8288. It is easy to see from Tables 2.1, 2.2,

TABLE 2.3: Variance gamma premiums via FFT for various values of α, N , and η

η = 0.15 η = 0.1 η = 0.05
α N = 28 210 212 218 210 212 28 210 212

0.01 203.123 203.042 203.042 125.055 125.186 125.186 49.9824 50.6283 50.6126
0.5 10.9172 10.8286 10.8288 10.6980 10.8293 10.8288 10.1099 10.8444 10.8286
1 10.9245 10.8285 10.8288 10.6984 10.8293 10.8287 10.0150 10.8443 10.8285

1.5 10.9323 10.8285 10.8288 10.6998 10.8292 10.8287 9.9166 10.8440 10.8285
2 10.9405 10.8284 10.8288 10.7024 10.8291 10.8287 9.8154 10.8437 10.8282
5 11.0009 10.8280 10.8288 10.7483 10.8280 10.8287 9.2038 10.8382 10.8274

10 11.1477 10.8265 10.8287 11.0028 10.8239 10.8285 8.5421 10.8071 10.8223

and 2.3 that the results vary significantly depending on α and N . For some values of α
they either do not make sense or are implausible. To explore why the damping factor α
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affects the results so much, we plot the integrand for different values of the parameters and
examine their behaviors.

In Figure 2.1 we plot the integrand which is the Fourier transform of the call value,
namely, e−iνkΨT (ν), for various values of α. To see how fast the tail dies out we plot the
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FIGURE 2.1: The integrand in geometric Brownian motion for various values of α

tail of the integrand for various values of α in Figure 2.2.
We can see from the graphs in Figures 2.1 and 2.2 the integrand oscillates more as α

gets larger. The most stable behavior occurs when α is around 1.0, which is consistent with
the option pricing results. Also, the tail decays very quickly in each graph, so extending the
upper bound of the integral will not have much effect on the value of the integral.

The integrand oscillates quite sharply when α is large, which causes poor results for the
integral. But numerically, if we can do the integral more efficiently we should get the same
value as we would when using a small α. More precisely, say we apply Simpson’s rule using
a very small α to capture as much detail in the tail as possible. We then need a large N to
give us a proper upper bound of the integral because N × η gives us the upper bound of
the integral.

To verify this, we take α = 15. The graph of the integrand is shown in Figure 2.3 and
the graph of its tail is illustrated in Figure 2.4. For this α the function oscillates wildly
about zero. In this case, if we take too few intervals the result could be totally unrealistic.
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FIGURE 2.2: The tail of the integrand in geometric Brownian motion for various values
of α

Also, we can see a proper upper bound would be larger than 30. We test the results in the
following three cases:

• N = 210, η = 0.05, with the corresponding upper bound of 51.2. Using the Simpson
rule, the result is 1302.2, which is way off from the true value expected.

• N = 212, η = 0.01, with an upper bound of 40.96. The final result is 355.6856. It is
getting closer to the true value but still far away from Black–Scholes value.

• N = 222, η = 0.00001, with an upper bound of 41.943. The final result is 20.2784,
which is consistent with the result given by α = 1.

Note that if we use the third group of parameters, λ = 0.1498, which means the log-strike
spacing is too large. More precisely, very few strike prices lie in the desired region near the
current stock price.

In conclusion, the FFT method will work with a large damping variable α if we use a
large enough N and small enough interval η. However, in this case we will not get a suitable
strike range.
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FIGURE 2.3: The integrand in geometric Brownian motion for α = 15

For the Heston model, we get similar results, as shown in Figures 2.5 and 2.6. Addition-
ally, we can see there is a much larger negative part of the integration than in the GBM
model, which means if we use an upper bound for the integration which is too small we will
observe higher prices than normal, which is shown when N is 28.

For the VG model, results are consistent with the other two models and are shown in
Figures 2.7 and 2.8. We can see that the integrand decays slower when α gets larger, which
means for fixed value η we need even larger N .

Our analyses indicate when using FFT methods for option pricing, results are very
sensitive to the choice of α, N , and η. FFT methods will work in theory for any damping
variable α, but one has to be careful as to the choice of N and η. As shown, the most
accurate results are achieved by using a very large N and very small interval η, but this
choice of parameters is not only computationally expensive but also would not provide a
useful range of strikes. From the results we can conclude that the optimal range for α is
between 1.0 and 1.5.

2.2 Fractional Fast Fourier Transform

As explained in the previous section, the use of the standard FFT approach dictates the
following relationship between λ and η:

λη =
2π

N
(2.17)
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FIGURE 2.4: The tail of the integrand in geometric Brownian motion for α = 15

with

η =
B

N
(2.18)

However, we can see that of the four parameters in consideration, N , B, η, and λ, just two
can be chosen freely as η is determined by B and N and the last one is determined via
the constraint (2.17). We further assume that we have a fixed computational budget which
dictates a fixed number of integral terms N . Given these assumptions we have only two
free variables, B, the upper bound of the integral, and λ = ∆k, the spacing of the log(K)
grid on which we calculate solutions, and they are inversely proportional. So we have an
inherent trade-off between the upper bound of the integral, which determines the accuracy
of our integration, and the step size in strikes, which will determine if we get relevant
pricing information at strikes which are close to traded market strikes. The choice of B will
determine how accurate our integral approximation will be; however, if we assume that we
want a fixed spacing between integration points η to ensure a given degree of accuracy in
the integration, we impose a restriction on the λ which determines the spacing in the log
strikes of the solutions we calculate.

As an example, we fix η to ensure a certain degree of local accuracy in the integration,
and show the implied upper bound B and the implied log strike spacing λ for different
values of N . These results can be seen in Table 2.4. We observe that it can take quite a
large N to generate solutions with strikes which fall close to market traded strikes.

Our results illustrate the relationship between between grid spacing in the integral, the
upper bound of the integral, and the log-strike spacing. As mentioned in [66], out of the 4096
option prices that are calculated, roughly 67 (2 × 20%

0.61% + 1 ≈ 67) will fall within the 20%
log-strike interval that is relevant for practical applications and thus the remaining option
prices calculated are of no practical use. Considering the 4096 option prices calculated in our
experiment, were we to price them individually using the FFT algorithm with a log-strike
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FIGURE 2.5: The integrand in the Heston stochastic volatility model for various values
of α

scale centered around the strike of each option, we would need only a 128− or 256-point
grid to get practically accurate prices. In other words, using only 128 or 256 grid points will
generally yield acceptably accurate option prices for a given central strike. However, using
a 256-point grid in our example would result in λ = 0.0981 or a log-strike spacing of 9.81%,
which is impractical. We would like to eliminate the dependence between the number of
terms, N , and log-strike spacing, λ. This would allow us to use a smaller N , which will still
yield an accurate set of option prices, and to independently choose a log-strike spacing λ
that is consistent with market traded options. In [66], the author proposes a fractional FFT
procedure to achieve this. The fractional FFT procedure computes a sum of the form

N∑

j=1

e−i2πγ(j−1)(m−1)x(j) (2.19)

for any value of γ. The standard FFT that we studied in the previous section is a special case
for γ = 1

N . The summation in (2.19) can be computed without imposing the constraint in
(2.17). This means that the two grid spacings, one for the integral of characteristic function
and the other for log-strike prices, can be selected independent of one another.
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FIGURE 2.6: The tail of the integrand in Heston stochastic volatility model for various
values of α

2.2.1 Formation of Fractional FFT

As presented in [21] and [22], in the fractional Fourier transform (FrFFT) we define the
N−long complex sequence x as

Gm(x, γ) =
N∑

j=1

e−i2πγ(j−1)(m−1)x(j) (2.20)

The parameter γ in fact may be any complex rational number. The sum can be implemented
via three 2N -point FFT steps. For an N -point fractional FFT on the vector x(j), we define
the following 2N -long sequences:

yj = xje−iπ(j−1)2γ 1 ≤ j ≤ N
yj = 0 N < j ≤ 2N

zj = eiπ(j−1)2γ 1 ≤ j ≤ N

zj = eiπ(2N−j)2γ N < j ≤ 2N
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FIGURE 2.7: The integrand in variance gamma model for various values of α

where γ = λη
2π . It is shown in [21] that

Gm(x, γ) = (e−iπ(m−1)2γ)⊙D−1
m (D(y) ⊙D(z)) 1 ≤ m ≤ N

where ⊙ denotes element componentwise vector multiplication and

D(ξ) =

⎛

⎜⎜⎜⎝

D1(ξ)
D2(ξ)

...
D2N(ξ)

⎞

⎟⎟⎟⎠

with

ηj = Dj(ξ) =
2N∑

m=1

exp

(
−i 2π

2N
(j − 1)(m− 1)

)
ξ(m) 1 ≤ j ≤ 2N

and

ξm = D−1
m (η) =

1

2N

2N∑

j=1

exp

(
i
2π

2N
(j − 1)(m− 1)

)
η(j) 1 ≤ m ≤ 2N
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FIGURE 2.8: The tail of the integrand in variance gamma model for various values of α

The remaining N results of the final inverse discrete Fourier transform are discarded. Note
that the exponential quantities do not depend on the actual function that is integrated and
therefore can be precomputed and stored.

2.2.2 Implementation of Fractional FFT

Having the characteristic function of the log of the underlying process Xt that is Φ(ν),
we choose η, λ (independently) and N = 2n. Calculate γ = ηλ

2π , νj = (j − 1)η and set α.
Form vector x

x =

⎛

⎜⎜⎜⎝

x1

x2
...

xN

⎞

⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎜⎜⎝

η
2

C
(α+iν1)(α+iν1+1)e

−i(lnX0−λN
2 )ν1Φ (ν1−(α+ 1)i)

η C
(α+iν2)(α+iν2+1)e

−i(lnX0−λN
2 )ν2Φ (ν2−(α+ 1)i)

...

η C
(α+iνN )(α+iνN+1)e

−i(lnX0−λN
2 )νNΦ (νN−(α+ 1)i)

⎞

⎟⎟⎟⎟⎟⎠
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TABLE 2.4: Relationship between grid spacing in integral and log-strike spacing
n N = 2n η Upper bound λ Log-strike spacing
7 128 0.25 32 0.1963 19.0%
9 256 0.25 64 0.0981 9.81%
9 512 0.25 128 0.0491 4.91%
10 1024 0.25 256 0.0245 2.45%
11 2048 0.25 512 0.0122 1.22%
12 4096 0.25 1024 0.0061 0.61%
13 8192 0.25 2048 0.0031 0.30%

Now form vectors y and z as follows:

y =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

y1
y2
...
yN
yN+1

yN+2
...

y2N

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1

exp(−iπγ)x2
...

exp(−iπγ(N−1)2)xN

0
0
...
0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

z =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

z1
z2
...
zN
zN+1

zN+2
...

z2N

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
exp(iγπ)

...
exp(iγπ(N−1)2)
exp(iγπ(N−1)2)
exp(iγπ(N−2)2)

...
1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Vectors y and z are the input to the FFT routine, and its output is vectors ŷ and ẑ of the
same size, respectively. Construct vector ξ by multiplying vectors ŷ and ẑ element-wise,
that is,

ξ =

⎛

⎜⎜⎜⎝

ξ1
ξ2
...

ξ2N

⎞

⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎝

ŷ1ẑ1
ŷ2ẑ2
...

ŷ2N ẑ2N

⎞

⎟⎟⎟⎠

Vector ξ is the input to the inverse FFT (IFFT) routine, and its output is vector ξ̂ of the

same size. Using vector ξ̂, call prices at strike km for m = 1, . . . , N are

⎛

⎜⎜⎜⎝

CT (k1)
CT (k2)

...
CT (kN )

⎞

⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎜⎜⎜⎝

e−α(lnX0−N
2 λ)

π Re
(
ξ̂1
)

e−α(lnX0−(N
2
−1)λ)

π Re
(
exp(−iπγ)ξ̂2

)

...
e−α(lnX0−(N

2 −(N−1))λ)

π Re
(
exp(−iπγ(N − 1)2)ξ̂N

)

⎞

⎟⎟⎟⎟⎟⎟⎠

where Re(z) is the real part of z. Note that the last N elements of ξ̂ are never used and are
discarded. Considering λ and η are independent, we can choose λ that would yield a range
around lnX0 with desired moneyness (for example, for 25% moneyness we get λ = 2(0.25)

N .
Also typically N = 2n is much smaller than the fast Fourier technique (e.g., 27 as opposed
to 214).
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2.3 Derivatives Pricing via the Fourier-Cosine (COS) Method

While the FFT method had a number of very significant advantages, including its ability
to price under a model with only a known characteristic function, its speed, and its ability
to generate multiple option prices in a single run, we also saw it has a number of significant
drawbacks. These drawbacks include a restriction to path independent European options
with a restricted subset of terminal payoffs which require the method to be rederived, as
well as inaccuracy for highly out-of-the-money options.

In an effort to improve on currently available Fourier-based pricing methods, Fang and
Oosterlee developed the COS method in [111]. The FFT method explicitly forms the Fourier
transform of the option premium in terms of the characteristic of the log asset price, so
the premium can be recovered using Fourier inversion. The COS method takes a different
approach, first by representing the probability density function of the log asset price in
terms of its Fourier cosine expansion and showing that the coefficients of this expansion
can be expressed in terms of the characteristic function of the log asset price. Then this
representation is used in the risk-neutral pricing formula, which can be reduced to the sum
of an analytically calculable integral and the coefficients which are directly calculable from
the characteristic function.

This method improves on the classic FFT method in a number of ways. First, it pro-
vides considerable speed improvements over FFT methods. While the COS method does in
fact require O(n) multiplications, which is computationally as many as direct integration
and more than the amortized O(n log n) of FFT, the superior performance of the cosine
expansion when integrating non-periodic functions reduces the number of terms needed for
a certain degree of accuracy by so much that the COS method proves to be faster. Another
very important advantage of the COS method is that it completely separates derivation
of the cosine expansion coefficients from the terms which depend on the option’s terminal
payoff. This means that this method can be used to price any European path independent
option as long as the term involving the option payoff, a simple cosine integration, can be
evaluated analytically. This should be true for almost all payoff structures.

Thus the COS method is a significant improvement on the classic FFT method, but it
does come with a few caveats of its own. Similar to the FFT method, it can handle pricing
only path independent European options in its original form. Also, the COS method involves
approximating the pricing integral by truncating the infinite integral bounds to some finite
interval [a, b], so that the COS expansion has a finite number of terms. The optimal value
of these bounds needs to be estimated and the resulting prices can be sensitive to one’s
choice of [a, b]. Finally the COS method suffers from similar accuracy problems as the FFT
method when trying to price deep out-of-the-money options.
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Models:
All models for which a characteristic function for the asset price distribution exists

Option Types:
Path independent European options with a wide variety of terminal payoffs

Pros

1. Allows for pricing under any model with a characteristic function

2. Fastest known Fourier-based method

3. Separates model from payoff, supporting a wide variety of derivatives

Cons

1. Restricted to path independent European options

2. Requires estimation of proper [a, b]

3. Inaccurate for highly out-of-the-money options

2.3.1 COS Method

2.3.1.1 Cosine Series Expansion of Arbitrary Functions

The Fourier cosine series expansion of a function f(θ) on [0,π] is

f(θ) =
1

2
A0 +

∞∑

k=1

Ak cos(kθ) (2.21)

=
∑∞

k=0
Ak cos(kθ)

with the Fourier cosine coefficient

Ak =
2

π

∫ π

0
f(θ) cos(kθ)dθ (2.22)

where
∑

indicates the first term in the summation is weighted by one-half.2 We can extend
this definition to arbitrary functions on a finite interval. For functions on any finite interval
[a, b], the Fourier cosine series expansion is obtained through the following change of variable
that maps a to 0 and b to π:

θ =
π − 0

b− a
(x− a) =

x− a

b− a
π (2.23)

We write x in terms of θ

x =
b− a

π
θ + a (2.24)

and substitute it into (2.21) to obtain

f(x) =
∑∞

k=0
Ak cos(k

x− a

b− a
π) (2.25)

2In this section we follow the notes in [111].
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with the following Fourier cosine coefficient:

Ak =
2

b− a

∫ b

a
f(x) cos(k

x− a

b− a
π)dx (2.26)

2.3.1.2 Cosine Series Coefficients in Terms of Characteristic Function

We already know for a distribution function f(x), its characteristic function is

E(eiνx) = φ(ν) =

∫ ∞

−∞
eiνxf(x)dx

By evaluating the characteristic function at ν = kπ
b−a we obtain

φ

(
kπ

b− a

)
=

∫ ∞

−∞
ei(

kπ
b−a )xf(x)dx

We call the truncated version of this integral φ̂, that is,

φ̂

(
kπ

b− a

)
=

∫ b

a
ei(

kπ
b−a )xf(x)dx (2.27)

Multiplying (2.27) by e−i kπa
b−a we get

φ̂

(
kπ

b− a

)
e−i kπa

b−a = e−i kπa
b−a

∫ b

a
ei(

kπ
b−a )xf(x)dx

=

∫ b

a
eikπ(

x−a
b−a )f(x)dx

=

∫ b

a

(
cos(kπ(

x− a

b− a
)) + i sin(kπ(

x− a

b− a
))

)
f(x)dx

and thus we have

Re

{
φ̂

(
kπ

b− a

)
exp

(
−i kaπ

b− a

)}
=

∫ b

a
cos

(
kπ(

x− a

b− a
)

)
f(x)dx (2.28)

If we assume [a, b] is chosen such that

φ̂(ν) =

∫ b

a
eiνxf(x)dx ≈

∫ +∞

−∞
eiνxf(x)dx = φ(ν) (2.29)

then comparing (2.26) and (2.28) gives us

Ak =
2

b− a
Re

{
φ̂

(
kπ

b− a

)
exp

(
−i kaπ

b− a

)}
(2.30)

with Ak ≈ Fk where

Fk =
2

b− a
Re

{
φ

(
kπ

b− a

)
exp

(
−i kaπ

b− a

)}
(2.31)

By substituting Fk for Ak in the Fourier cosine series expansion f(x) on [a, b] we get an
approximate cosine series expansion which is a function of the characteristic of f(x).

f̂(x) =
∑∞

k=0
Fk cos(k

x− a

b− a
π) (2.32)

By further truncating the summation we get

f̃(x) =
∑N−1

k=0
Fk cos(k

x− a

b− a
π) (2.33)
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2.3.1.3 COS Option Pricing

Now we show how to use the results of the previous section for options pricing. Let

x be the modeled quantity at t, often the log asset price

y be the modeled quantity at T , often the log asset price

f(y|x) be the probability density function under the pricing measure

v(x, t) be the value of a path independent European option at t

v(y, T ) be the option value at T , the payoff at expiration

Then the option value at time t can be written as

v(x, t) = C

∫ b

a
v(y, T )f(y|x)dy

for an appropriate value of C. From (2.25) and (2.26) we have

v(x, t) = C

∫ b

a
v(y, T )

∑∞

k=0
Ak cos(k

y − a

b− a
π)dy

= C
∑∞

k=0
Ak

(∫ b

a
v(y, T ) cos(k

y − a

b− a
π)dy

)

Define

Vk =
2

b− a

∫ b

a
v(y, T ) cos(kπ

y − a

b− a
)dy (2.34)

Then we have

v(x, t) =
b− a

2
C

∑∞

k=0
AkVk (2.35)

To make this calculable we make another approximation and truncate the integral

v(x, t) ≈ b− a

2
C

∑N−1

k=0
AkVk (2.36)

substitute (2.31), and we get the option premium in terms of the characteristic function of
the model and a coefficient Vk, which is calculated based on the payoff of the option

v(x, t) ≈ C
∑N−1

k=0
Re

{
φ

(
kπ

b− a
;x

)
exp

(
−ikπ a

b− a

)}
Vk (2.37)

2.3.2 COS Option Pricing for Different Payoffs

The option price under the COS method is calculated as

v(x, t) ≈ b− a

2
C

∑N−1

k=0
AkVk (2.38)

≈ C
∑N−1

k=0
Re

{
φ

(
kπ

b− a
;x

)
exp

(
−ikπ a

b− a

)}
Vk (2.39)
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All information about the model is wholly contained in the cosine expansion coefficient
expressed as a function of the characteristic function. The coefficient Vk contains all the
information about the payoff, so we can adapt the COS method to any payoff for which Vk

is readily calculable. Since we have

Vk =
2

b− a

∫ b

a
v(y, T ) cos(kπ

y − a

b− a
)dy (2.40)

This is true in many cases, and we give some common examples here.

2.3.2.1 Vanilla Option Price under the COS Method

To price vanilla options under the COS method, we first define the following variables:

Xt is the current price of the underlying security

XT is the T -time price of the underlying security

K is the strike of the option

x = ln(Xt/K)

y = ln(XT /K)

Thus we can express the payoff for vanilla European options as

v(y, T ) = [αK(ey − 1)]+

with α = 1 for a call and α = −1 for a put. In this case Vk has an analytical form. Define

χk(c, d) =

∫ d

c
ey cos(kπ

y − a

b− a
)dy

ϕk(c, d) =

∫ d

c
cos(kπ

y − a

b− a
)dy

Then we get their analytical forms

χk(c, d) =
1

1 + ( kπ
b−a )

2
[cos(kπ

d− a

b− a
)ed − cos(kπ

c− a

b− a
)ec

+
kπ

b− a
sin(kπ

d − a

b− a
)ed − kπ

b− a
sin(kπ

c− a

b− a
)ec] (2.41)

and

ϕk(c, d) =

{
[sin(kπ d−a

b−a )− sin(kπ c−a
b−a )]

b−a
kπ k ̸= 0

(d− c) k = 0
(2.42)

So for a vanilla call and put we obtain

V call
k =

2

b− a

∫ b

a
K(ey − 1)+ cos(kπ

y − a

b− a
)dy

=
2

b− a
K(χk(0, b)− ϕk(0, b)) (2.43)

V put
k =

2

b− a

∫ b

a
K(1− ey)+ cos(kπ

y − a

b− a
)dy

=
2

b− a
K(−χk(a, 0) + ϕk(a, 0)) (2.44)
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2.3.2.2 Digital Option Price under the COS Method

For a digital option the result is even simpler.

V cashcall
k =

2

b− a

∫ b

0
K cos(kπ

y − a

b− a
)dy

=
2

b− a
Kϕk(0, b) (2.45)

2.3.3 Truncation Range for the COS method

The authors in [111] propose, without any proof, the following formula for the range of
the integration [a, b] within the COS method.

[a, b] =

[
c1 − L

√
c2 +

√
c4, c1 + L

√
c2 +

√
c4

]
with L = 10 (2.46)

where cn denotes the n-th cumulant 3 of x. In all of our numerical examples we will be using
the above formula for range [a, b]. Determining the sensitivity of the resultant prices to the
choices of a and b, as well as justification for this equation, is left as a short case study at
the end of the chapter.

2.3.4 Numerical Results for the COS Method

In this section we will present some empirical results of the COS method and compare
them with the the fractional FFT method. We will present results for the following three
models: (a) geometric Brownian motion, (b) Heston stochastic volatility model, and (c)
variance gamma model.

2.3.4.1 Geometric Brownian Motion (GBM)

The Black–Scholes model, which models asset prices using geometric Brownian motion,
is described in Section 1.2.1 and its characteristic function is described in Section 1.2.1.3.
The SDE and characteristic function under GBM are as follows:

dSt = (r − q)Stdt+ σStdWt (2.47)

φ(ω) = E(eiωy)

= E(eiω[ln(
S0
K )+(r−q−σ2

2 )t+σWT ])

= eiω[ln
S0
K +(r−q−σ2

2 )T ]−w2σ2

2 T (2.48)

3For a random variable X its cumulant generating function is given by

G(ω) = log (E [exp(ωX)])

Having the characteristic function of X, φ(u), then we can write

G(ω) = log (φ(−iω))

and its n-th cumulant is n-th derivatives of the cumulant generating function evaluated at zero, i.e., cn =
G(n)(0). For example,

c1 = G(1)(0) =
−iφ(1)(0)

φ(0)
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and the cumulants are

c1 = (r − q)T (2.49)

c2 = σ2T (2.50)

c4 = 0 (2.51)

We use the following set of parameters for pricing: spot price S0 = 100, risk-free rate
r = 10%, time to maturity T = 0.1, and volatility σ = 0.25. Table 2.5 shows the results
using the COS and fractional FFT methods with strikes K = 80, 100, 120. The reference
values, computed using the known Black–Scholes solution, are 20.799, 3.660, and 0.045.

TABLE 2.5: COS versus fractional FFT for geometric Brownian motion

COS Fractional FFT
K N Premium CPU time Rel. err. Premium CPU time Rel. err.

(msc) (msc)
16 20.791 0.166 3.9e-04 16.867 2.476 1.9e-01

80 64 20.799 0.184 1.3e-06 20.858 2.631 -2.8e-03
256 20.799 0.409 1.3e-06 20.799 2.812 1.3e-06

16 3.662 0.171 -5.3e-04 7.287 2.442 -9.9e-01
100 64 3.660 0.191 -4.2e-07 3.858 2.677 -5.4e-02

256 3.660 0.282 -4.2e-07 3.660 2.845 1.6e-05

16 0.043 0.167 3.4e-02 2.697 2.430 -6.0e+01
120 64 0.045 0.203 3.1e-07 -0.102 2.642 3.3e+00

256 0.045 0.277 3.1e-07 0.045 2.866 2.7e-04

2.3.4.2 Heston Stochastic Volatility Model

The Heston stochastic volatility model is described in Section 1.2.3 and its characteristic
function is described in Section 1.2.3.2. Under this model asset prices are governed by the
following SDE:

dSt = (r − q)Stdt+
√
vtStdW

(1)
t

dvt = κ(θ − vt)dt+ σ
√
vtdW

(2)
t

where the two Brownian components W (1)
t and W (2)

t are correlated with rate ρ. The variable
vt represents the mean reverting stochastic volatility, where θ is the long-term variance, κ
is the mean reversion speed, and σ is the volatility of the volatility.

The characteristic function for the log of the asset price process is given by

Φ(u) = E(eiu lnSt)

=
exp

(
iu lnS0 + iu(r − q)t+ κθt(κ−iρσu)

σ2

)

(cosh γt
2 + κ−iρσu

γ sinh γt
2 )

2κθ
σ2

exp

{
−(u2 + iu)v0

γ coth γt
2 + κ− iρσu

}

where γ =
√

σ2(u2 + iu) + (κ− iρσu)2, and S0 and v0 are the initial values for the price
process and the volatility process, respectively.
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TABLE 2.6: COS versus fractional FFT for Heston stochastic volatility model

COS Fractional FFT
K N Premium CPU time Rel. err. Premium CPU time Rel. err.

(msc) (msc)
16 32.582 1.792 -2.1e-05 32.224 2.592 1.1e-02

80 64 32.581 1.903 0.0e+00 32.581 2.650 0.0e+00
256 32.581 2.205 0.0e+00 32.581 2.941 0.0e+00

16 22.578 1.915 -1.2e-02 21.553 2.535 3.4e-02
100 64 22.319 1.887 0.0e+00 22.319 2.676 0.0e+00

256 22.319 2.013 0.0e+00 22.319 3.045 0.0e+00

16 15.192 1.814 -2.6e-02 14.296 2.454 3.4e-02
120 64 14.806 1.958 0.0e+00 14.806 2.658 0.0e+00

256 14.806 2.247 0.0e+00 14.806 3.029 0.0e+00

The cumulants for the Heston stochastic volatility model are

c1 = rT + (1− e−κT )
θ − v0
2κ

− 1

2
θT

c2 =
1

8κ3
(σTκe−κT (v0 − θ)(8κρ− 4σ)

+κρσ(1− e−κT )(16θ − 8v0)

+2θκT (−4κρσ+ σ2 + 4κ2)

+σ2((θ − 2v0)e
−2κT + θ(6e−κT − 7) + 2v0)

+8κ2(v0 − θ)(1 − e−κT ))

Calculating c4 is rather arduous, so instead we use c4 = 0 and assume that L = 12 to be
conservative due to the choice for c4.

We use the following set of parameters for pricing: spot price S0 = 100, risk-free rate
r = 0%, time to maturity T = 10, λ = 1.5768, η = 0.5751, long-term variance θ = 0.0398,
initial variance v0 = 0.0175, and correlation ρ = −0.5711. Table 2.6 displays results using
the COS and fractional FFT methods with strikes K = 80, 100, 120. The reference values
are 32.5808, 22.3189, and 14.8058, computed using the fractional FFT method with N = 215

points.

2.3.4.3 Variance Gamma (VG) Model

The variance gamma model is described in Section 1.2.7 and its characteristic function is
described in Section 1.2.7.2. This model is a time-changed Brownian motion model described
by the following SDE:

b(t,σ, θ) = θt+ σWt

X(t;σ, ν, θ) = b(γ(t; 1, ν),σ, θ)

= θγ(t; 1, ν) + σW (γ(t; 1, ν))
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TABLE 2.7: COS versus fractional FFT for variance gamma

COS Fractional FFT
K N Result Time (msc) Rel. Err. Result Time (msc) Rel. err.

16 19.008 1.785 4.8e-03 16.202 2.518 1.5e-01
90 64 19.099 1.859 -2.6e-06 19.144 2.564 -2.3e-03

256 19.099 1.979 -2.6e-06 19.099 2.952 -2.6e-06

16 11.302 1.777 6.0e-03 11.308 2.610 5.5e-03
100 64 11.370 1.850 0.0e+00 11.275 2.676 8.4e-03

256 11.370 1.957 0.0e+00 11.370 3.151 0.0e+00

16 2.056 1.968 -7.0e-02 5.179 2.409 -1.7e+00
120 64 1.921 2.012 0.0e+00 2.005 2.735 -4.4e-02

256 1.921 2.041 0.0e+00 1.921 2.916 1.0e-05

where γ(t; 1, ν) is the gamma distribution of time changes. The characteristic function for
the log of the asset price process is given by

E(eiuX(t)) =

(
1

1− iuθν + σ2u2ν/2

) t
ν

(2.52)

and cumulants for the variance gamma model are

c1 = (r + θ)T

c2 = (σ2 + vθ2)T

c4 = 3(σ4v + 2θ4v3 + 4σ2θ2v2)T

We use the following set of parameters for pricing: spot price S0 = 100, risk-free rate
r = 10%, volatility σ = 0.12, θ = −0.14, ν = 0.2. Table 2.7 shows the results using the
COS and fractional FFT methods with strikes K = 90, 100, 120. The reference values are
19.0944, 11.3700, and 1.92123.

2.3.4.4 CGMY Model

CGMY is described in Section 1.2.8 and its characteristic function is described in Section
1.2.8.1. The characteristic function for the log of the asset price process is given by

E
[
eiuXt

]
= eCtΓ(−Y )((M−iu)Y −MY +(G+iu)Y −GY )

and the cumulants for the CGMY model are

c1 = (r + ω)T + TCΓ(1− Y )(−MY−1 +GY−1)

c2 = χ+ CTΓ(2− Y )(MY−2 +GY−2)

c4 = CTΓ(4− Y )(MY−4 +GY−4)
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where

ω = −CΓ(−Y )((M − 1)Y ) + (G+ 1)Y −MY −GY

χ =
8C

((G+M)2 − (G−M)2)

We leave the comparison between the results of the COS and fractional FFT methods under
the CGMY model as an exercise.

2.4 Cosine Method for Path-Dependent Options

The results discussed in the previous sections demonstrate that the COS method is a
substantial improvement over previous transform methods. However, in its original form
it is still restricted to the pricing of path-independent options. In [112], Oosterlee and
Fang present a method for pricing some types of path-dependent options using backwards
induction in combination with the COS method. The fundamental cosine method for path-
dependent options is the same as for plain vanilla options, using Equation (2.37). The
difference between the pricing method for exotic and plain vanilla options is in the calcu-
lation of Vk. For plain vanilla options, Vk has a straightforward analytical form, as shown
earlier. For exotic options, specifically with an early exercise feature, Vk requires recursive
backwards calculation and therefore it is time dependent.

2.4.1 Bermudan Options

The first class of path-dependent derivatives we will discuss is Bermudian options, which
are exercisable at a discrete set of dates prior to their final maturity. We first define some
notation before discussing pricing. Let t0 be initial time and t1, . . . , tM be prespecified
exercise dates with t0 < t1 < · · · < tM = T , the final maturity, and∆t = tm−tm−1. Without
a loss of generality it is assumed exercise dates are equidistant. To price a Bermudan option,
its value is split into two parts, the continuation value and the immediate exercise payoff.

At time tm−1, the value of v(x, tm−1) consists of the continuation value and the early
exercise payoff value. From Equation (2.37) an approximated continuation value, assuming
the option is not exercised in the current period, is

c(x, tm−1) ≈ C
∑N−1

k=0
Re

{
φ

(
kπ

b− a
; y|x

)
exp

(
−ikπ a

b− a

)}
Vk(tm) (2.53)

where

Vk(tm) =
2

b− a

∫ b

a
v(y, tm) cos

(
kπ

y − a

b− a

)
dy (2.54)

and the exercise payoff value is g(x, tm−1)

g(x, tm−1) = [αK(ex − 1)]+ (2.55)

with x = ln(Xtm−1/K), y = ln(Xtm/K), and α = 1 for a call and α = −1 for a put.
Therefore the option value at time tm−1 is

v(x, tm−1) = max(g(x, tm−1), c(x, tm−1)) (2.56)
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The key point for this method is how to calculate Vk(tm). This is difficult and requires
backwards induction because the option value during the next period v(y, tm), and thus the
coefficient Vk(tm), is unknown except at expiry. To solve for Vk(tm) we first define

Ck(x1, x2, tm) =
2

b− a

∫ x2

x1

c(x, tm) cos(kπ
x− a

b− a
)dx (2.57)

Gk(x1, x2) =
2

b− a

∫ x2

x1

g(x, tm) cos(kπ
x− a

b− a
)dx (2.58)

the coefficients associated with continuation and immediate exercise during period tm. We
have the following analytical form for Ck(x1, x2, tm):

Ck(x1, x2, tm) = e−r∆t
∑N−1

j=0
Re

{
φ(

kπ

b− a
)Vj(tm+1)Mk,j(x1, x2)

}
(2.59)

where

Mk,j(x1, x2) = −
i

π
(M c

k,j(x1, x2) +M s
k,j(x1, x2)) (2.60)

and

M c
k,j(x1, x2) =

{ (x2−x1)πi
b−a k = j = 0

exp(i(j+k)
(x2−a)π

b−a )−exp(i(j+k)
(x1−a)π

b−a )

j+k otherwise
(2.61)

M s
k,j(x1, x2) =

{ (x2−x1)πi
b−a k = j

exp(i(j−k)
(x2−a)π

b−a )−exp(i(j−k)
(x1−a)π

b−a )

j−k k ̸= j
(2.62)

For Gk we also have an analytical form

Gk(x1, x2) =
2

b− a
αK[χk(x1, x2)− ϕk(x1, x2)] (2.63)

where

χk(x1, x2) =
1

1 + ( kπ
b−a )

2
[cos(kπ

x2 − a

b− a
)ex2 − cos(kπ

x1 − a

b− a
)ex1

+
kπ

b− a
sin(kπ

x2 − a

b− a
)ex2 − kπ

b− a
sin(kπ

x1 − a

b− a
)ex1 ] (2.64)

ϕk(x1, x2) =

{
[sin(kπ x2−a

b−a )− sin(kπ x1−a
b−a )] b−a

kπ k ̸= 0
(x2 − x1) k = 0

(2.65)

The calculation of Ck(x1, x2, tm) can be efficiently conducted through fast Fourier transform,
as demonstrated in [112].

Now we are able to calculate the coefficients Vk(tm). First we find x∗m such that
c(x∗m, tm) = g(x∗m, tm) where x∗m is the early exercise boundary at time tm, the price at
which continuation becomes more profitable than immediate exercise or vice versa. Solving
for this boundary price can be done via the Newton–Raphson or the bisection method. We
can then calculate the coefficient Vk(tm) as

Vk(tm) =

{
Ck(a, x∗m, tm) +Gk(x∗m, b) for a call
Ck(x∗m, b, tm) +Gk(a, x∗m) for a put

(2.66)
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for m = M − 1,M − 2, . . . , 1. This divides the integral over the next period’s prices into the
continuation and exercise regions. For the terminal condition we have

Vk(tM ) =

{
Gk(0, b) for a call
Gk(a, 0) for a put

(2.67)

We first start with Vk(tM ) and calculate backwards inductively to get Vk(t1), with the
original option value denoted as

v(x, t0) ≈ C
∑N−1

k=0
Re

{
φ(

kπ

b− a
; y|x) exp

(
−ikπ a

b− a

)}
Vk(t1) (2.68)

2.4.2 Discretely Monitored Barrier Options

The next class of path-dependent derivatives we will discuss is discretely monitored
barrier options, which cease to exist if the underlying price hits a barrier at one of the
prespecified dates. There are a number of different types of barrier options, but here we will
discuss up-and-out options, which have a payoff of

V (X, t) = max(α(XT −K), 0)|(Xti < H) + R|(Xti >= H) (2.69)

where R is the rebate and Xti is the level of the underlying price at a discretely monitored
time. The formula for coefficient Vk(tm) is again split into a continuation component, as-
suming that the price did not hit the barrier, and a component indicating the price did hit
the barrier,

Vk(tm) = Ck(a, h, tm) + e−r(T−tm−1) 2R

b− a
ϕk(h, b) (2.70)

For pricing the option, we start with Vk(tM ) where for h < 0

Vk(tM ) =

{
Gk(0, b) +

2R
b−aϕ(a, h) for a call

Gk(h, 0) +
2R
b−aϕ(a, h) for a put

(2.71)

and for h ≥ 0

Vk(tM ) =

{
Gk(0, h) +

2R
b−aϕ(h, b) for call

Gk(a, 0) +
2R
b−aϕ(h, b) for put

(2.72)

2.4.2.1 Numerical Results — COS versus Monte Carlo

Here we provide some numerical results from pricing discretely monitored barrier options
using the COS method and Monte Carlo simulation. The models under consideration in this
example are the Black–Scholes and variance gamma models. The parameters used for the
Black–Scholes model are: spot price X0 = 100, strike K = 100, maturity T = 1 year,
prespecified monitored times M = 12, equidistant monthly barrier H = 120, rebate R = 0,
risk-free rate r = 5% and volatility σ = 0.2. The parameters used for the VG model are
identical except for the VG specific model parameters σ = 0.12, ν = 0.2, and θ = −0.14.

Results are displayed in Table 2.8. As we observe premiums closely match for each
model under both methodologies. However, COS is significantly faster than Monte Carlo
simulation.
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TABLE 2.8: Results on discretely monitored barrier option — COS versus MC
Method Model N Call Put Time (sec)
COS BS 26 1.8494 5.4846 0.1238
MC BS 106 1.8487 5.4794 1.0178
COS VG 26 4.1935 3.1572 0.1562
MC VG 106 4.1949 3.1557 10.1335

2.5 Saddlepoint Method

The COS and FFT methods have a number of distinct advantages. For instance, they
have the ability to price derivatives under a model given only a known characteristic func-
tion, they are very fast, and they have the ability to generate multiple option prices in a
single run. The COS method in particular has the advantage that it requires very little
additional work to rederive for a number of different payoffs (both European and some
path-dependent options). However, as we noted previously, both of these methods can be
inaccurate for highly out-of-the-money options.

In [61], Carr and Madan suggest an alternative method for pricing options specifically
designed to price out-of-the-money options more accurately. This method is called the sad-
dlepoint method and involves expressing the price of an option as the probably of a specially
constructed random variable exceeding the log-strike price, then solving for this probability
using a modified Lugannani–Rice saddlepoint approximation.

The saddlepoint method offers considerably better accuracy in pricing out-of-the-money
options than either the FFT or the COS method. However, the algorithm’s accuracy for
at the money and in the money options is somewhat lacking compared to these two other
methods and like the FFT method its solution must be rederived for each different payoff.

Models:
All models for which a cumulant generating function for the asset price distribution
exists. By extension any model for which a characteristic function can be derived.

Option Types:
Path-independent European options.

Pros

1. Allows for very accurate pricing of deep out-of-the-money options

Cons

1. Restricted to path-independent European options

2. Requires solution to be rederived for different payoff functions
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2.5.1 Generalized Lugannani–Rice Approximation

We will begin with a discussion of generalized Lugannani–Rice approximations. These
approximations allow us to accurately approximate the probability of a random variable
exceeding some level using the cumulant generating function4 (CGF) of the random variable
in question, the CGF of some base random variable typically chosen to resemble the random
variable in question up to a shift and scaling transformation, as well as the cumulative
distribution function (CDF) and probability density function (PDF) of the base random
variable.

The Lugannani–Rice saddlepoint formula presented in [174] has proven to be a remark-
ably good approximation of the cumulative distribution function of a summation of inde-
pendent random variables. In its standard form, the Lugannani–Rice approximation for the
tail probability of a continuous random variable X is given by

P (X ≥ y) = 1− Φ(ŵ) + φ(ŵ)

(
1

û
− 1

ŵ

)
(2.74)

where Φ and φ are the cumulative distribution function and probability distribution function
of a standard normal distribution

ŵ = sgn(t̂)
√

2(t̂y −K(t̂)) (2.75)

and

û = t̂
√
K ′′(t̂) (2.76)

where K(t) is the cumulant generating function (CGF) of random variable X and t̂ is the
unique solution to the saddlepoint equation K ′(t) = y.

As stated in [219], a central feature of the Lugannani–Rice approximation is for a given
y and K(t) we use the transformation from t to w determined by

1

2
w2 − ŵw = K(t)− ty (2.77)

where ŵ is chosen so that the minimum of 1
2w

2− ŵw is equal to the minimum of K(t)− ty.
The basic idea is to find a transformation which describes the local behavior of the function
K(t)−ty over a region containing both t = t̂ and t = 0 when t̂ is small. Such a transformation
is

1

2
(w − ŵ)2 = K(t)− ty −K(t̂) + t̂y (2.78)

If ŵ is chosen such that

K(t̂)− t̂y = −1

2
ŵ2 (2.79)

then this becomes

1

2
w2 − ŵw = K(t)− tK ′(t̂) (2.80)

4For a random variable X its cumulant generating function is given by

G(ω) = log (E [exp(ωX)]) (2.73)
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where

ŵ =
√
2t̂[K ′(t̂)−K(t̂)] (2.81)

The desired equality is achieved when ŵ is given by

û = 2t̂[K ′(t̂)−K(t̂)]1/2 (2.82)

The form of approximation of 1
2w

2 − ŵw also explains why the normal CDF and PDF Φ
and φ appear in the equation, because 1

2w
2 is the CGF of the standard normal distribution.

However, there is no particular reason why one has to use 1
2w

2 in the equation; any CGF
that is analytic at the origin will work. Suppose G(w) is the CGF of the base distribution.
For each ξ, wξ is the unique solution of the saddlepoint G′(w) = ξ. Define t̂ as the solution
of

K ′(t) = y (2.83)

Then by the same analogy with approximation we find

G(wξ)− ξwξ = K(t̂)− t̂y (2.84)

Now G(wξ)− ξwξ is the Legendre–Fenchel transformation of G and so the left-hand side is
a concave function of ξ. Therefore for fixed y can have at most two solutions in ξ.

ξ− = ξ−(y) < G′(0) < ξ+ = ξ+(y) (2.85)

Therefore we choose ξ̂ = ξ− if y < K ′(0) and ξ̂ = ξ+ if y > K ′(0). Suppose now that
Γ and γ are the CDF and PDF of the distribution whose CGF is G. Then the modified
Lugannani–Rice formula for the random variable X takes

P (X > y) = 1− Γ(ξ̂) + γ(ξ̂)

(
1

ûξ̂

− 1

ωξ̂

)
(2.86)

where

û = t̂
(
K ′′(t̂)

)1/2
(2.87)

ûξ̂ =
û

G′′(wξ̂)
1/2

(2.88)

This derivation is outlined in [219]. Note that if G = K, then wξ̂ = ûξ̂ = t̂ and in this case
the approximation is exact.

2.5.2 Option Prices as Tail Probabilities

If we are going to use the Lugannani–Rice approximation to improve the pricing of far
out-of-the-money options, we must first express options prices in terms of tail probabilities.
In this section we will outline how this can be done.

We use St to denote the time-t price of the option’s underlier and Bt to denote the time-t
value of the cash account. We know that under the risk-neutral pricing principle, if we use
Bt as the numeraire any tradable security deflated by Bt under risk-neutral measure Q is
a martingale. We define a new measure, the share measure S, where St is the numeraire.
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Therefore any tradable security deflated by St is a martingale under the share measure.
This implies that

Ct

St
= ES

t

(
CT

ST

)
(2.89)

For a call option with strike K we can write

C(K)

S0
= ES

(
(ST −K)+

ST

)
(2.90)

and if we assume the security price ST is always positive, we get

C(K)

S0
= ES

((
1− K

ST

)+
)

(2.91)

We define y = log
(
ST
K

)
, which implies K

ST
= e−y, and using this definition we can rewrite

the normalized call price as follows:

C(K)

S0
=

∫ ∞

0
(1− e−y)f(y)dy (2.92)

where f(y) is the probability density function of y = ln(S/K) under the share measure. We
perform integration by parts to get

C(K)

S0
=

∫ ∞

0
(1− e−y)f(y)dy

= (1− e−y)F (y)
∣∣∞
0
−

∫ ∞

0
e−yF (y)dy

= (F (y)− F (y)e−y)
∣∣∞
0
−

∫ ∞

0
e−yF (y)dy

= 1−
∫ ∞

0
e−yF (y)dy

=

∫ ∞

0
e−ydy −

∫ ∞

0
e−yF (y)dy

=

∫ ∞

0
(1− F (y))e−ydy

and thus we have

C(K)

S0
=

∫ ∞

0
(1− F (y))e−ydy

For a given y, the expression 1 − F (y) is the probability that ln(S/K) is greater than y.
Considering that e−y is the probability density function of a positive exponential random
variable with λ = 1, the normalized call price is the probability that under the share
measure the logarithm of the stock price exceeds the logarithm of strike by an independent
exponential variable [61] or equivalently

C(K)

S0
= P (ln(S/K) > Y ) (2.93)

= P (lnS − lnK > Y ) (2.94)

= P (X − Y > lnK) (2.95)
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where X is the logarithm of the stock under the share measure, Y is an independent expo-
nential, and K is the strike.

Once we know the cumulant generating function of the random variable X − Y , K(x),
and its first and second derivatives, K ′(x), and K ′′(x), the saddlepoint method gives us an
approximation of the probability P (X − Y > lnK).

Suppose we have the CGF of the log of the stock price under some risk-neutral model
given by K0(x), then the CGF of the log of the stock price under the share measure less an
exponential is

K(x) = K0(x+ 1)−K0(1)− ln(1 + x) (2.96)

and its first and second derivatives are

K ′(x) = K ′
0(x+ 1)− 1

1 + x
(2.97)

K ′′(x) = K ′′
0 (x+ 1) +

1

(1 + x)2
(2.98)

2.5.3 Lugannani–Rice Approximation for Option Pricing

In the last section we demonstrated that the density which can be used to express
the call option price as a tail probability is a Gaussian less an independent exponential
random variable. Thus we will consider a Lugannani–Rice base distribution of the same
form, using Z ∼ N(0, 1), a standard Gaussian distribution, and Y ∼ exp(λ), an exponential
distribution. We define our base distribution as

Z +
1

λ
− Y (2.99)

The cumulant generating function of this base distribution is

G(w) =
w2

2
+

w

λ
− ln

(
λ+ w

λ

)

=
w2

2
+

w

λ
− ln(λ+ w) + ln(λ)

And its first two derivatives are

G′(w) = w +
1

λ
− 1

λ+ w

G′′(w) = 1 + (
1

λ+ w
)2

The CDF and PDF of this distribution are shown in [61] to be

Φ̃(y) = N(
1

λ
− y)− exp(λy − 1 +

λ2

2
)N(

1

λ
− y − λ) (2.100)

φ̃(y) = n(
1

λ
− y) + λ exp(λy − 1 +

λ2

2
)N(

1

λ
− y − λ) (2.101)

− exp(λy − 1 +
λ2

2
)n(

1

λ
− y − λ) (2.102)

where N(x) and n(x) are the cumulative distribution function and the probability distri-
bution function for N (0, 1), respectively. We define y to be the log of the strike price, and
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the first step of the algorithm is to determine t̂ and λ by solving

K ′(t̂) = y (2.103)

λ =
√
K ′′(t̂+ 1) (2.104)

We then must solve for ξ̂ and ωξ̂ by solving

K(t̂)− t̂y = G(ωξ̂)− ξ̂ωξ̂ (2.105)

G′(ω(ξ̂)) = ξ̂ (2.106)

with the Gauss–Fenchel transform

ωξ̂ = λ+
c

2
+

√
c2

4
+ 1 (2.107)

c = ξ̂ − 1

λ
+ λ (2.108)

There are two solutions for ξ̂, and we choose ξ̂ < G′(0) if y < K ′(0) and ξ̂ ≥ G′(0) if
y ≥ K ′(0). If we define

û = t̂
√
K ′′(t̂)

ûξ̂ = û
√
G′′(ωξ̂)

then following the standard Lugannani–Rice approach we can calculate complementary
probability as follows:

P (X − Y > y) = Φ̃(ξ̂) + φ̃(ξ̂)(
1

ûξ̂

− 1

ωξ̂

)

2.5.4 Implementation of the Saddlepoint Approximation

In this section, we describe a step by step implementation of the saddlepoint approxi-
mation. We begin as follows:

• Use the bisection method to solve the equation for t̂

K ′(t̂) = y (2.109)

where y = log(K) with K being the strike price.

• Solve

G′(ωξ̂) = ξ̂ (2.110)

where we have

ωξ̂ = λ+
c

2
+

√
c2

4
+ 1 (2.111)

c = ξ̂ − 1

λ
+ λ (2.112)
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• Use the bisection method again with (2.111) and (2.112) to solve

K(t̂)− t̂y = G(ωξ̂)− ξ̂ωξ̂ (2.113)

Note that there are two solutions for ξ̂, and we choose ξ̂ < G′(0) if y < K ′(0) and
ξ̂ ≥ G′(0) if y ≥ K ′(0)

• If we define

û = t̂
√
K ′′(t̂)

ûξ̂ = û
√
G′′(ωξ̂)

then the complementary probability is estimated via

P (X > y) = Φ̃(ξ̂) + φ(ξ̂)(
1

ûξ̂

− 1

ωξ̂

)

where

Φ̃(x) = N(
1

λ
− x)− exp(λx− 1 +

λ2

2
)N(

1

λ
− x− λ)

φ(x) = n(
1

λ
− x) + λ exp(λx − 1 +

λ2

2
)N(

1

λ
− x− λ)

− exp(λx − 1 +
λ2

2
)n(

1

λ
− x− λ)

and n(x) and N(x) are the PDF and CDF of the standard normal distribution, re-
spectively.

• Then the call price can be approximated with

C = S0 × P (X > lnK) (2.114)

where X is the logarithm of the stock under the share measure less an independent
exponential, and K is the strike price.

If we use the base model suggested above, then the formulas for G(w) and K(x) are as
follows:

G(w) =
w2

2
+

w

λ
− ln(λ+ w) + ln λ (2.115)

G′(w) = w +
1

λ
− 1

λ+ w
(2.116)

G′′(w) = 1 + (
1

λ+ w
)2 (2.117)

and

K(x) = K0(x + 1)−K0(1)− ln(1 + x) (2.118)

K ′(x) = K ′
0(x + 1)− 1

1 + x
(2.119)

K ′′(x) = K ′′
0 (x+ 1) +

1

(1 + x)2
(2.120)
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where K0 is the CGF of the log of the stock under the risk-neutral measure, which varies
in different models.

In the solution provided we chose

λ =
√
K ′′(t̂+ 1)

2.5.5 Numerical Results for Saddlepoint Methods

In this section we present some comparative results utilizing fast Fourier transform, frac-
tional Fourier transform, COS, and saddlepoint techniques for pricing European call options
for a variety of strikes under geometric Brownian motion, Heston stochastic volatility, vari-
ance gamma, and CGMY models. The tables are meant to provide the reader with some
empirical results and to illustrate the accuracy of saddlepoint methods for out-of-the-money
options.

2.5.5.1 Geometric Brownian Motion (GBM)

The GBM process follows the following SDE:

dSt = (r − q)Stdt+ σStdWt (2.121)

and its CGF and first and second derivatives are

K0(x) = x(lnS0 + (r − q − σ2

2
)t) +

x2σ2

2
t (2.122)

K ′
0(x) = ln(S0) + (r − q − σ2

2
)t+ σ2xt (2.123)

K ′′
0 (x) = σ2t (2.124)

We use the following set of parameters for pricing: spot price S0 = 100, risk-free rate
r = 5%, time to maturity T = 1/12, and volatility σ = 0.25. Table 2.9 shows the results
using the Black–Scholes formula, Fourier cosine (COS), fractional FFT (FrFFT), fast Fourier
transform (FFT), and saddlepoint (SP) methods with strike K ranging from 10 to 200.

2.5.5.2 Heston Stochastic Volatility Model

The Heston stochastic volatility model follows the following SDE:

dSt = rStdt+
√
vtStdW1t (2.125)

dvt = κ(θ − vt)dt+ σ
√
vtdW2t (2.126)

Its CGF is

K0(x) = (lnS0 + rt)x +
κθt(κ− ρσx)

σ2
− 2κθ

σ2
lnα(x)

+
(x2 − x)v0
γ(x)α(x)

sinh
γ(x)t

2
(2.127)

with

γ(x) =
√

σ2(−x2 + x) + (κ− xρσ)2 (2.128)

α(x) = cosh
γ(x)t

2
+

κ− ρσx

γ(x)
sinh

γ(x)t

2
(2.129)
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TABLE 2.9: GBM European calls for a variety of strikes via various transform techniques

K BS COS FrFFT FFT SP
10 90.0830 94.4112 90.0829 90.0830 90.0832
20 80.1660 82.5614 80.1660 80.1660 80.1483
30 70.2490 70.2490 70.2490 70.2490 69.0518
40 60.3319 60.3319 60.3319 60.3319 60.3529
50 50.4149 50.4149 50.4149 50.4149 50.4144
60 40.4979 40.4979 40.4979 40.4979 40.4977
70 30.5809 30.5809 30.5808 30.5809 30.5809
80 20.6651 20.6651 20.6650 20.6651 20.6650
90 10.9147 10.9147 10.9149 10.9147 10.9148
100 3.3006 3.3006 3.3004 3.3006 3.3004
110 0.4182 0.4182 0.4182 0.4182 0.4182
120 0.0207 0.0207 0.0207 0.0207 0.0207
130 4.42e-04 4.42e-04 4.52e-04 4.42e-04 4.42e-04
140 4.69e-06 4.42e-06 -2.05e-05 4.57e-06 4.69e-06
150 2.82e-08 -3.49e-05 2.85e-05 2.29e-07 2.82e-08
160 1.08e-10 -1.57e-03 -1.55e-05 -4.47e-08 1.08e-10
170 2.86e-13 -2.93e-02 -3.82e-06 -7.30e-08 2.89e-13
180 5.72e-16 -2.66e-01 1.18e-05 1.10e-07 2.57e-21
190 9.13e-19 -1.36e+00 -3.11e-06 -1.06e-07 -4.11e-24
200 1.22e-21 -4.45e+00 -6.58e-06 9.37e-08 2.39e-27

It should be noted that γ(x) and α(x) can be complex and the formula for K0(x) is still
valid. We use numerical differentiation to calculate its first and second derivatives:

K ′
0(x) =

K0(x+ h)−K0(x− h)

2h
(2.130)

K ′′
0 (x) =

K0(x+ h)− 2K0(x) +K0(x − h)

h2
(2.131)

We use the following set of parameters for pricing: spot price S0 = 100, risk-free rate r = 3%,
mean reversion rate κ = 2, volatility of volatility σ = 0.5, long-term variance θ = 0.04, initial
variance v0 = 0.04, correlation ρ = −0.7 and time to maturity T = 0.5. Table 2.10 shows
the results using Monte Carlo, FFT, FrFFT, COS, and saddlepoint methods with strike K
ranging from 10 to 200.

2.5.5.3 Variance Gamma Model

The variance gamma model is described by the following set of equations:

ln(
St

S0
) = (r + ω)t+XV G(t;σ, ν, θ)

XV G = θG(t; ν) + σW (G(t; ν))

ω =
1

ν
ln(1 − θν − σ2ν

2
)
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TABLE 2.10: Heston European calls for a variety of strikes via various transform tech-
niques

K MC COS FrFFT FFT SP
10 91.5068 90.6275 90.1489 90.1489 90.1010
20 81.5068 80.3014 80.2978 80.2977 80.1590
30 71.5068 70.4467 70.4467 70.4467 69.8742
40 61.5081 60.5965 60.5967 60.5967 54.2022
50 51.5170 50.7539 50.7541 50.7541 50.3408
60 41.5600 40.9446 40.9449 40.9449 40.7358
70 31.7184 31.2484 31.2486 31.2487 31.1377
80 22.1918 21.8620 21.8622 21.8622 21.8040
90 13.4038 13.2020 13.2023 13.2022 13.1275
100 6.1522 6.0552 6.0555 6.0554 5.9538
110 1.6659 1.6368 1.6371 1.6371 1.6043
120 2.41e-01 2.34e-01 2.35e-01 2.35e-01 2.39e-01
130 2.89e-02 2.72e-02 2.75e-02 2.74e-02 2.88e-02
140 3.72e-03 3.13e-03 3.39e-03 3.36e-03 3.57e-03
150 4.28e-04 1.97e-04 4.60e-04 4.78e-04 4.84e-04
160 3.25e-05 -1.94e-04 6.89e-05 7.50e-05 7.23e-05
170 0.00e+00 -2.52e-04 1.13e-05 -2.87e-06 1.18e-05
180 0.00e+00 -2.61e-04 2.03e-06 1.51e-05 2.12e-06
190 0.00e+00 -2.63e-04 3.94e-07 -9.71e-06 4.11e-07
200 0.00e+00 -2.63e-04 8.23e-08 8.02e-06 8.59e-08

where G(t; ν) is the gamma process and ω is the convexity correction. Under this model the
CGF and its first and second derivatives are

K0(x) = x((r + ω)t+ lnS0)−
t

ν
ln(1 − xθν − νσ2x2

2
)

K ′
0(x) = lnS0 + (r + ω)t+ t(

θ + σ2x

1− θνx − 0.5νσ2x2
)

K ′′
0 (x) =

tσ2

1− θνx− 0.5νσ2x2
+ tν(

θ + σ2x

1 − θνx− 0.5νσ2x2
)2

We use the following set of parameters for pricing: spot price S0 = 100, risk-free rate
r = 10%, time to maturity T = 1/12, volatility σ = 0.12, θ = −0.14, and ν = 0.2.

Table 2.11 shows the results using closed-form, FFT, FrFFT, COS, and saddlepoint
methods with strike K ranging from 10 to 200.

2.5.5.4 CGMY Model

The CGMY model is defined as

St = S(0) exp[(r − q + ω)t+XCGMY (t;C,G,M, Y )] (2.132)

where XCGMY (t;C,G,M, Y ) is the CGMY process and ω is defined as

ω = CΓ(−Y )[(M − 1)Y −MY + (G+ 1)Y −GY ] (2.133)
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TABLE 2.11: VG European calls for a variety of strikes via various transform techniques

K Analytical COS FrFFT FFT SP
10 90.0832 95.1859 90.0830 90.0983 90.0460
20 80.1660 80.8759 80.1660 80.1687 80.0835
30 70.2490 70.2490 70.2490 70.2388 70.1157
40 60.3320 60.3319 60.3319 60.3303 60.1560
50 50.4149 50.4149 50.4149 50.4010 50.2120
60 40.4979 40.4979 40.4979 40.4869 40.2881
70 30.5813 30.5813 30.5813 30.5969 30.3879
80 20.6702 20.6704 20.6704 20.6617 20.5189
90 10.8289 10.8289 10.8289 10.7983 10.7156
100 1.8150 1.8150 1.8151 1.7913 1.5406
110 0.0195 1.94e-02 1.95e-02 5.29e-02 2.26e-02
120 6.9339e-04 5.38e-04 5.83e-04 1.15e-02 6.57e-04
130 2.7159e-05 -1.08e-06 2.56e-05 -3.43e-03 2.85e-05
140 5.7237e-06 -1.25e-04 1.89e-07 -6.44e-03 1.63e-06
150 3.90e-08 -3.71e-04 -1.73e-06 2.86e-03 1.16e-07
160 2.14e-09 -1.53e-03 1.45e-06 1.47e-03 1.00e-08
170 0.00e+00 -5.19e-03 1.37e-06 -2.84e-03 1.01e-09
180 0.00e+00 -1.73e-02 -3.27e-07 2.61e-03 1.16e-10
190 0.00e+00 -5.47e-02 7.88e-07 -2.05e-03 1.51e-11
200 0.00e+00 -1.68e-01 -7.31e-07 1.65e-03 2.19e-12

Under this model the CGF and its first and second derivatives are:

K0(x) = x(lnS0 + (r − q + w)T ) + TCΓ(−Y )
(
(M − x)Y −MY + (G+ x)Y −GY

)

K ′
0(x) = lnS0 + (r − q + w)T + Y TCΓ(−Y )[−(M − x)Y−1 + (G+ x)Y−1]

K ′′
0 (x) = Y (Y − 1)TCΓ(−Y )[(M − x)Y−2 + (G+ x)Y−2]

We use the following set of parameters for pricing: spot price S0 = 100, risk-free rate r = 3%,
dividend yield q = 0, time to maturity T = 0.5, C = 2, G = 5, M = 10, and Y = 0.5.

Table 2.12 shows the results using Monte Carlo, COS, FrFFT, FFT, and saddlepoint
methods with strike K ranging from 10 to 200.

2.6 Power Option Pricing via the Fourier Transform

As we mentioned in the introduction, one of the caveats of the Fourier method is that
it is not only restricted to pricing European options, but it must be rederived for different
payoffs and may not exist for an arbitrary terminal payoff. However, there is one payoff for
which the derivation of the premium via Fourier techniques is almost identical. This option
has the payoff

(Xp
T −K)+ (2.134)

and its derivation is almost identical to that of a call option.
We begin by calculating the power call option premium in terms of the distribution of
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TABLE 2.12: CGMY European calls for a variety of strikes via various transform tech-
niques

K COS FrFFT FFT SP
10 90.1550 90.1489 90.1489 90.1022
20 80.2889 80.8011 80.5694 80.2066
30 70.4568 70.0928 70.7195 70.3456
40 60.6829 59.7980 60.9336 60.5796
50 51.0318 49.9905 51.2981 50.9989
60 41.7592 40.7630 41.9856 41.7455
70 33.0236 32.2781 33.2416 33.0309
80 25.1175 24.7296 25.3514 25.1301
90 18.2872 18.2849 18.5797 18.3285
100 12.8258 13.0302 13.0968 12.8267
110 8.7340 8.9707 8.9274 8.65796
120 5.6257 5.9822 5.9417 5.68396
130 3.7307 3.8926 3.9118 3.66418
140 2.2610 2.4923 2.5827 2.34064
150 1.5694 1.5836 1.7335 1.49278
160 0.8697 1.0064 1.1967 0.95588
170 0.6637 0.6432 0.8582 0.616932
180 0.4176 0.4153 0.6437 0.402308
190 0.1733 0.2714 0.5068 0.265448
200 0.2730 0.1810 0.4183 0.177337

the log asset price.

Cp
T (K) = CE

(
(Xp

T −K)+
)

= C

∫ ∞

K
(Xp

T −K)fT (X)dXT

= C

∫ ∞

k
(epx − ek)qT (x)dx

We define the modified call premium using a damping factor as before.

cpT (k) = eαkCp
T (k)

We calculate the characteristic function of the modified option premium, forming an inner
integral which can be evaluated analytically.

Ψp
T (ν) =

∫ ∞

−∞
eiνkcpT (k)dk

=

∫ ∞

−∞
eiνk

(
Ceαk

∫ ∞

k
(Sp −K)q(s)ds

)
dk

=

∫ ∞

−∞
eiνk

(
Ceαk

∫ ∞

k
(eps − ek)q(s)ds

)
dk

= C

∫ ∞

−∞

∫ s

−∞
e(α+iν)k(eps − ek)q(s)dkds

= C

∫ ∞

−∞
q(s)

(∫ s

−∞
e(α+iν)s(eps − ek)dk

)
ds
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We evaluate the inner integral, which converges due to the addition of the damping factor.

∫ s

−∞
e(α+iν)k(epx − ek)dk = eps

e(α+iν)k

(α+ iν)

∣∣∣∣
s

−∞
− e(α+iν+1)k

(α + iν + 1)

∣∣∣∣
s

−∞

=
e(α+iν+p)s

α+ iν
− e(α+iν+1)s

α+ iν + 1

Finally, we can solve for the characteristic function of the option premium in terms of the
characteristic function of the log asset price, giving us

Ψp
T (ν) = C

∫ ∞

−∞

(
e(α+iν+p)x

α+ iν
− e(α+iν+1)s

α+ iν + 1

)
q(s)ds

=
C

α+ iν

∫ ∞

−∞
e(α+iν+p)xq(x)dx − e−rT

α+ iν + 1

∫ ∞

−∞
e(α+iν+1)xq(x)dx

=
C

α+ iν

∫ ∞

−∞
ei(ν−(α+p)i)xq(x)dx − e−rT

α+ iν + 1

∫ ∞

−∞
ei(ν−(α+1)i)xq(x)dx

=
C

α+ iν

∫ ∞

−∞
ei(ν−(α+p)i)xq(x)dx − e−rT

α+ iν + 1

∫ ∞

−∞
ei(ν−(α+1)i)xq(x)dx

=
C

α+ iν
Φ(ν − (α+ p)i)− C

α+ iν + 1
Φ(ν − (α+ 1)i)

So we have the final expression for the Fourier transform of the modified option premium
as

Ψp
T (ν) =

∫ ∞

−∞
eiνkcT (k)dk

=
C

α+ iν
Φ(ν − (α+ p)i)− C

α+ iν + 1
Φ(ν − (α+ 1)i)

and one again we can use the equation for the characteristic function and the inverse Fourier
transform of Ψp

T (ν) to calculate Cp
T (k), the option premium.

Cp
T (k) =

e−αk

2π

∫ ∞

−∞
e−iνkΨp

T (ν)dν (2.135)

Problems

1. In fast Fourier transform (FFT), we define the range for log of strikes as km = β +
(m−1)∆k=β + (m−1)λ, for m = 1, . . . , N and some β. There are many choices for
β. One of which is to set β = lnS0− λN

2 . This choice for β would cause at-the-money
strike to fall in the middle of our range of strikes where S0 is today spot. For this
choice of β, if one is interested in finding the premium for k = log(K) one would
typically interpolate. If you are interested in finding the premium for a specific strike
say k0 = log(K0) without any interpolation, what β would you choose? What would
be the corresponding index number?

2. The characteristic function of the log of the stock price in the Black–Scholes framework
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is:

Φ(u) = E(eiu lnST )

= E(eiusT )

= exp

(
i(s0 + (r − q − σ2/2)T )u− 1

2
σ2u2T

)

Use the FFT method to price a European call option for the following set of param-
eters: spot price S0 = $100, strike price K = 90, risk-free interest rate r = 5.25%,
dividend rate q = 2%, time to maturity T = 2 years, and volatility σ = 25% and
compare it with the closed-form call price.

3. In the Heston stochastic volatility model, the stock price follows the following SDE:

dSt = rStdt+
√
vtStdW

(1)
t

dvt = κ(θ − vt)dt+ σ
√
vtdW

(2)
t

and the characteristic function for the log of the stock price process is given by

Φ(u) = E(eiu lnSt)

=
exp{κθt(κ−iρσu)

σ2 + iutr + iu lnS0}
(cosh γt

2 + κ−iρσu
γ sinh γt

2 )
2κθ
σ2

exp

{
− (u2 + iu)v0
γ coth γt

2 + κ− iρσu

}
,

where γ =
√
σ2(u2 + iu) + (κ− iρσu)2. Use the FFT method to price a European call

using the following parameters: spot price, S0 = $100, strike price K = 90, maturity
T = 1 year, risk-free rate r = 5.25%, volatility of volatility σ = 30%, κ = 1, θ = 0.08,
ρ = −0.8, and ν0 = 0.04.

4. The variance gamma model is described by the following set of equations:

ln(
St

S0
) = (r − q + ω)t+XV G(t;σ, ν, θ)

XV G = θG(t; ν) + σW (G(t; ν))

ω =
1

ν
ln(1 − θν − σ2ν

2
)

The characteristic function for the time t level of the VG process is

φX(t)(u) = E(eiuX(t)) =

(
1

1− iuθν + σ2u2ν/2

) t
ν

(2.136)

By the definition of risk-neutrality, the price of a European put option with strike K
and maturity T is

p(S(0);K, t) = e−rTE0((K − S(T ))+)

For the following set of parameters: spot price S0 = $100, strike price K = $105, time
to maturity T = 1 year, risk-free interest rate r = 4.75%, continuous dividend rate
q = 1.25%, σ = 25%, ν = 0.50, and θ = −0.3, price a European put option via

(a) the FFT technique

(b) simulation
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and compare the results.

5. Show that cumulants c1, c2, and c4 for

(a) the Black–Scholes model are

c1 = (r − q)T

c2 = σ2T

c4 = 0

(b) the Heston stochastic volatility model are

c1 = rT + (1.0− e−κT )
θ − v0
2κ

− 0.5θT

c2 =
1

8κ3
(σTκe−κT (v0 − θ)(8κρ− 4σ))

+ κρσ(1 − e−κT (16θ − 8v0))

+ 2θκT (−4κρσ + σ2 + 4κ2)

+ σ2((θ − 2v0)e
−2κT + θ(6e−κT − 7) + 2v0)

+ 8κ2(v0 − θ)(1.0− e−κT )

(c) the variance gamma model are

c1 = (r + θ)T

c2 = (σ2 + vθ2)T

c4 = 3(σ4v + 2θ4v3 + 4σ2θ2v2)T

(d) the CGMY model are

c1 = (r + ω)T + TCΓ(1− Y )(−MY−1 +GY−1)

c2 = α+ CTΓ(2− Y )(MY−2 +GY−2)

c4 = CTΓ(4− Y )(MY−4 +GY−4)

where

ω = −CΓ(−Y )((M − 1)Y ) + (G+ 1)Y −MY −GY

α =
8C

(G+M)2 − (G−M)2

6. The formula for the range of the integration, [a, b], in the COS method we have been
using is

[a, b] =

[
c1 − L

√
c2 +

√
c4, c1 + L

√
c2 +

√
c4

]
with L = 10 (2.137)

where cn denotes the n-th cumulant of ln(XT /K). Examine the sensitivity of the
results in Tables 2.5, 2.6, and 2.7 to the choices of a and b and compare the results
and conclude.

7. For the following set of parameters: spot price S0 = $100, time to maturity T = 1 year,
risk-free interest rate of r = 0.025%, continuous dividend rate of q = 1.25%, σ = 25%,
ν = 0.50, θ = −0.3, and Y = 0.5 compare the European put premiums of COS and
fractional FFT for the CGMY model for strike range of K = $70, $80, $90, and $100.
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8. Suppose we have a cumulant generating function of the log of the stock price under the
risk-neutral measure for a model given by K0(x). Show that the cumulant generating
function of the log of the stock price under the share measure less an exponential is
given by

K(x) = K0(x+ 1)−K0(1)− ln(1 + x)





Chapter 3

Introduction to Finite Differences

In this chapter we will introduce finite difference methods used for numerically solving par-
tial differential equations (PDEs). This chapter will focus on the most commonly used finite
difference techniques utilized to solve PDEs, namely, explicit, implicit, Crank–Nicolson, and
multi-step schemes. We will then apply these methods to solving the heat equation, which
is an excellent example that not only illustrates the critical issues we need to consider when
applying finite difference methods, but can in fact be related to the Black–Scholes PDE
through variable and coordinate substitution.

Finite differences is one of the oldest and most popular techniques for solving PDEs
numerically. It involves discretizing each derivative in the PDE according to the Taylor
expansion of some chosen order. The problem domain is then discretized and the discretized
PDE is applied to each point in the resulting grid. The technique begins with known solution
values at the boundary conditions and then applies the discretized PDE to compute solutions
for neighboring points. This step is repeated until we have solved the PDE for every point
on the mesh we created on our problem domain. Thus this method involves solving an
approximately equal problem over a finite set of points on our problem domain, with the
goal of converging to a numerically sufficient solution if we make our discretization small
enough.

We should mention that in this book we will not cover finite element method or finite
volume method, the other two approaches commonly used in engineering and mathematics,
for numerically solving partial differential equations. If not all, a majority of PDEs in finance
can be numerically solved via the finite difference method. For that reason, we think it is
adequate just to cover the finite difference method. However, at the end of the chapter we
will have two simple problems introducing these two methods and showing that for these
two special cases they yield very similar results that is comparable to those of the finite
difference method. For further reading on finite element with application in finance look at
[212] and for finite volume in financial mathematics look at [167] and [220].

3.1 Taylor Expansion

The finite difference method relies on the discretization of the derivatives in the PDE
which applies under the model used, and derivative discretization begins with use of the
Taylor expansion. Thus we will briefly review Taylor expansions and the derivative approx-
imations that can be derived from them.

Assume the function f(x) has infinitely many continuous derivatives, f ∈ C∞. If we

83
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assume the variable x is deterministic, then its Taylor expansion1 near x = a is

f(x) = f(a) + (x− a)f (1)(a) +
(x− a)2

2!
f (2)(a) +

(x − a)3

3!
f (3)(a) + . . . (3.1)

=
∞∑

n=0

(x− a)n

n!
f (n)(a) (3.2)

If function f(x) has only (k + 1) continuous derivatives, f ∈ Ck+1, then we can write its
Taylor expansion near x = a as

f(x) = f(a) + (x − a)f (1)(a) +
(x − a)2

2!
f (2)(a) + · · ·+ (x− a)k

k!
f (k)(a)

+
(x− a)k+1

(k + 1)!
f (k+1)(ξ)

for some ξ ∈ (x, a). The last term is called the remainder and hereafter it is written in
Landau notation as O((x − a)k+1).

Below we provide some examples of derivative approximations derived from Taylor ex-
pansions.

Example 1 Forward and Backward Difference Approximation of First Derivative

Assume f ∈ C2 and we are interested in approximating f (1)(x). Using the truncated Taylor
expansion, we can write both forward and backward expansion as

f(x+ h) = f(x) + hf (1)(x) +
h2

2!
f (2)(ξ1) (3.3)

f(x− h) = f(x)− hf (1)(x) +
h2

2!
f (2)(ξ2) (3.4)

Solving for f (1)(x) in (3.3) we see that

f (1)(x) =
f(x+ h)− f(x)

h
− h

2
f (2)(ξ1)

≈ f(x+ h)− f(x)

h
with O(h) (3.5)

Solving for f (1)(x) in (3.4) we see that

f (1)(x) =
f(x)− f(x− h)

h
+

h

2
f (2)(ξ2)

≈ f(x)− f(x− h)

h
with O(h) (3.6)

Difference equations (3.5) and (3.6) are called forward difference and backward difference
approximations of the first derivative, respectively. Both approximations are first order.

Example 2 Central Difference Approximation of First Derivative

1Taylor expansion is valid in deterministic calculus; the equivalent of this expansion in stochastic calculus
is Itô’s Lemma.
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Assume f ∈ C3 and now we are interested in second order approximation of f (1)(x). Using
Taylor expansion we can write

f(x+ h) = f(x) + hf (1)(x) +
h2

2!
f (2)(x) +

h3

3!
f (3)(ξ3) (3.7)

f(x− h) = f(x) − hf (1)(x) +
h2

2!
f (2)(x) − h3

3!
f (3)(ξ4) (3.8)

Subtracting (3.8) from (3.7) we obtain

f(x+ h)− f(x− h) = 2hf (1)(x) +
h3

3!
f (3)(ξ3) +

h3

3!
f (3)(ξ4) (3.9)

= 2hf (1)(x) +O(h3) (3.10)

Therefore we have

f (1)(x) =
f(x+ h)− f(x− h)

2h
+O(h2)

≈ f(x+ h)− f(x− h)

2h
with O(h2) (3.11)

Difference equation (3.11) is called the central difference approximation of the first deriva-
tive. This approximation is of order 2.

Example 3 Central Difference Approximation of the Second Derivative

Assume f ∈ C4 and we are interested in a second order approximation of f (2)(x). Using
Taylor expansion we can write

f(x+ h) = f(x) + hf (1)(x) +
h2

2!
f (2)(x) +

h3

3!
f (3)(x) +

h4

4!
f (4)(ξ5) (3.12)

f(x− h) = f(x)− hf (1)(x) +
h2

2!
f (2)(x)− h3

3!
f (3)(x) +

h4

4!
f (4)(ξ6) (3.13)

By adding (3.12) and (3.13) we obtain

f(x+ h) + f(x− h) = 2f(x) + 2
h2

2!
f (2)(x) +

h4

4!
f (4)(ξ5) +

h4

4!
f (4)(ξ6) (3.14)

and solving for f (2)(x) we get

f (2)(x) =
f(x− h)− 2f(x) + f(x+ h)

h2
+ O(h2) (3.15)

Difference equation (3.15) is called the central difference second derivative approximation
of order 2. These examples are very straightforward and cover the majority of cases neces-
sary for applying finite difference techniques. For higher order derivatives and higher order
accuracy, deriving the difference equations can become rather cumbersome. In Section 3.4
we review methods for automatically generating coefficients for higher order and higher
derivative approximations.

3.2 Finite Difference Method

In this section we will begin by introducing finite difference methods in the context of
solving the heat equation. This equation is somewhat simpler than the Black–Scholes PDE;
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however, the Black–Scholes PDE can in fact be transformed into the one-dimensional heat
equation through simple variable and coordinate substitution. Thus it contains all of the
relevant features necessary to illustrate the finite difference technique.

Consider the one-dimensional heat equation

uτ − κuxx = 0 (3.16)

for a ≤ x ≤ b and 0 ≤ τ ≤ T , with initial condition

u(x, 0) = f(x) (3.17)

and boundary conditions

u(a, τ) = g(τ) (3.18)

u(b, τ) = h(τ) (3.19)

To apply the finite difference method we must redefine the domain of the problem, going
from a continuous domain D = {a ≤ x ≤ b; 0 ≤ τ ≤ T } to a discrete grid. The most basic
grid construction is an equally spaced grid with M equal sub-intervals on the τ -axis and N
equal sub-intervals on the x-axis. This results in the following mesh on [a, b]× [0, T ]:

D̄ =

{
xj = a+ (j − 1)∆x; ∆x = b−a

N ; j = 1, . . . , N + 1
τk = 0 + (k − 1)∆τ ; ∆τ = T−0

M ; k = 1, . . . ,M + 1

}

To illustrate the various finite difference techniques discussed in this chapter we will use
the following example grid as shown in Figure 3.1, where bold black lines indicate known
initial and boundary conditions. To apply finite difference techniques we will also need to

FIGURE 3.1: Example grid

write a discrete version of the differential operator

L(u) = uτ − κuxx = 0 (3.20)

as a difference equation. How we do this determines what type of finite difference technique
we are using and the following sections discuss different ways of performing this discretiza-
tion. In the following sections we let uj,k be the true value of u(x = xj , τ = τk) and let Uj,k

be its discretized approximation.
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3.2.1 Explicit Discretization

Explicit discretization schemes use only forward difference approximations in time. Let
us define all the grid points at a given time τ = t to be a time slice, consisting of all the
solutions on the grid at that time. The explicit discretization schemes allow us to derive
the solution to the PDE at each point on the current time slice from points derived at the
previous time independent of any points in the current time slice.

To discretize the PDE at the grid point (xj , τk), which we call the reference point, we

use a forward difference approximation for the first term, ∂u(xj,τk)
∂τ , and a central difference

approximation for the diffusion term, ∂2u(xj,τk)
∂x2 .

The forward difference approximation of the first term is

∂u(xj , τk)

∂τ
=

uj,k+1 − uj,k

∆τ
+O(∆τ)

and the central difference approximation of the second term is

∂2u(xj , τk)

∂x2
=

uj−1,k − 2uj,k + uj+1,k

∆x2
+O(∆x2)

So, we obtain the following set of equations at point (xj , τk):

uτ (xj , τk)− κuxx(xj , τk) = 0

uj,k+1 − uj,k

∆τ
− κ

uj−1,k − 2uj,k + uj+1,k

∆x2
= O(∆x2) +O(∆τ)

dropping the orders and use the approximation for uj,k to get

Uj,k+1 − Uj,k

∆τ
− κ

Uj−1,k − 2Uj,k + Uj+1,k

∆x2
= 0 (3.21)

where we can see that the discretization leads to an error on the order of O(∆x2)+O(∆τ).
To solve the PDE at points (xj , τk) on our problem domain we begin at τ = 0, where

the initial conditions determine the solution to the PDE at every grid point in this time
slice. In order to solve for the points on the grid where τ = ∆τ we apply the explicit finite
difference scheme. Figures 3.2 and 3.3 illustrate this solution technique. In Figure 3.2 we

❡

❡

✉

❡
k k+1

FIGURE 3.2: Explicit finite difference stencil

illustrate the explicit finite difference stencil indicating grid points used at time τk in order
to calculate points at time τk+1. In this figure unfilled circles indicate known values and
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FIGURE 3.3: Explicit finite difference grid

disks (filled circles) values we are solving for. In Figure 3.3 bold black lines indicate known
boundary conditions, bold dashed lines indicate known initial conditions, unfilled points
indicate values used to calculate the solution to the PDE in the first time slice, and filled
points indicate points on our grid that are solved for. Notice that when solving for points
in the current time slice we are dependent only on values in the previous time period, so
these points can be solved for independently.

To solve the PDE at points (xj , τk) on the entire grid, we simply apply this technique
recursively until we get to time τ = T . Typically, we solve for all the points in a time slice
simultaneously by rearranging the finite difference equations to solve for each point in terms
of grid solutions from the previous time period. In this case, rearranging (3.21) yields

Uj,k+1 − Uj,k −
κ∆τ

∆x2
(Uj−1,k − 2Uj,k + Uj+1,k) = 0 (3.22)

If we let ρ = κ∆τ
∆x2 we get

Uj,k+1 = ρUj−1,k + (1− 2ρ)Uj,k + ρUj+1,k, for 2 ≤ j ≤ N, 1 ≤ k ≤M

Note that j = 1 and j = N + 1 correspond to the boundary conditions, u(x1, τk) =
g(τk), u(xN+1, τk) = h(τk), and k = 1 corresponds to the initial condition, u(xj , τ1) =
f(xj) = fj . At all of these grid points the solution is already known. The approximate PDE
solution for the time slice τk = (k − 1)∆τ can be written in vector form as

Uk =

⎛

⎜⎜⎜⎝

U2,k

U3,k
...

UN,k

⎞

⎟⎟⎟⎠
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Thus we can write the recursive explicit discretization scheme in matrix form as

Uk+1 = AExplicitUk + ρ

⎛

⎜⎜⎜⎜⎜⎝

U1,k

0
...
0

UN+1,k

⎞

⎟⎟⎟⎟⎟⎠
(3.23)

where

AExplicit =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1−2ρ ρ
ρ 1−2ρ ρ

. . .
. . .

. . .

ρ 1−2ρ ρ
ρ 1−2ρ

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

3.2.1.1 Algorithm for the Explicit Scheme

Let the initial condition be

U1 =

⎛

⎜⎜⎜⎝

U2,1

U3,1
...

UN,1

⎞

⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎝

f2
f3
...
fN

⎞

⎟⎟⎟⎠

For k = 1 : M

Uk+1 = AExplicitUk + ρ

⎛

⎜⎜⎜⎜⎜⎝

U1,k

0
...
0

UN+1,k

⎞

⎟⎟⎟⎟⎟⎠

End

The final solution at time τM+1 = M∆τ = T is

UM+1 =

⎛

⎜⎜⎜⎝

U2,M+1

U3,M+1
...

UN,M+1

⎞

⎟⎟⎟⎠

3.2.2 Implicit Discretization

Implicit discretization schemes use backward difference approximations in time and cen-
tral difference approximations within the current time slice. Unlike explicit discretization
schemes that allow us to derive the solution to the PDE at each point on the current
time slice from only points derived at the previous time, when using implicit discretiza-
tion schemes we must solve for all points in the current time slice simultaneously as they
are interdependent. In practice this means performing a matrix inversion on our coefficient
matrix; however, its unique form makes this problem easy to solve.
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To perform implicit discretization of (3.16) at the grid point (xj , τk+1), we use a back-

ward difference approximation for the first term, ∂u(xj ,τk+1)
∂τ , and a central difference ap-

proximation for the diffusion term, ∂2u(xj ,τk+1)
∂x2 .

The backward difference approximation for the first term yields

∂u(xj , τk+1)

∂τ
=

uj,k+1 − uj,k

∆τ
+O(∆τ)

and the central difference approximation for the second term yields

∂2u(xj , τk+1)

∂x2
=

uj−1,k+1 − 2uj,k+1 + uj+1,k+1

∆x2
+ O(∆x2)

So, we obtain the following set of equations at point (xj , τk+1):

uτ (xj , τk+1)− κuxx(xj , τk+1) = 0
uj,k+1 − uj,k

∆τ
− κ

uj−1,k+1 − 2uj,k+1 + uj+1,k+1

∆x2
= O(∆x2) + O(∆τ)

dropping the orders and use the approximation for uj,k to get

Uj,k+1 − Uj,k

∆τ
− κ

Uj−1,k+1 − 2Uj,k+1 + Uj+1,k+1

∆x2
= 0 (3.24)

where we can see that the discretization leads to an error on the order of O(∆x2)+O(∆τ).
To solve the PDE at points (xj , τk+1) on our problem domain, we begin at τ = 0, where

the initial conditions determine the solution to the PDE at every grid point in this time
slice. In order to solve for the points on the grid for which τ = ∆τ we apply the implicit
finite difference scheme. Figures 3.4 and 3.5 illustrate this solution technique. In Figure 3.4
we illustrate the implicit finite difference stencil indicating grid points used at time τk in
order to calculate points at time τk+1. As before, unfilled circles indicate known values and
disks (filled circles) values we are solving for.

❡ ✉

✉

✉
k k+1

FIGURE 3.4: Implicit finite difference stencil

Notice that unlike the explicit finite difference scheme, when solving for points on the
current time slice we are dependent on all of the values in the current time slice and thus
we must solve for all of these points simultaneously. This is done through matrix inversion
of this system of equations.

To solve the PDE at points (xj , τk+1) on the entire grid, we simply apply this technique
recursively until we get to time τ = T . We solve for all the points in a time slice simul-
taneously by rearranging the finite difference equations to solve for each point in terms of
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FIGURE 3.5: Implicit finite difference grid

grid solutions from the previous time period and from the current time period. In this case,
rearranging (3.24) yields

Uj,k+1 − Uj,k −
κ∆τ

∆x2
(Uj−1,k+1 − 2Uj,k+1 + Uj+1,k+1) = 0 (3.25)

If we let ρ = κ∆τ
∆x2 we get

−ρUj−1,k+1 + (1 + 2ρ)Uj,k+1 − ρUj+1,k+1 = Uj,k, for 2 ≤ j ≤ N, 1 ≤ k ≤M

As before, j = 1 and j = N + 1 correspond to the boundary conditions, u(1, k) =
g(τk), u(N+1, k) = h(τk), and k = 1 corresponds to the initial conditions, uj,1 = f(xj) = fj .
At all of these grid points the solution is already known. The approximate PDE solution
for the time slice τ = k∆τ can be written in matrix form as

AImplicitUk+1 = Uk + ρ

⎛

⎜⎜⎜⎜⎜⎝

U1,k+1

0
...
0

UN+1,k+1

⎞

⎟⎟⎟⎟⎟⎠
(3.26)

where

AImplicit =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1+2ρ −ρ
−ρ 1+2ρ −ρ

. . .
. . .

. . .

−ρ 1+2ρ −ρ
−ρ 1+2ρ

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

3.2.2.1 Algorithm for the Implicit Scheme

Let the initial condition be
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U1 =

⎛

⎜⎜⎜⎝

U2,1

U3,1
...

UN,1

⎞

⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎝

f2
f3
...
fN

⎞

⎟⎟⎟⎠

For k = 1 : M

AImplicitUk+1 = Uk + ρ

⎛

⎜⎜⎜⎜⎜⎝

U1,k+1

0
...
0

UN+1,k+1

⎞

⎟⎟⎟⎟⎟⎠

End

The final solution at time T = τM+1 is

UM+1 =

⎛

⎜⎜⎜⎝

U2,M+1

U3,M+1
...

UN,M+1

⎞

⎟⎟⎟⎠

Notice that we must solve

AImplicitUk+1 = Uk + ρ

⎛

⎜⎜⎜⎜⎜⎝

U1,k+1

0
...
0

UN+1,k+1

⎞

⎟⎟⎟⎟⎟⎠

for every time step in our implicit algorithm. This necessarily involves inverting the matrix
AImplicit for each step, which for a general matrix would take O(n3) operations. This would
render the algorithm unviable in a practical setting. Fortunately, the matrix AImplicit is tridi-
agonal or pentadiagonal, and a modified form of Gaussian elimination can be used to solve a
system of equations defined by a tridiagonal or pentadiagonal matrix in O(n) operations. In
Section 3.5 we provide pseudo-codes on how to solve matrix equations involving tridiagonal
or pentadiagonal matrices. This makes this algorithm not only competitive, but superior to
explicit discretization because of its improved stability, which we will discuss later in the
chapter.

3.2.3 Crank–Nicolson Discretization

The Crank–Nicolson discretization scheme [84] is based on the averaging of the forward
and backwards finite difference approximations, allowing for a better order of approximation
in time. It uses a central difference approximation in time and the average of two central
difference approximations in space. Like implicit discretization, the use of a central difference
approximation in the current time slice forces us to solve simultaneously for all points in the
current time slice. In practice this means performing a matrix inversion on our coefficient
matrix, but again it is a tridiagonal or a pentadiagonal matrix and so numerically easy to
solve.
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To perform Crank–Nicolson discretization of (3.16) at the grid point (xj , τk+ 1
2
), we use

a central difference approximation for the first term,

∂u(xj , τk+ 1
2
)

∂τ

and a trapezoidal rule using the average of two central difference approximations for the
diffusion term,

∂2u(xj , τk+ 1
2
)

∂x2

For the central difference approximation of the first term we refer to (3.11), noting that if
we let x = x− 1

2 and h = 1
2h we get the central difference approximation for the first term

∂u(xj , τk+ 1
2
)

∂τ
=

uj,k+1 − uj,k

∆τ
+O(∆τ2)

For the trapezoidal rule approximation for the diffusion term, we average the two central
difference formulas around the point u(xj , τk+ 1

2 )
to get

∂2u(xj , τk+ 1
2
)

∂x2
=

uj−1,k+1 − 2uj,k+1 + uj+1,k+1 + uj−1,k − 2uj,k + uj+1,k

2∆x2
+O(∆x2)

So, we obtain the following set of equations at point (xj , τk+ 1
2
):

uτ (xj , τk+ 1
2
)− κuxx(xj , τk+ 1

2
) = 0

uj,k+1−uj,k

∆τ
− κ

uj−1,k+1−2uj,k+1+uj+1,k+1+uj−1,k−2uj,k+uj+1,k

2∆x2
= O(∆x2)+O(∆τ2)

dropping the orders and use the approximation for uj,k to get

Uj,k+1 − Uj,k

∆τ
−κ

Uj−1,k+1 − 2Uj,k+1 + Uj+1,k+1 + Uj−1,k − 2Uj,k + Uj+1,k

2∆x2
=0 (3.27)

where we can see that the discretization leads to an error on the order of O(∆x2)+O(∆τ2),
an improvement over the explicit and implicit methods. Note that the grid point (xj , τk+ 1

2
)

does not appear in the difference equation (3.27) albeit the entire discretization was based
on that grid point.

To solve the PDE at points (xj , τk+1) on our problem domain, we begin at τ = 0, where
the initial conditions determine the solution to the PDE at every grid point in this time slice.
In order to solve for the points on the grid for which τ = ∆τ we apply the Crank–Nicolson
finite difference scheme. Figures 3.6 and 3.7 illustrate this solution technique. In Figure
3.6 we display the Crank–Nicolson finite difference stencil. The grid point (xj , τk+ 1

2
) is

represented as a star (as opposed to a circle) acknowledging it was used in the discretization
procedure but does not play any role in the difference equation and is not part of the stencil.

Notice that unlike the explicit finite difference scheme, when solving for points on the
current time slice we are again dependent on all of the values in the current time slice,
and thus we must solve for all of these points simultaneously, which we do through matrix
inversion of this system of equations.

To solve the PDE at points (xj , τk+1) on the entire grid, we simply apply this technique
recursively until we get to time τ = T . We solve for all the points in a time slice simul-
taneously by rearranging the finite difference equations to solve for each point in terms of
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❡ ✉*

✉

✉

❡

❡
k k+1

FIGURE 3.6: Crank–Nicolson finite difference stencil

FIGURE 3.7: Crank–Nicolson finite difference grid

grid solutions from the previous time period and from the current time period. In this case,
rearranging (3.27) yields

Uj,k+1−Uj,k−
κ∆τ

2∆x2
(Uj−1,k+1−2Uj,k+1+Uj+1,k+1+Uj−1,k−2Uj,k + Uj+1,k) = 0 (3.28)

If we let ρ̂ = κ∆τ
2∆x2 we get

Uj,k+1 − Uj,k − ρ̂(Uj−1,k+1 − 2Uj,k+1 + Uj+1,k+1 + Uj−1,k − 2Uj,k + Uj+1,k) = 0

We rearrange this equation to move all τk terms to one side, obtaining the following differ-
ence equation:

−ρ̂Uj−1,k+1 + (1 + 2ρ̂)Uj,k+1 − ρ̂Uj+1,k+1 = ρ̂Uj−1,k + (1− 2ρ̂)Uj,k + ρ̂Uj+1,k (3.29)

Noting that ρ̂ = 1
2ρ we can rewrite the above difference equation as

−ρUj−1,k+1 + (2 + 2ρ)Uj,k+1 − ρUj+1,k+1 = ρUj−1,k + (2− 2ρ)Uj,k + ρUj+1,k (3.30)

As before, j = 1 and j = N + 1 correspond to the boundary conditions, u(1, k) =
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g(τk), u(N+1, k) = h(τk), and k = 1 corresponds to the initial conditions, uj,1 = f(xj) = fj .
At all of these grid points the solution is already known. The approximate PDE solution
for the time slice τ = k∆τ can be written in matrix form as

(
AImplicit + I

)
Uk+1 =

(
AExplicit + I

)
Uk + ρ

⎛

⎜⎜⎜⎜⎜⎝

U1,k + U1,k+1

0
...
0

UN+1,k + UN+1,k+1

⎞

⎟⎟⎟⎟⎟⎠
(3.31)

We note that adding (3.23) and (3.26) would yield the same results.

3.2.3.1 Algorithm for the Crank–Nicolson Scheme

Let the initial condition be

U1 =

⎛

⎜⎜⎜⎝

U2,1

U3,1
...

UN,1

⎞

⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎝

f2
f3
...
fN

⎞

⎟⎟⎟⎠

For k = 1 : M

(
AImplicit + I

)
Uk+1 =

(
AExplicit + I

)
Uk + ρ

⎛

⎜⎜⎜⎜⎜⎝

U1,k + U1,k+1

0
...
0

UN+1,k + UN+1,k+1

⎞

⎟⎟⎟⎟⎟⎠

End

The final solution at time T = τM+1 is

UM+1 =

⎛

⎜⎜⎜⎝

U2,M+1

U3,M+1
...

UN,M+1

⎞

⎟⎟⎟⎠

Notice that we must solve

(
AImplicit + I

)
Uk+1 =

(
AExplicit + I

)
Uk + ρ

⎛

⎜⎜⎜⎜⎜⎝

U1,k + U1,k+1

0
...
0

UN+1,k + UN+1,k+1

⎞

⎟⎟⎟⎟⎟⎠

for every step in the Crank–Nicolson algorithm. This again involves a matrix inversion, but
the matrix is still tridiagonal and so this only requires O(n) operations. As discussed in [39],
the Crank–Nicolson method suffers from problems with oscillating solutions. We will not
be exploring this issue here, but instead leave this as an exercise at the end of the chapter
for the reader. On how to reduce the Crank–Nicolson oscillations, refer to [184].
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3.2.4 Multi-Step Scheme

While the explicit, implicit, and Crank–Nicolson schemes remain the most common
methods for numerically solving PDEs, we can always use better finite difference approxi-
mations for the derivatives in order to improve the accuracy of our method. One such scheme
is the multi-step finite difference scheme, which uses a second order backwards approxima-
tion in time, using points from two previous periods, in order to achieve an accuracy of
O((∆τ)2) in time. We will use an implicit central difference approximation for the diffusion
term, which will again force us to solve simultaneously for all points in the current time
slice. But as with the other implicit schemes, the necessary matrix inversion takes only O(n)
operations as the coefficient matrix is still tridiagonal.

To perform multi-step discretization of (3.16) at the grid point (xj , τk+2), we use back-

ward approximation for the first term of order O((∆τ)2), ∂u(xj ,τk+2)
∂τ , and a central difference

approximation for the diffusion term, ∂2u(xj,τk+2)
∂x2 .

The backward difference approximation for the first term yields

∂u(xj , τk+2)

∂τ
=

uj,k − 4uj,k+1 + 3uj,k+2

2∆τ
+O((∆τ)2)

and the central approximation for the second term yields

∂2u(xj , τk+2)

∂x2
=

uj−1,k+2 − 2uj,k+2 + uj+1,k+2

∆x2
+O((∆x)2)

So, we obtain the following set of equations at point (xj , τk+2),

uτ (xj , τk+2)− κuxx(xj , τk+2) = 0
uj,k − 4uj,k+1 + 3uj,k+2

2∆τ
− κ

uj−1,k+2 − 2uj,k+2 + uj+1,k+2

∆x2
= 0

+ O((∆x)2) +O((∆τ)2)

Uj,k − 4Uj,k+1 + 3Uj,k+2

2∆τ
− κ

Uj−1,k+2 − 2Uj,k+2 + Uj+1,k+2

(∆x)2
= 0 (3.32)

where we can see that the discretization leads to an error on the order of O((∆x)2) +
O((∆τ)2)

Note that we cannot apply the multi-step scheme to the very first time slice, as we only
have solutions for the PDE at the immediate previous time step, which is the boundary
condition. Thus this multi-step method must have an initial step which generates solu-
tions for the first time slice. In this case we are restricted to using a first order derivative
approximation in time, and the implicit method is typically chosen for its greater stability.

Algorithmically this does not pose a problem; however, we have noted previously that
the implicit method has an error of O(∆x2) + O(∆τ), which is greater than that of the
multi-step method. Also, in the context of options pricing, much of the discontinuity in the
option price is centered around the terminal payoff. Thus we must be especially careful that
we do not generate errors in this region which will be propagated backwards in time. One
obvious solution is to use more granular time steps closer to expiry, which will give us more
accuracy in this important region. This topic will be discussed in the next chapter, in the
section on adaptive grid points.

To solve the PDE at the reference point (xj , τk+2) on our problem domain, we begin at
τ = 0, where the initial conditions determine the solution to the PDE at every grid point in
this time slice. We include an initialization step for the points on the grid for which τ = ∆τ ,
where we apply the implicit finite difference scheme to solve the PDE at this time slice.
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FIGURE 3.8: Multi-step finite difference stencil

FIGURE 3.9: Multi-step finite difference grid

Finally, we recursively apply the multi-step scheme to calculate the solution to the PDE on
our entire problem domain. Figures 3.8 and 3.9 illustrate this solution technique.

After we solve the PDE for the time slice at τ = ∆τ during the initialization step, we
solve for all the points in the subsequent time slice simultaneously by rearranging the finite
difference equations to solve for each point in terms of grid solutions from the previous two
time periods and the current time period. In this case rearranging (3.32) yields

Uj,k − 4Uj,k+1 + 3Uj,k+2 −
2κ∆τ

∆x2
(Uj−1,k+2 − 2Uj,k+2 + Uj+1,k+2) = 0 (3.33)

If we let ρ̂ = 2κ∆τ
(∆x)2 we get

−ρ̂Uj,k+2 + (3 + 2ρ̂)Uj,k+2 − ρ̂Uj+1,k+2 = −Uj,k + 4Uj,k+1, for 2 ≤ j ≤ N, 1 ≤ k ≤M

As before, j = 1 and j = N + 1 correspond to the boundary conditions, u(1, k) =
g(τk), u(N+1, k) = h(τk), and k = 1 corresponds to the initial conditions, uj,1 = f(xj) = fj .
At all of these grid points the solution is already known. The approximate PDE solution
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for the time slice τ = k∆τ can be written in matrix form as

AMSUk+2 = −Uk + 4Uk+1 + ρ̂

⎛

⎜⎜⎜⎜⎜⎝

U1,k+2

0
...
0

UN+1,k+2

⎞

⎟⎟⎟⎟⎟⎠
(3.34)

where

AMS =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3+2ρ̂ −ρ̂
−ρ̂ 3+2ρ̂ −ρ̂

. . .
. . .

. . .

−ρ̂ 3+2ρ̂ −ρ̂
−ρ̂ 3+2ρ̂

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

3.2.4.1 Algorithm for the Multi-Step Scheme

Solve for

U2 =

⎛

⎜⎜⎜⎝

U2,2

U3,2
...

UN,2

⎞

⎟⎟⎟⎠

using the implicit scheme with the initial conditions

For k = 1 : M

AMSUk+2 = −Uk + 4Uk+1 + ρ̂

⎛

⎜⎜⎜⎜⎜⎝

U1,k+2

0
...
0

UN+1,k+1

⎞

⎟⎟⎟⎟⎟⎠

End

The final solution at time T = τM+1 is

UM+1 =

⎛

⎜⎜⎜⎝

U2,M+1

U3,M+1
...

UN,M+1

⎞

⎟⎟⎟⎠

Notice in the above equation we must solve

AMSUk+2 = −Uk + 4Uk+1 + ρ̂

⎛

⎜⎜⎜⎜⎜⎝

U1,k+2

0
...
0

UN+1,k+1

⎞

⎟⎟⎟⎟⎟⎠

for every step in the multi-step algorithm. This again involves a matrix inversion, but the
matrix is still tridiagonal and so this will only take O(n) operations.
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3.3 Stability Analysis

The stability of a finite difference scheme is of paramount importance when evaluating its
effectiveness. A stable scheme will always converge to the true PDE solution as we enhance
the granularity of our discretization, decreasing the size of the time and space steps. In
this section we will review the definition of stability and the tools necessary to evaluate
the stability of a finite difference scheme. We will also evaluate the stability of the explicit,
implicit, and Crank–Nicolson schemes.

When discussing the suitability of different finite difference schemes there are a number
of important properties we should consider in their evaluation:

• Convergent: A finite difference scheme is said to be convergent if all of its solutions
derived from the initial conditions converge point-wise to the corresponding solutions
of the original differential equation as ∆τ and ∆x approach zero. In other words, as
the ∆τ and ∆x shrink the finite difference solution must eventually converge to the
corresponding solution of the original partial differential equation at every point of
the problem domain.

• Consistent: A finite difference scheme is said to be consistent with the original partial
differential equation if, for any given smooth function u(x, τ), the results of applying
the differential operator to u(x, τ) approach the results of applying the finite difference
equation operating on Uj,k as ∆τ and ∆x approach zero. In short, the local truncation
error goes to zero as ∆τ and ∆x approach zero. Consistency is proved by invoking
Taylor’s theorem.

• Stable: A finite difference scheme is said to be stable if the difference between the
numerical solution and the exact solution remains bounded as ∆τ and ∆x approach
zero.

It is harder to prove a method is stable than to show that it is consistent. Stability can
be proven using one of the following approaches:

Eigenvalue analysis of the matrix representation of the finite difference method

Fourier analysis on the grid (von Neumann analysis)

Computing the domain of dependence of the numerical method

The Lax–Richtmeyer equivalence theorem [192] states that a consistent finite difference
scheme for a partial differential equation, for which the initial-value problem is well posed,
is convergent if and only if it is stable. A proof of this theorem is presented in Chapter
10 of [206], but generally this means that stability is equivalent to convergence for finite
difference schemes, although this theorem is only valid for linear equations. So, if we can
prove a numerical solution to a PDE is stable and thus that its error remains bounded as
∆τ approaches zero, then we are guaranteed that the solution converges everywhere on our
problem domain.

A PDE is defined by its differential operator and a finite difference scheme depends on
the discretization of this operator. Thus, to evaluate the stability of different schemes we
must evaluate how they differ in their discretization of the differential operator. We examine
the differential operator for the heat equation

L(u) = uτ − κuxx = 0 (3.35)
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and without loss of generality, we assume

u(a, τ) = 0 (3.36)

u(b, τ) = 0 (3.37)

As discussed in the previous section, the discretization of this operator can be expressed
as a linear system of the form

Uk+1 = BUk (3.38)

Specifically, in the three schemes we have examined we have

B = AExplicit for the explicit scheme

B = A−1
Implicit for the implicit scheme

B = (AImplicit+I)−1(AExplicit+I) for the Crank–Nicolson scheme

The essence of the stability condition is that there should be a limit to the extent to
which any initial error can be amplified by the numerical solution. Let Uk be the true
solution of the linear system and Ûk be the computed solution. We define the local error
term as

ek ≡ Ûk − Uk (3.39)

As discussed in [200], we have the following relationship between the local error and the
error propagated by the finite difference scheme:

Bek = B(Ûk − Uk)

= Ûk+1 − Uk+1

= ek+1

and by induction we have

ek+1 = Bke1 (3.40)

A finite difference method will only be stable if previous errors are reduced by the
application of the difference equation; they cannot be propagated indefinitely or grow. This
leads us to the stability condition

Bke1 → 0 for k →∞ (3.41)

Let λi for i = 1, . . . , n be the eigenvalues of n× n matrix A. Then the spectral radius of A
is

ρ(A) = max
i

|λi| (3.42)

The spectral radius is closely related to the behavior of the convergence of the power of a
matrix.

Lemma 1 Let A ∈ Rn×n be an n× n matrix and let ρ(A) be its spectral radius. Then

lim
k→∞

Ak = 0 if and only if ρ(A) < 1 (3.43)
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Proof 1 First we show that limk→∞ Ak = 0 implies ρ(A) < 1. Let λ be an eigenvalue of
A and v be its corresponding eigenvector. We know that Akv = λkv by definition. Since
limk→∞ Ak = 0 we can write

0 = ( lim
k→∞

Ak)v (3.44)

= lim
k→∞

Akv (3.45)

= lim
k→∞

λkv (3.46)

= v lim
k→∞

λk (3.47)

Thus, because v is not equal to zero, this implies that limk→∞ λk = 0, which implies |λ| < 1.
Since this is true for all eigenvalues, we know that ρ(A) < 1.

Now we show that ρ(A) < 1 implies limk→∞ Ak = 0 by using Jordan canonical form.
Any n× n matrix can be put in Jordan canonical form by a similarity transformation

T−1AT = J =

⎛

⎜⎝
J1

. . .
Jq

⎞

⎟⎠ (3.48)

where

Ji =

⎛

⎜⎜⎜⎜⎜⎝

λi 1
λi 1

. . .
. . .
λi 1

λi

⎞

⎟⎟⎟⎟⎟⎠
∈ Cni×ni (3.49)

is called a Jordan block of size ni with eigenvalue λi, so n =
∑q

i=1 ni. We can see that J is
block diagonal and Ji is bidiagonal. Rearranging the above equation we get

A = TJT−1 (3.50)

and thus it is easy to see that

Ak = TJkT−1 (3.51)

where

Jk =

⎛

⎜⎝
Jk
1

. . .
Jk
q

⎞

⎟⎠ (3.52)

with

Jk
i =

⎛

⎜⎜⎜⎜⎜⎜⎝

λk
i

(k
1

)
λk−1
i

(k
2

)
λk−2
i . . .

( k
ni−1

)
λk−ni+1
i

λk
i

(k
1

)
λk−1
i . . .

( k
ni−2

)
λk−ni+2
i

. . .
. . .

...
λk
i

(k
1

)
λk−1
i

λk
i

⎞

⎟⎟⎟⎟⎟⎟⎠
(3.53)

Therefore if ρ(A) < 1 then |λi| < 1 for all i and that implies all elements of Jk
i approach

zero as k approaches infinity. Therefore limk→∞ Jk = 0 and thus

lim
k→∞

Ak = lim
k→∞

TJkT−1 = T ( lim
k→∞

Jk)T−1 = 0 (3.54)
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Lemma 2 Let B be the following N ×N tridiagonal matrix:

B =

⎛

⎜⎜⎜⎜⎜⎝

α β
γ α β

. . .
. . .

. . .
γ α β

γ α

⎞

⎟⎟⎟⎟⎟⎠

Then the eigenvalues and eigenvectors of B are

λi
B = α+ 2β

(
γ

β

)1/2

cos

(
iπ

N + 1

)
i = 1, . . . , N (3.55)

and

v(i) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

(
γ
β

)1/2
sin

(
iπ

N+1

)

(
γ
β

)2/2
sin

(
2iπ
N+1

)

...(
γ
β

)N/2
sin

(
Niπ
N+1

)

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

Proof 2 Look at [123] for the proof.

3.3.1 Stability of the Explicit Scheme

The explicit finite difference scheme has a difference operator matrix B which is tridi-
agonal, therefore we can apply the above lemma to derive its eigenvalues analytically. For
the explicit scheme we have α = 1− 2ρ and β = γ = ρ, so its eigenvalues are

λi
AExplicit

= (1− 2ρ) + 2ρ cos(
iπ

N
) for i = 1, . . . , N−1

= 1− 2ρ(1− cos(
iπ

N
))

= 1− 4ρ sin2(
iπ

2N
)

We know that this scheme is stable only if |λi| < 1 for all i, and we have

|1− 4ρ sin2(
iπ

2N
)| < 1⇒ 0 < ρ sin2(

iπ

2N
) <

1

2
for i = 1, . . . , N−1

As the largest sin term is sin
(

(N−1)π
2N

)
< 1, we must satisfy 0 < ρ < 1

2 for the explicit scheme

to be stable. Considering that ρ = κ∆τ
(∆x)2 , this is equivalent to the following constraint on

the time-step size:

0 < ∆τ <
(∆x)2

2κ

This is the so-called Courant–Friedrichs–Lewy condition (CFL condition [80]). Thus the
explicit method is not unconditionally stable, but depends on the relationship between the
space and time discretization.
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3.3.2 Stability of the Implicit Scheme

The implicit finite difference scheme has a difference operator matrix A−1
Implicit which is

not tridiagonal. However, AImplicit is tridiagonal and therefore we can again apply the above
lemma to derive its eigenvalues analytically. For the implicit scheme we have α = 1 + 2ρ
and β = γ = −ρ, so the eigenvalues of AImplicit are

λi
AImplicit

= (1 + 2ρ) + 2(−ρ) cos( iπ
N

) for i = 1, . . . , N−1

= 1 + 2ρ(1− cos(
iπ

N
))

= 1 + 4ρ sin2(
iπ

2N
)

Therefore the eigenvalues of the difference operator matrix are

λi
B = λi

A−1
Implicit

=
1

1 + 4ρ sin2
(

iπ
2N

) for i = 1, . . . , N

and

|λi
B| =

∣∣∣∣∣
1

1 + 4ρ sin2
(

iπ
2N

)
∣∣∣∣∣ < 1 for i = 1, . . . , N−1

However, this condition is always true and thus the implicit finite difference scheme is
unconditionally stable.

3.3.3 Stability of the Crank–Nicolson Scheme

The Crank–Nicolson finite difference scheme has a difference operator matrix (AImplicit+
I)−1(AExplicit+I). We can see that the eigenvalues of AImplicit+I are

λi
AImplicit+I = (2 + 2ρ) + 2(−ρ) cos( iπ

N
) for i = 1, . . . , N−1

= 2 + 2ρ(1− cos(
iπ

N
))

= 2 + 4ρ sin2(
iπ

2N
)

and the eigenvalues of AExplicit+I are

λi
AExplicit+I = (2 − 2ρ) + 2ρ cos(

iπ

N
) for i = 1, . . . , N−1

= 2− 2ρ(1− cos(
iπ

N
))

= 2− 4ρ sin2(
iπ

2N
)

Therefore the eigenvalues of (AImplicit+I)−1(AExplicit+I) are

λi
B =

1− 2ρ sin2( iπ
2N )

1 + 2ρ sin2( iπ
2N )

for i = 1, . . . , N−1

and

|λi
B | =

∣∣∣∣∣
1− 2ρ sin2( iπ

2N )

1 + 2ρ sin2( iπ
2N )

∣∣∣∣∣ < 1 for i = 1, . . . , N−1

Thus the Crank–Nicolson finite difference scheme is also unconditionally stable.
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3.3.4 Stability of the Multi-Step Scheme

It can be shown that the multi-step scheme is also unconditionally stable; however, proof
of this is left as an exercise for the reader.

3.4 Derivative Approximation by Finite Differences: Generic Ap-
proach

As mentioned in section (3.1), the most common finite difference formulas are relatively
easy to derive. However, once we move to higher derivatives or higher order approximations,
deriving the coefficients for the finite difference approximations can become cumbersome.
The goal of this section is to develop a method for easily computing an approximation of
f (d)(x) with an approximation order of p. To do this, we use a method derived in [106].

Assuming f ∈ C∞, we can write the Taylor series expansion of f(x+ ih) as follows:

f(x+ ih) =
∞∑

n=0

(ih)n

n!
f (n)(x) (3.56)

for i ∈ Z and h ∈ R+.
The approximation of f (d)(x) with approximation order p is described by the following

equation:

f (d)(x) =
iu∑

i=il

ĉif(x+ ih) +O(hp) (3.57)

where ĉi are the unknown coefficients and iu and il are the number of forward and backward
terms in our approximation, respectively. If we multiply by hd

d! and define ci = ĉi h
d

d! , we get

hdf (d)(x)

d!
+O(hd+p) =

iu∑

i=il

cif(x+ ih) (3.58)

Substituting (3.56) into (3.58) we obtain

hdf (d)(x)

d!
+O(hd+p) =

iu∑

i=il

cif(x+ ih) (3.59)

=
iu∑

i=il

ci

( ∞∑

n=0

(ih)n

n!
f (n)(x)

)
(3.60)

=
∞∑

n=0

(
iu∑

i=il

cii
n

)
hn

n!
f (n)(x) (3.61)

=
d+p−1∑

n=0

(
iu∑

i=il

cii
n

)
hn

n!
f (n)(x) +O(hd+p) (3.62)

Thus we can see that

f (d)(x) =
d!

hd

d+p−1∑

n=0

(
iu∑

i=il

cii
n

)
hn

n!
f (n)(x) (3.63)
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For this to be true the following constraints should hold:

iu∑

i=il

cii
n =

{
1 n = d
0 n ̸= d

Findings and observations

• The solution to this equation would be unique if and only if one limits the number of
constraints to d+ p. So we must have d+ p = iu − il + 1, which restricts the number
of terms we can use in our approximation

• In case of a forward difference approximation we set il = 0 and iu = d+ p− 1

• In case of a backward difference approximation we set il = −(d+ p− 1) and iu = 0

• In case of a central difference approximation we set il = − 1
2 (d + p − 1) and iu =

1
2 (d+ p− 1)

Example 4 Forward difference approximation of third derivative of second order

Assume we want to compute the forward difference approximation of f (3)(x) with O(h2).
Thus we have d = 3 and p = 2, and because we want a forward difference we have il = 0
and iu = 4. The constraint is then

4∑

i=0

cii
n =

{
1 n = 3
0 n ̸= 3

In matrix form this is
⎡

⎢⎢⎢⎢⎣

00 10 20 30 40

01 11 21 31 41

02 12 22 32 42

03 13 23 33 43

04 14 24 34 44

⎤

⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎣

c0
c1
c2
c3
c4

⎤

⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎣

0
0
0
1
0

⎤

⎥⎥⎥⎥⎦
⇒

⎡

⎢⎢⎢⎢⎣

c0
c1
c2
c3
c4

⎤

⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎣

−5/12
3/2
−2
7/6
−1/4

⎤

⎥⎥⎥⎥⎦

and thus

f (3)(x) =
3!

h3

4∑

i=0

cif(x+ ih) +O(hd) (3.64)

=
−5f(x) + 18f(x+ h)− 24f(x+ 2h) + 14f(x+ 3h)− 3f(x+ 4h)

2h3
+O(h2)

Example 5 Central difference approximation of second derivative of order 3

For this example we have d = 2 and p = 3, for central difference il = −2, and iu = 2.

2∑

i=−2

cii
n =

{
1 n = 2
0 n ̸= 2

In matrix form that is
⎡

⎢⎢⎢⎢⎣

(−2)0 (−1)0 00 10 20

(−2)1 (−1)1 01 11 21

(−2)2 (−1)2 02 12 22

(−2)3 (−1)3 03 13 23

(−2)4 (−1)4 04 14 24

⎤

⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎣

c−2

c−1

c0
c1
c2

⎤

⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎣

0
0
1
0
0

⎤

⎥⎥⎥⎥⎦
⇒

⎡

⎢⎢⎢⎢⎣

c−2

c−1

c0
c1
c2

⎤

⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎣

−1/24
2/3
−5/4
2/3
−1/24

⎤

⎥⎥⎥⎥⎦
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Thus

f (2)(x) =
2!

h2

2∑

i=−2

cif(x+ ih) +O(h3) (3.65)

=
−f(x− 2h) + 16f(x− h)− 30f(x) + 16f(x+ h)− f(x+ 2h)

12h2
+O(h3)

3.5 Matrix Equations Solver

Nonhomogeneous matrix equations of the form

Ax = b (3.66)

can be solved by taking the matrix inverse to obtain

x = A−1b

However, numerically this approach is the most expensive and least efficient way of solving
the equation and would be of last resort. There are various iterative methods for solving
matrix equations (3.66) such as Gaussian elimination, the generalized minimal residual
method [195], the quasi-minimal residual method [116], conjugate gradient methods [72],
and multi-grid methods [207] just to name few.

By construction, throughout this book, most discretization problems end up to be a
linear equation Ax = b where A is a tridiagonal matrix. To get better accuracy by means
of techniques that are covered in Section 3.4 we might end up with a pentadiagonal matrix.
Here we lay out algorithms for solving these two cases.

3.5.1 Tridiagonal Matrix Solver

Assume A is a tridiagonal N ×N matrix as follows:

A =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

d1 u1

l2 d2 u2

. . .
. . .

. . .

lN−1 dN−1 uN−1
lN dN

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and we would like to solve the linear system Ax = b for x ∈ RN where b is an N × 1 vector.
We can solve this tridiagonal linear equation by either first making the upper diagonal
elements zero and then solving the system or first making the lower diagonal zero and then
solving for the system. Here we first make the lower diagonal zero; to do that we use the
following steps:

(a) Multiply the first row by − l2
d1

and add it to the second row to eliminate l2. By doing

this we now have d̃2 = d2 − l2
d1
u1 and b̃2 = b2 − l2

d1
b1.

(b) Now multiply the second row by − l3
d̃2

and add to the third row to eliminate l3. By

doing this we now have d̃3 = d3 − l3
d̃2
u2 and b̃3 = b̃3 − l2

d̃2
b̃2.
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(c) Repeat until all lower diagonals are eliminated.

Now we have
⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

d1 u1

0 d̃2 u2

. . .
. . .

. . .

0 d̃N−1 uN−1
0 d̃N

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1

x2

...

xN−1

xN

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b1
b̃2

...

b̃N−1

b̃N

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Now we can solve for x starting from the N th row:

d̃NxN = b̃N

xN =
b̃N

d̃N

Having xN , we can solve for xN−1 from the (N − 1)th row:

d̃N−1xN−1 + uN−1xN = b̃N−1

xN−1 =
b̃N−1 − uN−1xN

d̃N−1

and we can repeat this until we solve for x1.
Pseudo-code for this algorithm is as follows:

for j = 2 : N

dj = dj − lj
dj−1

uj−1

bj = bj − lj
dj−1

bj−1

endfor

xN = bN/dN

for j = N − 1 : 1

xj = (bj − ujxj+1)/dj

endfor
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3.5.2 Pentadiagonal Matrix Solver

Assume A is a pentadiagonal N ×N matrix as follows:

A =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

d1 u1 v1
l2 d2 u2 v2
k3 l3 d3 u3 v3

. . .
. . .

. . .
. . .

. . .

kN−1 lN−1 dN−1 uN−1
kN lN dN

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and we would like to solve the linear system Ax = b for x ∈ RN where b is an N × 1 vector.
We can solve this pentadiagonal linear equation by making the lower diagonals zero and
then solving for the system. To do that we use the following steps:

(a) Multiply the first row by − l2
d1

and add it to the second row to eliminate l2; multiply

the first row by −k3
d1

and add it to the third row to eliminate k3. By doing this we
overwrite the following entries:

d2 = d2 −
l2
d1

u1

u2 = u2 −
l2
d1

v1

b2 = b2 −
l2
d1

b1

l3 = l3 −
k3
d1

u1

d3 = d3 −
k3
d1

v1

b3 = b3 −
k3
d1

b1

(b) To eliminate l3 and k4 multiply the second row by − l3
d2

and add to the third row

to eliminate l3 and multiply the second row by −k4
d2

and add to the fourth row to
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eliminate k4. By doing this we overwrite the following entries:

d3 = d3 −
l3
d2

u2

u3 = u3 −
l3
d2

v2

b3 = b3 −
l3
d2

b2

l4 = l4 −
k4
d2

u2

d4 = d4 −
k4
d2

v2

b4 = b4 −
k4
d2

b2

(c) Repeat until all lower diagonals are eliminated.

Now we can solve for x starting from the N th row:

dNxN = bN

xN =
bN
dN

Having xN we can solve for xN−1 from the (N − 1)th row:

dN−1xN−1 + uN−1xN = bN−1

xN−1 =
bN−1 − uN−1xN

d̃N−1

and we can repeat this until we solve for x1.
Pseudo-code for this algorithm is as follows:

for j = 2 : N − 1

dj = dj − lj
dj−1

uj−1

uj = uj − lj
dj−1

vj−1

bj = bj − lj
dj−1

bj−1

lj+1 = lj+1 − kj+1

dj−1
uj−1

dj+1 = dj+1 − kj+1

dj−1
vj−1

bj+1 = bj+1 − kj+1

dj−1
bj−1

endfor

xN = bN/dN

xN = (bN − uN−1xN )/dN−1

for j = N−2 : 1

xj = (bj − vjxj+2 − ujxj+1)/dj

endfor
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Problems

1. Consider the following one-dimensional boundary value problem (BVP):

−u′′ = f 0 < x < L (3.67)

with boundary conditions:

u(0) = u(L) = 0

where f is some given function.

(a) Finite difference method —Define the grid point xj = 0+j∆xwhere h = L−0
N+1 for

j = 0, . . . , N + 1. Use central difference approximation for the second derivative
on this grid to write the differential equation as a difference equation Au = f
where

u =

⎛

⎜⎝
u1
...

uN

⎞

⎟⎠ f =

⎛

⎜⎝
f1
...
fN

⎞

⎟⎠ (3.68)

and A is an N ×N tridiagonal matrix. Here uj is an approximation to u(xj) and
fj = f(xj). Write down the entries of matrix A.

(b) Finite element method — Multiply both sides of (3.67) by v ∈ C1 with v(0) =
v(L) = 0 and integrate and then apply integration by parts to reduce the order
of derivatives and to obtain

∫ L

0
u′(x)v′(x)dx =

∫ L

0
f(x)v(x)dx (3.69)

Now introduce a uniform mesh on [0, L] and define a basis of a piecewise linear
function called hat function as

φj(x) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0 : x ≤ xj−1

1
h (x− xj−1) : xj−1 ≤ x ≤ xj

−1
h (x− xj+1) : xj ≤ x ≤ xj+1

0 : x ≥ xj+1

Let v(x) =
∑N

j=1 ajφj(x). We seek a continuous piecewise linear approximate

solution of the form uh(x) =
∑N

j=1 ujφj(x) and require that (3.69) be satisfied
for v = φi for i = 1, . . . , N that is

∫ L

0
u′h(x)φ

′
i(x)dx =

∫ L

0
f(x)φi(x)dx for i = 1, . . . , N (3.70)

Define

aij =

∫ L

0
φ′i(x)φ

′
j(x)dx
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and use the trapezoidal rule on the right hand side of (3.70) to show that it can
be written as

N∑

j=1

aijuj = hfi for i = 1, . . . , N (3.71)

Simplify and write it in matrix form. Show that as in the previous case the
boundary value problem can be written as a difference equation Au = f which
happens to be exactly the same difference equation.

(c) Finite volume method — Define

uj = u(xj) ∼
1

h

∫ j+ 1
2h

j− 1
2h

u(x)dx

and integrate over [j − 1
2h, j +

1
2h] to get

∫ j+ 1
2h

j− 1
2h

(−u′′ − f)dx = 0

and define

f̄j =
1

h

∫ j+ 1
2h

j− 1
2h

f(x)dx

Use fundamental theorem of calculus twice to write the boundary value problem
as a difference equation Au = f̄ . This is slightly different from the previous two
cases nonetheless pretty close.
Difficulty with finite volume method is the fluxes across the faces of volume at
j − 1

2h and j + 1
2h in terms of the integral quantities uj.

2. For the following BVP:

−u′′ = f 0 < x < L (3.72)

with boundary conditions:

u(0) = u0

u(L) = uL

Extend the discussion to capture non-zero boundary conditions (just for the finite
elements/Galerkin approach).

Hint: Define hat functions at boundaries and extend the derivation.

3. Consider the heat equation

∂u

∂t
− κ

∂2u

∂x2
= 0

with the following initial condition:

u(x, 0) = f(x)

where κ > 0 is a constant. Lay out a grid in the (x, t) plane using points xj = j∆x
and tk = k∆t, where ∆x, ∆t > 0 are small and j and k are integers. The goal is to
calculate uj,k+1 such that

uj,k+1 ≈ u(xj , tk+1)

and ensure that this approximation converges to the exact solution as ∆x, ∆t→ 0.
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(a) Use an explicit finite difference scheme to discretize the PDE and write the
difference equation for uj,k+1.

(b) We know that the explicit scheme is conditionally stable. To illustrate this, as-
sume that the initial condition is given by f(x) = cos(πx/∆x). Use this initial
condition to derive the expression for uj,k+1 by induction. Considering that the
exact solution is bounded, derive a condition that the scheme in (a) becomes
stable.

4. Assume u(x, t) solves the heat equation

∂u

∂t
− κ

∂2u

∂x2
= 0, for 0 < x < L, t > 0

with the following initial condition:

u(x, 0) = f(x), for 0 < x < L

and Neumann boundary conditions

∂u

∂x
(0, t) = 0 for all t

∂u

∂x
(L, t) = 0 for all t

It can be shown that under these boundary conditions

∫ L

0
u(x, t)dx =

∫ L

0
f(x)dx for t ≥ 0

For the following initial data

f(x) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0 : 0 ≤ x ≤ L
4

4
Lx− 1 : L

4 ≤ x ≤ L
2

− 4
Lx+ 3 : L

2 ≤ x ≤ 3L
4

0 : 3L
4 ≤ x ≤ L

find u(x, t) as t→∞.

5. Consider the heat equation in Problem 4.

(a) Discretize the PDE (on an arbitrary domain) using the explicit scheme and write
down the difference equation for an interior grid point and show the truncation
error for the scheme is O(∆x2) +O(∆t).

(b) Discretize the PDE (on an arbitrary domain) using the implicit scheme and write
down the difference equation for an interior grid point and show the truncation
error for the scheme is O(∆x2) +O(∆t).

(a) Now add explicit and implicit schemes obtained in previous two parts to get the
Crank–Nicolson scheme and write down the difference equation for an interior
grid point. Now prove that the truncation error for the scheme is O(∆x2) +
O(∆t2). This is an alternative approach to what was done in Section 3.2.3.

No need to bring in boundary conditions or terminal condition into your discretization.
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6. Consider the first-order PDE

∂u

∂t
+ c

∂u

∂x
= 0

with the following initial condition:

u(x, 0) = f(x)

where c > 0 is a constant. Lay out a grid in the (x, t) plane using points xj = j∆x
and tk = k∆t, where ∆x, ∆t > 0 are small and j and k are integers. The goal is to
calculate uj,k+1 such that

uj,k+1 ≈ u(xj , tk+1)

and ensure that this approximation converges to the exact solution as ∆x, ∆t→ 0.

Use explicit finite differences to discretize the PDE and write the difference equation
for uj,k+1 by

(a) using a forward difference approximation to discretize ∂u
∂x .

(b) using a backward difference approximation to discretize ∂u
∂x .

Now assume the initial condition f(x) = cos(πx/∆x) and show that the scheme in
part (a) is unstable no matter how small ∆x and ∆t are. Find the condition that
would ensure the scheme in part (b) becomes stable.

7. Show that the multi-step scheme used in the discretization of the heat equation is
unconditionally stable.

8. Use Taylor series in two variables to show that

∂2u
∂x∂y

≈ u(x+∆x, y +∆y)− u(x−∆x, y +∆y)− u(x+∆x, y −∆y) + u(x−∆x, y −∆y)
4∆x∆y

and is of order O(∆x2) +O(∆y2).

Case Study

1. Extend the methodology in Section 3.4 to develop a method for computing an ap-
proximation of mixed derivatives for multi-variable functions.





Chapter 4

Derivative Pricing via Numerical Solutions of
PDEs

In this chapter we will discuss the use of the finite difference techniques discussed in Chap-
ter 3 for pricing derivatives under models for which a partial differential equation (PDE)
describing derivative prices can be formulated. We start with geometric Brownian motion.
As discussed in Section 1.2.1, under geometric Brownian motion the price of an asset follows
the following stochastic differential equation (SDE):

dSt = (r − q)Stdt+ σStdWt (4.1)

And we know the value of options on that asset satisfy the Black–Scholes partial differential
equation

∂v

∂t
+

σ2S2

2

∂2v

∂S2
+ (r − q)S

∂v

∂S
= rv(S, t) (4.2)

with terminal and boundary conditions which are dependent on the type of the option we
wish to price.

This can be extended to the more general case in which the price of the asset follows
the following SDE:

dSt = (r(t) − q(t))Stdt+ σ(St, t)StdWt (4.3)

Here, r(t), and q(t) are deterministic functions of time, and σ(St, t) is a deterministic volatil-
ity function that depends on time and asset price. This constitutes a local volatility model
where σ(St, t) is called local volatility surface and r(t) and q(t) are the time dependent term
structure of interest rates and dividend rates, respectively. As discussed in Section 1.2.2,
local volatility models allow us greater flexibility in pricing, which allows us to calibrate our
model more easily to a number of different instruments consistently. For (4.3), the value of
the option satisfies the generalized Black–Scholes PDE

∂v

∂t
+

σ(St, t)2S2

2

∂2v

∂S2
+ (r(t) − q(t))S

∂v

∂S
= r(t)v(S, t) (4.4)

For regular Black–Scholes and the associated local volatility models for which these PDEs
apply, we can use standard techniques developed for numerically solving PDEs to price
derivatives. This will allow us to price both European and American type options on various
different payoff structures with path dependency.

Finite difference techniques have a number of compelling advantages over competing
methods. They can be used to price European, Bermudan, and American options. They
can be easily adapted to price any derivative with a payoff which is path dependent. Also,
because the construction of the mesh on which we solve the problem is arbitrary, these
methods admit many mesh constructions which can limit the error of pricing derivatives
with payoff properties which cause certain points in our problem domain to become critical
to the solution. For example, the mesh on which we apply finite difference methods can
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be constructed to match the strike of a vanilla option, the exercise times of a Bermudan
option, the dividend payment dates and resulting stock price of an underlier, the barrier
level of a barrier option, or the exercise boundary of an American put. This allows us to
take advantage of our knowledge of the option payoff and critical times and asset prices in
order to minimize the errors in our method.

However, finite difference methods also have a number of drawbacks. Obviously they are
only applicable to models for which a PDE exists — notably geometric Brownian motion
and the local volatility extension. It can be somewhat slower for European options than
competing methods, as it requires solving the option price for all time periods up to the
current time to expiry, which is more information than is needed to price a European option.
Finite difference methods also propagate errors; because of this, errors which occur at some
boundary or critical points are propagated to nearby points through the discretized PDE,
and this has implications for the conditions under which the finite difference solution is
stable. For a higher dimensional PDE, we run into the so-called curse of dimensionality
issue that make it difficult and expensive to numerically solve it.

Models:
Models for which a PDE describing the option price exists, e.g., geometric Brownian
motion, local volatility models.

Option Types:
European, Bermudan, and American options with a path-dependent payoff.

Pros

1. Handles early-exercise options, Bermudans and Americans

2. Prices path-dependent options with a variety of payoffs

3. Admits a variety of mesh constructions which can be option specific which allow
us to minimize propagated errors

Cons

1. Restricted to models for which a PDE exists, e.g., geometric Brownian motion
and local volatility models

2. Might not be used to price complex path-dependent options

3. Higher dimensional PDE are expensive and difficult to be solved numerically

4. Can be sensitive to boundary conditions, which need to be formulated, and prop-
agates errors from these boundary conditions

5. Required to solve for European option price on full problem domain as the PDE
describes the solution only locally
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4.1 Option Pricing under the Generalized Black–Scholes PDE

Under the generalized Black–Scholes model, extended to include local volatility, term
structure of interest rate and dividend rate, we have the following PDE:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂v
∂t +

σ(St,t)
2S2

2
∂2v
∂S2 + (r(t) − q(t))S ∂v

∂S = r(t)v(S, t)

v(S, T ) = f(S) Terminal condition (payoff function)

Boundary conditions

Clearly, since the maturity of a contract is in the future, in calendar time we have to solve
the PDE backwards, and so we use the usual change of variable τ = T − t, expressing all
times as time to maturity. Thus we have

v̂(S, τ) = v(S, t)

σ̂(S, τ) = σ(S, t)

r̂(τ) = r(t)

q̂(τ) = q(t)

and will get

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

− ∂v̂
∂τ + σ̂(S,τ)2S2

2
∂2v̂
∂S2 + (r̂(τ) − q̂(τ))S ∂v̂

∂S = r̂(τ)v̂(S, τ)

v̂(S, 0) = f(S) Initial condition (payoff function)

Boundary conditions

As before, we would like to write a discretized version of the differential operator as a dif-
ference equation. First, we must define the domain of the problem, going from a continuous
domain D = {Smin ≤ x ≤ Smax; 0 ≤ τ ≤ T } to a discrete grid. Without loss of general-
ity we consider M equal sub-intervals in the τ -direction and N equal sub-intervals in the
S-direction on [Smin Smax]. Thus, we have the following mesh on [Smin, Smax]× [0, T ]:

D̄ =

⎧
⎨

⎩

Sj = Smin + (j − 1)∆S; ∆S = Smax−Smin
N ; j = 1, . . . , N + 1

τk = 0 + (k − 1)∆τ ; ∆τ = T−0
M ; k = 1, . . . ,M + 1

⎫
⎬

⎭

We let vj,k be the approximate value of v̂(S = Sj , τ = τk), with σj,k = σ̂(Sj , τk), rk = r̂(τk),
and qk = q̂(τk).

Without loss of generality, in all our discretization schemes that follow, we assume
boundary values at Smin and Smax at each time step are known. We will later discuss how
to treat boundary conditions for various other cases.

4.1.1 Explicit Discretization

Following the procedure outlined in Section 3.2.1, we construct the explicit discretization
of the generalized Black–Scholes PDE. Thus to discretize this equation at the grid point
(xj , τk), we use the forward approximation for the theta term, ∂v̂

∂τ , the central difference
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equation for the gamma term, ∂2v̂
∂S2 , and the first order central difference approximation for

the delta term, ∂v̂
∂S .

The forward approximation for the theta term yields

∂v̂(xj , τk)

∂τ
=

vj,k+1 − vj,k
∆τ

+O(∆τ)

The central approximation for the gamma term yields

∂2v̂(xj , τk)

∂S2
=

vj−1,k − 2vj,k + vj+1,k

(∆S)2
+O(∆S2)

and the central difference approximation for the delta term yields

∂v̂(xj , τk)

∂S
=

vj+1,k − vj−1,k

2∆S
+O(∆S2)

So, by dropping the error terms, we obtain the following discrete equation at point (xj , τk):

vj,k+1 − vj,k
∆τ

−
σ2
j,kS

2
j

2

(
vj−1,k − 2vj,k + vj+1,k

(∆S)2

)
−(rk − qk)Sj

vj+1,k − vj−1,k

2∆S
+rkvj,k=0

Multiplying it by ∆τ , we get

vj,k+1 − vj,k −
σ2
j,kS

2
j

2

∆τ

∆S2
(vj−1,k − 2vj,k + vj+1,k)

−(rk − qk)Sj
∆τ

2∆S
(vj+1,k − vj−1,k) + rk∆τvj,k = 0 (4.5)

If we define the constants

αj,k =
σ2
j,kS

2
j

2

∆τ

∆S2
(4.6)

βj,k = (rk − qk)Sj
∆τ

2∆S
(4.7)

we get

vj,k+1 − vj,k − αj,k (vj−1,k − 2vj,k + vj+1,k)

−βj,k(vj+1,k − vj−1,k)− rk∆τvj,k = 0 (4.8)

We can now rearrange (4.8) to get a value in period k + 1 in terms of values in period k.
After rearranging the equation, we get

vj,k+1 = (βj,k − αj,k)vj−1,k + (1 − rk∆τ − 2αj,k)vj,k + (αj,k + βj,k)vj+1,k (4.9)

and if we define the new constants

lj,k = αj,k − βj,k (4.10)

dj,k = 1− rk∆τ − 2αj,k (4.11)

uj,k = αj,k + βj,k (4.12)

we get the equation

vj,k+1 = lj,kvj−1,k + dj,kvj,k + uj,kvj+1,k for j = 2, . . . , N (4.13)
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Note that j = 1 and j = N+1 correspond to the boundary conditions, and k = 1 corresponds
to the initial conditions, vj,1 = f(Sj) = fj. At all of these grid points the solution is already
known. The approximate function values at the time slice for τk = k∆τ can be written in
vector form as

Vk =

⎛

⎜⎜⎜⎝

v2,k
v3,k
...

vN,k

⎞

⎟⎟⎟⎠

Thus we can write the recursive explicit discretization scheme in matrix form as

Vk+1 = AExplicit

k Vk +

⎛

⎜⎜⎜⎜⎜⎝

l2,kv1,k
0
...
0

uN,kvN+1,k

⎞

⎟⎟⎟⎟⎟⎠
(4.14)

where

AExplicit

k =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

d2,k u2,k

l3,k d3,k u3,k

. . .
. . .

. . .

lN−1,k dN−1,k uN−1,k
lN,k dN,k

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(4.15)

4.1.2 Implicit Discretization

Following the procedure outlined in Section 3.2.2, we construct the implicit discretiza-
tion of the generalized Black–Scholes PDE. Thus, to discretize this equation at the grid
point (xj , τk+1), at time period k + 1 we use backwards approximation for the theta term,
∂v̂
∂τ , central difference approximation for the gamma term, ∂2v̂

∂S2 , and the first order central
difference approximation for the delta term, ∂v̂

∂S .
The backward difference approximation for the theta term yields

∂v̂(xj , τk+1)

∂τ
=

vj,k+1 − vj,k
∆τ

+O(∆τ)

The central difference approximation for the gamma term yields

∂2v̂(xj , τk+1)

∂S2
=

vj−1,k+1 − 2vj,k+1 + vj+1,k+1
(∆S)2

+O(∆S2)

and the central difference approximation for the delta term yields

∂v̂(xj , τk+1)

∂S
=

vj+1,k+1 − vj−1,k+1
2∆S

+O(∆S2)

As in the explicit scheme, by dropping the error terms we obtain the following discrete
equation at point (xj , τk+1):

vj,k+1 − vj,k
∆τ

−
σ2
j,k+1S

2
j

2

(
vj−1,k+1 − 2vj,k+1 + vj+1,k+1

(∆S)2

)

−(rk+1 − qk+1)Sj
vj+1,k+1 − vj−1,k+1

2∆S
+ rk+1vj,k+1 = 0
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Multiplying it by ∆τ , we get

vj,k+1 − vj,k −
σ2
j,k+1S

2
j

2

∆τ

∆S2
(vj−1,k+1 − 2vj,k+1 + vj+1,k+1)

−(rk+1 − qk+1)Sj
∆τ

2∆S
(vj+1,k+1 − vj−1,k+1) + rk+1∆τvj,k+1 = 0 (4.16)

Using the previous definitions of αj,k and βj,k we can now rearrange (4.16) to get

(−αj,k+1+βj,k+1)vj−1,k+1+(1 + rk+1∆τ+2αj,k+1)vj,k+1+(−αj,k+1−βj,k+1)vj+1,k+1=vj,k

and if we define the new constants

l̂j,k+1 = −αj,k+1 + βj,k+1

d̂j,k+1 = 1 + rk+1∆τ + 2αj,k+1

ûj,k+1 = −αj,k+1 − βj,k+1

we get the equation

l̂j,k+1vj−1,k+1 + d̂j,k+1vj,k+1 + ûj,k+1vj+1,k+1 = vj,k for j = 2, . . . , N (4.17)

Note the relationship between lj,k+1, dj,k+1, uj,k+1 and l̂j,k+1, d̂j,k+1, ûj,k+1:

l̂j,k+1 = −lj,k+1

d̂j,k+1 = 2− dj,k+1

ûj,k+1 = −uj,k+1

Thus we can write the recursive implicit discretization scheme in matrix form as

AImplicit

k+1 Vk+1 = Vk +

⎛

⎜⎜⎜⎜⎜⎝

−l̂2,k+1v1,k+1
0
...
0

−ûN,k+1vN+1,k+1

⎞

⎟⎟⎟⎟⎟⎠

where

AImplicit

k+1 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

d̂2,k+1 û2,k+1

l̂3,k+1 d̂3,k+1 û3,k+1

. . .
. . .

. . .

l̂N−1,k+1 d̂N−1,k+1 ûN−1,k+1
l̂N,k+1 d̂N,k+1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(4.18)

4.1.3 Crank–Nicolson Discretization

As discussed in Section 3.2.3, the Crank–Nicolson discretization scheme is based on the
averaging of the forward and backward finite difference approximations. To perform the
Crank–Nicolson discretization of the generalized Black–Scholes PDE we simply add the
explicit and implicit schemes (4.13) and (4.17) to obtain

(βj,k − αj,k)vj−1,k+1 + (2 + 2αj,k + r(τ)∆τ)vj,k+1 + (−αj,k − βj,k)vj+1,k+1

= (αj,k − βj,k)vj−1,k + (2 + 2αj,k − r(τ)∆τ)vj,k + (αj,k + βj,k)vj+1,k
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or equivalently using the same notations

l̂j,k+1vj−1,k+1+(1 + d̂j,k+1)vj,k+1+ûj,k+1vj+1,k+1

= lj,kvj−1,k+(1+dj,k)vj,k+uj,kvj+1,k for j=2, . . . , N (4.19)

where as before

lj,k = αj,k − βj,k

dj,k = 1− rk∆τ − 2αj,k

uj,k = αj,k + βj,k

and

l̂j,k+1 = −lj,k+1 = −αj,k+1+βj,k+1

d̂j,k+1 = 2− dj,k+1 = 1+rk+1∆τ+2αj,k+1

ûj,k+1 = −uj,k+1 = −αj,k+1−βj,k+1

Now we can write the recursive Crank–Nicolson discretization scheme in matrix form as

(AImplicit

k + I)Vk+1 = (AExplicit

k + I)Vk +

⎛

⎜⎜⎜⎜⎜⎝

l2,kv1,k − l̂2,k+1v1,k+1
0
...
0

uN,kvN+1,k − ûN,k+1vN+1,k+1

⎞

⎟⎟⎟⎟⎟⎠

where AExplicit

k and AImplicit

k are given in (4.15) and (4.18), respectively.

4.2 Boundary Conditions and Critical Points

While the previously discussed discretization methods are at the heart of any PDE based
pricing algorithm, one important issue not yet discussed in the construction of these pricing
techniques is the choice of boundary conditions. The choice of boundary conditions can be
critical for ensuring the accuracy of a pricing algorithm, as any errors on the boundaries
are propagated through the rest of the mesh through the finite difference scheme. One
of the primary advantages of PDE methods is that the mesh on which we construct our
solutions can be chosen so as to best fit one’s pricing problem, minimizing propagated
error. This is especially important for options which have payoff functions which have critical
discontinuous points in both time and asset prices. By fitting the mesh in such a way that our
grid points are close to or exactly match these critical points, we can improve the accuracy
of our pricing algorithm. Some examples include matching the strike of an option, matching
the timing and amount of dividend payments, matching barriers for barrier options, and
matching exercise time for Bermudan options.

4.2.1 Implementing Boundary Conditions

Boundary conditions are the only values in our PDE scheme which are assumed to be
(explicitly or implicitly) known; thus the choice of a boundary condition can have a profound
effect on the accuracy of computed solutions. For one-dimensional space PDEs, boundary
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conditions are the value of the derivative at Smin and Smax. The option value at τ = 0 is
called the initial condition. In most cases the initial condition is well known, as it is just
the payoff of the option that we are pricing:

v(S, 0) = f(S)

where f(S) is the payoff of the derivative at expiration. We distinguish the initial condition
from boundary conditions.

Depending on the option, the boundary condition at Smin or Smax could be explicitly
known. For example, for a vanilla call the value of the option at Smin at any time can be
set to zero, as this is the payoff if the asset has little value, and we often assume it cannot
recover value after this occurs. Also for a vanilla put, the boundary condition at Smax could
be set to zero, as the put option is worthless at a very high price for the underlier.

On the other hand, for a call at Smax just simply setting its value to the payoff might
underestimate the final value of the option since many options continue to rise in value as
the asset price increases. In these cases we make some assumptions about the derivative
value at the boundary.

4.2.1.1 Dirichlet Boundary Conditions

A Dirichlet boundary condition is a boundary condition which specifies the derivative
value explicitly at the boundary points. A Dirichlet boundary condition can often be found
or at least estimated for Smin or Smax depending on the derivative payoff. For instance, for
a call option at Smin, the derivative payoff could be set to zero, as the option is worthless if
Smin is zero or small enough. For a put option at Smax, the derivative payoff could be set
to zero if Smax is sufficiently large. Also, as we see later for barrier options, the value of the
option at the barrier is explicitly known to be rebate if there is any; otherwise it is zero.

We can also approximate a Dirichlet boundary condition for the value of the call at
Smax and a put at Smax by simply setting the option value to be its payoff at the level.
However, this should be treated with care, as in a very high volatility regime the value of a
call at a high level of the underlier exceeds its payoff.

4.2.1.2 Neumann Boundary Conditions

A Neumann boundary condition is a boundary condition which specifies the partial
derivative of the option at the boundary. Neumann boundary conditions can be used at
Smin and Smax. This can be advantageous, as the second derivative of the option payoff is
often well known at extreme asset values, by typically using

∂2v

∂S2
(Smin, τ) = 0

and/or
∂2v

∂S2
(Smax, τ) = 0

It is important to note that if we attempt to use the central difference at Smin or Smax, it
would result in a grid point outside our grid. If instead we use the forward difference for
the left boundary (Smin), we get

∂2v

∂S2
(Smin, τk+1) =

∂2v

∂S2
(S1, τk+1)

=
v1,k+1 − 2v2,k+1 + v3,k+1

h2
+O(h)
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and as we see, we would not get the second order approximation for the second derivative
at the boundary points unless we use four points in our approximation, which will result
in a matrix that is not tridiagonal.1 It is the same scenario if we attempt to use backward
difference for the right boundary. Then the question is what to do to get not only a second
order approximation but also to preserve the tridiagonal structure of the stiffness matrix
without introducing any grid point outside the grid as shown in Figure 4.1. We can argue

FIGURE 4.1: Points outside the grid

that if the second derivative of the option, its gamma, is zero at a boundary, it can be
assumed to be zero at the adjacent point as well. Therefore we may consider

∂2v

∂S2
(Smin +∆S, τ) = 0

and/or
∂2v

∂S2
(Smax −∆S, τ) = 0

This allows us to use the central difference approximation at a point just inside the bound-
ary conditions and use the central difference approximation; thus it should not add any
unwanted truncation error. By doing this we obtain a second order accuracy and preserve
the tridiagonal structure of the stiffness matrix. Loosely speaking, for each boundary point
we use its neighboring point as the reference point. In Figure 4.2 we illustrate one of the
modified reference points for the boundary condition. Using the central difference approxi-
mation we get

∂2v

∂S2
(Smin +∆S, τk+1) =

∂2v

∂S2
(S2, τk+1)

=
v1,k+1 − 2v2,k+1 + v3,k+1

h2
+O(h2)

1This would not cause a big obstacle considering that we know how to deal with pentadiagonal matrices
efficiently, but what if we can have a second order approximation and preserve the tridiagonal structure of
the matrix.
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FIGURE 4.2: Modified reference points for boundary conditions

Setting it equal to zero we obtain

v1,k+1 − 2v2,k+1 + v3,k+1 = 0

or equivalently
v1,k+1 = 2v2,k+1 − v3,k+1

Substituting it into the difference equation (4.16) for j = 2

l̂j,k+1v1,k+1 + d̂j,k+1v2,k+1 + ûj,k+1v3,k+1 = vj,k

l̂j,k+1(2v2,k+1 − v3,k+1) + d̂j,k+1v2,k+1 + ûj,k+1v3,k+1 = vj,k

(d̂j,k+1 + 2l̂j,k+1)v2,k+1 + (ûj,k+1 − l̂j,k+1)v3,k+1 = vj,k

Using the central difference approximation for the upper boundary condition we get

vN−1,k+1 − 2vN,k+1 + vN+1,k+1 = 0

or equivalently
vN+1,k+1 = 2vN,k+1 − vN−1,k+1

and substituting it into the difference equation (4.17) for j = N we get

l̂N,k+1vN−1,k+1 + d̂N,k+1vN,k+1 + ûN,k+1vN+1,k+1 = vN,k

l̂N,k+1vN−1,k+1 + d̂N,k+1vN,k+1 + ûN,k+1(2vN,k+1 − vN−1,k+1) = vN,k

(l̂N,k+1 − ûN,k+1)vN−1,k+1 + (d̂N,k+1 + 2ûN,k+1)vN,k+1 = vN,k

The inclination is that Neumann boundary conditions would be more accurate for the same
boundaries, as the second derivative falls off faster than the price, but it would be interesting
to see some examples to verify this and perhaps add some rules of thumb or heuristic as to
which is the preferred approach. We are not providing any numerical example illustrating
the effects of different choices of boundary conditions. However, we set up a short case study
on the comparison of using Dirichlet versus Neumann boundary conditions.
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4.2.2 Implementing Deterministic Jump Conditions

In a number of derivative pricing problems, the asset may undergo a deterministic jump
at predetermined times during the life of a derivative contract. One common case of this is
discrete dividend payments, which occur at known dates and which in some cases can be
assumed to be of known magnitude. Without loss of generality, let us assume there is only
one known discrete dividend payment, D, at a predetermined time, td: the following jump
condition must be enforced [218]):

V (S, t−d ) = V (S −D, t+d )

where t−d is an instant of time just prior to the discrete dividend payment and t+d is an
instant after the payment. The times t−d and t+d refer to calendar times but in the case of a
finite difference calculation it is more natural to work in time to maturity τ = T − t. Thus
in time to maturity, the jump condition becomes

V (S, τ+d ) = V (S −D, τ−d )

We adjust the time step to coincide with the dividend payment time, τd. Therefore, we
assume τd happens at the kth time step, that is, τk = τd. After the completion of the
solution at time τk, or to be more precise τ−k , we have V −i,k for all i; before proceeding to
the solution at time τk+1, the option values at Si should be replaced by the option value at
Si −D.

To be as accurate as possible, we can adjust the mesh such that the actual time between
τk and τk+1 is very small, and thus minimize the error generated by better representing an
instantaneous jump in the asset value.

For now, we consider the case that D = l∆S where l is some positive integer. Therefore
we will have

V +
i,k = V −i−l,k

Of course Si −D may not necessarily lie on the finite difference grid, so the option value
V (S, τ+i ) will be calculated via interpolation. Define

î =

⌊
Si −D

∆S

⌋

where ⌊x⌋ rounds x to the nearest integer less than or equal to x. Then our interpolation
scheme is

V +
i,k = V −

î,k
+

V −
î+1,k

− V −
î,k

∆S
(Si −D − î∆S)

= (1− α)V −
î,k

+ αV −
î+1,k

with

α =
(Si −D − î∆S)

∆S

Pseudo-code for Implementation

for i = 1 : N
î =

⌊
Si−D
∆S

⌋

α = (Si−D−î∆S)
∆S

V +
i,k = (1− α)V −

î,k
+ αV −

î+1,k

end
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We can again minimize the error by adjusting our grid to match the asset price after
the dividend price as closely as possible, thus capturing the discontinuity in the price as
accurately as possible. What happens when Si −D lies outside the grid? Add a stencil of
an adjusted grid. We could expand this kind of case into a general discussion on ways to fit
the solution grid to critical points for the derivative contract.

4.3 Nonuniform Grid Points

So far we have discussed uniform grid points in both the time and space domains. It might
be of interest to have finer grid points near critical prices such as strike or barrier prices,
or a coarser grid at locations of less importance. This can be done in two different ways:
(a) by laying out the desired grid points which are nonuniform and then discretizing the
differential operator that would coincide with those grid points or (b) by applying coordinate
transformation that would transfer the original coordinate into a new coordinate and then
discretizing the differential operator in the new coordinate. In the second approach we have
to rewrite the PDE in the new coordinate. Nonetheless, for discretization purposes we use
uniform grid points in new coordinates and after numerically solving it would transfer the
numerical solution into the original coordinate which has nonuniform grid points.

The first approach is kind of explicit. First of all there is no need to rewrite the PDE;
also if there is a need for various switching regions, going fine to coarse and back to fine
grid points should be easily doable. The second approach has an implicit nature to it,
in the sense that we have to rewrite the PDE in the new coordinates. However, after we
are done with that, we will be dealing with a uniform grid that we are familiar with and
there is no reason to rederive the first and second derivative approximation using Taylor
expansion at the switching points. subsectionUnequal Sub-intervals Consider grid points
x0 < x1 < · · · < xN . Without loss of generality assume there is only one switching point
in the grid at xi such that grid points from x0 < x1 < · · · < xi are uniform such that
h1 = xj − xj−1 for all j = 1, . . . , i and xi < xi+1 < · · · < xN are uniform such that
h2 = xj−xj−1 for all j = i+1, . . . , N . The interest is to approximate first and second order
derivatives f (1)(x) and f (2)(x) at xi. Using Taylor expansion we can write

f(xi − h1) = f(xi)− h1f
(1)(xi) +

h2
1

2!
f (2)(xi)−

h3
1

3!
f (3)(ξ1) (4.20)

f(xi + h2) = f(xi) + h2f
(1)(xi) +

h2
2

2!
f (2)(xi) +

h3
2

3!
f (3)(ξ2) (4.21)

In the case of h1 = h2 we can simply subtract (4.20) from (4.21) to obtain a central difference
for the first derivative. Obviously, this is not the case now. To find an approximation to the
first derivative we multiply equations (4.20) and (4.21) by −h2

2 and +h2
1, respectively, and

add them to obtain

−h2
2f(xi−h1) + h2

1f(xi+h2) = (h2
1 − h2

2)f(xi) + (h1h
2
2 + h2

1h2)f
(1)(x)

+
h2
1h

2
2

3!
(h1f

(3)(ξ1) + h2f
(3)(ξ2))
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Therefore we have

f (1)(x) = − h2

h1(h1+h2)
f(xi−h1)−

h1−h2

h1h2
f(xi)+

h1

h2(h1+h2)
f(xi+h2)

− h1h2

3!(h1+h2)
(h1f

(3)(ξ1)+h2f
(3)(ξ2)) (4.22)

≈ − h2

h1(h1+h2)
f(xi−h1)−

h1−h2

h1h2
f(xi)+

h1

h2(h1+h2)
f(xi+h2) with O(h1h2)

To find an approximation to the second derivative at xi we multiply equations (4.20) and
(4.21) by h2 and h1, respectively, and add them to obtain

h2f(xi−h1) + h1f(xi+h2) = (h1 + h2)f(xi) +
h1h2(h1 + h2)

2
f (2)(x)

+
h1h2

3!
(h2

1f
(3)(ξ1) + h2

2f
(3)(ξ2))

Therefore we have

f (2)(x) =
2(h2f(xi−h1)−(h1+h2)f(xi)+h1f(xi+h2))

h1h2(h1 + h2)

− 2

3!(h1+h2)
(h2

1f
(3)(ξ1)+h2

2f
(3)(ξ2)) (4.23)

≈ 2(h2f(xi−h1)−(h1+h2)f(xi)+h1f(xi+h2))

h1h2(h1 + h2)
with O(h1+h2)

We see that in non-equal grid points three-point approximation for a second derivative
approximation does not yield a second order approximation. To obtain a second order
approximation we need to use a four-point approximation. By doing that, however, we
would not be able to preserve the tridiagonal structure of the stiffness matrix.

An alternative approach for higher order approximation for non-equal grid points is
examined in [203].

4.3.1 Coordinate Transformation

As mentioned earlier, in order to have finer grid points near critical prices such as strike
or barrier prices, or a coarser grid at locations of less importance, we can apply coordinate
transformation [210].

Assume that we are interested in finding a transformation that maps 0 ≤ ξ ≤ 1 to
Smin ≤ S ≤ Smax, with uniform grid points on ξ and non-uniform grid points on S with
concentration around some point B in the domain. There are many ways of doing this, one
of which is the following. Let

S(ξ) = B + α sinh(c1ξ + c2(1 − ξ))

With this assumption it is clear that if we want

S(ξ = 0) = Smin

S(ξ = 1) = Smax
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then we should have the following values for c1 and c2

c1 = sinh−1(
Smax −B

α
)

c2 = sinh−1(
Smin −B

α
)

The value of ξ that corresponds to B, S(ξB) = B, is

ξB =
c2

c2 − c1

To obtain a highly non-uniform grid concentrated around B, α should be smaller than
Smax − Smin. If we choose α to be greater than Smax − Smin, we get a uniform mesh.

In Figure 4.3 we plot graphs of S(ξ) for various values of α showing concentrations of
evaluation points around B when using coordinate transformation. In this example B = 50
and, as illustrated for small α, points are pretty concentrated around B and for larger α
intervals become more equidistant.
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FIGURE 4.3: Example of non-uniform grids via coordinate transformation

Two particulary simple special cases are

S(ξ) = K sinh(ξ)

∂S

∂ξ
= J(ξ) = K cosh(ξ)

S(ξ) = Keξ

∂S

∂ξ
= J(ξ) = Keξ
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We could add an explanation of these special cases and their benefit. Also, maybe a concrete
example of using these in a known case, for instance, concentrating points around the strike
of a simple option. Is it ever worth it to use coordinate transformation in both directions
in order to concentrate the mesh points on a specific time and asset price? What are the
numerical differences between this considerably harder coordinate transformation and just
using specially created points for the grid while using the original PDE?

4.3.1.1 Black–Scholes PDE after Coordinate Transformation

The Black–Scholes PDE under calendar time and asset price coordinates is

∂v

∂t
+

σ2S2

2

∂2v

∂S2
+ (r − q)S

∂v

∂S
= rv(S, t) (4.24)

Let us define

v̄(ξ, τ) = v(S, t)

where τ = T − t time to maturity and S(ξ) = B + α sinh(c1ξ + c2(1− ξ)). We are going to
see what PDE v̄(ξ, τ) satisfies. Using the chain rule, we have

∂v

∂S
=

∂v̄

∂ξ
· ∂ξ
∂S

=
∂v̄

∂ξ
· 1

∂S
∂ξ

(4.25)

∂2v

∂S2
=

∂

∂S

(
∂v

∂S

)
=

∂

∂ξ

(
∂v

∂S

)
· ∂ξ
∂S

=
∂

∂ξ

(
∂v̄

∂ξ
· ∂ξ
∂S

)
· ∂ξ
∂S

=
∂

∂ξ

(
∂v̄

∂ξ
· 1

∂S
∂ξ

)
· 1

∂S
∂ξ

=
∂2v̄

∂ξ2
1

(
∂S
∂ξ

)2 −
∂v̄

∂ξ
·

∂2ξ
∂S2

(
∂S
∂ξ

)3 (4.26)

∂v

∂t
= −∂v̄

∂τ
(4.27)

By substituting (4.25), (4.26), and (4.27) in (4.24) we get

−∂v̄

∂τ
+

σ2S2

2

⎛

⎜⎝
∂2v̄

∂ξ2
1

(
∂S
∂ξ

)2 −
∂v̄

∂ξ
·

∂2ξ
∂S2

(
∂S
∂ξ

)3

⎞

⎟⎠+ (r − q)S
∂v̄

∂ξ
· 1

∂S
∂ξ

= rv̄

−v̄τ +
σ2S(ξ)2

2

(
1

∂S(ξ)
∂ξ

)2

v̄ξξ +

⎛

⎜⎝(r − q)S(ξ)
1

∂S(ξ)
∂ξ

− σ2S(ξ)2

2

∂2S(ξ)
∂ξ2(

∂S(ξ)
∂ξ

)3

⎞

⎟⎠ v̄ξ

−rv̄(ξ, τ) = 0 (4.28)

Or simply for the new coordinate ξ, we have S = S(ξ) and by using the chain rule we obtain

−∂v̄

∂τ
+

σ2

2

S2(ξ)

J(ξ)

∂

∂ξ

(
1

J(ξ)

∂v̄

∂ξ

)
+ (r − q)

S(ξ)

J(ξ)

∂v̄

∂ξ
− rv̄ = 0 (4.29)

where

J(ξ) =
∂S(ξ)

∂ξ
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(a) (b)

FIGURE 4.4: (a) Binomial tree, (b) trinomial tree

4.4 Dimension Reduction

One of the earliest computational methods used to price options was the binomial tree
methods, developed by Cox, Ross, and Rubinstein. The basic idea of these methods is
to model the evolution of the asset using either a binomial or trinomial tree. In Figures
4.4(a) and 4.4(b), we show graphical representations of two-period binomial and trinomial
trees respectively. How the points are distributed and how their probabilities are made to
be risk-neutral determines which of the many different tree methods we are using. While
tree-based methods are still popular, Rubinstein proved that these methods can in fact
be directly related to an explicit finite difference scheme and thus inherit its convergence
and stability issues. The tree method does, however, have one distinct advantage in that
it does not solve for the option price on an entire grid for which we are uninterested. We
can, however, use the same dimension reduction technique when solving the option pricing
PDE using an explicit method. To do so, we reduce the number of points we solve for at
every step, keeping only enough solution points to result in an option price at the current
asset level, or possibly slightly more, depending on our needs. We illustrate how it is done
schematically in Figure 4.5. Implementing this method is almost identical to implementing
the normal explicit finite difference scheme, except the stiffness matrix shrinks in dimension
with each step. One other noticeable advantage is that this construction requires us to only
consider the boundary conditions at the maturity of the option; all other prices are derived
from past prices and thus we eliminate some error prorogation due to boundary conditions.
Dimension reduction or domain shrinkage is only applicable to the explicit case.
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FIGURE 4.5: Explicit finite difference with dimension reduction

4.5 Pricing Path-Dependent Options in a Diffusion Framework

We will cover some path-dependent options. We start with describing the derivative
and cover its boundary conditions and critical points. Then we focus on how to solve it
numerically in a diffusion framework.

The previous discussion of numerical techniques for pricing derivatives using PDEs has
concentrated only on European options, and up to this point we have eschewed the issue of
options with early exercise provisions, i.e., Bermudan and American options. In this section
we will discuss a number of different approaches for pricing these options using PDE based
methods.

4.5.1 Bermudan Options

All of the solution methods discussed thus far have relied on beginning at τ = 0, at
which time the payoff of the derivative is known and thus the value is known for any asset
price, and walking backwards through time using a finite difference scheme, to generate
option prices at a previous time step from results in the current one. This takes the form
of a recursive equation taking one of the following forms:

Vk+1 = AExplicit

k+1 Vk

AImplicit

k+1 Vk+1 = Vk

AImplicit

k+1 Vk+1 = AExplicit

k+1 Vk

depending on the finite difference scheme we are using.
For example, let us consider an implicit finite difference scheme for pricing European

options under the generalized Black–Scholes PDE. We implement such a pricing algorithm
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using the following pseudo-code

for k =1:M
AImplicit

k+1 Vk+1 = Vk

end

The holder of a Bermudan style option can exercise at predetermined dates specified in
advance in the contract.

V (St, t;K,T ) = max
τe

{
E[e−r(T−t)(K − Sτe)

+]
}

for τe ∈ {t1, . . . , tl} (4.30)

To price Bermudan options, we assume without a loss of generality that we have a grid
on which exercise dates coincide with time steps on the grid. Indeed, it is simple to construct
a grid where this is true by adjusting the time steps. For illustrative purposes, we modify
the grid in Figure 3.1 where dashed lines indicate those time steps that the holder of the
option can exercise as depicted in Figure 4.6.

FIGURE 4.6: Grid in Bermudan option pricing

Let us suppose that the last exercise date in calendar time, which becomes the first in
time-to-maturity since we are going backward in time, coincides with τk for some k. Then
up to that time step there is no difference between Bermudan and European options since
there is no exercise opportunity until we reach τk and so their prices must coincide. When
we have iterated from τ = 0 to τk we have valid European option prices Vk for every asset
price.

At each asset price level on our grid, we should apply the optimal exercise decision,
either choosing not to exercise if the European option value is above the exercise value,
or exercising and taking the exercise value if that is advantageous. Thus at every exercise
opportunity we correct/adjust the option prices Vk to reflect the optimal exercise condition.
For example, if we assume we have a call option we could use the following pseudo-code

for k = 1 : M
AImplicit

k+1 Vk+1 = Vk

for i = 1 : N
if V k+1

i < (Si −K)+
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V k+1
i = (Si −K)+

endif
endfor

endfor

4.5.2 American Options

Options with American exercise provisions allow the holder to exercise the option at any
time during the life of the option, including at maturity. Thus the value of an American
option is

V (St, t;K,T ) = sup
t≤τ≤T

{
Et[e

−r(T−t)(K − Sτ )
+]

}

where the supremum is taken over all stopping times τ defined on the probability space
with respect to the filtration generated by the stock price. It is shown ([160] and [168]) that
for each t there exists a critical stock price S∗(t) such that if S(t) ≤ S∗(t) the value of the
American put option is the value of immediate exercise or K − S(t) while for S(t) > S∗(t)
the value exceeds this immediate exercise value. The curve S∗(t) viewed as a function of
time is referred to as the critical exercise boundary while the region

C = {(S, t) |S > S∗(t)}

is called the continuation region. The complement E of the continuation region is the exercise
region. The value of the American put in the exercise region is known and it only remains
to determine the value in the continuation region.

In general, the techniques used to price American options via PDE techniques are based
on the pricing of Bermudan options, where we evaluate the PDE on successive time slices
of the grid and apply corrections of the optimal exercise of the option. This will converge
to the American option price as the time step ∆τ approaches zero; however, there is always
some discretization error involved.

There are a number of different techniques, however, that we can use to implement this
correction for optimal exercise of the American option. Some of the different ways of pricing
American options under PDE techniques are as follows:

• Bermudan approximation

• Black–Scholes PDE with a synthetic dividend process

• Brennan–Schwartz algorithm

and we will explore these techniques in the following sections.

4.5.2.1 Bermudan Approximation

The most basic method for pricing an American option in a PDE setting is to simply use
the technique we outlined for pricing Bermudan options. Simply using the finite difference to
solve for the option prices at the next time slice and applying an optimal exercise criterion
can determine the true option prices. If we do this at every time step, and make the time
step ∆τ very small, the resulting Bermudan option price should converge to the American
option price as the exercise times become nearly continuous.
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4.5.2.2 Black–Scholes PDE with a Synthetic Dividend Process

While the Bermudan approximation will successfully price American options if we make
∆τ small enough, it requires us to process every time slice of the mesh a second time to
implement optimal exercise conditions. Another approach is to modify the underlying PDE
to account for optimal exercise conditions so that the PDE is in fact accurate everywhere
on the grid and proceed with our normal discretization using this modified PDE.

The differential operator for the generalized Black–Scholes PDE is

L(v) = −∂v̂

∂τ
+

σ(S, τ)2S2

2

∂2v̂

∂S2
+ (r(τ) − q(τ))S

∂v̂

∂S
− r(τ)v̂(S, τ) = 0

In the case of American options, the optimal exercise policy may be to exercise early de-
pending on the level of the stock. In the case of an American put option, at every time τ
there is a level of the stock price S⋆(τ) such that at any stock price lower than that level
the holder of the option should optimally exercise. This price level is called the critical level
and it is time dependent due to the time value of the money. For an American call, at
every time τ there is a level of the stock price S∗(τ) such that at any stock price higher
than S∗(τ) the holder should optimally exercise. Therefore, these critical values constitute
a curve that would divide out the domain to two distinct regions: (a) exercise region (E),
(b) continuation region (C). In the continuation region, the holder of the option does not
exercise, and the Black–Scholes PDE holds in the region, i.e., L(v) = 0, in the exercise
region on the other hand it does not hold, i.e., L(v) ̸= 0 and the holder would exercise and
receive K−S. Thus in the exercise region E , we have

V (S, τ) = K−S in E

Knowing the exact value of the option, theta, delta, and gamma of the option can be
calculated as well; therefore we have

∂v

∂τ
= 0

∂v

∂S
= −1

∂2v

∂S2
= 0

So in the exercise region we can substitute these values into L(v) and compute its value.

L(v) = −∂v̂

∂τ
+

σ(S, τ)2S2

2

∂2v̂

∂S2
+ (r(τ) − q(τ))S

∂v̂

∂S
− r(τ)v̂(S, τ)

= 0 + 0 + (r − q)S(−1)− r(K − S)

= qS − rS − rK + rS

= qS − rK

Therefore, we can say in the entire region the following differential operator applies:

L(v) = S<S⋆(τ){qS − rK}

or equivalently

L(v) + S<S⋆(τ){rK − qS} = 0

where as before S∗(τ) is the critical exercise boundary at time τ . This synthetic dividend
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is consistent with the demonstration by Carr, Jarrow, and Myneni [58] that is one must
extract from the American option holder the interest on the strike less the dividend yield for
the time the stock spends in the exercise region to get the value back to that of a European
option. In our grid, the critical value at time τk, S∗(τk), is the smallest value of the stock
that the option premium at the value exceeds its payoff; that is,

S∗(τk) = min{Si : V
k
i − (K − Si)

+ > 0}

We assume that S∗(τ0) = S∗(0) = K. The following pseudo-code implements this scheme
and constructs the exercise boundary of critical values at every time.
At τ1:

V0 =
[
V 0
i

]
and S(τ0 = 0) = K (4.31)

l̂i,1v
1
i−1 + d̂j,1v

1
j + ûj,1v

1
j+1 = v0i + S<S(τ0){rK − qSi} (4.32)

and

S(τ1) = min{Si : V
1
i − (K − Si)

+ > 0} (4.33)

and we repeat this procedure to τM .
For this scheme to work for a jump framework we need to account for that fact that

stock can jump back from the exercise region to the continuation region. Just to be clear
here, in our pseudo-code we are explaining the case for the implicit implementation, but
theoretically one could use any finite difference scheme with the Heavyside term.

4.5.2.3 Brennan–Schwartz Algorithm

One important shortcoming of the Bermudan approximation method is that the option
values for time period k+1, Vk+1 are computed in the implicit method using both the option
values at time k, Vk and simultaneously all option values at period k+1, Vk+1. These results
are then correct to account for optimal exercise, but the continuation region at time k + 1
still has option values which are influenced by the incorrectly calculated option values in the
exercise region which are subsequently corrected. The Brennan–Schwartz algorithm allows
us to solve the tridiagonal stiffness matrix in the implicit scheme either bottom-up or top-
down, depending where our exercise region is expected to be, and correct for optimal exercise
while solving for the Vk+1 values. This prevents the propagation of incorrect exercise errors
into the continuation region.

We know that the implicit finite difference scheme can be implemented with the following
equation.

AImplicit

k+1 Vk+1 = Vk + r.h.s.

Or ⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

d̂k+12 ûk+1
2

l̂k+13 d̂k+13 ûk+1
3

. . .
. . .

. . .

l̂k+1N−1 d̂k+1N−1 ûk+1
N−1

l̂k+1N d̂k+1N

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

vk+1
2

vk+1
3

...

vk+1
N−1

vk+1
N

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

vk2
vk3

...

vkN−1

vkN

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ r.h.s.

It is known that we can solve this tridiagonal linear equation by either first making the
upper diagonal elements zero and then solving the system or first making the lower diagonal
zero and then solving for the system. In a regular tridiagonal system solver, it does not make
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a difference. However, in the Brennan–Schwartz algorithm it depends on the contract. We
wish to apply the optimal exercise criterion while we are solving the tridiagonal system,
and so we wish to start solving in the exercise region. Thus for American put options, we
make the upper diagonals zero and then solve; for American call options, we first make the
lower diagonal zero and then solve.

For American put options, we first make the upper diagonal zero; to do that we use the
following steps:

(a) Multiply the N th row (last row) by − ûk+1
N−1
d̂k+1
N

and add to the (N − 1)th row; by doing

that we eliminate ûk+1
N−1

(b) Multiply the (N − 1)th row by − ûk+1
N−2

d̃k+1
N−1

and add to the (N − 2)th row; by doing that

we eliminate ûk+1
N−2

(c) Repeat until all upper diagonals are eliminated

Now we have

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

d̃k+12 0
l̂k+13 d̃k+13 0

. . .
. . .

. . .

l̂k+1N−1 d̃k+1N−1 0

l̂k+1N d̂k+1N

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

vk+1
2

vk+1
3

...

vk+1
N−1

vk+1
N

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

vk2 −
ûk+1
2

d̃k+1
3

vk3

vk3 −
ûk+1
3

d̃k+1
4

vk4

...

vkN−1 −
ûk+1
N−1

d̂k+1
N

vkN
vkN

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

or equivalently
⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

d̃k+12 0
l̂k+13 d̃k+13 0

. . .
. . .

. . .

l̂k+1N−1 d̃k+1N−1 0
l̂k+1N d̂k+1N

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

vk+1
2

vk+1
3

...

vk+1
N−1

vk+1
N

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ṽk2
ṽk3

...

ṽkN−1

vkN

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

where ṽkj = vkj −
ûk+1
j

d̂k+1
j+1

vkj+1 and d̃k+1j = d̂k+1j − ûk+1
j

d̂k+1
j+1

l̂k+1j+1 for j = 2, . . . , N − 1.

Now we can solve for V k+1 starting from the first row.

d̃k+12 vk+1
2 = ṽk2

vk+1
2 =

ṽk2
d̃k+12

Having vk+1
2 we can solve the equation in the second row for vk+1

3 , that is,

l̂k+13 vk+1
2 + d̃k+13 vk+1

3 = ṽk3

vk+1
3 =

ṽk3 − l̂k+13 vk+1
2

d̃k+13
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and we can repeat this until we solve for vk+1
N .

The above algorithm is the procedure for a basic tridiagonal solver. The Brennan–
Schwartz algorithm modifies this procedure by taking into the account the exercise value;
as one solves for V k+1 element by element, we compare the option price to the exercise
value and if the option price is smaller than the exercise value correct it by making it equal
to the exercise value.

Assuming we solved for the jth element, vk+1
j ,

if vk+1
j < (K − Sj)+

vk+1
j = (K − Sj)+

else

no action is needed

end

and this is repeated for each element.
We provide an example to illustrate the exercise boundary and premiums for an Ameri-

can put for each case. The parameter set used in this example is spot price S0 = 100, strike
of K = 90, volatility σ = 30%, risk-free interest rate r = 3.0%, continuous dividend rate
q = 1.0%, and maturity of T = 0.5.

Figures 4.7 and 4.8 illustrate the optimal exercise boundary and corresponding premiums
for all three cases. At the end of the chapter we present a set of case studies to illustrate

20 40 60 80 100 120 140 160 180 200
0

10

20

30

40

50

60

70

80

90

100

Stock price

A
m

e
ri
ca

n
 p

u
t 

o
p

tio
n

 p
re

m
iu

m

 

 

Bermudan style
Brennan−−Schwartz
synthetic dividend

FIGURE 4.7: American put premiums

the various levels of efficacy of these techniques.
We are not sure if it is worth to include in this chapter, but it would be interesting

to know how many error propagations the Brennan–Schwartz method prevents if we are
running case studies.
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FIGURE 4.8: Optimal exercise boundary for an American Put

4.5.3 Barrier Options

Barrier options are a family of options that come alive or die when barriers are reached.
Two major types of barrier options are:

• knock-in: the option comes alive when the barrier is reached.

• knock-out: the option dies when the barrier is reached.

Option formulas for pricing standard barrier options have been developed [177],[190]. By
standard we mean single knock-in barrier options with or without rebate and single knock-
out barrier options without rebate or with non-deferred rebate with constant volatility.

A = ξSe(b−r)TΦ(ξx1)− ξXe−rTΦ(ξx1 − ξσ
√
T )

B = ξSe(b−r)TΦ(ξx2)− ξXe−rTΦ(ξx2 − ξσ
√
T )

C = ξSe(b−r)T (B/S)2(µ+1)Φ(ηy1)− ξXe−rT (B/S)2µΦ(ηy1 − ησ
√
T )

D = ξSe(b−r)T (B/S)2(µ+1)Φ(ηy2)− ξXe−rT (B/S)2µΦ(ηy2 − ησ
√
T )

E = Re−rT
[
Φ(ηx2 − ησ

√
T )− (B/S)2µΦ(ηy2 − ησ

√
T )

]

F = R
[
(B/S)µ+λΦ(ηz) + (B/S)µ−λΦ(ηz − 2ησ

√
T )

]



Derivative Pricing via Numerical Solutions of PDEs 139

where

x1 =
log(S/X)

σ
√
T

+ (1 + 2µ)σ
√
T

x2 =
log(S/B)

σ
√
T

+ (1 + 2µ)σ
√
T

y1 =
log(B2/SX)

σ
√
T

+ (1 + 2µ)σ
√
T

x2 =
log(B/S)

σ
√
T

+ (1 + 2µ)σ
√
T

z =
log(B/S)

σ
√
T

+ λσ
√
T

µ =
b− σ2/2

σ2

λ =

√
µ2 +

2r

σ2

b = r − q

Knock-In Barrier Options

Down-and-in call S > B, payoff: max(S −X, 0) if S ≤ B before T else R at maturity

cdi(X>B) = C + E ξ = 1, η = 1
cdi(X<B) = A−B +D + E ξ = 1, η = 1

Up-and-in call S < B, payoff: max(S −X, 0) if S ≥ B before T else R at maturity

cui(X>B) = A+ E ξ = 1, η = −1
cui(X<B) = B − C +D + E ξ = 1, η = −1

Down-and-in put S > B, payoff: max(X − S, 0) if S ≤ B before T else R at maturity

pdi(X>B) = B − C +D + E ξ = −1, η = 1
pdi(X<B) = A+ E ξ = −1, η = 1

Up-and-in put S < B, payoff: max(X − S, 0) if S ≥ B before T else R at maturity

pui(X>B) = A−B +D + E ξ = −1, η = −1
pui(X<B) = C + E ξ = −1, η = −1

Knock-Out Barrier Options

Down-and-out call S > B, payoff: max(S −X, 0) if S > B before T else R at hit

cdo(X>B) = A− C + F ξ = 1, η = 1
cdo(X<B) = B −D + F ξ = 1, η = 1

Up-and-out call S < B, payoff: max(S −X, 0) if S < B before T else R at hit

cuo(X>B) = F ξ = 1, η = −1
cuo(X<B) = A−B + C −D + F ξ = 1, η = −1
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Down-and-out put S > B, payoff: max(X − S, 0) if S > B before T else R at hit

pdo(X>B) = A−B + C −D + F ξ = −1, η = 1
pdo(X<B) = F ξ = −1, η = 1

Up-and-out put S < B, payoff: max(X − S, 0) if S < B before T else R at hit

puo(X>B) = B −D + F ξ = −1, η = −1
puo(X<B) = A− C + F ξ = −1, η = −1

In the case of the deferred rebate knock-out barrier option either down-and-out or up-
and-out, we can price the deferred rebate and add it to the price of the barrier without
rebate.

In the case of non-constant volatility, there is no analytical solution. Therefore, the only
solution would be the numerical solution of the PDE. For numerically solving the PDE we
just have to specify boundary conditions and the rest would be the same as before.

4.5.3.1 Single Knock-Out Barrier Options

For up and out calls (UOC) the payoff and boundary conditions are

payoff V (S, T ) = (S −K)+ for S ∈ [0, H)
boundary conditions limS↓0 V (S, t) = 0 or limS↓0 VSS(S, t) = 0

limS↑H V (S, t) = R

where H is the upper barrier level. For the left boundary condition we can apply
either Dirichlet or Neumann condition. For the right boundary the only choice is to
set it equal to rebate R if there is any, otherwise zero.

For up and out puts (UOP) the payoff and boundary conditions are

payoff V (S, T ) = (K − S)+ for S ∈ [0, H)
boundary conditions limS↓0 VSS(S, t) = 0 or limS↓0 V (S, t) = K−S

limS↑H V (S, t) = R

For down and out calls (DOC) the payoff and boundary conditions are

payoff V (S, T ) = (S −K)+ for S ∈ (L,∞)
boundary conditions limS↓L V (S, t) = R

limS↑∞ VSS(S, t) = 0 or limS↑∞ V (S, t) = S−K

where L is the lower barrier level. For the right boundary condition we can apply
either Dirichlet or Neumann condition. For the left boundary the condition is to set
it equal to rebate if there is any otherwise zero.

For down and out puts (DOP) the payoff and boundary conditions are

payoff V (S, T ) = (K − S)+ for S ∈ (L,∞)
boundary conditions limS↓L V (S, t) = R

limS↑∞ VSS(S, t) = 0 or limS↑∞ V (S, t) = 0
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4.5.3.2 Single Knock-In Barrier Options

For premiums of knock-in barrier options we using the parity argument, i.e..
in + out = vanilla, therefore we have

• up and in call (UIC) = vanilla call - UOC

• up and in put (UIP) = vanilla put - UOP

and

• down and in call (DIC) = vanilla call - DOC

• down and in put (DIP) = vanilla put - DOP

From the earlier description, it should be trivial what the boundary conditions are for all
these knock-in barrier options. We leave them as an exercise.

4.5.3.3 Double Barrier Options

For a double knock-out call the payoff and boundary conditions are

payoff V (S, T ) = (S −K)+ for S ∈ (L,H)
boundary conditions limS↓L V (S, t) = R1

limS↑H V (S, t) = R2

where R1 and R2 are lower and upper rebates, respectively, and if there is none it would
be zero. There might be a combination of knock-in and knock-out e.g., knock-out knock-in
(KOKI) or knock-out knock-out (KOKO). KOKI has one knock-out barrier and one knock-
in barrier. KOKO values options with two knock-out barriers. In KOKI, if the stock price
crosses a knock-out barrier before it crosses a knock-in barrier, then the option terminates.
If the stock price crosses a knock-in barrier first, then the holder receives either a vanilla or a
knock-out option, depending on whether the contract specifies that knock-out is dominant.
Knock-out dominance means that the option can be knocked out at any time, even after it
is knocked in. In other words, if it knocks in, then it knocks into a knock-out option. If the
option is not knock-out dominant, then it knocks into a vanilla option.

The barriers may be constant or may be different in different time intervals. They may
be continuous or discrete or a combination of both. In particular, the models can have either
continuous or daily discrete monitoring of the barriers. The payoff may have the form of
either a standard call or put payoff or digital call or put payoff.

4.6 Forward PDEs

One can look at option prices V (S, t;K,T ) as a four-dimensional problem; dimensions
are: (a) spot price space, (b) calendar time space, (c) strike price space, and (d) maturity
space. In the case of the Black–Scholes equation, we freeze strike space and maturity space
by just picking one point from each space, defining a single option contract, to reduce the
pricing problem to a two-dimensional problem. And it happens from spot price space and
calendar time space we just need very few points even though we solve for every point and
the rest of the points in those spaces are never used. PDEs like the Black–Scholes PDE
(4.2) or the generalized Black–Scholes PDE (4.4) whose strike price and maturity are fixed
and spot and calendar time are varying are called backward PDEs.
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The drawback to backward PDEs is that the solution depends on fixed K and T . There-
fore we must rerun the scheme separately for each pair of K and T , corresponding to each
different quoted option. Assuming, as we will see later in Chapter 7 under calibration pro-
cedure, we are calibrating a model to all market quoted options across m distinct strikes
and n distinct maturities, which requires pricing for m strikes and n maturities that implies
running of the pricing scheme m× n times, for instance an implicit finite difference of the
backward Black–Scholes PDEs. The pseudo-code is as follows:

for i = 1, . . . ,m
for j = 1, . . . , n

set Ki and Tj

V̂ (Ki, Tk) = G(S, t;Ki, Tk)
endfor

endfor

where G is a pricing engine/algorithm using some finite differences technique, such as an
implicit difference scheme.

4.6.1 Vanilla Calls

In an effort to construct a solution which allows us to solve for option prices with
different strikes and maturities simultaneously, let us consider again the local volatility
geometric Brownian motion stock price process having the following stochastic differential
equation:

dSt = (r − q)Stdt+ σ(St, t)dW (t)

where the function σ(S, t) is the asset’s local volatility function and the corresponding
backward PDE is

∂V

∂t
+

1

2
σ2(S, t)S2 ∂

2V

∂S2
+ (r(t) − q(t))S

∂V

∂S
= r(t)V (S, t)

which we will recognize as the generalized Black–Scholes PDE. In [104], the author derives
the associated forward PDE parameterized on strike and maturity (i.e., K and T are varying
and S and t are fixed). This forward PDE shown below

−∂C

∂T
+

1

2
σ2(K,T )K2 ∂

2C

∂K2
− [r(T )− q(T )]K

∂C

∂K
= q(T )C (4.34)

is called the Dupire forward PDE for pricing European vanilla prices. For the forward
PDE, if we assume a known local volatility surface, we can calculate option premiums for
all strikes and maturities by numerically solving the forward PDE once as opposed to solving
the backward PDE for each pair of strikes and maturities. Conversely, having market quotes
of option prices C(Ki, Tk), we then can calculate the local volatility surface from market
quotes (i.e., calibration) by simply solving (4.34) for σ(K,T ).

σ(K,T ) =

(
∂C
∂T + [r(T )− q(T )]K ∂C

∂K + q(T )C

K2 ∂2C
∂K2

)1/2

Note that here we assume smooth call prices since in addition to C(K,T ) we must also

calculate ∂C
∂T , ∂C

∂K , and ∂2C
∂K2 . So, we must interpolate/extrapolate from market prices and

then apply a smoothing technique. This is not as easy as it looks and this procedure will
be discussed in detail in Chapter 7.
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4.6.2 Down-and-Out Calls

One of the most important motivations and applications of the local volatility model
is the ability to more accurately price exotic derivatives as their model prices are fully
consistent with the vanilla options market. The last section provided us with a method
to efficiently calibrate a local volatility surface from a set of vanilla option prices using
the forward PDE for European options. Once we have derived this local volatility surface,
the next step is to price more exotic derivatives given the market calibrated local volatility
function σ(S, t), by either (a) employing a finite difference solution to the underlying partial
differential equation in the price of the exotic or (b) by simulating the process. In [57], Carr
and Hirsa derive the following forward PDE for down-and-out calls with local volatility.

σ2(K,T )

2
K2 ∂

2Dc
o

∂K2
− [r(T )− q(T )]K

∂Dc
o

∂K
− q(T )Dc

o =
∂Dc

o

∂T

with the initial condition

Dc
o(K, 0) = (S0 −K)+, for K ∈ [H,∞), and H < S0

and boundary conditions

lim
K↓H

∂2Dc
o

∂K2
(K,T ) = 0, T ∈ [0, T̄ ]

lim
K↑∞

∂2Dc
o

∂K2
(K,T ) = 0, T ∈ [0, T̄ ]

4.6.3 Up-and-Out Calls

In [57], Carr and Hirsa also derive the following forward PDE for up-and-out calls with
local volatility.

σ2(K,T )

2
K2 ∂

2U c
o

∂K2
− [r(T )− q(T )]K

∂U c
o

∂K
− q(T )U c

o =

∂U c
o

∂T
+

[
σ2(H,T )

2
H2 ∂

3U c
o

∂K3
(H,T )

]
(K −H)

with initial condition

U c
o(K, 0) = (S0 −K)+, for K ∈ [0, H), and S0 < H

and boundary conditions

lim
K↓0

∂2U c
o

∂K2
(K,T ) = 0, T ∈ [0, T̄ ]

lim
K↑H

∂2U c
o

∂K2
(K,T ) = 0, T ∈ [0, T̄ ]

For details on the derivation see [56] and [57]. The schemes discussed earlier can be used to
solve these forward PDEs numerically. In case of the forward PDE for an up-and-out call,
in order to preserve the tridiagonal structure of the stiffness matrix, we should treat the
term (

σ2(H,T )

2
H2 ∂

3U c
o

∂K3
(H,T )

)
(K −H)

explicitly. To get a second order approximation for the third derivative we use backward
finite difference discretization applying the scheme explained in Section 3.4. For this scheme
we use five points.
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Example 6 Forward versus backward up-and-out call (UOC) premiums

In this example, we compare UOC premiums by numerically solving both backward and
forward PDEs.

The parameter set used in this example is spot price S0 = 100, risk-free interest rate
r = 3.75%, continuous dividend rate q = 2.0%, and strike range of K = 90, 110, maturity
range of T = 0.25, 0.5, 1.0. We consider the following local volatility surface:

σ(K,T ) = 0.3e−T (100/K)0.2

This local volatility surface is plotted in Figure 4.9. In Figure 4.10(a) we display UOC
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FIGURE 4.9: Local volatility surface used for up-and-out calls

premiums for 3-month maturity by solving a backward PDE numerically; the left figure is
for a strike of 90 and the right one is for a strike of 110. Out of all those premiums we
just pick the one that corresponds to the spot price 100 as pointed out in the figures. That
is the drawback with backward PDEs. Figures 4.10(b) and 4.10(c) are the same as Figure
4.10(a) except for 6-month maturity and 12-month maturity, respectively. In Figure 4.11
we display UOC premiums by solving the forward PDE for UOC numerically for all strikes
and maturities. From all premiums we pick those that correspond to strikes 90, 110 and
maturities 3-month, 6-month, and 12-month as pointed out in the figure.

We see that the premiums from backward and forward PDEs are identical. However,
in the case of the forward PDE for UOC, we get the results in one sweep as opposed to
backward that we had to solve the backward PDE numerically for each pair of strikes and
maturities (in this example we solve it six times, having six pairs of strikes and maturities).
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FIGURE 4.10: Up-and-out call prices using a backward PDE
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FIGURE 4.11: Up-and-out call prices obtained from using a forward PDE

4.7 Finite Differences in Higher Dimensions

At this point, we have concentrated on options pricing using one-dimensional PDEs.2

However, the same approach can be extended to higher dimensional spaces, if our model
yields a pricing equation in more than one dimension. In any stochastic volatility model the
value of the option is a function of underlying price, volatility, and time v(S, v, t) such as
Heston stochastic volatility. In models where the interest rate is assumed to be stochastic,
for instance interest rate sensitive instruments, the option value is a function of underlying
process, interest rate, and time v(S, r, t) such as convertible bond models. The price of an
arithmetic average Asian options can be found by solving a PDE in two space dimensions
(see Ingersoll [147]). However, Asian options can be reduced to a one-dimensional PDE (e.g.
[193] and [214]). In this section we will explore some of the issues arising from the use of
PDE techniques in higher dimensions, using the Heston model as our canonical example.

4.7.1 Heston Stochastic Volatility Model

One of the most popular two factor stochastic models for asset price evolution is the
Heston stochastic volatility model [134], which extends Black–Scholes by allowing volatility
to follow a mean reverting stochastic process. Besides being one of the most popular two
factor models, the Heston model also admits a closed-form solution, and as such will allow
us to assess the accuracy and efficiency of our numerical algorithm.

Under the Heston model, the stock price and stock volatility are modeled using the

2In the literature a time variable is not included in the dimension of the numerical solution because the
difference equation is presented through a time slice.
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following stochastic processes:

dS(t) = µSdt+
√
v(t)Sdz1(t) (4.35)

d
√

v(t) = −β
√

v(t)dt+ δdz2(t) (4.36)

where z1(t) and z2(t) are correlated Wiener processes, with an instantaneous correlation
given by ρ. The stochastic process for volatility

√
v(t) is a Brownian motion with drift;

however, it can be transformed, via Itô’s lemma, into an Ornstein–Uhlenbeck process for
the variance v(t):

dv(t) = (δ2 − 2βv(t))dt + 2δ
√
v(t)dz2(t)

dv(t) = κ(θ − v(t))dt + σ
√

v(t)dz2(t)

which is the most familiar representation of the model. This is a mean reverting process
whose parameters κ, θ, and σ can be interpreted as follows: κ is the mean reversion speed,
θ is the long run variance, a nd σ is the volatility of the volatility. The proof is not given
here; it is fairly trivial via Itô’s lemma.

Following arbitrage arguments similar to the ones discussed in Section 1.2.1.2 originating
in [32], we can derive the following PDE for the option price U(S, v, t):

1

2
vS2 ∂

2U

∂S2
+ ρσvS

∂2U

∂S∂v
+

1

2
σ2v

∂2U

∂v2
+ (r − q)S

∂U

∂S

+(κ(θ − v(t))− λ(S, v, t))
∂U

∂v
− rU +

∂U

∂t
= 0 (4.37)

where λ(S, v, t) is the price of volatility risk, the market value assigned to a unit of volatility
risk.3 Under the Heston stochastic volatility model, we make the assumption that the price
of volatility risk is proportional to the variance v, that is,

λ(S, v, t) = λv

Then the question begs, are there any implications to making the price of volatility risk
linear in volatility? and is there any evidence to support this assumption?

The value of λ, can in practice be estimated using assets which are purely volatility
dependent. Using this assumption, we have the following differential equation for the option
price:

1

2
vS2 ∂

2U

∂S2
+ ρσvS

∂2U

∂S∂v
+

1

2
σ2v

∂2U

∂v2
+ (r − q)S

∂U

∂S

+(κ(θ − v)− λv)
∂U

∂v
− rU − ∂U

∂τ
= 0 (4.38)

Estimating λ directly can prove to be difficult; however, we can eliminate it by adjusting
the measure under which we are pricing. We can eliminate λ from our consideration by
using risk-neutral pricing probabilities, which results in a new process for the variance:

dv(t) = κ⋆(θ⋆ − v(t))dt + σ
√

v(t)dz2(t) (4.39)

with

κ⋆ = κ+ λ and θ⋆ =
κθ

κ+ λ

3It would be beneficial to actually extend the arbitrage argument here to give the reader an intuitive feel
for what the market price of volatility risk really means, as often in stochastic volatility and jump models
this is glossed over, but the economic argument for this follows from dynamic hedging, which makes the
Black–Scholes model so relevant. We refer readers to [98], [87], [133], and [35] on price of volatility risk.
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Using these constants, the term κ⋆(θ⋆ − v)− λv becomes

κ⋆(θ⋆ − v)− λv = (κ+ λ)((
κθ

κ + λ
)− v)− λv

= κ(θ − v)

and thus we get the following differential equation:

1

2
vS2 ∂

2U

∂S2
+ ρσvS

∂2U

∂S∂v
+

1

2
σ2v

∂2U

∂v2
+ (r − q)S

∂U

∂S

+κ(θ − v)
∂U

∂v
− rU − ∂U

∂τ
= 0 (4.40)

which does not depend on λ. Thus by using the risk-neutral measure, we have eliminated
the need to estimate λ and instead we can estimate the implied θ⋆, κ⋆ as well as the other
model parameters by using option prices.

Using the modified differential equation, we can value options using the standard PDE
methods as long as we can formulate the boundary conditions. Thus to calculate the value of
a European call option we would solve the PDE in (4.40), subject to the following boundary
conditions:

U(S, v, 0) = (S −K)+

lim
S↓0

∂2U

∂S2
(S, v, τ) = 0

lim
S↑∞

∂2U

∂S2
(S, v, τ) = 0

(r−q)S
∂U

∂S
(S, 0, τ)+κθ

∂U

∂v
(S, 0, τ)−rU(S, 0, τ)− ∂U

∂τ
(S, 0, τ) = 0 (4.41)

lim
v↑∞

U(S, v, τ) = S

where K is the strike price and τ is time to maturity, τ = T − t.
The first condition is the initial condition that is the payoff. The second and third

boundary conditions state the option gamma approaches zero for very small or very large
asset prices. 4 The fourth boundary condition enforces the PDE in the case where volatility
is zero, and the last boundary condition assumes that the option becomes a stock at infinite
variance by the arbitrage argument.

4.7.2 Options Pricing under the Heston PDE

Now that we have derived the two dimensional PDE which governs options prices under
the Heston stochastic volatility model, we can solve it for pricing derivative contracts using
standard techniques.

Before going through discretization we rewrite the PDE in new coordinates by defining

S(ξ) = K + α sinh(c1ξ + c2(1− ξ))

v(η) = β sinh(dη)

4Equivalently we can have Dirichlet conditions for the second and the third one, that is, U(0, v, τ) = 0,
which indicates the option is worthless if the asset price goes to zero and limS↑∞ U(S, v, τ) = S −K.
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where

c1 = sinh−1(
Smax −K

α
)

c2 = sinh−1(
Smin −K

α
)

d = sinh−1(
vmax

β
)

with α = and β =. Under these transformations we have

Ū(ξ, η, τ) = U(S, v, τ)

∂U

∂S
=
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∂ξ

1
∂S
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∂2U

∂S2
=

∂2Ū
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∂η

and the PDE under these new coordinates becomes
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∂Ū

∂η

1
∂v
∂η

− rŪ − ∂Ū

∂τ
= 0 (4.42)

subject to these boundary conditions:

Ū(ξ, η, 0) = (S(ξ)−K)+

1

(∂S∂ξ )
2

∂2Ū

∂ξ2
(0, η, τ)−

∂2S
∂ξ2

(∂S∂ξ )
3

∂Ū

∂ξ
(0, η, τ) = 0

1

(∂S∂ξ )
2

∂2Ū

∂ξ2
(1, η, τ)−

∂2v
∂η2

(∂v∂η )
3

∂Ū

∂ξ
(1, η, τ) = 0

(r−q)S(ξ)
1
∂S
∂ξ

∂Ū

∂ξ
(ξ, 0, τ)+κθ

1
∂v
∂η

∂Ū

∂η
(ξ, 0, τ)−rŪ(ξ, 0, τ) − ∂Ū

∂τ
(ξ, 0, τ) = 0 (4.43)

Ū(ξ, 1, τ) = S(ξ)

For the grid, we consider L equal sub-intervals in the τ -direction on [0, T ], N equal
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sub-intervals in the ξ-direction on [0, 1], and M equal sub-intervals in the v-direction on
[0, 1]. Thus, we have the following mesh on [0, 1]× [0, 1]× [0, T ]:

D̄ =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ξi = 0 + (i − 1)∆ξ; ∆ξ = 1
N ; i = 1, . . . , N + 1

ηj = 0 + (j − 1)∆η; ∆η = 1
M ; j = 1, . . . ,M + 1

τk = 0 + (k − 1)∆τ ; ∆τ = T−0
L ; k = 1, . . . , L+ 1

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

We can use the familiar discretization techniques discussed in the last section to construct
either a fully explicit or a fully implicit solution to the finite difference equation under the
Heston model. For its inherent advantages of stability, we decided to use a predominantly
implicit scheme5 to numerically solve the Heston PDE. Let Uk

i,j be the approximate solution
of Ū(ξi, ηj , τk) on the grid. For t he reference grid point (xii, ηj , τk+1) at time slice τk+1 we
have the nine grid points in the stencil indicated below.

Uk+1
i−1,j+1 Uk+1

i,j+1 Uk+1
i+1,j+1

Uk+1
i−1,j Uk+1

i,j Uk+1
i+1,j

Uk+1
i−1,j−1 Uk+1

i,j−1 Uk+1
i+1,j−1

Moreover, we assume that numeration of the grid is done from left to right and bottom to
top at each time slice.

In our discretization for the partial derivatives of Ū(ξi, ηj , τk+1) we use the following
approximations: (a) for the first and second derivatives we use the central finite difference
approximations, (b) for the cross derivatives there are various different ways of approxima-
tion, we use the one which has second order approximation in both η and ξ. We leave its
derivation as an exercise to the reader at the end of the chapter.

∂2Ū

∂ξ2
(ξi, ηj , τk+1) =

Uk+1
i−1,j − 2Uk+1

i,j + Uk+1
i+1,j

∆ξ2
+O(∆ξ2)

∂2Ū

∂η2
(ξi, ηj , τk+1) =

Uk+1
i,j−1 − 2Uk+1

i,j + Uk+1
i,j+1

∆η2
+O(∆η2)

∂2Ū

∂ξ∂η
(ξi, ηj , τk+1) =

Uk+1
i−1,j−1 − Uk+1

i−1,j+1 − Uk+1
i+1,j−1 + Uk+1

i+1,j+1

4∆ξ∆η
+O(∆ξ2) +O(∆η2)

∂Ū

∂ξ
(ξi, ηj , τk+1) =

Uk+1
i+1,j − Uk+1

i−1,j

2∆ξ
+O(∆ξ2)

∂Ū

∂η
(ξi, ηj , τk+1) =

Uk+1
i,j+1 − Uk+1

i,j−1

2∆η
+O(∆η2)

∂Ū

∂τ
(ξi, ηj , τk+1) =

Uk+1
i,j − Uk

i,j

∆τ
+O(∆τ)

Substituting these approximations into the Heston PDE, we obtain the following difference

5This is not exactly true as we will be using an implicit-explicit scheme for treatment of one of the
boundary conditions.
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equation:

Uk+1
i,j − Uk

i,j

∆τ
− 1

2
v(ηj)S(ξi)

2 1

(∂S∂ξ (ξi))
2

Uk+1
i−1,j − 2Uk+1

i,j + Uk+1
i+1,j

∆ξ2

−ρσv(ηj)S(ξi)
1

∂S
∂ξ (ξi)

∂v
∂η (ηj)

Uk+1
i−1,j−1 − Uk+1

i−1,j+1 + Uk+1
i+1,j−1 + Uk+1

i+1,j+1

4∆ξ∆η

−1

2
σ2v(ηj)

1

(∂v∂η (ηj))
2

Uk+1
i,j−1 − 2Uk+1

i,j + Uk+1
i,j+1

∆η2

−
(
(r − q)S(ξi)

1
∂S
∂ξ (ξi)

− 1

2
v(ηj)S

2(ξi)
∂2S
∂ξ2 (ξi)

(∂S∂ξ (ξi))
3

)
Uk+1
i+1,j − Uk+1

i−1,j

2∆ξ

−
(
κ(θ − v(ηj))

1
∂v
∂η (ηj)

− 1

2
σ2v(ηj)

∂2v
∂η2 (ηj)

(∂v∂η (ηj))
3

)
Uk+1
i,j+1 − Uk+1

i,j−1

2∆η
+ rUk+1

i,j = 0

Multiplying by ∆τ and rearranging the terms according to the stencil we obtain

−
(

∆τρσ
4∆ξ∆η

v(ηj)S(ξi)
1

∂S
∂ξ (ξi)

∂v
∂η (ηj)

)
Uk+1

i−1,j−1

−

⎛

⎝ σ2∆τ
2(∆η)2

v(ηj)
1

( ∂v∂η (ηi))
2
− ∆τ

2∆η

(
κ(θ − v(ηj))

1
∂v
∂η (ηj)

− 1
2
σ2v(ηj)

∂2v
∂η2 (ηj)

( ∂v∂η (ηj))
3

)
⎞

⎠Uk+1
i,j−1

+

(
∆τρσ
4∆ξ∆η

v(ηj)S(ξi)
1

∂S
∂ξ (ξi)

∂v
∂η (ηj)

)
Uk+1

i+1,j−1

−

⎛

⎝ ∆τ
(∆ξ)2

v(ηj)S(ξi)
2 1

( ∂S∂ξ (ξi))
2
− ∆τ

2∆ξ

(
(r − q)S(ξi)

1
∂S
∂ξ (ξi)

− 1
2
v(ηj)S

2(ξi)
∂2S
∂ξ2

(ξi)

( ∂S∂ξ (ξi))
3

)
⎞

⎠Uk+1
i−1,j

+

(
1 + r∆τ +

∆τ
(∆ξ)2

v(ηj)S(ξi)
2 1

( ∂S∂ξ (ξi))
2
+

σ2∆τ
(∆η)2

v(ηj)
1

( ∂v∂η (ηi))
2

)
Uk+1

i,j

−

⎛

⎝ ∆τ
(∆ξ)2

v(ηj)S(ξi)
2 1

( ∂S∂ξ (ξi))
2
+

∆τ
2∆ξ

(
(r − q)S(ξi)

1
∂S
∂ξ (ξi)

− 1
2
v(ηj)S

2(ξi)
∂2S
∂ξ2

(ξi)

( ∂S∂ξ (ξi))
3

)
⎞

⎠Uk+1
i+1,j

+

(
∆τρσ
4∆ξ∆η

v(ηj)S(ξi)
1

∂S
∂ξ (ξi)

∂v
∂η (ηj)

)
Uk+1

i−1,j+1

−

⎛

⎝ σ2∆τ
2(∆η)2

v(ηj)
1

( ∂v∂η (ηi))
2
+

∆τ
2∆η

(
κ(θ − v(ηj))

1
∂v
∂η (ηj)

− 1
2
σ2v(ηj)

∂2v
∂η2 (ηj)

( ∂v∂η (ηj))
3

)
⎞

⎠Uk+1
i,j+1

−
(

∆τρσ
4∆ξ∆η

v(ηj)S(ξi)
1

∂S
∂ξ (ξi)

∂v
∂η (ηj)

)
Uk+1

i+1,j+1 = Uk
i,j
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Defining the following coefficients for the nine grid points in the stencil.

ai,j =
∆τρσ

4∆ξ∆η
v(ηj)S(ξi)

1
∂S
∂ξ (ξi)

∂v
∂η (ηj)

bi,j =
σ2∆τ

2(∆η)2
v(ηj)

1

(∂v∂η (ηi))
2
− ∆τ

2∆η

(
κ(θ − v(ηj))

1
∂v
∂η (ηj)

− 1

2
σ2v(ηj)

∂2v
∂η2 (ηj)

(∂v∂η (ηj))
3

)

ci,j =
∆τ

(∆ξ)2
v(ηj)S(ξi)

2 1

(∂S∂ξ (ξi))
2
− ∆τ

2∆ξ

(
(r − q)S(ξi)

1
∂S
∂ξ (ξi)

− 1

2
v(ηj)S

2(ξi)
∂2S
∂ξ2 (ξi)

(∂S∂ξ (ξi))
3

)

di,j = 1 + r∆τ +
∆τ

(∆ξ)2
v(ηj)S(ξi)

2 1

(∂S∂ξ (ξi))
2
+

σ2∆τ

(∆η)2
v(ηj)

1

(∂v∂η (ηi))
2

ei,j =
∆τ

(∆ξ)2
v(ηj)S(ξi)

2 1

(∂S∂ξ (ξi))
2
+

∆τ

2∆ξ

(
(r − q)S(ξi)

1
∂S
∂ξ (ξi)

− 1

2
v(ηj)S

2(ξi)
∂2S
∂ξ2 (ξi)

(∂S∂ξ (ξi))
3

)

fi,j =
σ2∆τ

2(∆η)2
v(ηj)

1

(∂v∂η (ηi))
2
+

∆τ

2∆η

(
κ(θ − v(ηj))

1
∂v
∂η (ηj)

− 1

2
σ2v(ηj)

∂2v
∂η2 (ηj)

(∂v∂η (ηj))
3

)

We can rewrite this difference equation in a more manageable form:

−ai,jUk+1
i−1,j−1 − bi,jU

k+1
i,j−1 + ai,jU

k+1
i+1,j−1 − ci,jU

k+1
i−1,j + di,jU

k+1
i,j

−ei,jUk+1
i+1,j + ai,jU

k+1
i−1,j+1 − fi,jU

k+1
i,j+1 − ai,jU

k+1
i+1,j+1 = Uk

i,j (4.44)

Writing these difference equations in matrix form we get

AUk+1 = Uk + r.h.s. (4.45)

where A is a (M−1)(N−1)× (M−1)(N−1) block tridiagonal matrix and the solution vector
resembles

Uk+1 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Uk+1
2,2

Uk+1
3,2
...

Uk+1
N,2

Uk+1
2,3

Uk+1
3,3
...

Uk+1
N,3
...

Uk+1
2,M

Uk+1
3,M
...

Uk+1
N,M

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and the right-hand side arises from treatment of some of the boundary conditions. Note
that in this setup, indices i = 1, i = N +1, j = 1, j = M +1 correspond to boundary
points and are not entries of the vector Uk+1. Once we have the boundary node values,
solving the difference equation is just the problem of solving a (M − 1)× (N − 1) system of
linear equations in (M − 1)× (N − 1) unknowns alternatively written as the above matrix
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FIGURE 4.12: The structure of the sparse stiffness matrix

equation. The sparse structure of A as shown in Figure 4.12 can be explained easily by
looking at a stylized version of the mesh. Those rows that contain nine entries correspond
to an internal node with no neighboring boundary nodes. A six entry row corresponds to
an internal node adjacent to a single boundary (six unknown values, and three given by the
boundary conditions). The last scenario is a node neighboring two boundaries, hence, the
nearest internal neighbor to a corner node (four unknowns, and five given by the boundary
conditions).

4.7.2.1 Implementation of the Boundary Conditions

(a) Boundary condition corresponding to reference point i=2—For this boundary condition
we assume gamma is zero (Neumann condition). In ξ coordinate it corresponds to setting
the following equation to zero.

1

(∂S∂ξ (ξ2))
2

∂2Ū

∂ξ2
(ξ2, η, τ)−

∂2S
∂ξ2 (ξ2)

(∂S∂ξ (ξ2))
3

∂Ū

∂ξ
(ξ2, η, τ) = 0 (4.46)

We use second order discretization of the first and second derivatives at ξ2 = ξmin+∆ξ =
0 +∆ξ to get

1

(∂S∂ξ (ξ2))
2

Uk+1
1,j − 2Uk+1

2,j + Uk+1
3,j

∆ξ2
−

∂2S
∂ξ2 (ξ2)

(∂S∂ξ (ξ2))
3

Uk+1
3,j − Uk+1

1,j

2∆ξ
≈ 0 (4.47)

which implies

Uk+1
1,j =

2
( ∂S
∂ξ (ξ2))2

1
( ∂S
∂ξ (ξ2))2

+ ∆ξ
2

∂2S
∂ξ2

(ξ2)

( ∂S
∂ξ (ξ2))3

Uk+1
2,j −

1
( ∂S
∂ξ (ξ2))2

− ∆ξ
2

∂2S
∂ξ2

(ξ2)

(∂S
∂ξ (ξ2))3

1
( ∂S
∂ξ (ξ2))2

+ ∆ξ
2

∂2S
∂ξ2

(ξ2)

(∂S
∂ξ (ξ2))3

Uk+1
3,j

= l2U
k+1
2,j + l̄2U

k+1
3,j
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where we define

l2 =

2
(∂S
∂ξ (ξ2))2

1
( ∂S
∂ξ (ξ2))2

+ ∆ξ
2

∂2S
∂ξ2

(ξ2)

( ∂S
∂ξ (ξ2))3

(4.48)

l̄2 = −
1

( ∂S
∂ξ (ξ2))2

− ∆ξ
2

∂2S
∂ξ2

(ξ2)

( ∂S
∂ξ (ξ2))3

1
( ∂S
∂ξ (ξ2))2

+ ∆ξ
2

∂2S
∂ξ2

(ξ2)

( ∂S
∂ξ (ξ2))3

(4.49)

By substituting this discretized boundary condition in (4.44) we obtain

(−a2,jl2 − b2,j)U
k+1
2,j−1 + (−a2,j l̄2 + a2,j)U

k+1
3,j−1 + (−c2,j l2 + d2,j)U

k+1
2,j

+(−c2,j l̄2 − e2,j)U
k+1
3,j + (a2,j l2 − f2,j)U

k+1
2,j+1 + (a2,j l̄2 − a2,j)U

k+1
3,j+1 = Uk

2,j

(b) Boundary condition corresponding to reference point i=N — As in case (a), assuming
gamma is zero we obtain

1

(∂S∂ξ (ξN ))2
∂2Ū

∂ξ2
(ξN , η, τ)−

∂2S
∂ξ2 (ξN )

(∂S∂ξ (ξN ))3
∂Ū

∂ξ
(ξN , η, τ) = 0 (4.50)

We use second order discretization of the first and second derivatives at ξN =ξmax−∆ξ to
get

1

(∂S∂ξ (ξN ))2
Uk+1
N−1,j − 2Uk+1

N,j + Uk+1
N+1,j

∆ξ2
−

∂2S
∂ξ2 (ξN )

(∂S∂ξ (ξN ))3
Uk+1
N+1,j − Uk+1

N−1,j

2∆ξ
≈ 0 (4.51)

which implies

Uk+1
N+1,j = −

1
( ∂S
∂ξ (ξN ))2

+ ∆ξ
2

∂2S
∂ξ2

(ξN )

( ∂S
∂ξ (ξN ))3

1
( ∂S
∂ξ (ξN ))2

− ∆ξ
2

∂2S
∂ξ2

(ξN )

( ∂S
∂ξ (ξN ))3

Uk+1
N−1,j +

2
( ∂S
∂ξ (ξN ))2

1
( ∂S
∂ξ (ξN ))2

− ∆ξ
2

∂2S
∂ξ2

(ξN )

( ∂S
∂ξ (ξN ))3

Uk+1
N,j

= rNUk+1
N−1,j + r̄NUk+1

N,j

where

rN = −
1

( ∂S
∂ξ (ξN ))2

+ ∆ξ
2

∂2S
∂ξ2

(ξN )

( ∂S
∂ξ (ξN ))3

1
( ∂S
∂ξ (ξN ))2

− ∆ξ
2

∂2S
∂ξ2

(ξN )

( ∂S
∂ξ (ξN ))3

(4.52)

r̄N =

2
(∂S
∂ξ (ξN ))2

1
( ∂S
∂ξ (ξN ))2

− ∆ξ
2

∂2S
∂ξ2

(ξN )

( ∂S
∂ξ (ξN ))3

(4.53)

By substituting this discretized boundary condition in (4.44) we obtain

(−aN,j + aN,jrN )Uk+1
N−1,j−1 + (−bN,j + aN,j r̄N )Uk+1

N,j−1

+(−cN,j − eN,jrN )Uk+1
N−1,j + (dN,j − eN,j r̄N )Uk+1

N,j

+(aN,j − aN,jrN )Uk+1
N−1,j+1 + (−fN,j − aN,j r̄N )Uk+1

N,j+1 = Uk
N,j
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(c) Boundary conditions corresponding to j=M+1 are Dirichlet boundary conditions and
their values are

Uk+1
i,N+1 = S(ξi)

That makes the difference equation

−ai,MUk+1
i−1,M−1 − bi,MUk+1

i,M−1 + ai,MUk+1
i+1,M−1 − ci,MUk+1

i−1,M + di,MUk+1
i,M − ei,MUk+1

i+1,M

= Uk
i,M − ai,MS(ξi−1) + fi,MS(ξi) + ai,jS(ξi+1)

(d) Boundary values corresponding to j=1, namely, Uk+1
i,1 for 1 ≤ i ≤M —These boundary

nodes are the most complicated ones to evaluate, since it requires us to first solve a first
order two-dimensional PDE (4.43) at η = 0 to find an approximate solution to it. In this
case an appropriate discretization is

(r − q)
1

∂S
∂ξ (ξi)

S(ξi)

(
Uk+1
i+1,1 − Uk+1

i−1,1

2∆ξ

)
+ κθ

1
∂v
∂η (0)

−3Uk
i,1 + 4Uk

i,2 − Uk
i,3

2∆η

−rUk+1
i,1 −

Uk+1
i,1 − Uk

i,1

∆τ
= 0 (4.54)

Note for the partial derivative ∂Ū
∂η we use second order forward discretization which is fully

explicit. Thus discretization for this boundary point is not fully implicit. If it were, it would
require us to know Uk+1

i,2 and Uk+1
i,3 for 2 ≤ i ≤ N , which are nodal values in the interior,

hence unknown at time τk+1. Multiplying by ∆τ and gathering terms we can rewrite (4.54)
as follows;

αiU
k+1
i−1,1 + (1 + r∆τ)Uk+1

i,1 − αiU
k+1
i+1,1 = (−3β + 1)Uk

i,1 + 4βUk
i,2 − βUk

i,3 (4.55)

where

αi =
(r − q)∆τS(ξi)

2∆ξ

1
∂S
∂ξ (ξi)

(4.56)

β =
κθ∆τ

2∆η

1
∂v
∂η (0)

(4.57)

with the initial and boundary conditions

U0
i,1 = (S(ξi)−K)+, 1 ≤ i ≤ N

Uk+1
1,1 = l2U

k+1
2,1 + l̄2U

k+1
3,1

Uk+1
N+1,1 = rNUk+1

N−1,1 + r̄NUk+1
N,1

where l2 and l̄2 are given in (4.48) and (4.49) and rN and r̄N are given in (4.52) and (4.53).
The boundary conditions are written as second order discretization of second derivatives at
ξ2 = ξ1+∆ξ and ξN = ξN+1−∆ξ. By substituting those discretized boundary conditions in
(4.55) we obtain

(1 + r∆τ + α2l2)U
k+1
2,1 + (α2 l̄2 − α2)U

k+1
3,1 = (−3β + 1)Uk

2,1 + 4βUk
2,2 − βUk

2,3

(αN − αN rN )Uk+1
N−1,1 + (1 + r∆τ − αN r̄N )Uk+1

N,1 = (−3β + 1)Uk
N,1 + 4βUk

N,2 − βUk
N,3
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for i = 2 and i = N , respectively. Laying everything in matrix form we have

A

⎛

⎜⎜⎜⎜⎜⎜⎝

Uk+1
2,1

Uk+1
3,1
...

Uk+1
N−1,1

Uk+1
N,1

⎞

⎟⎟⎟⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎜⎜⎝

(−3β + 1)Uk
2,1 + 4βUk

2,2 − βUk
2,3

(−3β + 1)Uk
3,1 + 4βUk

3,2 − βUk
3,3

...
(−3β + 1)Uk

N−1,1 + 4βUk
N−1,2 − βUk

N−1,3

(−3β + 1)Uk
N,1 + 4βUk

N,2 − βUk
N,3

⎞

⎟⎟⎟⎟⎟⎠

where

A =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(1+r∆τ+α2l2) (α2 l̄2 − α2)
α3 (1+r∆τ) −α3

. . .
. . .

. . .

αN−1 (1+r∆τ) −αN−1
(αN − αNrN ) (1+r∆τ−αN r̄N )

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(4.58)

In summary, for each time step it is necessary to solve the following linear system on the
η = 0 boundary for the Uk+1

i,1 , 2 ≤ i ≤ N values, which in turn allows us to solve the original

difference equation. Knowing Uk+1
i,1 , the original difference equation becomes

−ci,2Uk+1
i−1,2 + di,2U

k+1
i,2 − ei,2U

k+1
i+1,2 + ai,2U

k+1
i−1,3 − fi,2U

k+1
i,3 − ai,2U

k+1
i+1,3

= Uk
i,j + ai,2U

k+1
i−1,1 + bi,2U

k+1
i,1 − ai,2U

k+1
i+1,1

Now that all boundary conditions are addressed, we should solve linear equation (4.45) at
each time step to compute a numerical solution. This fully implicit method is unconditionally
stable; however, the solution involves solving a linear system which is block tridiagonal, not
strictly tridiagonal like the implicit schemes used in the one dimensional case. An alternative
to the above methodology is to use the alternative direction implicit (ADI) method.

4.7.3 Alternative Direction Implicit (ADI) Scheme

We would like to solve the two-dimensional PDE using an implicit method; however, the
block tridiagonal structure of the resulting matrix makes this expensive. One alternative is
to use a partially implicit method which preserves the tridiagonal structure of the matrix
for the implicit terms. This construction is called the alternative direction implicit (ADI)
scheme. In the ADI scheme, each full time step comprises of two half steps: (a) first doing
implicit discretization in ξ and explicit discretization in η, (b) then doing explicit discretiza-
tion in ξ and implicit discretization in η. By doing this we always manage to preserve the
tridiagonal structure of the stiffness matrix. Schematically we can say our stencils for each
step would be (a) for the first half of the time step we have implicit discretization in ξ and
explicit discretization in η

Uk
i−1,j+1 Uk

i,j+1 Uk
i+1,j+1

U
k+ 1

2
i−1,j U

k+ 1
2

i,j U
k+ 1

2
i+1,j

Uk
i−1,j−1 Uk

i,j−1 Uk
i+1,j−1
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As before the numeration of the grid is done from left to right and bottom to top. We write
A as follows:

A = A1 +A2

and therefore we are now solving the following linear system:

A1U
k+ 1

2 = A2U
k + r.h.s.

and we solve for Uk+ 1
2

Uk+ 1
2 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

U
k+ 1

2
2,2

U
k+ 1

2
3,2
...

U
k+ 1

2
N,2

U
k+ 1

2
2,3

U
k+ 1
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(b) for the second half of the time step we have explicit discretization in S and implicit
discretization in ν.

U
k+ 1

2
i−1,j+1 Uk+1

i,j+1 U
k+ 1

2
i+1,j+1

U
k+ 1

2
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i,j U
k+ 1

2
i+1,j

U
k+ 1

2
i−1,j−1 Uk+1

i,j−1 U
k+ 1

2
i+1,j−1

Now, in order to preserve the tridiagonal structure of the stiffness matrix A, the numeration
of the grid is done from bottom to top and left to right. We write Ã as follows:

Ã = Ã1 + Ã2

and we are now solving the following linear system:

Ã1Ũ
k+1 = Ã2Ũ

k+ 1
2

where Ũk+ 1
2 is obtained by reordering Uk+ 1

2 . Knowing that in the first half ordering is
done left to right and bottom to top and now we should change to bottom to top and left
to right, the reordering can be done via the following simple routine:

for i = 1, . . . , N−1
for j = 1, . . . ,M−1

Ũk+ 1
2 [(i−1)(M−1)+j] = Uk+ 1

2 [(j−1)(N−1) + i]
endfor

endfor
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We solve for Ũk+1:

Ũk+1 =
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and reorder back to left to right bottom to top to obtain to Uk+1 for the next time step.
This is done via the following routine:

for i = 1, . . . , N−1
for j = 1, . . . ,M−1

Uk+1[(j−1)(N−1) + i] = Ũk+1[(i−1)(M−1)+j]
endfor

endfor

This would constitute one full time step in the ADI scheme. It is important to mention
that cross derivative ∂2U

∂ξ∂η is treated fully explicitly to make ADI steps possible. This is the

Peaceman–Rachford scheme [187]. In the presence of mixed derivatives with high correlation
this scheme becomes unstable, as shown by Andersen and Piterbarg [14] and Duffy [102].
Instead we use Douglas–Rachford [97] or Craig–Sneyd [83] for the ADI scheme.

4.7.3.1 Derivation of the Craig–Sneyd Scheme for the Heston PDE

The Craig–Sneyd (CS) scheme is designed to solve a two-dimensional parabolic PDE
in the presence of a mixed derivative. The CS scheme can be viewed as a generalization of
the Peaceman–Rachford ADI scheme [187]. We first provide some intuition behind such a
scheme and we then apply the CS scheme to the Heston PDE. Finally, we implement the CS
scheme for both uniform and nonuniform grids for option pricing. Through the derivation,
we see why the CS scheme improves numerical stability and accuracy over traditional ADI
in dealing with a mixed derivative. The CS scheme is designed to solve the given ODE:

u′(t) = F (t, u(t))

F (t, u(t)) = F0(t, u(t)) + F1(t, u(t)) + F2(t, u(t)) (4.59)

u(0) = u0
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Following [146], the complete one step CS scheme to get the current time step value Un

from the previous time step value Un−1 is as follows:

U1 = U0 + θ∆t(F1(tn, U1)− F1(tn−1, Un−1) (4.60)

U2 = U1 + θ∆t(F2(tn, U2)− F2(tn−1, Un−1) (4.61)

Ũ1 = Ũ0 + θ∆t(F1(tn, Ũ1)− F1(tn−1, Un−1) (4.62)

Ũ2 = Ũ1 + θ∆t(F2(tn, Ũ2)− F2(tn−1, Un−1) (4.63)

Un = Ũ2 (4.64)

where

U0 ! Un−1 +∆tF (tn−1, Un−1) (4.65)

Ũ0 ! U0 +∆tλ(F0(tn, U2)− F0(tn−1, Un−1)) (4.66)

We now attempt to give an intuition behind the CS scheme. Given the ODE

u′(t) = F (t, u(t))

F (t, u(t)) = F0(t, u(t)) + F1(t, u(t)) + F2(t, u(t))

u(0) = u0

To obtain un from un−1, we discretize the above ODE using the θ method utilizing the
iterated splitting scheme [142]

u1 − un−1

∆t
= (1− θ)(F1(un−1) + F2(un−1)) + θ(F1(u1) + F2(un−1))

+ ((1− λ)F0(un−1) + λF0(un−1))
u2 − un−1

∆t
= (1− θ)(F1(un−1) + F2(un−1))+θ(F1(u1) + F2(u2))

+ ((1− λ)F0(un−1) + λF0(un−1))
u1 − un−1

∆t
= (1− θ)(F1(un) + F2(un−1)) + θ(F1(u1) + F2(un−1))

+ ((1− λ)F0(un−1) + λF0(u2))
un − un−1

∆t
= (1− θ)(F1(un−1) + F2(un−1)) + θ(F1(u1) + F2(u2))

+ ((1− λ)F0(un) + λF0(u2))

We can rewrite the above equations as

u1 = un +∆t((1− θ)F1(un) + θF1(u1)) +∆t(F2(un) + F0(un)) (4.67)

u2 = un +∆t((1− θ)F1(un) + θF1(u1)) +∆t((1 − θ)F2(un) + θF2(u2))

+ ∆tF0(un) (4.68)

u1 = un +∆t((1− θ)F1(un) + θF1(u1)) +∆tF2(un)

+ ∆t((1 − λ)F0(un) + λF0(u2)) (4.69)

u2 = un +∆t((1− θ)F1(un) + θF1(u1)) +∆t((1 − θ)F2(un) + θF2(u2))

+ ∆t((1 − λ)F0(un) + λF0(u2)) (4.70)

Equations (4.67), (4.68), (4.69), and (4.70) are the principles behind the CS Scheme. Suppose
Un−1 is the solution of the ODE (4.59) at time t = tn−1 to get the solution at t = tn. Apply
(4.67) we get

U1 = Un−1 +∆t(θF1(U1) + (1 − θ)F1(Un−1)) +∆t(F2(Un−1) + F0(Un−1)) (4.71)
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or equivalently

U1 = Un−1+∆t{F1(Un−1)+F2(Un−1)+F0(Un−1)}+θ∆t(F1(U1)−F1(Un−1))(4.72)

Define

U0 ! Un−1 +∆t{F1(Un−1) + F2(Un−1) + F0(Un−1)} = Un−1 +∆tF (Un−1) (4.73)

Therefore

U1 = U0 + θ∆t(F1(U1)− F1(Un−1)) (4.74)

Note that Equation (4.73) justifies Equation (4.65) and Equation (4.74) justifies Equation
(4.60). Then we proceed by applying (4.68):

U2 = Un−1 +∆t(θF1(U1) + (1− θ)F1(Un−1)) +∆t(θF2(U2) + (1− θ)F2(Un−1))

+ ∆tF0(Un−1) (4.75)

= Un−1 +∆t{(θF1(U1) + (1 − θ)F1(Un−1) + F2(Un−1) + F0(Un−1)}
+ ∆tθ(F2(U2)− F2(Un−1)) (4.76)

= Un−1 + U1 − Un−1 +∆tθ(F2(U2)− F2(Un−1))

= U1 +∆tθ(F2(U2)− F2(Un−1)) (4.77)

Note that the term in Equation (4.76) in big parentheses is U1−Un−1 via Equations (4.71)
and (4.77) justifies Equation (4.61). The following is for justifying Equations (4.62), (4.63),
and (4.64), which is similar to the above derivations. Now we proceed by applying (4.69):

Ũ1 = Un−1 +∆t(θF1(Ũ1) + (1− θ)F1(Un−1))

+ ∆tF2(Un−1) +∆t(λF0(U2) + (1− λ)F0(Un−1)) (4.78)

= {Un−1 +∆t(F1(Un−1) + F2(Un−1) + F0(Un−1)) + λ∆t(F0(U2)− F0(Un−1))}
+ θ∆t(F1(Ũ1)− F1(Un−1)) (4.79)

= Ũ0 +∆tθ(F1(Ũ1)− F1(Un−1)) (4.80)

(4.81)

where Ũ0 is defined as

Ũ0!Un−1+∆t(F1(Un−1)+F2(Un−1)+F0(Un−1))+λ∆t(F0(U2)−F0(Un−1)) (4.82)

The intuition behind the above definition of Ũ0 (4.82) is as follows:

Ũ0 = Un−1 +∆tF1(Un−1) +∆tF2(Un−1) +∆t(λF0(U2) + (1− λ)F0(Un−1)) (4.83)

The Euler scheme is used to propagate from Un−1 to Ũ0. For operators F1 and F2 we
use old value Un−1; for operator F0 we use the average of U2 and Un−1. The procedure
does not involve any implicit scheme for updating F1 and F2 since F0 is always treated
explicitly in the CS scheme. Note that the first term in Equation (4.82) in parenthesis is U0

via Equation (4.73) and Equations (4.80) and (4.82) justify (4.66) and (4.62), respectively.
Now we proceed by applying (4.70):

Ũ2 = Un−1 +∆t(θF1(Ũ1) + (1 − θ)F1(Un−1))

+ ∆t(θF2(Ũ2) + (1− θ)F2(Un−1)) +∆t(λF0(U2) + (1− λ)F0(Un−1)) (4.84)

= Un−1 +∆t{θF1(Ũ1) + (1− θ)F1(Un−1) + F2(Un−1)

+ (λF0(U2) + (1− λ)F0(Un−1))}+∆tθ(F2(Ũ2)− F2(Un−1)) (4.85)

= Un−1 + Ũ1 − Un−1 +∆tθ(F2(Ũ2)− F2(Un−1)) (4.86)

= Ũ1 +∆tθ(F2(Ũ2)− F2(Un−1)) (4.87)
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Note that the second term in Equation (4.85) in parentheses is actually Ũ1 − Un−1 via
Equation (4.78). Equation (4.87) justifies Equation (4.63).

4.7.4 Heston PDE

∂u

∂τ
=

1

2
νS2 ∂

2u

∂S2
+ (r − q)S

∂u

∂S
+ ρσνS

∂2u

∂S∂ν
+

1

2
σ2ν

∂2u

∂ν2
+ κ(θ − ν)

∂u

∂ν
− ru

Boundary conditions are consistent with what was written earlier in the chapter. The Heston
PDE can be rewritten as the ODE as follows:

U ′(t) = F0(U, t) + F1(U, t) + F2(U, t)

U(0) = U0

where

F0(u, t) = ρσνS
∂2u

∂S∂ν

F1(u, t) =
1

2
νS2 ∂

2u

∂S2
+ (r − q)S

∂u

∂S
− r

2
u

F2(u, t) =
1

2
σ2ν

∂2u

∂ν2
+ κ(θ − ν)

∂u

∂ν
− r

2
u

Applying the CS scheme (4.65-4.64) for the above Heston PDE (ODE) we get a complete
CS loop for each time step:

(1) U0 = Uold +∆tF (Uold)

(2) U1 = (I − θ∆t(A1 − r
2I))

−1(U0 + θ∆t( r2Uold −A1Uold))

(3) U2 = (I − θ∆t(A2 − r
2I))

−1(U1 + θ∆t( r2Uold −A2Uold))

(4) Û0 = U0 + θ∆tA0(U2 − Uold)

(5) Û1 = (I − θ∆t(A1 − r
2I))

−1(Û0 + θ∆t( r2Uold −A1Uold))

(6) Û2 = (I − θ∆t(A2 − r
2I))

−1(Û1 + θ∆t( r2Uold −A2Uold))

(7) Uold = Û2.

Note that A0, A1, and A2 are tridiagonal matrices coming from discretization of F0(U, t),
F1(U, t), and F2(U, t), respectively.

4.7.5 Numerical Results and Conclusion

For our numerical results we use the following sets of parameters: spot price S0 = 1200,
strike price K = 1200, risk-free rate r = 0.25%, dividend rate q = 1.0%, κ = 1, θ = 0.15,
correlation ρ = −0.80, volatility of variance σ = 0.40, initial variance v0 = 0.15, Smin = 400,
Smax = 3000, vmin = 0%, vmax = 500%. Here are the mesh grid specifications:

Time step spacing

∆t = T
400
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That means L = 50, 100, 400 (time intervals) for maturities T = 0.125, 0.25, 1.0,
respectively.

Stock spacial spacing

M = 300

0 ≤ ξi ≤ 1, i = 1, . . . ,M , uniform grid on interval [0, 1]

S(ξi) = K + α sinh(c1ξi + c2(1 − ξi))

For non-uniform grids we set α = (K−Smin)
3

For uniform grids we set α = Smax−Smin

c1 = sinh−1(Smax−K
α )

c2 = sinh−1(Smin−K
α )

Variance spacing

N = 100

0 ≤ ηi ≤ 1, i = 1, . . . , N , uniform grid on interval [0, 1]

v(ηi) = β sinh(dηi)

For non-uniform grids we set β = (vmax−vmin)/50

For uniform grids we set β = vmax−vmin

d = sinh−1(vmax
β )

For the FFT method we use α = 1.2 and N = 214. Results are summarized in Tables
4.1–4.6. In these tables, we compare premiums from the ADI scheme with those from FFT,
implicit scheme and analytical for both uniform and non-uniform grids. We also plot three
dimensional plot of ADI finite difference solution in Figures 4.13–4.15. Comparisons of
premiums for maturity of 1.5 months are shown in Tables 4.1 and 4.2 for non-uniform and
uniform grids respectively. Figure 4.13 depicts the ADI finite difference solution for maturity
of 1.5 months.

TABLE 4.1: Premiums (cpu time in seconds) comparison for a non-uniform grid on both
S and v for maturity T = 1.5 months using ADI, implicit scheme, fast Fourier transform
and analytical

K T ADI (cpu) Implicit (cpu) FFT (cpu) Analytical (cpu)
1200 0.125 64.256(35.040) 64.2480(51.085) 64.351(0.004) 64.258(0.001)
1250 0.125 42.367(35.570) 42.3600(50.151) 42.601(0.004) 42.365(0.008)
1300 0.125 26.246(35.139) 26.2417(50.844) 26.355(0.005) 26.247(0.007)
1350 0.125 15.193(35.309) 15.1920(50.506) 15.361(0.004) 15.180(0.009)
1400 0.125 8.153(35.564) 8.1555(61.744) 8.223(0.004) 8.142(0.008)
1450 0.125 4.031(40.303) 4.0345(50.450) 4.135(0.005) 4.023(0.023)

Comparisons of premiums for maturity of 3 months are shown in Tables 4.3 and 4.4 for
non-uniform and uniform grids respectively. Figure 4.14 depicts the ADI finite difference
solution for maturity of 3 months. Comparisons of premiums for maturity of 12 months
are shown in Tables 4.5 and 4.6 for non-uniform and uniform grids respectively. Figure 4.15
depicts the ADI finite difference solution for maturity of 12 months. As we see from our



Derivative Pricing via Numerical Solutions of PDEs 163

TABLE 4.2: Premiums (cpu time in seconds) comparison for a uniform grid on both S
and v for maturity T = 1.5 months using ADI, implicit scheme, fast Fourier transform and
analytical

K T ADI (cpu) Implicit (cpu) FFT (cpu) Analytical (cpu)
1200 0.125 63.573(35.518) 63.565(511.32) 64.351(0.004) 64.258(0.001)
1250 0.125 41.463(35.292) 41.455(502.46) 42.601(0.004) 42.365(0.008)
1300 0.125 25.664(35.406) 25.659(513.03) 26.355(0.004) 26.247(0.007)
1350 0.125 15.164(35.167) 15.163(502.01) 15.361(0.004) 15.180(0.009)
1400 0.125 8.564(35.766) 8.565(501.44) 8.223(0.004) 8.142(0.008)
1450 0.125 4.584(35.169) 4.586(498.88) 4.135(0.005) 4.023(0.023)
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FIGURE 4.13: Surface of call price premiums for S0 = 1200, K = 1200, λ = 0, T = 0.125

results, both ADI and implicit scheme produce reasonable approximations to the value of
the option. To improve the results, we have used non-uniform mesh refinement. There are
several ways to do this. We have done by transformation introduced in Section 4.3.1. This
transformation simply decreases the number of nodes as ν → νmax, and S → Smax (placing
a higher density of mesh nodes in the region of high curvature, and hence less in the region
of low curvature). This allows for a significantly larger νmax and Smax. As expected, we see
from the results that ADI scheme is almost twice faster than implicit for the same mesh
grid specifications. This is due to the fact the in the implicit scheme we have to solve a
linear system which is block tridiagonal.

In general, there could a boundary layer occurring at ν = νmax. This is understandable
since the boundary condition U = i∆S for ν = νmax is not a good approximation to
U(S,∞, τ) = S, unless the strike price is very small. We would need to increase ν markedly
for this approximate boundary condition to be a good estimate as in our case. This would
probably solve the problem of a boundary layer when ν = νmax.

Due to the choice of v0 and S0 in our case we do not need to interpolate in order to
obtain the approximate solution for this case, but in general we can introduce an error into
the estimation due to interpolation.
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TABLE 4.3: Premiums (cpu time in seconds) comparison for a non-uniform grid on both
S and v for maturity T = 3 months using ADI, implicit scheme, fast Fourier transform and
analytical

K T ADI (cpu) Implicit (cpu) FFT (cpu) Analytical (cpu)
1200 0.25 89.599(39.834) 89.587(504.53) 89.663(0.003) 89.603(0.009)
1250 0.25 66.931(35.917) 66.920(516.10) 67.091(0.004) 66.932(0.037)
1300 0.25 48.453(36.355) 48.444(505.67) 48.537(0.004) 48.457(0.009)
1350 0.25 33.915(35.389) 33.909(532.01) 34.054(0.003) 33.907(0.022)
1400 0.25 22.876(35.860) 22.873(499.73) 22.949(0.007) 22.868(0.002)
1450 0.25 14.829(35.037) 14.830(508.10) 14.959(0.005) 14.823(0.008)

TABLE 4.4: Premiums (cpu time in seconds) comparison for a uniform grid on both S
and v for maturity T = 3 months using ADI, implicit scheme, fast Fourier transform and
analytical

K T ADI (cpu) Implicit (cpu) FFT (cpu) Analytical (cpu)
1200 0.25 88.657(35.423) 88.646(58.839) 89.664(0.004) 89.603(0.009)
1250 0.25 65.548(39.981) 65.537(50.286) 67.091(0.004) 66.933(0.037)
1300 0.25 47.165(35.594) 47.156(50.163) 48.537(0.004) 48.458(0.009)
1350 0.25 33.137(37.047) 33.131(50.490) 34.055(0.004) 33.908(0.022)
1400 0.25 22.754(35.175) 22.752(49.821) 22.949(0.008) 22.868(0.001)
1450 0.25 15.230(35.145) 15.229(54.356) 14.959(0.005) 14.824(0.009)

Problems

1. Consider the Black–Scholes PDE

∂V

∂t
+

1

2
σ2S2 ∂

2V

∂S2
+ (r − q)S

∂V

∂S
= rV

Assuming the terminal boundary condition is the payoff of a put option at maturity
T

V (S, T ) = max(K − S, 0)

The analytical solution to this PDE at time t < T is the Black–Scholes option pricing
formula for a European put, which is given by

V (S, t) = Ke−r(T−t)Φ(−d2)− Se−q(T−t)Φ(−d1)

where

d1 =
ln(S/K) + (r − q + σ2/2)(T − t)

σ
√
T − t

d2 = d1 − σ
√
T − t
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FIGURE 4.14: Surface of call price premiums for S0 = 1200, K = 1200, λ = 0, T = 0.25

TABLE 4.5: Premiums (cpu time in seconds) comparison for a non-uniform grid on both
S and v for maturity T = 12 months using ADI, implicit scheme, fast Fourier transform
and analytical

K T ADI (cpu) Implicit (cpu) FFT (cpu) Analytical (cpu)
1200 1 168.737(217.786) 168.732(313.129) 168.781(0.005) 168.759(0.029)
1250 1 145.907(175.873) 145.902(296.699) 145.981(0.003) 145.922(0.005)
1300 1 125.222(179.275) 125.218(250.785) 125.268(0.003) 125.235(0.007)
1350 1 106.643(174.855) 106.639(272.039) 106.714(0.005) 106.648(0.010)
1400 1 90.084(185.675) 90.081(266.624) 90.130(0.005) 90.087(0.003)
1450 1 75.459(173.685) 75.456(253.322) 75.546(0.004) 75.462(0.032)

Moreover, we have the following analytical expressions for ∆, Γ, κ (Greeks) for a
European put option:

∆ = e−q(T−t) (Φ(d1)− 1)

Γ =
φ(d1)e−q(T−t)

Sσ
√
T − t

κ = Se−q(T−t)φ(d1)
√
T − t

where Φ is the standard normal cumulative distribution function and φ denotes the
standard normal probability density function. Using the following pricing parameters,
spot price S0 = $100, strike price K = {90, 100, 110}, risk-free rate r = 2%, dividend
yield q = 1.5%, time to maturity T = 1 year, and volatility σ = {15%, 30%, 50%},
solve the Black–Scholes PDE numerically to price a European put option by means
of

(1) Explicit finite differences

(2) Implicit finite differences

(3) Crank–Nicolson finite differences
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TABLE 4.6: Premiums (cpu time in seconds) comparison for a uniform grid on both S
and v for maturity T = 12 months using ADI, implicit scheme, fast Fourier transform and
analytical

K T ADI (cpu) Implicit (cpu) FFT (cpu) Analytical (cpu)
1200 1 167.527(182.528) 167.522(253.134) 168.780(0.004) 168.758(0.029)
1250 1 144.287(174.486) 144.281(249.799) 145.981(0.003) 145.921(0.005)
1300 1 123.335(174.123) 123.329(251.339) 125.268(0.003) 125.235(0.006)
1350 1 104.715(178.993) 104.709(249.550) 106.713(0.005) 106.647(0.010)
1400 1 88.337(186.521) 88.332(250.629) 90.130(0.004) 90.086(0.003)
1450 1 74.027(186.027) 74.022(250.657) 75.545(0.004) 75.462(0.032)
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FIGURE 4.15: Surface of call price premiums for S0 = 1200, K = 1200, λ = 0, T = 1

(4) Multi-step finite differences

Using the following sets of boundary conditions:

I.

lim
S→0

V (S, t) = Ke−r(T−t) − Se−q(T−t)

lim
S→∞

V (S, t) = 0

II.

lim
S→0

∂2V

∂S2
= 0

lim
S→∞

∂2V

∂S2
= 0

(a) For each of the eight cases compare the prices and Greeks with the analytical
values.
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(b) In the case of the explicit finite difference scheme demonstrate that the scheme
is conditionally stable and find the condition under which the scheme would be
stable.

(c) In the case of the Crank–Nicolson scheme demonstrate that for certain time
steps, the solution oscillates in time.

(d) Explain which set of boundary conditions you would prefer and why. Justify your
answer by referring to your numerical results.

2. Calculate American put option values in the Black–Scholes framework for the following
parameters: spot price, S0 = $100; strike price K = {80, 100, 120}; risk-free interest
rate, r = 4.75%; dividend rate, q = 1.75%; maturity T = 1 year, and volatility,
σ = {15%, 30%, 50%} by:

(a) Applying the Bermudan approach.

(b) Solving the following modified Black–Scholes PDE:

∂V

∂t
+

1

2
σ2S2 ∂

2V

∂S2
+ (r − q)S

∂V

∂S
− rV − S<S∗(t){qS − rK} = 0

(c) Applying the Brennan–Schwartz algorithm.

Compare values and critical stock price curves and conclude.

3. For K < B, the forward PDE for up-and-out calls (Carr–Hirsa) is as follows:

σ2(K,T )

2
K2 ∂

2U

∂K2
− [r(T )− q(T )]K

∂U

∂K
− q(T )U =

∂U

∂T
+

[
σ2(B, T )

2
B2 ∂

3U

∂K3
(B, T )

]
(K −B)

with initial condition

U(K, 0) = (S0 −K)+, for K < B, and S0 < B.

Boundary conditions are

UKK(0, T ) = 0

UKK(B, T ) = 0

For the following variables up barrier B = 125, spot price S0 = 100, the local volatility
surface σ(K,T ) = 0.5e−T (100/K)0.3, risk-free rate r = 4.75%, and dividend rate
q = 1.75% fill in the following table:

Maturity T1 = 0.25 T2 = 0.5 T3 = 1.0
Barrier Strike Bwd Fwd Bwd Fwd Bwd Fwd
125 110

120
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4. A fortiori, the up-and-out call value function U(S, t) solves a backward boundary
value problem (BVP), consisting of the backward partial differential equation

∂U(S, t)

∂t
+

σ2(S, t)S2

2

∂2U(S, t)

∂S2
+ [r(t) − q(t)]S

∂U(S, t)

∂S
− r(t)U(S, t) = 0

subject to the following boundary conditions:

U(S, T0) = (S −K0)+, S ∈ [0, B]

lim
S↓0

U(S, t) = 0, t ∈ [0, T0]

lim
S↑B

U(S, t) = 0, t ∈ [0, T0]

Solve the PDE numerically for the following set of parameters: spot price S0 = $100,
strike price K = {105, 115}, up barrier B = 125, risk-free interest rate r = 4.75%,
dividend rate q = 1.75%, maturity T = 1 year, and volatility σ = {15%, 30%, 50%}
using

• Uniform mesh points on S

• Uniform mesh points on ξ where

ξ =
sinh−1((S −B)/α)− c2

c1 − c2

where

c1 = sinh−1

(
Smax −B

α

)

c2 = sinh−1

(
Smin −B

α

)

α =
Smax − Smin

20

Compare approximated values (premium and delta) with the closed-form values.

Case Studies

1. For the following parameters: spot price S0 = $100, strike price K = {90, 100, 110},
maturity T = 0.25, risk-free interest rate r = 3.75%, volatility of volatility σ = 30%,
κ = 1, λ = 0.5, θ = 0.05, ρ = −0.75, and ν0 = 0.05 apply the following methods to
numerically solve the Heston PDE:

• Fully implicit finite difference scheme

• Alternative direction implicit (ADI) scheme

• Fast Fourier transform technique

• Monte Carlo simulation (with and without variance reduction)

and compare your results.
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2. We would like to investigate the sensitivity of the numerical solution of PDEs to the
choice of Smin, Smax, and ∆S. Consider the Black–Scholes PDE with the parameter
set in problem 1.

Lower and Upper
Boundaries∆S

Smin Smax

150
0 200

250
150

1
100 25 200

250
150

50 200
250
150

0 200
250
150

1
25 25 200

250
150

50 200
250

Lower and Upper
Boundaries∆S

Smin Smax

150
0 200

250
150

1
10 25 200

250
150

50 200
250
150

0 200
250
150

1 25 200
250
150

50 200
250

Price the Black–Scholes PDE numerically using the implicit scheme for each choice in
the table above and compare the numerical results with the close-form solution and
draw a conclusion on the sensitivity of results to the choice of Smin, Smax, and ∆S.

3. We aim to investigate the effect of higher order discretization on premiums by focusing
on a known case. Consider the following parameters: spot price S0 = 100, strike price
K = 90, risk-free rate r = 0.25%, dividend yield q = 1.25%, time to maturity T = 1
year, and volatility σ = 50%, Smin = 0, Smax = 250, number of grid points in the
price direction N = 1000 and number of grid points in the time direction M = 250.
Solve the Black–Scholes PDE numerically to price a European put option by means
of implicit finite differences using Neumann boundary conditions using

(a) second order discretization on first and second derivatives which would yield to
a tridiagonal stiffness matrix.

(b) higher order discretization on first and second derivatives which would yield to
a pentadiagonal stiffness matrix.

Compare premiums with the close-form solution and conclude.

4. Is it ever worth using coordinate transformation in order to concentrate the mesh
points on a specific price? What are the numerical differences between this consider-
ably harder coordinate transformation and just using specially created points for the
grid while using the regular PDE? Here we aim to investigate some special cases and
their benefits by looking into some known cases.

Use the following parameters, spot price S0 = 100, strike price K = 90, risk-free rate
r = 0.25%, dividend yield q = 1.25%, time to maturity T = 1 year, and volatility
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σ = 50% and consider Smin = 0, Smax = 250, number of grid points in the price
direction N = 1000 and number of grid points in the time direction M = 250. Solve
the Black–Scholes PDE numerically to price a European put option by means of
implicit finite differences using Neumann boundary conditions using

(a) Equidistant subintervals.

(b) Coordinate transformation by concentrating points around the strike.

Compare the prices and Greeks with the close-form solution and conclude.

Now price an up-and-out call with the barrier level of H = 130 using

(a) Equidistant subintervals.

(b) Coordinate transformation by concentrating points around the barrier.

Compare the prices and Greeks with the close-form solution and conclude.



Chapter 5

Derivative Pricing via Numerical Solutions of
PIDEs

A number of authors have recently proposed the use of infinite activity pure jump Lévy
processes for the process describing the dynamics of the asset’s logarithmic price (Eberlein,
Keller, and Prause [105], Barndorff–Nielsen and Shephard [26] and Madan, Carr, and Chang
[175]). Further it is argued in Geman, Madan, and Yor [118] that such processes are the
norm when it is recognized that time changes with martingale components describe price
evolution. At an empirical level, Carr, Geman, Madan and Yor [54] present evidence sup-
porting the view that in the presence of an infinite activity Lévy process one may effectively
dispense with a diffusion component.

In this chapter we develop a procedure for pricing options when the underlying asset
price dynamics are given by a pure jump infinity activity Lévy process. The method is
illustrated for the case of the CGMY process introduced in [53] and discussed in Section
1.2.8. One may easily adapt to the variance gamma process introduced in Madan, Carr,
and Chang [175] and other similar processes, including the class of jump diffusion models
proposed in Bates [29] or Duffie, Pan, and Singleton [101].

5.1 Numerical Solution of PIDEs (a Generic Example)

We first derive a partial-integro differential equation (PIDE) in the value function of the
claim, particularly suited to the proposed numerical implementation. We then demonstrate
how the PIDE is discretized and develop a numerical scheme for computing an approximate
solution to the PIDE. We do not provide an analysis establishing the unconditional stability
of our algorithm. Nonetheless, we conjecture that our scheme is consistent, unconditionally
stable, and convergent. This claim is based on computational observations and comparisons
with the prices of European options using closed forms reported in Madan, Carr, and Chang
[175] and [53]. Numerical results and convergence tables presented at the end of this chapter
provide further supporting evidence.

An alternative to our approach is presented in [9] and [8]. In [9], the authors prove results
on the continuity of the exercise boundary, on the principle of smooth fit (also known as
high contact condition introduced by Paul A. Samuelson in [196]), and on the behavior of
the exercise boundary near maturity as well. In [9], equations are discretized in space by the
collocation method and in time by an explicit backward differentiation formula. They show
their discretization is of second-order accuracy. An application of the fast Fourier transform
gives the overall amount of work to be O(MN logN) which represents a fast method.1

1N is the number of grid point in the space direction and M is the number of grid points in the time
direction

171
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To gain some insight into the stability of their resulting discretization of the PIDE, they
perform a Von Neumann (Fourier) stability analysis.

5.1.1 Derivation of the PIDE

Before we dive straight into the derivation of the PIDE for the CGMY process, we define
Lévy processes in general and the Lévy–Khintchine representation. Lévy processes seem to
be relatively new to financial engineering and mathematics of finance students and not
used extensively in practice. We refer readers to [31] and [185] for further reading on Lévy
processes and infinitely divisible distributions. They seem to really be essentials in terms
of understanding pure jump and general Lévy models and the decomposition of any Lévy
process into a Brownian, small Poisson jump and large Poisson jump component as well as
a derivation of the form of the Lévy density. We refer reader to [77] for financial modeling
with jump processes which is a good introduction to general Lévy models in finance.

A Lévy process is a stochastic process with stationary independent increments. The
Lévy-Khintchine theorem provides a characterization of a Lévy process in terms of the
characterization function of the process; that is, there exists a measure ν such that for all
u ∈ R and t non-negative

E(eiuXt) = exp(tφ(u)) (5.1)

where

φ(u) = iγu− 1

2
σ2u2 +

∫ +∞

−∞
(eiuy − 1− iuy {|y|≤1})dν(y) (5.2)

Here γ and σ are real numbers, ν is a measure on R such that ν({0}) = 0, and∫ +∞
−∞ min(1, x2)dν(x) is bounded. Assume a Lévy process, {Xt}t≥0, of the following form:

Xt = (r − q + µ)t+ Zt (5.3)

This process has a drift term controlled by µ and a pure jump component {Zt}t≥0. Here
we focus on the case that the Lévy measure associated to the pure jump component can be
written as dν(y) = k(y)dy, where k(y) is defined as

dν(y) = k(y)dy

k(y) =
e−λpy

νy1+Y y>0 +
e−λn|y|

ν|y|1+Y y<0 (5.4)

λp =

(
θ2

σ4
+

2

σ2ν

) 1
2

− θ

σ2

λn =

(
θ2

σ4
+

2

σ2ν

) 1
2

+
θ

σ2

The variable Y allows for control of the sign of large and small jumps. By raising Y
above zero, one may induce greater activity near zero and less activity further away from
zero. There are also some critical values of Y of interest.

• Y = 1 separates finite variation Y < 1 from Y > 1 infinite variation

• Y = 0 separates finite arrival rate Y < 0 from Y > 0 infinite arrival rate

• Y = −1 separates activity concentrated away from zero Y < −1 from Y > −1 activity
concentrated at zero
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Let function V (St, t) be the value of derivative security. Applying Itô’s lemma for semi-
martingales [183] on er(T−t)V (St, t) one gets

V (ST , T ) = erTV (S0, 0) +

∫ T

0
er(T−t) ∂V

∂S
(St, t)dSt

+

∫ T

0
er(T−t)

∫ +∞

−∞

[
V (St−e

x, t)− V (St−, t)−
∂V

∂S
(St−, t)St−(e

x − 1)

]
µ(dx, dt)

+

∫ T

0
er(T−t)

[
∂V

∂t
(St, t)− rV (St, t)

]
dt

= erTV (S0, 0) +

∫ T

0
er(T−t)∂V

∂S
(St, t) [dSt − (r − q)Stdt]

+

∫ T

0
er(T−t)

∫ +∞

−∞

[
V (St−e

x, t)− V (St−, t)−
∂V

∂S
(St−, t)St−(e

x − 1)

]
µ(dx, dt)

+

∫ T

0
er(T−t)

[
∂V

∂t
(St, t) + (r − q)St

∂V

∂S
(St, t)− rV (St, t)

]
dt

where µ(dx, dt) is the integer valued random measure which counts the number of jumps
in any region of space-time. The density ν(dy)dt is the compensator of µ(dx, dt) [150]. Add
and subtract the following term to the above equation:

∫ T

0
er(T−t)

∫ +∞

−∞

[
V (St−e

y, t)− V (St−, t)−
∂V

∂S
(St−, t)St−(e

y − 1)

]
ν(dy)dt

to get

V (ST , T ) = V (S0, 0)e
rT +

∫ T

0
er(T−t) ∂V

∂S
(St, t) [dSt − (r − q)Stdt]

+

∫ T

0
er(T−t)

∫ +∞

−∞

[
V (Ste

y, t)−V (St, t)−
∂V

∂S
(St, t)St(e

x−1)

]
[µ(dx, dt)−ν(dy)dt]

+

∫ T

0
er(T−t)

∫ +∞

−∞

[
V (Ste

x, t)− V (St−, t)−
∂V

∂S
(St, t)St−(e

x − 1)

]
ν(du)dt

+

∫ T

0
er(T−t)

[
∂V

∂t
(St, t) + (r − q)St

∂V

∂S
(St, t)− rV (St, t)

]
dt

Now taking the expectation under Q we will get

EQV (ST , T ) = V (S0, 0)e
rT

+

∫ T

0
er(T−t)

{∫ +∞

−∞

[
V (Ste

y, t)− V (St, t)−
∂V

∂S
(St, t)St−(e

y − 1)

]
ν(dy)

+
∂V

∂t
(St, t) + (r − q)St

∂V

∂S
(St, t)− rV (St, t)

}
dt

We know that

EQ (V (ST , T )) = V (S0, 0)e
rT

Therefore
∫ T

0
er(T−t)

{∫ +∞

−∞

[
V (St−e

y, t)− V (St−, t)−
∂V

∂S
(St−, t)St−(e

y − 1)

]
ν(dy)

+
∂V

∂t
(St, t) + (r − q)St

∂V

∂S
(St, t)− rV (St, t)

}
dt = 0
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Since the integrand is non-negative, that implies
∫ +∞

−∞

[
V (St−e

y, t)− V (St−, t)−
∂V

∂S
(St−, t)St−(e

y − 1)

]
ν(dy)

+
∂V

∂t
(St, t) + (r − q)St

∂V

∂S
(St, t)− rV (St, t) = 0

Note that the PIDE is pretty generic for any Lévy density ν(dy). Writing ν(dy) = k(y)dy
we get

∫ ∞

−∞

[
V (St−e

y, t)− V (St−, t)−
∂V

∂S
(St−, t)St−(e

y − 1)

]
k(y)dy

+
∂V

∂t
(St, t) + (r − q)St

∂V

∂S
(St, t)− rV (St, t) = 0 (5.5)

which is the partial-integro differential equation (PIDE) we are going to solve numerically
for the Lévy density in Equation (5.4). By making the change of variables x = lnS and
τ=T−t we obtain the following PIDE, as a function of w(x, τ):

∂w

∂τ
(x, τ) − (r − q)

∂w

∂x
(x, τ) + rw(x, τ)

−
∫ ∞

−∞

[
w(x + y, τ)− w(x, τ) − ∂w

∂x
(x, τ)(ey − 1)

]
k(y)dy = 0 (5.6)

noting

w(x, τ) = V (S, t)

∂2w

∂x2
(x, τ) − ∂w

∂x
(x, τ) = S2 ∂

2V

∂S2
(S, t)

∂w

∂x
(x, τ) = S

∂V

∂S
(S, t)

∂w

∂τ
(x, τ) = −∂V

∂t
(S, t)

w(x + y, τ) = V (Sey, t)

For European vanilla options, this PIDE must be solved subject to the initial condition

w(x, 0) = (K − ex)+ (5.7)

for a put or
w(x, 0) = (ex −K)+ (5.8)

for a call and the following Neumann boundary conditions:

lim
x↓−∞

∂2w

∂x2
(x, τ) − ∂w

∂x
(x, τ) = 0 ∀τ (5.9)

lim
x↑+∞

∂2w

∂x2
(x, τ) − ∂w

∂x
(x, τ) = 0 ∀τ (5.10)

Before starting to discretize the PIDE in (5.6) to set up the difference equation at a grid
point, we look into the evaluation of the integral term. There are various approaches to
evaluating the integral

∫ ∞

−∞

[
w(x + y, τ)− w(x, τ) − ∂w

∂x
(x, τ)(ey − 1)

]
k(y)dy
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The Lévy measure k(y)dy is singular at y = 0 but this does not lead to any integrability
problems in either the analytical result or the related numerical evaluation. For the purpose
of evaluating the integral, the domain of integration is first divided into two regions: (a)
|y| > ϵ, (b) |y| <= ϵ and we write it as

∫ ∞

−∞

[
w(x+ y, τ)− w(x, τ) − ∂w

∂x
(x, τ)(ey − 1)

]
k(y)dy (5.11)

=

∫

|y|<=ϵ

[
w(x + y, τ)− w(x, τ) − ∂w

∂x
(x, τ)(ey − 1)

]
k(y)dy (5.12)

+

∫

|y|>ϵ

[
w(x + y, τ)− w(x, τ) − ∂w

∂x
(x, τ)(ey − 1)

]
k(y)dy (5.13)

Note that the obvious choice for ϵ is to set it equal to the grid size that is ∆x. The Lévy
measure k(y)dy for different processes behaves differently near zero. For instance, the Lévy
measure for the CGMY process approaches infinity much faster than the variance gamma
process. For this reason we should have the highest possible order of approximation for the
integrand near zero, namely,

w(x + y, τ)− w(x, τ) − ∂w

∂x
(x, τ)(ey − 1)

(a) For the region |y| ≤ ϵ we add and subtract y ∂w
∂x (x, τ).

∫

|y|≤ϵ

[
w(x + y, τ)− w(x, τ) − ∂w

∂x
(x, τ)(ey − 1)

]
k(y)dy

=

∫

|y|<=ϵ

[
w(x + y, τ)− w(x, τ) − y

∂w

∂x
(x, τ) − ∂w

∂x
(x, τ)(ey−1−y)

]
k(y)dy (5.14)

We can write the following two expansions for w(x+y, τ) and ey using the Taylor expansion
to get

w(x + y, τ) = w(x, τ) + y
∂w

∂x
(x, τ) +

y2

2

∂2w

∂x2
(x, τ) +O(y3)

and

ey = 1 + y +
y2

2
+O(y3)

Inserting these two expansions into Equation (5.14) we can write it as

∫

|y|<=ϵ

[
w(x + y, τ)− w(x, τ) − y

∂w

∂x
(x, τ) − ∂w

∂x
(x, τ)(ey−1−y)

]
k(y)dy

=

∫

|y|≤ϵ

[
y2

2

∂2w

∂x2
(x, τ) − y2

2

∂w

∂x
(x, τ) +O(y3)

]
k(y)dy

≈
∫

|y|≤ϵ

[
y2

2

∂2w

∂x2
(x, τ) − y2

2

∂w

∂x
(x, τ)

]
k(y)dy (5.15)

Define

σ2(ϵ) =

∫

|y|≤ϵ
y2k(y)dy
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We get the following:

∫

|y|≤ϵ

[
w(x+ y, τ)− w(x, τ) − ∂w

∂x
(x, τ)(ey − 1)

]
k(y)dy

≈ 1

2
σ2(ϵ)

∂2w

∂x2
(x, τ) − 1

2
σ2(ϵ)

∂w

∂x
(x, τ) (5.16)

(b) For the region |y| > ϵ

∫

|y|>ϵ

[
w(x + y, τ)− w(x, τ) − ∂w

∂x
(x, τ)(ey − 1)

]
k(y)dy

=

∫

|y|>ϵ
(w(x + y, τ)− w(x, τ))k(y)dy − ∂w

∂x
(x, τ)

∫

|y|>ϵ
(ey − 1)k(y)dy

=

∫

|y|>ϵ
(w(x + y, τ)− w(x, τ))k(y)dy +

∂w

∂x
(x, τ)ω(ϵ) (5.17)

where

ω(ϵ) =

∫

|y|>ϵ
(1− ey)k(y)dy (5.18)

Putting it all back into Equation (5.6) we get

∂w

∂τ
(x, τ) − 1

2
σ2(ϵ)

∂2w

∂x2
(x, τ) −

(
r − q + ω(ϵ)− 1

2
σ2(ϵ)

)
∂w

∂x
(x, τ)

+rw(x, τ) −
∫

|y|>ϵ
(w(x + y, τ)− w(x, τ))k(y)dy = 0. (5.19)

5.1.2 Discretization

In our finite difference discretization of the PIDE, we employ a mixture of two methods
in dealing with the integral term ([135], [140]). On the evaluation of this integral, we expand
the integrand near its singularity of y = 0 and treat this part implicitly. The rest of the
integral with some exceptions is treated fully explicitly. The differential term of the PIDE
is discretized by a fully implicit approach.

Our treatment of the integral term is critical to attaining an unconditionally stable
scheme. This observation is also consistent with findings in the diffusion case on noting that
the infinitely occurring small jumps essentially behave like a diffusion. The fact that the
terms near y = 0 are treated implicitly is the rationale behind the stability of the scheme.
In fact a fully explicit treatment of the integral term would only be conditionally stable.
On the other hand, a fully implicit treatment of the integral would be computationally
expensive.

For an option with maturity T , we consider M equal sub-intervals in the τ -direction. For
the x-direction we assume N equal sub-intervals on [xmin, xmax]. Thus, we have the following
mesh on [xmin, xmax]× [0, T ]:

D =

⎧
⎨

⎩

xi = xmin + i∆x; ∆x = xmax−xmin
N ; i = 0, . . . , N

τj = 0 + j∆τ ; ∆τ = T−0
M ; j = 0, . . . ,M

⎫
⎬

⎭

A sample grid point on this mesh is (xi, τj) ∈ R × R+. Let wi,j be the approximation of
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w(xi, τj) on D. Now we start forming the difference equation at the grid point (xi, τj+1).
As usual the assumption is the discrete values wi,j at time τj are known and we are solving
for wi,j+1 at time τj+1. Using a first order finite difference approximation for ∂w

∂τ , a second

order approximation for ∂2w
∂x2 , a central difference for ∂w

∂x , and setting ϵ to ∆x we obtain
the following discrete equation at point (xi, τj+1) after dropping the approximation order
terms.

1

∆τ
(wi,j+1 − wi,j)−

1

2(∆x)2
σ2(∆x)(wi+1,j+1 − 2wi,j+1 + wi−1,j+1)

−(r − q + ω(∆x)− 1

2
σ2(∆x))

1

2∆x
(wi+1,j+1 − wi−1,j+1) + rwi,j+1

−
∫

|y|>∆x
(w(xi + y, τj)− w(xi, τj)) k(y)dy ∼= 0

The solution algorithm that is being developed is correct up to a first order in ∆τ . Equiv-
alently,

−
(
σ2(∆x)∆τ

2∆x2
−

(
r − q + ω(∆x)− 1

2
σ2(∆x)

)
∆τ

2∆x

)
wi−1,j+1

+

(
1 + r∆τ + σ2(∆x)

∆τ

∆x2

)
wi,j+1

−
(
σ2(∆x)∆τ

2∆x2
+

(
r − q + ω(∆x)− 1

2
σ2(∆x)

)
∆τ

2∆x

)
wi+1,j+1

= wi,j +∆τ

∫

|y|>∆x
(w(xi + y, τj)− w(xi, τj)) k(y)dy

or in short we write the difference equation as

− Blwi−1,j+1 + (1 + r∆τ +Bl +Bu)wi,j+1 −Buwi+1,j+1

= wi,j +∆τ

∫

|y|>∆x
(w(xi + y, τj)− w(xi, τj)) k(y)dy

with

Bl =
σ2(∆x)∆τ

2∆x2
−

(
r − q + ω(∆x) − 1

2
σ2(∆x)

)
∆τ

2∆x

Bu =
σ2(∆x)∆τ

2∆x2
+

(
r − q + ω(∆x) − 1

2
σ2(∆x)

)
∆τ

2∆x

where wi,0 = (K − exi)+.
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5.1.3 Evaluation of the Integral Term

For numerical evaluation of the integral2 for |y| > ∆x we divide it into four sub-intervals
and write it as

∫

|y|>∆x
(w(xi + y, τj)− wi,j) k(y)dy =

∫ x0−xi

−∞
(w(xi + y, τj)− wi,j) k(y)dy

+

∫ −∆x

x0−xi

(w(xi + y, τj)− wi,j) k(y)dy

+

∫ xN−xi

+∆x
(w(xi + y, τj)− wi,j) k(y)dy

+

∫ ∞

xN−xi

(w(xi + y, τj)− wi,j) k(y)dy

The rationale is that in the region |y| > ∆x we have two sub-regions: (a) y < −∆x, (b)
y > ∆x. For y < −∆x, in order for the quantity xi+ y to be inside the grid we should have
y > xmin − xi, which is the same as y > x0 − xi = −i∆x. For y < x0 − xi, the quantity
xi + y would be outside the grid. For y > ∆x, in order for xi + y to be inside the grid we
should have y < xmax−xi, which is the same as y < xN −xi = (N− i)∆x. For y > xN −xi,
the quantity xi + y would be outside the grid.
For y ∈ (x0 − xi,−∆x), we do the following:

∫ −∆x

x0−xi

(w(xi + y, τj)− wi,j) k(y)dy =

∫ −∆x

x0−xi

(w(xi + y, τj)− wi,j)
e−λn|y|

ν|y|1+Y
dy

=
i−1∑

k=1

∫ (k+1)∆x

k∆x
(w(xi − y, τj)− wi,j)

e−λny

νy1+Y
dy

Using linear interpolation on interval y ∈ [k∆x, (k + 1)∆x], we can write w(xi − y, τj) as
follows:

w(xi − y, τj) ∼= wi−k,j +
wi−k−1,j − wi−k,j

∆x
(y − k∆x)

and therefore we obtain the following:

∫ −∆x

x0−xi

(w(xi + y, τj)− wi,j) k(y)dy

=
i−1∑

k=1

∫ (k+1)∆x

k∆x

(
wi−k,j +

wi−k−1,j − wi−k,j

∆x
(y − k∆x) − wi,j

)
e−λny

νy1+Y
dy

=
i−1∑

k=1

1

ν
(wi−k,j − wi,j − k(wi−k−1,j − wi−k,j))

{∫ (k+1)∆x

k∆x

e−λny

y1+Y
dy

}

+
i−1∑

k=1

wi−k−1,j − wi−k,j

ν∆x

(∫ (k+1)∆x

k∆x

e−λny

yY
dy

)

2As stated earlier, an alternative to this approach is to use fast Fourier transform to numerically evaluate
the integral as suggested in [9] and [8]. We leave it as a case study at the end of this chapter.



Derivative Pricing via Numerical Solutions of PIDEs 179

By change of variable we get
∫ −∆x

x0−xi

(w(xi + y, τj)− wi,j) k(y)dy

=
i−1∑

k=1

λY
n

ν
(wi−k,j − wi,j − k(wi−k−1,j − wi−k,j))

{∫ (k+1)∆xλn

k∆xλn

e−z

z1+Y
dz

}

+
i−1∑

k=1

wi−k−1,j − wi−k,j

νλ1−Y
n ∆x

(∫ (k+1)∆xλn

k∆xλn

e−z

zY
dz

)

=
i−1∑

k=1

λY
n

ν
(wi−k,j − wi,j − k(wi−k−1,j − wi−k,j)) {g2(kλn∆x) − g2((k + 1)λn∆x)}

+
i−1∑

k=1

wi−k−1,j − wi−k,j

λ1−Y
n ν∆x

(g1(k∆xλn)− g1((k + 1)∆xλn))

where3

g1(ξ) =

∫ ∞

ξ

e−z

zα
dz (5.20)

g2(ξ) =

∫ ∞

ξ

e−z

zα+1
dz (5.21)

for 0 ≤ α < 1.
For the case that y ∈ (∆x, xN − xi) we write

∫ xN−xi

∆x
(w(xi + y, τj)− wi,j) k(y)dy =

N−i−1∑

k=1

∫ (k+1)∆x

k∆x
(w(xi + y, τj)− wi,j)

e−λpy

νy1+Y
dy

Similarly, for y ∈ [k∆x, (k + 1)∆x], a linear approximation yields

w(xi + y, τj) ∼= wi+k,j +
wi+k+1,j − wi+k,j

∆x
(y − k∆x)

and therefore we obtain the following:
∫ xN−xi

∆x
(w(xi + y, τj)− wi,j) k(y)dy

=
N−i−1∑

k=1

∫ (k+1)∆x

k∆x

(
wi+k,j +

wi+k+1,j − wi+k,j

∆x
(y − k∆x)− wi,j

)
e−λpy

νy1+Y
dy

=
N−i−1∑

k=1

1

ν
(wi+k,j − wi,j − k(wi+k+1,j − wi+k,j))

{∫ (k+1)∆x

k∆x

e−λpy

y1+Y
dy

}

+
N−i−1∑

k=1

wi+k+1,j − wi+k,j

ν∆x

(∫ (k+1)∆x

k∆x

e−λpy

yY
dy

)

=
N−i−1∑

k=1

λY
p

ν
(wi+k,j − wi,j − k(wi+k+1,j − wi+k,j)) {g2(k∆xλp)− g2((k + 1)∆xλp)}

+
N−i−1∑

k=1

wi+k+1,j − wi+k,j

λ1−Y
p ν∆x

(g1(k∆xλp)− g1((k + 1)∆xλp))

3At the end of the chapter we explain in detail how to calculate g1(ξ) and g2(ξ).
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For the region y ∈ (−∞, x0 − xi)

∫ x0−xi

−∞
(w(xi + y, τj)− wi,j) k(y)dy =

∫ x0−xi

−∞
(w(xi + y, τj)− wi,j)

e−λn|y|

ν|y|1+Y
dy

=

∫ ∞

i∆x
(w(xi − y, τj)− wi,j)

e−λny

νy1+Y
dy

We assume that w(xi − y, τj) = K − exi−y in the interval.4 Hence

∫ x0−xi

−∞
(w(xi + y, τj)− wi,j) k(y)dy

=

∫ ∞

i∆x

(
K − exi−y − wi,j

) e−λny

νy1+Y
dy

=
1

ν
(K − wi,j)

∫ ∞

i∆x

e−λny

y1+Y
dy − 1

ν
exi

∫ ∞

i∆x

e−(λn+1)y

y1+Y
dy

=
λY
n

ν
(K − wi,j)g2(i∆xλn)−

(λn + 1)Y

ν
exig2(i∆x(λn + 1)).

For the region y ∈ [(N − i)∆x,∞), we assume that w(xi + y, τj) = 0.5 Thus

∫ ∞

xN−xi

(w(xi + y, τj)− wi,j) k(y)dy =

∫ ∞

(N−i)∆x
(w(xi + y, τj)− wi,j)

e−λpy

νy1+Y
dy

= −
λY
p

ν
wi,jg2((N − i)∆xλp).

5.1.4 Difference Equation

Putting together all the terms, we obtain the following difference equation6 at point
(xi, τj+1):

li,j+1wi−1,j+1 + di,j+1wi,j+1 + ui,j+1wi+1,j+1 = wi,j +
∆τ

ν
Ri,j

where

li,j+1 = −Bl

di,j+1 = 1 + r∆τ +Bl +Bu +
∆τ

ν

(
λY
n g2(i∆xλn) + λY

p g2((N − i)∆xλp)
)

ui,j+1 = −Bu

4We choose x0 small enough such that w(x0, τj) = K − ex0 for all j. Thus it would be true for w(xi −
y, τj) = K − exi−y as long as xi − y < x0. In the case of a European put option, we would assume that
w(xi − y, τj) = Ke−rτj − exi−ye−qτj .

5As explained before, xN is selected such that w(xN , τj) ∼= 0. Therefore, the assumption w(xi+y, τj) = 0
is valid as long as xi + y > xN .

6In the case of i = 1 or i = N − 1, we impose the boundary conditions.
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Ri,j =
i−1∑

k=1

λY
n (wi−k,j − wi,j − k(wi−k−1,j − wi−k,j)) {g2(k∆xλn)− g2((k + 1)∆xλn)}

+
i−1∑

k=1

wi−k−1,j − wi−k,j

λ1−Y
n ∆x

(g1(k∆xλn)− g1((k + 1)∆xλn))

+
N−i−1∑

k=1

λY
p (wi+k,j − wi,j − k(wi+k+1,j − wi+k,j)) {g2(k∆xλp)− g2((k + 1)∆xλp)}

+
N−i−1∑

k=1

wi+k+1,j − wi+k,j

λ1−Y
p ∆x

(g1(k∆xλp)− g1((k + 1)∆xλp))

+ KλY
n g2(i∆xλn)− exi(λn + 1)Y g2(i∆x(λn + 1))

and as before

Bl =
σ2(∆x)∆τ

2∆x2
−

(
r − q + ω(∆x) − 1

2
σ2(∆x)

)
∆τ

2∆x

Bu =
σ2(∆x)∆τ

2∆x2
+

(
r − q + ω(∆x) − 1

2
σ2(∆x)

)
∆τ

2∆x

Assuming that at the completion of the time step τj the values wi,j have been computed,
we solve a linear system of equations to find the values wi,j+1 for all i. Notice that in this
scheme, the following six vectors (precalculated) are stored:

• g1(k∆xλn) for k = 1, . . . , N

• g1(k∆xλp) for k = 1, . . . , N

• g2(λnk∆x) for k = 1, . . . , N

• g2(λpk∆x) for k = 1, . . . , N

• g2((λn + 1)k∆x) for k = 1, . . . , N

• g2((λp − 1)k∆x) for k = 1, . . . , N

Now, we can evaluate σ2(ϵ) and ω(ϵ) in terms of functions g1 and g2. For σ2(ϵ) we have

σ2(ϵ) =

∫

|y|≤ϵ
y2k(y)dy

=

∫ 0

−ϵ
y2

e−λn|y|

ν|y|1+Y
dy

+

∫ ϵ

0
y2

e−λpy

νy1+Y
dy
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For the first integral, we first do change of variable and then integration by parts and use
the definition of g1 to obtain

∫ 0

−ϵ
y2

e−λn|y|

ν|y|1+Y
dy =

∫ ϵ

0
u2 e

−λnu

νu1+Y
du

=
1

ν

∫ ϵ

0
u1−Y e−λnudu

=
1

ν
λY−2
n

∫ λpϵ

0
z1−Y e−zdz

=
1

ν
λY−2
n

(
−(λnϵ)

1−Y e−λnϵ + (1 − Y )

∫ λnϵ

0

e−z

zY
dz

)

=
1

ν
λY−2
n

(
−(λnϵ)

1−Y e−λnϵ + (1− Y )(g1(0)− g1(λnϵ))
)

Similarly for the second integral

∫ ϵ

0
y2

e−λpy

νy1+Y
dy =

1

ν

∫ ϵ

0
y1−Y e−λpydy

=
1

ν
λY−2
p

∫ λpϵ

0
z1−Y e−zdz

=
1

ν
λY−2
p

(
−(λpϵ)

1−Y e−λpϵ + (1− Y )

∫ λpϵ

0

e−z

zY
dz

)

=
1

ν
λY−2
p

(
−(λpϵ)

1−Y e−λpϵ + (1− Y )(g1(0)− g1(λpϵ))
)

Therefore

σ2(ϵ) =
1

ν
λY−2
p

(
−(λpϵ)

1−Y e−λpϵ + (1 − Y )(g1(0)− g1(λpϵ))
)

+
1

ν
λY−2
n

(
−(λnϵ)

1−Y e−λnϵ + (1− Y )(g1(0)− g1(λnϵ))
)

For ω(ϵ) we have

ω(ϵ) =

∫

|y|>ϵ
(1− ey)k(y)dy

=

∫ −ϵ

−∞
(1− ey)

e−λn|y|

ν|y|1+Y
dy +

∫ ∞

ϵ
(1 − ey)

e−λpy

νy1+Y
dy (5.22)

The first quantity in (5.22) in terms of g2 would be

∫ ∞

ϵ
(1 − ey)

e−λpy

νy1+Y
dy =

1

ν

∫ ∞

ϵ

e−λpy

y1+Y
dy − 1

ν

∫ ∞

ϵ

e−(λp−1)y

y1+Y
dy

=
λY
p

ν

∫ ∞

λpϵ

e−z

z1+Y
dz − (λp − 1)Y

ν

∫ ∞

(λp−1)ϵ

e−z

z1+Y
dz

=
λY
p

ν
g2(λpϵ)−

(λp − 1)Y

ν
g2((λp − 1)ϵ)
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The second quantity in (5.22) in terms of g2 would be

∫ −ϵ

−∞
(1− ey)

e−λn|y|

ν|y|1+Y
dy =

∫ ∞

ϵ
(1− e−x)

e−λnx

νx1+Y
dx

=
1

ν

∫ ∞

ϵ

e−λnx

x1+Y
dx − 1

ν

∫ ∞

ϵ

e−(λn+1)x

x1+Y
dx

=
λY
n

ν

∫ ∞

λnϵ

e−z

z1+Y
dz − (λn + 1)Y

ν

∫ ∞

(λn+1)ϵ

e−z

z1+Y
dz

=
λY
n

ν
g2(λnϵ)−

(λn + 1)Y

ν
g2((λn + 1)ϵ)

The first equality follows from setting x = |y| = −y. Therefore (5.22) in terms of g2 becomes

ω(ϵ) =
λY
p

ν
g2(λpϵ)−

(λp − 1)Y

ν
g2((λp − 1)ϵ) +

λY
n

ν
g2(λnϵ)−

(λn + 1)Y

ν
g2((λn + 1)ϵ)

5.1.4.1 Implementing Neumann Boundary Conditions

Rewriting boundary conditions (5.9) and (5.10) once more

lim
x↓−∞

∂2w

∂x2
(x, τ) − ∂w

∂x
(x, τ) = 0 ∀τ

lim
x↑+∞

∂2w

∂x2
(x, τ) − ∂w

∂x
(x, τ) = 0 ∀τ

Discretization of it yields

wi−1,j+1 − 2wi,j+1 + wi+1,j+1

h2
− wi+1,j+1 − wi−1,j+1

2h
= 0

Or equivalently

(1 +
h

2
)wi−1,j+1 − 2wi,j+1 + (1− h

2
)wi+1,j+1 = 0 (5.23)

Now in our case, x0 and xN are boundary points. Applying 5.23 at i=1 we can solve for
w0,j+1, the value at i = 0, as

(1 +
h

2
)w0,j+1 − 2w1,j+1 + (1− h

2
)w2,j+1 = 0

and solving for w0,j+1 we get

w0,j+1 =
2

1 + h
2

w1,j+1 −
1− h

2

1 + h
2

w2,j+1 (5.24)

Applying 5.23 at i=N−1 we can solve for wN,j+1, the value at i = N , as

(1 +
h

2
)wN−2,j+1 − 2wN−1,j+1 + (1 − h

2
)wN,j+1 = 0

and solving for wN,j+1 we get

wN,j+1 = −
1 + h

2

1− h
2

wN−2,j+1 +
2

1− h
2

wN−1,j+1 (5.25)
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Assume at (xj , τk+1) the difference equation (loosely speaking) looks like

li,j+1wi−1,j+1 + di,j+1wi,j+1 + ui,j+1wi+1,j+1 = wi,j + r.h.s.

where li,j+1, di,j+1, ui,j+1 are lower-diagonal, diagonal, and upper-diagonal elements of the
stiffness matrix, respectively.
Then for j = 1 we get

l1,j+1w0,j+1 + d1,j+1w1,j+1 + u1,j+1w2,j+1 = w1,j + r.h.s.

Substituting (5.24) we obtain

l1,j+1

(
2

1 + h
2

w1,j+1 −
1− h

2

1 + h
2

w2,j+1

)
+ d1,j+1w1,j+1 + u1,j+1w2,j+1 = w1,j + r.h.s.

and gathering terms we get
(

2

1 + h
2

l1,j+1 + d1,j+1

)
w1,j+1 +

(
u1,j+1 −

1− h
2

1 + h
2

l1,j+1

)
w2,j+1 = w1,k + r.h.s.

For j = N − 1 we have

lN−1,j+1wN−2,j+1+dN−1,j+1wN−1,j+1+uN−1,j+1wN,j+1=wN−1,k+r.h.s.

Substituting (5.25) we obtain

lN−1,j+1wN−2,j+1 + dN−1,j+1wN−1,j+1 + uN−1,j+1

(
−
1 + h

2

1− h
2

wN−2,j+1 +
2

1− h
2

wN−1,j+1

)

= wN−1,k + r.h.s.

and gathering terms we get
(
lN−1,j+1 −

1 + h
2

1− h
2

uN−1,j+1

)
wN−2,j+1 +

(
dN−1,j+1 +

2

1− h
2

uN−1,j+1

)
wN−1,j+1

= wN−1,k + r.h.s.

5.2 American Options

As in the diffusion framework, we can price an American option by

a. applying the Bermudan approach at each time step

b. applying the Brennan–Schwartz algorithm

c. or the synthetic dividend process
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Here we just explain the last approach. As previously discussed, the PIDE in (5.19) holds
in the continuation region. In the exercise region, we know the value function is w(x, t) =
K−ex. Now, we can extend the PIDE to the entire region by first applying the infinitesimal
generator to this known value function in the exercise region. That yields the equation
Lw = δ(x) where in particular we write that

Lw =
∂w

∂τ
(x, τ) − (r − q)

∂w

∂x
(x, τ) + rw(x, τ)

−
∫ ∞

−∞

[
w(x + y, τ)− w(x, τ) − ∂w

∂x
(x, τ)(ey − 1)

]
k(y)dy

= δ(x)

The function δ(x) is often called the dividend process. This is best seen using the fact that
w(x, τ) = K − ex for x ≤ x(τ). Therefore in the exercise region we have

w(x, τ) = K − ex

∂w

∂τ
(x, τ) = 0

∂w

∂x
(x, τ) = −ex

Before substituting those values we should note that w(x + y, τ) is not known for the case
that x + y > x(τ), which means we are in the continuation region. Therefore we divide
the integral into two regions: (a) x + y ≤ x(τ), and (b) x + y > x(τ). Or equivalently
considering that y in the integral runs from −∞ to +∞, we write it as (a) y ≤ x(τ) − x,
and (b) y > x(τ) − x. For the case that y ≤ x(τ) − x, the integrand vanishes.

w(x + y, τ)− w(x, τ) − ∂w

∂x
(x, τ)(ey − 1) = (K − ex+y)− (K − ex)− (−ex)(ey − 1)

= 0

For the case that y > x(τ) − x, the integrand becomes

w(x + y, τ)− w(x, τ) − ∂w

∂x
(x, τ)(ey − 1) = w(x + y, τ)− (K − ex)− (−ex)(ey − 1)

= w(x + y, τ)− (K − ex+y)

and hence in the exercise region we get the following for the dividend process:

δ(x) = 0− (r − q)(−ex) + r(K − ex)

−
∫ ∞

x(τ)−x

[
w(x + y, τ)− (K − ex+y)

]
k(y)dy

= rK − qex −
∫ ∞

x(τ)−x

[
w(x+ y, τ)− (K − ex+y)

]
k(y)dy (5.26)

This is consistent with the demonstration by Carr, Jarrow, and Myneni [58]. Namely, one
must extract from the American option holder the interest on the strike less the dividend
yield for the time the stock spends in the exercise region to get the value back to that of
a European option. For a jump process, this amount is further reduced by the expected
shortfall that the stop-loss-start-gain strategy may experience on account of jumping back
into the continuation region, as explained further in Gukhal [125].
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Substituting the dividend definition of Equation (5.26) back into the PIDE we obtain
the PIDE in w(x, t) over the entire region as

∂w

∂τ
(x, τ) − (r − q)

∂w

∂x
(x, τ) + rw(x, τ)

−
∫ ∞

−∞

[
w(x + y, τ)− w(x, τ) − ∂w

∂x
(x, τ)(ey − 1)

]
k(y)dy

− x<x(τ)

{
rK − qex −

∫ ∞

x(τ)−x

[
w(x + y, τ)− (K − ex+y)

]
k(y)dy

}
= 0 (5.27)

and adhering to what was done in the previous section we get the following difference
equation

−Blwi−1,j+1 + (1 + r∆τ + Bl +Bu)wi,j+1 −Buwi+1,j+1

= wi,j +∆τ

∫

|y|>∆x
(w(xi + y, τj)− w(xi, τj)) k(y)dy

+∆τ xi<x(τj)

{
rK − qexi −

∫ ∞

x(τj)−xi

[
w(xi + y, τj)− (K − exi+y)

]
k(y)dy

}

where wi,0 = (K − exi)+, x(τ0) = K and

x(τj) = min
xi

{xi : w(xi, τj)− (K − exi)+ > 0} for j = 1, . . . ,M

with Bl and Bu defined as before. As shown, at the first time step, τ0, the exercise boundary
is the strike price. At time τj+1, for j = 1, . . . ,M , the precomputed exercise boundary at
the previous time step, namely, x(τj), is used. After solving for the discrete values wi,j+1,
at time τj+1, the smallest xi with the property that the associated value wi,j+1 exceeds the
intrinsic value of (K − exi)+ defines the critical boundary x(τj+1) for the next time step.
This procedure introduces an error that is first order in ∆τ .

As stated in [9], it is known from the classical Black-Scholes situation [25], [161], and
[218] that the exercise boundary behaves differently, depending on whether the risk-free
interest rate r is less or greater than the dividend rate q. In the diffusion framework, the
exercise boundary approaches r

qK, for q ≤ r, and strike price K for q > r. This fact is
different for VG and CGMY. It is proved in [9] that the exercise boundary tends to K for
q > r+ϖ, where ϖ depends on the model parameters, and is a strictly positive number. If
the opposite inequality occurs, they numerically show that the boundary tends to the zero
of the dividend process. We leave this as a case study at the end of this chapter.
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5.2.1 Heaviside Term – Synthetic Dividend Process

The integral inside the Heaviside term would be treated in the same manner explained
earlier. Therefore, we obtain

∫ ∞

x(τj)−xi

[
w(xi + y, τj)− (K − exi+y)

]
k(y)dy

=
N−i−1∑

k=l−i

∫ (k+1)∆x

k∆x

(
wi+k,j +

wi+k+1,j − wi+k,j

∆x
(y − k∆x)

)
e−λpy

νy1+Y
dy

− 1

ν

{
K

∫ ∞

x(τj)−xi

e−λpy

y1+Y
dy − exi

∫ ∞

x(τj)−xi

e−(λp−1)y

y1+Y
dy

}

=
N−i−1∑

k=l−i

1

ν
(wi+k,j − k(wi+k+1,j − wi+k,j))

(∫ (k+1)∆x

k∆x

e−λpy

y1+Y
dy

)

+
N−i−1∑

k=l−i

wi+k+1,j − wi+k,j

ν∆x

(∫ (k+1)∆x

k∆x

e−λpy

yY
dy

)

− 1

ν

{
K

∫ ∞

x(τj)−xi

e−λpy

y1+Y
dy − exi

∫ ∞

x(τj)−xi

e−(λp−1)y

y1+Y
dy

}

=
N−i−1∑

k=l−i

λY
p

ν
(wi+k,j − k(wi+k+1,j − wi+k,j)) (g2(k∆xλp)− g2((k + 1)∆xλp))

+
N−i−1∑

k=l−i

wi+k+1,j − wi+k,j

νλ1−Y
p ∆x

(g1(k∆xλp)− g1((k + 1)∆xλp))

−
λY
p

ν
Kg2((l − i)∆xλp) +

(λp − 1)Y

ν
exig2((l − i)∆x(λp − 1))

Putting together all the terms, we obtain the following difference equation7 at point
(xi, τj+1):

li,j+1wi−1,j+1 + di,j+1wi,j+1 + ui,j+1wi+1,j+1 = wi,j +
∆τ

ν
Ri,j +∆τ xi<x(τj)Hi,j

where

li,j+1 = −Bl

di,j+1 = 1 + r∆τ +Bl +Bu +
∆τ

ν

(
λY
n g2(i∆xλn) + λY

p g2((N − i)∆xλp)
)

ui,j+1 = −Bu

7In the case of i = 1 or i = N − 1, we impose the boundary conditions.
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Ri,j =
i−1∑

k=1

λY
n (wi−k,j − wi,j − k(wi−k−1,j − wi−k,j)) {g2(k∆xλn)− g2((k + 1)∆xλn)}

+
i−1∑

k=1

wi−k−1,j − wi−k,j

λ1−Y
n ∆x

(g1(k∆xλn)− g1((k + 1)∆xλn))

+
N−i−1∑

k=1

λY
p (wi+k,j − wi,j − k(wi+k+1,j − wi+k,j)) {g2(k∆xλp)− g2((k + 1)∆xλp)}

+
N−i−1∑

k=1

wi+k+1,j − wi+k,j

λ1−Y
p ∆x

(g1(k∆xλp)− g1((k + 1)∆xλp))

+ KλY
n g2(i∆xλn)− exi(λn + 1)Y g2(i∆x(λn + 1))

Hi,j = rK − qexi

−
N−i−1∑

k=l−i

λY
p

ν
(wi+k,j − k(wi+k+1,j − wi+k,j)) (g2(k∆xλp)− g2((k + 1)∆xλp))

−
N−i−1∑

k=l−i

wi+k+1,j − wi+k,j

λ1−Y
p ν∆x

(g1(k∆xλp)− g1((k + 1)∆xλp))

+
λY
p

ν
Kg2((l − i)∆xλp)−

(λp − 1)Y

ν
exig2((l − i)∆x(λp − 1))

and as before

Bl =
σ2(∆x)∆τ

2∆x2
−

(
r − q + ω(∆x) − 1

2
σ2(∆x)

)
∆τ

2∆x

Bu =
σ2(∆x)∆τ

2∆x2
+

(
r − q + ω(∆x) − 1

2
σ2(∆x)

)
∆τ

2∆x

Assuming that at the completion of the time step τj the values wi,j have been computed,
we solve a linear system of equations to find the values wi,j+1 for all i.

5.2.2 Numerical Experiments

This section contains numerical results for American option pricing under the variance
gamma model. The VG parameters employed in our study of American option pricing are
obtained by calibrating the European option pricing model to market data separately for
each maturity. The prices used in the calibration are those of all exchange traded strikes
lying within 20% of the forward price on either side. The criterion for selection of the
parameters is the minimization over the parameter space, (σ,ν,θ), of the root mean square
percentage error on an equally weighted basis between market prices, MarketPrice(Ki, T ),
and model prices, VG(S0,Ki, r, q, T ;σ, ν, θ). Specifically

z =

√√√√ 1

m

m∑

i=1

(ln(MarketPrice(Ki, T ))− ln(VG(S0,Ki, r, q, T ;σ, ν, θ)))
2

The VG prices are calculated using the closed-form solution8 for European options.

8See [175] for the VG closed-form solution for European options.
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Market prices used in parameter estimation are for out-of-the-money options on account
of their relative liquidity. More exactly, for strikes below the forward price we use put prices
and call prices for strikes above the forward price. The following parameters were obtained
from calibrating to S&P 500 options on data for June 30, 1999:

TABLE 5.1: Calibrated VG parameters for the S&P 500 on June 30, 1999

T r q σ ν θ
0.13972 0.0533 0.011 0.17875 0.13317 -0.30649
0.21643 0.0536 0.012 0.18500 0.22460 -0.28837
0.46575 0.0549 0.011 0.19071 0.49083 -0.28113
0.56164 0.0541 0.012 0.20722 0.50215 -0.22898

The S&P 500 spot price on June 30, 1999 was 1369.41. As we see in Table 5.1, as ma-
turity gets larger the annualized kurtosis parameter ν increases and annualized skewness θ
decreases. The increase in ν is slower than the increase in maturity and this is consistent
with an approach to normality, though at a rate slower than would be the case if ν were
constant or falling. The decrease in θ is also broadly consistent with the approach to nor-
mality. Table 5.2 contains the Black–Scholes implied volatility for these option prices. We
observe a significant skewness in these implied volatilities with a drop of 10 volatility points
over the specified strike range.

We first show some convergence results demonstrating numerical stability. In Table 5.3,
we illustrate some examples of convergence as ∆τ and ∆x approach zero. For all the options
in the table, the maturity is T = 0.56164 and the corresponding parameters for this maturity
are shown in Table 5.1. The results in Table 5.3 support the claim that the scheme is stable
and convergent. For reasons of space, only a ratio of N/M = 2 is shown. Computations of
other ratios give similar results and lead to the conjecture that the scheme is unconditionally
stable. This conjecture is solely based on our computational experience.

Table 5.4 contains the early exercise premiums from pricing American options under
the variance gamma and geometric Brownian motion dynamics, respectively. The Ameri-
can option prices for the geometric Brownian motion model were obtained at the implied
volatility for the option reported in Table 5.2. We observe that across all strikes and ma-
turities, the VG early exercise premiums dominate those from geometric Brownian motion.

TABLE 5.2: Implied volatility for S&P 500 options on June 30, 1999

Strike T = 0.13972 T = 0.21643 T = 0.46575 T = 0.56164
1200 0.2675 0.2737 0.2801 0.2868
1220 0.2592 0.2662 0.2743 0.2818
1240 0.2508 0.2587 0.2686 0.2768
1260 0.2422 0.2509 0.2629 0.2718
1280 0.2334 0.2431 0.2571 0.2667
1300 0.2244 0.2351 0.2513 0.2616
1320 0.2152 0.227 0.2455 0.2565
1340 0.2057 0.2187 0.2396 0.2514
1360 0.1961 0.2102 0.2337 0.2462
1380 0.1863 0.2016 0.2277 0.2409
1400 0.1767 0.193 0.2217 0.2357
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TABLE 5.3: Convergence results for maturity T = 0.56164 with various strike prices as
M and N increase

Strike price
N M 1200 1260 1320 1380
500 250 35.5615 48.8537 66.0738 88.1319
1000 500 35.5318 48.8051 66.0078 88.0179
2000 1000 35.5307 48.7982 65.9926 87.9922
4000 2000 35.5301 48.7976 65.9908 87.9911

TABLE 5.4: Early exercise premiums for variance gamma (VG) and geometric Brownian
motion (GBM)

Maturity T1 = 0.13972 T2 = 0.21643 T3 = 0.46575 T4 = 0.56164
Strike GBM VG GBM VG GBM VG GBM VG
1200 0.052 0.025 0.036 0.063 0.443 0.539 0.828 1.041
1220 0.026 0.070 0.123 0.124 0.647 0.677 0.710 1.250
1240 0.010 0.117 0.165 0.191 0.569 0.835 1.131 1.489
1260 0.065 0.159 0.081 0.253 0.918 0.997 1.192 1.742
1280 0.113 0.196 0.251 0.322 0.856 1.185 1.483 2.023
1300 0.164 0.239 0.359 0.392 1.298 1.388 1.756 2.339
1320 0.231 0.428 0.415 0.602 1.318 1.681 1.966 2.741
1340 0.328 0.608 0.465 0.791 1.856 2.008 2.462 3.178
1360 0.462 0.869 0.745 1.078 1.999 2.392 2.686 3.687
1380 0.630 1.103 1.069 1.374 2.664 2.795 3.400 4.241
1400 1.066 1.483 1.475 1.678 3.112 3.291 3.771 4.861

This suggests that the traditional practice of adding geometric Brownian motion based
American option premia inferred from the implied volatility of a European price quote to
get an American option price is biased downward with respect to the true American option
price of the underlying VG dynamics for the stock price. The differences can be substantial
and for example for the 1320 strike with maturity 0.2164 it is about 1/3 of the American
option value under geometric Brownian motion. We are led to conclude that even though
the pricing of American options under the right underlying dynamics may be difficult, it is
important from the perspective of correctly accounting for the values of these instruments.
We also compare the exercise boundary for VG and GBM for strike K = 1300 and maturity
T = 0.56164 in Figure 5.1. This example exhibits that a smaller continuation region may be
associated with an earlier exercise. The exact timing is difficult to comment on as differences
in the underlying dynamics enter into the issues of passage times to these boundaries.

5.3 PIDE Solutions for Lévy Processes

The prices of options under models described by Lévy processes can compute via numer-
ical solutions of partial integro-differential equations that are similar to the one illustrated
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FIGURE 5.1: Optimal exercise boundary for an American put

here for the case of the CGMY process. The methods developed here are therefore appli-
cable to a wide class of models. In particular our combination of analytical and numerical
approaches to the singularity at zero for infinite activity Lévy processes should prove useful
in many contexts.

5.4 Forward PIDEs

5.4.1 American Options

Since the original development of forward equations for European options in continuous
models, several extensions have been proposed for both using these techniques under dif-
ferent model assumptions and pricing exotics by means of PDE under the standard local
volatility model. For example, Esser and Schlag [110] develop forward equations for Euro-
pean options written on the forward price rather than the spot price. Forward equations
for European options in jump diffusion models were developed in Andersen and Andreasen
[12] and extended by Andreasen and Carr [17]. It is straightforward to develop the relevant
forward equations for European binary options or for European power options by differen-
tiating or integrating the forward equation for standard European options. Buraschi and
Dumas [49] develop forward equations for compound options. However, their definition of
a compound option is non-standard in that the critical stock price is specified in the con-
tract. In contrast to the PDEs determined by others, their evolution equation is an ordinary
differential equation whose sole independent variable is the intermediate maturity date.

Given the close relationship between compound options and American options, it seems
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plausible that there might be a forward equation for American options. The development
of such an equation has important practical implications since all listed options on individ-
ual stocks are American-style. The Dupire equation cannot be used to infer the volatility
function from market prices of American options, nor can it be used to efficiently value a
collection of American options of differing strikes and maturities. This problem is addressed
for American calls on stocks paying discrete dividends in Buraschi and Dumas [49] and it
is also considered in a lattice setting in Chriss [67].

In [56], Carr and Hirsa direct their attention to the more difficult problem of pricing
continuously exercisable American puts in continuous time models. To do so, they depart
from the diffusive models which characterize most of the previous research on forward
equations in continuous time. To capture the volatility smile, they assume that prices jump
rather than assuming that the instantaneous volatility is a function of stock price and
time. Dumas, Fleming, and Whaley [103] find little empirical support for the Dupire model,
whereas there is a long history of empirical support for jump-diffusion models. Three recent
papers documenting support for such models are [15], [53], and [62]. In particular, they
assume that the returns on the underlying asset have stationary independent increments, or
in other words that the log price is a Lévy process. Besides the [32] model, their framework
includes as special cases the variance gamma (VG) model of Madan, Carr, and Chang
[175], the CGMY model of Carr, Geman, Madan, and Yor [53], the finite moment logstable
model of Carr and Wu [62], the Merton [178] and Kou [166] jump diffusion models, and the
hyperbolic models of Eberlein, Keller, and Prause [105]. In all of these models except Black–
Scholes, the existence of a jump component implies that the backward and forward equations
contain an integral in addition to the usual partial derivatives. Despite the computational
complications introduced by this term, Carr and Hirsa [56] use finite differences to solve both
of these fundamental partial-integro differential equations (PIDEs). They demonstrate that
American option values in the diffusion extended VG option pricing model are very similar
when using either the forward PIDE or the traditional backward approach. For details on
the application of finite differences to valuing American options in the VG model, see [140].

The approach to determining the forward equation for American options in [56] begins
with the well-known backward equation and then exploits the symmetries which essentially
define Lévy processes. In the process of developing the forward equation, the authors also
determine two hybrid equations which are more computationally efficient when one is in-
terested in the variation of prices or Greeks across strike or maturity at a fixed time, for
example at market close. They also hold in greater generality and depending on the problem
at hand, can have large computational advantages over the backward or forward equations
when the model has already been calibrated.

The first of these hybrid equations has the stock price and maturity as independent
variables. The numerical solution of this hybrid equation is an alternative to the backward
equation in producing a spot slide, which shows how American option prices vary with
the initial spot price of the underlying asset. If one is interested in understanding how
this spot slide varies with maturity, then this hybrid equation is much more efficient than
the backward equation. This hybrid equation also has important implications for path-
dependent options such as cliquets whose payoff directly depends on the particular level
reached by an intermediate stock price.

The second hybrid equation has strike price and calendar time as independent variables.
The numerical solution of this hybrid equation is an alternative to the forward equation in
producing an implied volatility smile at a fixed maturity. If one is interested in understanding
how the model predicts that this smile will change over time, then this hybrid equation is
much more computationally efficient than the forward equation. This second hybrid equation
also allows parameters to have a term structure, whereas our forward equation does not.
Note, however, that implied volatility can have a term or strike structure in the Lévy setting.
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Hence, if one needs to efficiently value a collection of American options of different strikes
in the time-dependent Black–Scholes model, then it is far more efficient to solve this hybrid
equation than to use the standard backward equation.

In [56], Carr and Hirsa derive the following forward PIDE for pricing American puts for
any semi-martingale process with Lévy density k̂(y).

∂P (K,T ; s, t)
∂T

− σ2

2
K2 ∂

2P (K,T ; s, t)
∂K2

+ (r − q)K
∂P (K,T ; s, t)

∂K
+ qP (K,T ; s, t)

−
∫ +∞

−∞

[
P (Ke−y, T ; s, t)− P (K,T ; s, t)− ∂P (K,T ; s, t)

∂K
K(e−y − 1)

]
eyν(y)dy

− K>K̄(s,t;T )

{
rK − qs−

∫ ∞

ln(K/K̄(s,t;T ))

[
P (Ke−y, T ; s, t)− (Ke−y − s)

]
eyk̂(y)dy

}
= 0

It is easy to show
∫ +∞

−∞
(e−y − 1)eyk̂(y)dy = ω (5.28)

Therefore, we get (dropping s and t for simplicity)

∂P (K,T )

∂T
− σ2

2
K2 ∂

2P (K,T )

∂K2
+ (r − q + ω)K

∂P (K,T )

∂K
+ qP (K,T )

−
∫ +∞

−∞

(
(P (Ke−y, T )− P (K,T )

)
eyk̂(y)dy

− K>K̄(T )

{
rK − qs−

∫ ∞

ln(K/K̄(T ))

[
P (Ke−y, T )− (Ke−y − s)

]
eyk̂(y)

}
= 0

By making the change of variable x = lnK we obtain, noting

p(x, T ) = P (K,T )

∂p

∂x
(x, T ) = K

∂P

∂K
(K,T )

∂2p

∂x2
(x, T )− ∂p

∂x
(x, T ) = K2 ∂

2P

∂K2
(K,T )

p(x− y, T ) = P (Ke−y, T )

the following PIDE, as a function of p(x, T ):

∂p

∂T
(x, T )− σ2

2

∂2p(x, T )

∂x2
+ (r − q +

σ2

2
+ ω)

∂p

∂x
(x, T ) + qp(x, T )

−
∫ +∞

−∞
(p(x− y, T )− p(x, T )) k̂(y)(y)dy

− x>x̄(T )

{
rex − qs−

∫ ∞

x−x̄(T )

(
p(x− y, T )− (ex−y − s)

)
k̂(y)dy

}
= 0

where

k̂(y) =
e−λ̂py

νy
y>0 +

e−λ̂n|y|

ν|y| y<0

λ̂p =

(
θ2

σ4
+

2

σ2ν

) 1
2

− θ

σ2
− 1

λ̂n =

(
θ2

σ4
+

2

σ2ν

) 1
2

+
θ

σ2
+ 1
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This PIDE should be solved subject to the initial condition

p(x, 0) = (ex − s)+

and boundary conditions

∂2p

∂x2
(−∞, T )− ∂p

∂x
(−∞, T ) = 0 ∀T (5.29)

∂2p

∂x2
(+∞, T )− ∂p

∂x
(+∞, T ) = 0 ∀T (5.30)

5.4.2 Down-and-Out and Up-and-Out Calls

In a different paper [57], the authors derive the forward evolution equations for up-and-
out and down-and-out call options when the log price is a Lévy process. In this setting the
forward equations are again partial-integro differential equations (PIDEs).

We assume the standard model of perfect capital markets, continuous trading, and no
arbitrage opportunities. When a pure discount bond is used as numeraire, then it is well
known that no arbitrage implies that there exists a probability measure Q under which
all non-dividend-paying asset prices are martingales. Under this measure we assume that a
stock price St obeys the following stochastic differential equation:

dSt = [r(t) − q(t)]St−dt+ a(St−, t)dWt +

∫ ∞

−∞
St−(e

x − 1)[µ(dx, dt)− ν(x, t)dxdt] (5.31)

for all t ∈ [0, T̄ ], where the initial stock price, S0 > 0, is known, and T̄ is some arbitrarily
distant horizon. The process is Markov in itself since the coefficients of the stock price
process at time t depend on the path only through St−, which is the pre jump price at t.
Thus, the dynamics are fully determined by the drift function b(S, t) ≡ [r(t) − q(t)]S, the
(normal) volatility function a(S, t), and the jump compensation function ν(x, t). The term
dWt denotes increments of a standard Brownian motion (SBM) Wt defined on the time set
[0, T̄ ] and on a complete probability space (Ω,F , Q). The random measure µ(dx, dt) counts
the number of jumps of size x in the log price at time t. The function {ν(x, t), x ∈ R, t ∈
[0, T̄ ]} is used to compensate the jump process Jt ≡

∫ t
0

∫∞
−∞ St−(ex − 1)µ(dx, ds), so that

the last term in (5.31) is the increment of a Q jump martingale. The function ν(x, t) must
have the following properties:

1. ν(0, t) = 0

2.
∫∞
−∞(x2 ∧ 1)ν(x, t)dx <∞, t ∈ [0, T̄ ]

Thus, each price change is the sum of the increment in a general diffusion process with
proportional drift and the increment in a pure jump martingale, where the latter is an
additive process in the log price. We restrict the function a(S, t) so that the spot price is
always non-negative and absorbing at the origin. A sufficient condition for keeping the stock
price away from the origin is to bound the lognormal volatility. In particular, we set

a(0, t) = 0

Hence, (5.31) describes a continuous-time Markov model for the spot price dynamics, which
is both arbitrage-free and consistent with limited liability. Aside from the Markov property,
the main restrictions inherent in (5.31) are the standard assumptions that interest rates,
dividend yields, and the compensator do not depend on the spot price.
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For down-and-out calls they find the forward PIDE to be

∂

∂T
Dc

o(K,T )

= −q(T )Dc
o(K,T )− [r(T )− q(T )]K

∂

∂K
Dc

o(K,T ) +
a2(K,T )

2

∂2

∂K2
Dc

o(K,T )

+

∫ ∞

−∞

[
Dc

o(Ke−x, T )−Dc
o(K,T )− ∂

∂K
Dc

o(K,T )K(e−x − 1)

]
exν(x, T )dx (5.32)

This PIDE holds on the domain K ≥ L, T ∈ [0, T̄ ] where L is the barrier level. For a
down-and-out call, the initial condition is

Dc
o(K, 0) = (S0 −K)+, K ≥ L (5.33)

Since a down-and-out call behaves like a standard call as its strike approaches infinity, we
have

lim
K↑∞

Dc
o(K,T ) = lim

K↑∞

∂

∂K
Dc

o(K,T ) = lim
K↑∞

∂2

∂K2
Dc

o(K,T ) = 0, T ∈ [0, T̄ ] (5.34)

For a lower boundary condition, note that a down-and-out call on a stock with the dynamics
in (5.31) has the same value prior to knocking out as a down-and-out call on a stock which
absorbs at L. The second derivative of this latter call gives the r-discounted risk-neutral
probability density for the event that the stock price has survived to at least T and is in
the interval (K,K + dK). Now it is well known that the appropriate boundary condition
for an absorbing process is that this PDF vanishes on the boundary. Hence

lim
K↓L

∂2

∂K2
Dc

o(K,T ) = 0, T ∈ [0, T̄ ] (5.35)

Evaluating (5.32) at K = L and substituting in (5.35) implies

∂Dc
o(L, T )

∂T
=

∫ ∞

−∞

[
Dc

o(Le
−x, T )−Dc

o(L, T )−
∂

∂K
Dc

o(L, T )L(e
−x − 1)

]
exν(x, T )dx

− [r(T )− q(T )]L
∂

∂K
Dc

o(L, T )− q(T )Dc
o(K,T ), T ∈ [0, T̄ ] (5.36)

This is a Robin condition as it involves the value and both its first partial derivatives along
the boundary (in some contexts, the generalized Neumann boundary conditions are also
referred to as the Robin boundary conditions).

They find the forward PIDE for up-and-out call to be

∂U c
o(K,T )

∂T
=

∫ ∞

−∞
[U c

o (Ke−x, T )− U c
o(K,T )− ∂U c

o(K,T )

∂K
K(e−x − 1)]exν(x, T )dx

+
a2(K,T )

2

∂2U c
o (K,T )

∂K2
− [r(T )− q(T )]K

∂U c
o(K,T )

∂K
(K,T )− q(T )U c

o(K,T )

−
[∫ ∞

0

∂U c
o(He−x, T )

∂K
ν(x, T )dx+

a2(H,T )

2

∂3U c
o (H,T )

∂K3

]
(K −H)

−
∫ ∞

0
U c
o (He−x, T )exν(x, T )dx (5.37)

for K ∈ (0, H), T ∈ [0, T̄ ] and for H > S0. Recall that for an up-and-out call, the initial
condition is

u(K, 0) = (S0 −K)+, K ∈ [0, H) (5.38)
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and for H > S0. For boundary conditions, we use the following:

lim
K↓0

∂2

∂K2
U c
o(K,T ) = 0, T ∈ [0, T̄ ] (5.39)

lim
K↑H

∂2

∂K2
U c
o(K,T ) = 0, T ∈ [0, T̄ ] (5.40)

To interpret the PIDE in 5.37 financially, first note that if an investor buys a calendar
spread of up-and-out calls, then the initial cost is given by the left-hand side. The first term
on the right-hand side arises only from paths which survive to T and then cross K. It can
be shown that this first term is the initial value of a path-dependent claim that pays the
overshoots of the strike at maturity. The second term on the right-hand side arises only
from paths which survive to maturity and finish at strike K. Consider the infinite position
in the later maturing call at time t = T if the option survives until then. This position will
have infinite time value when ST = K and zero value otherwise. The greater is the local
variance rate at ST = K, the greater is this conditional time value and the more valuable
is this position initially. The next two terms arise only from paths which survive to T and
finish above strike K. They capture the additional carrying costs of stock and bond which
are embedded in the time value of the later maturing call. The operator given by the first
four terms on the right-hand side also represents the present value of benefits obtained at
maturity T when an investor buys a calendar spread of standard or down-and-out calls. In
contrast, the last two terms in Equation 5.37 have no counterpart for calendar spreads in
standard or down-and-out calls.

Example 7 Forward versus backward up-and-out call (UOC) premiums

We employ the methodology cover in this chapter and in [56] and [140] to numerically solve
the backward and forward PIDEs for up-and-out calls. For our numerical examples, we
consider ν(x)dx to be the Lévy density for the VG process in the following form:

ν(x) =
e−λpx

νx
for x > 0 and ν(x) =

e−λn|x|

ν|x| for x < 0

and

λp =

(
θ2

σ4
+

2

σ2ν

) 1
2

− θ

σ2
λn =

(
θ2

σ4
+

2

σ2ν

) 1
2

+
θ

σ2

where σ, ν, and θ are VG parameters. The parameter set for our numerical experiments is
spot S0=100, risk-free rate r = 3.75%, dividend rate q = 2.0%, and VG parameters σ = 0.3,
ν = 0.25, θ = −0.3 and strike range K = 90, 110, maturity range T = 0.25, 0.5, 1.0. In this
example, we compare UOC premiums by numerically solving both backward and forward
PIDEs.

In Figure 5.2(a) we display UOC premiums for 3-month maturity by solving the back-
ward PIDE numerically, the left figure is for a strike of 90 and the right one is for a strike
110. Out of all those premiums we just pick the one that corresponds to the spot price 100
as pointed out in the figures. That is the drawback with backward PDEs. Figures 5.2(b) and
5.2(c) are the same as Figure 5.2(a) except for 6-month maturity and 12-month maturity
respectively. In Figure 5.3 we display UOC premiums by solving the forward PIDE for UOC
numerically for all strikes and maturities. From all premiums we pick those that correspond
to strikes 90, 110 and maturities 3-month, 6-month, and 12-month as pointed out in the fig-
ure. We see that the premiums from backward and forward PIDEs are identical. However,
in case of forward PIDE for UOC, we get the results in one sweep as opposed to backward
that we had to solve the backward PIDE numerically for each pair of strike and maturity
(in this example we solve it six times, having six pairs of strike and maturity).
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FIGURE 5.2: Up-and-out call prices obtained from using a backward PIDE
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FIGURE 5.3: Up-and-out call prices obtained from using a forward PIDE

5.5 Calculation of g1 and g2

We wrote our difference equations in terms of g1 and g2 where

g1(ξ) =

∫ ∞

ξ

e−z

zα
dz (5.41)

g2(ξ) =

∫ ∞

ξ

e−z

zα+1
dz (5.42)

for 0 ≤ α < 1. In the calculation of g1 for α = 0

g1(x) =

∫ ∞

x

exp(−t)
tα

dt =

∫ ∞

x
exp(−t)dt = e−x

For 0 < α < 1 we obtain

g1(x) =

∫ ∞

x

exp(−t)
tα

dt =

∫ ∞

x
e−tt−αdt =

∫ ∞

x
e−ttβ−1dt

where β = 1− α. We observe that the last integral is an upper incomplete gamma function
for β > 0. Thus,

g1(x) =

{
e−x α = 0
uigf(x, 1− α) 0 < α < 1

Note that for special case x = 0 we get

g1(0) =

{
1 α = 0
Γ(1− α) 0 < α < 1

In the calculation of g2 for α = 0

g2(x) =

∫ ∞

x

exp(−t)
t1+α

dt =

∫ ∞

x

exp(−t)
t

dt = expint(x)
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For 0 < α < 1 integration by parts yields

g2(x) =

∫ ∞

x

exp(−t)
t1+α

dt

=
exp(−x)x−α

α
− 1

α

∫ ∞

x
e−tt−αdt

=
exp(−x)x−α

α
− 1

α

∫ ∞

x
e−ttβ−1dt

where as before β = 1 − α. Note that as before the last integral is the upper incomplete
gamma function for β > 0. Thus,

g2(x) =

{
expint(x) α = 0
exp(−x)x−α

α − 1
αuigf(x, 1− α) 0 < α < 1

The gamma function is

Γ(β) =

∫ ∞

0
e−ttβ−1dt

Problems

1. Assume we are pricing an American call under the CGMY model (0 < Y < 1)
with strike K at grid point (xi, τj) where xi = xmin + i∆x for i = 0, . . . , N and
∆x = (xmax − xmin)/N . For the region y ∈ (xN − xi,∞) we have

∫ ∞

xN−xi

(w(xi + y, τj)− wi,j) k(y)dy =

∫ ∞

xN−xi

(w(xi + y, τj)− wi,j)
e−λpy

νy1+Y
dy

where wi,j is the premium at (xi, τj). Knowing that xi + y is outside the grid for this
integral, calculate the above integral. Your answer should be expressed as a function
of known variables ν, λp, Y , wi,j and g2(.) with

g2(x) =

∫ ∞

x

e−t

t1+Y
dt

2. What happens to option premiums under the CGMY model as we increase Y while
keeping other parameters fixed? Why?

3. Price European options under CGMY using the explicit-implicit covered in this chap-
ter to solve the PIDE for the parameter set used to tabulate Table 2.12 and compare
your results.
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Case Studies

1. Let w(x, τ) be the value of a derivative security that satisfies the following PIDE

∂w

∂τ
(x, τ) − (r − q)

∂w

∂x
(x, τ) + rw(x, τ)

−
∫ ∞

−∞

[
w(x+ y, τ)− w(x, τ) − ∂w

∂x
(x, τ)(ey − 1)

]
k(y)dy

where k(y) is given by

k(y) =
e−λpy

νy1+Y
1y>0 +

e−λn|y|

ν|y|1+Y
1y<0

λp =

(
θ2

σ4
+

2

σ2ν

) 1
2

− θ

σ2

λn =

(
θ2

σ4
+

2

σ2ν

) 1
2

+
θ

σ2

. and x = ln(S) and τ = T − t.

For the put option premium, this PIDE must be solved subject to the initial condition

w(x, 0) = (K − ex)+ (5.43)

and boundary conditions

∂2w

∂x2
(−∞, τ)− ∂w

∂x
(−∞, τ) = 0 ∀τ

∂2w

∂x2
(∞, τ) − ∂w

∂x
(∞, τ) = 0 ∀τ

Use the explicit-implicit finite difference scheme covered in this chapter to solve the
PIDE.

To make sure the implementation is correct, calculate European put option premium
in this framework for the following parameters: spot price, S0 = $1300, strike price
K = 1300, risk-free interest rate r = 0.25%; dividend rate q = 1.5%, maturity T = 0.5
year, σ = 30%, ν = 0.40, θ = −0.30, and Y = 0.0 and compare it with the results
of a transform technique (FFT, fractional FFT, or the COS method) for the variance
gamma model.

Then, calculate American put option premiums for the following parameters: spot
price, S0 = $1300, strike price K = {1100, 1200, 1300}, risk-free interest rate r =
0.25%, dividend rate q = 1.5%; Maturity, T = 0.5 year, σ = 30%, ν = 0.40, θ = −0.30,
and Y = {0.0, 0.5, 0.99} by:

(a) Applying Bermudan approach at each time-step.

(b) Applying Brennan–Schwartz algorithm.
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(c) Solving the following modified PIDE (synthetic dividend process)

∂w

∂τ
(x, τ) − (r − q)

∂w

∂x
(x, τ) + rw(x, τ)

−
∫ ∞

−∞

[
w(x + y, τ)− w(x, τ) − ∂w

∂x
(x, τ)(ey − 1)

]
k(y)dy

−1x<x(τ)

{
rK − qex −

∫ ∞

x(τ)−x

[
w(x+ y, τ)− (K − ex+y)

]
k(y)dy

}
= 0

For solving the tridiagonal stiffness matrix in the Brennan-Schwartz algorithm, try
both possible approaches: (i) by first making upper diagonal zero and then solving and
correcting each element or (ii) by first making lower diagonal zero and then solving
and correcting each element. In the case of synthetic dividend, use the following two
approaches: (i) use the previous exercise boundary for the current time to solve the
matrix equation, (ii) use the previous one to find the current one and use that to
re-solve the matrix equation to find a new one.

For each parameter set, plot the critical stock price curves and compare premiums
and conclude.

2. Redo Case Study 1 using the fast Fourier transform to numerically solve the integral
in the PIDE as suggested in [9] as opposed to the finite difference scheme covered in
this chapter.

3. A fortiori, the up-and-out call value function u(S, t) solves a backward boundary value
problem (BVP), consisting of the backward partial-integro differential equation

∫ ∞

−∞

[
u(Ste

y, t)− u(St, t)−
∂u

∂S
(St, t)St(e

y − 1)

]
k(y)dy

+
∂u

∂t
(St, t) + (r(t) − q(t))St

∂u

∂S
(St, t)− ru(St, t) = 0

where k(y) is the same as the one given in Case Study 1. This PIDE is subject to the
following boundary conditions:

u(S, T0) = (S −K0)+, S ∈ [0, H ]

lim
S↓0

u(S, t) = 0, t ∈ [0, T0]

lim
S↑H

u(S, t) = 0, t ∈ [0, T0]

Solve the PIDE numerically for the following set of parameters: spot price S0 = $100,
strike price K = 110, up barrier H = 125, risk-free interest rate r = 1.5%, dividend
rate q = 1.25%, maturity T = 1 year, and the model parameters σ = 25%, ν = 0.25,
θ = −0.15, and Y = 0.6 using

• Uniform mesh points on S

• Uniform mesh points on ξ where

ξ =
sinh−1((S −B)/α)− c2

c1 − c2



202 Computational Methods in Finance

where

c1 = sinh−1

(
Smax −B

α

)

c2 = sinh−1

(
Smin −B

α

)

α =
Smax − Smin

20

Compare approximated values (premium and delta).

4. For K ∈ (0, H), T ∈ [0, T̄ ], and H > S0 the forward PIDE for up-and-out calls (Carr–
Hirsa) is the following:

∫ ∞

−∞
[u(Ke−y, T )− u(K,T )− ∂u(K,T )

∂K
K(e−y − 1)]eyk(y)dy

+
σ2(K,T )K2

2

∂2(K,T )

∂K2
− [r(T )− q(T )]K

∂u(K,T )

∂K
(K,T )− q(T )U(K,T )

=

[∫ ∞

0
uk(He−y, T )ν(x, T )dy +

σ2(H,T )K2

2
ukkk(H,T )

]
(K −H)

+
∂u(K,T )

∂T
+

∫ ∞

0
u(He−y, T )eyk(y)dx

with initial condition

u(K, 0) = (S0 −K)+, K ∈ [0, H)

and for H > S0. For boundary conditions, we use the following:

lim
K↓0

∂2

∂K2
u(K,T ) = 0, T ∈ [0, T̄ ]

lim
K↑H

∂2

∂K2
u(K,T ) = 0, T ∈ [0, T̄ ]

Under the CGMY framework k(y) is

k(y) =
e−λpy

νy1+Y y>0 +
e−λn|y|

ν|y|1+Y y<0

λp =

(
θ2

σ4
+

2

σ2ν

) 1
2

− θ

σ2

λn =

(
θ2

σ4
+

2

σ2ν

) 1
2

+
θ

σ2

For the following variables: up barrier, B = 125, spot S0 = 100, local volatility
surface σ(K,T ) = 0, risk-free rate r = 1.7%, and dividend rate q = 1.75% and model
parameters σ = 25%, ν = 0.25, θ = −0.15, and Y = 0.6 solve both backward and
forward PIDEs to fill in the following table:

Maturity T1 = 0.25 T2 = 0.5 T3 = 1.0
Barrier Strike Bwd Fwd Bwd Fwd Bwd Fwd
125 110

120



Chapter 6

Simulation Methods for Derivatives Pricing

For derivatives pricing, in a Markovian framework, the Feynman–Kac formula establishes a
link between partial differential equations (PDEs) and stochastic processes. As we have seen
finite difference schemes can be used to numerically solve PDEs/PIDEs. As the number of
dimensions in Markovian frameworks grows, finite difference schemes become unworkable
and unrealistic. Monte Carlo methods may be related to finite difference schemes for solving
PDEs/PIDEs via the Feynman–Kac characterization. But unlike finite difference schemes
that are limited to Markovian frameworks, Monte Carlo simulation is not and does not
suffer from dimensionality issues.

In this chapter we will introduce simulation or Monte Carlo methods for use in deriva-
tives pricing applications. Fundamentally, simulation methods are very simple. The basic
algorithm for derivatives pricing using simulation methods can be described very succinctly
as follows:
Derivative Valuation via Simulation

for j = 1, . . . ,N

Generate Xj

Compute Vj = Cf(Xj)

endfor

C ≈ 1
N

∑N
j=1 Vj

where Xj is a vector of random variables affecting the contract price, whose distributions
are determined by the model chosen, f(X) is our pricing function for the contract based
on the simulated random variables, and C is the appropriate constant for the measure used
in pricing. This works because in pricing derivatives we calculate the following expression
VT = C E [f(XT )] under the corresponding measure and thus we can simply approximate
this expectation with a simple average, as long as the market variables were generated to
be consistent with the corresponding measure.

Thus the only requirements for using Monte Carlo methods are that we have some set of
underlying random variables whose distribution is determined by our model, and we have
a pricing function for the contract based on the outcome of these random variables. These
lax requirements allow simulation-based pricing to be applied to an extremely wide variety
of derivatives pricing problems. This makes simulation-based pricing the most widely appli-
cable of the pricing methods described in this book; as long as we have some probabilistic
model of the variables determining the contract value and a pricing function, we can value
a contract using these methods. Because of this flexibility, simulation methods are often
the only way to price certain kinds of derivative products, typically those with complex
path-dependent payoffs.

While the flexibility of simulation methods makes these methods extremely powerful
and widely applicable, this comes with a price. Typically simulation methods are the most
expensive of all the available pricing methodologies; thus they are often used as a method
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of last resort, when the complexity of the contract makes simulation methods the only
available means of pricing a derivative.

Simulation methods are powerful not just because of their lax requirements; they solve
the problem of the curse of dimensionality which causes problems in other pricing methods.
We saw in Chapter 2 that FFT methods were O(n lnn) and COS methods were O(n); how-
ever, these methods are only applicable to single underlier assets with specific requirements
on the model and/or payoff function. They can solve only one-dimensional problems. In
Chapter 4 we saw that PDE methods are typically O(n2) for single underlier problems and
while they can be scaled to handle multiple underlier cases, their complexity is O(nd+1)
where d is the number of underliers, and the extra dimension is the time dimension. Prac-
tically, this means that, while we can handle two underlier cases with PDE/PIDE methods
which have complexity O(n3), anything more than this is infeasible and we would have
to turn to simulation methods. This additional level of complexity with each additional
dimension is known as the curse of dimensionality in numerical integration, of which most
derivatives pricing problems can be considered a subset. Simulation methods are one of the
main ways that larger dimensional problems are made tractable.

Derivatives pricing via simulation solves the curse of dimensionality through the law of
large numbers and the central limit theorem. The law of large numbers states that

1

N

N∑

j=1

Xj → µ as N →∞ (6.1)

This allows us to use the simple average of our simulated values as an estimate of the
expected value of the derivative contract’s payoff and guarantees with enough samples will
converge to the correct value of the contract, as long as risk-neutral pricing holds. The
central limit theorem states that given a series of identically independent random variables
X with mean µ and standard deviation σ, as well as the simple average XN = 1

N

∑N
j=1 Xj ,

we have

XN − µ

σ/
√
N

→ N (0, 1) as N →∞ (6.2)

XN − µ→ N (0,σ2/N) (6.3)

This allows us to measure the accuracy of our estimate or the number of samples we need
to achieve a certain degree of accuracy. This also applies in a multidimensional setting,
leading to an order of convergence related to O(N1/2) regardless of the dimension of the
problem. Thus we can sidestep the curse of dimensionality associated with other methods
which require evaluation of the pricing function in a large fraction of the multidimensional
space. This is especially important for path-dependent contracts, as the dimensionality is
not just governed by the price at the maturity of the contract, but the price at every time
between the pricing date and maturity. This leads to a theoretically infinite but practically
very high, dimensional problem and thus simulation methods may be the only applicable
methods.

This chapter describes the most critical elements of simulation-based pricing methods.
However, the topic is a vast one and entire books have been written on the subject. We
will not attempt cover every aspect of simulation methods; we refer readers to [122] for a
complete accounting of simulation methods and their use in finance. For simulation methods
and recent advances in derivatives pricing we refer readers to [37], [43], and [41]. For valuing
American options by simulation we refer readers to [40], [42], [45], [44], [47], [172], and [46]
which cover pricing on single and multi assets and in one- and multi-dimensional cases.

This chapter will be divided into four sections: the first section will deal with the gener-
ation of random numbers in general, the second section will deal with generating of random
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processes using their stochastic differential equations, the third one will give some examples
of generating sample paths under a couple of different models, and the last one will review
various variance reduction techniques we can use to speed up the calculation of derivatives
prices when using simulation methods.

Models:
All models which can be described by a set of random variables with a known distri-
bution

Option Types:
Any option for which a pricing function exists

Pros

1. Allows for pricing under almost any model

2. Allows for pricing of contracts with possibly any payoff

3. Allows for efficient pricing of contracts with many underliers

Cons

1. Typically the most expensive pricing methods

6.1 Random Number Generation

Any simulation method begins with the generation of random numbers. In this section
we will review the generation of random numbers, starting with uniform distribution and
moving on to methods used to generate random samples from other distributions. Random
number generation is a field unto itself, and we will not give a comprehensive review of it;
however, we will provide a review of the most essential elements. For a more detailed review
of random number generation, see [122].

6.1.1 Standard Uniform Distribution

Pseudo random number generation begins with the generation of standard uniform ran-
dom numbers. There are many different algorithms which can be used to generate standard
uniform random numbers, including linear congruential generators, combined generators,
and others. They are typically evaluated in terms of their period length, reproducibility,
speed, portability and degree and randomness typically described by a battery of statistical
tests.

Throughout simulation in this book, the random number generator of L’Ecuyer with
Bays–Durham shuffle and added safeguards is used. It returns a uniform random deviate
between 0.0 and 1.0 (exclusive of the endpoint values). This module is taken from Numerical
Recipes in C by Press, Teukolsky, Vetterling, and Flannery [189], page 282. For our purposes,
we assume the availability of a sequence U1, U2, . . . of independent random variables each
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satisfying

p(Ui ≤ u) =

⎧
⎨

⎩

0, u < 0
u, 0 ≤ u ≤ 1
1, u > 1

A standard uniform distribution is called Unif(0, 1), which we will abbreviate it to U(0, 1)
and each uniformly distributed sample is called U which is obviously between 0 and 1. Unless
specified, U is always sampled from U(0, 1), a standard uniform distribution. A function to
generate standard univariate random numbers should be available in every programming
language and mathematical analysis package.

6.2 Samples from Various Distributions

Most simulations require sampling random variables or random vectors from probabil-
ity distributions that are not uniform. There are two general and widely used techniques
which can be used to generate samples from other random variables given standard uniform
samples:

• Inverse transform method

• Acceptance–rejection method

6.2.1 Inverse Transform Method

The inverse transform method allows us to use standard uniform random samples to
generate samples from any distribution for which we have a cumulative distribution function
F . From Chapter 2 we know that we can recover the cumulative distribution function from
the characteristic function; we can also apply this method to any distribution for which
we have a characteristic function. A random variable which has CDF F must satisfy the
property that P (X < x) = F (x) for all x. The inverse transform method allows us to
generate random variables by applying the following relation:

x = F−1(U) where U ∼ U(0, 1) (6.4)

where F−1 is the inverse of F and as before U(0, 1) denotes the standard uniform distribution
on [0, 1]. To verify that the inverse transform generates samples from F , we check the
distribution of x this procedure produces.

p(X ≤ x) = p(F−1(U) ≤ x) (6.5)

= p(U ≤ F (x)) (6.6)

= F (x) (6.7)

The inverse of a function is well-defined if it is strictly increasing, and while most cumulative
distribution functions are, if the one we are using is not we set the following rule:

F−1(u) = inf{x : F (x) ≤ u} (6.8)

Below we provide some examples of the inverse transform method as applied to some dif-
ferent distributions.
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Example 8 Uniform distribution U(a, b)

A uniform distribution on (a, b) has the following probability density function:

f(x) =

⎧
⎨

⎩

0 , x < a
1

b−a , a ≤ x < b
0 , x ≥ b

and its cumulative distribution is

F (x) =

⎧
⎨

⎩

0 , x < a
x−a
b−a , a ≤ x < b
1 , x ≥ b

and its inverse is
X = F−1(U) = (b− a)U + a

Therefore, having U ∼ U(0, 1), we can generate the uniform distribution as follows: X =
(b−a)U+a ∼ U(a, b).

Example 9 Bernoulli distribution

The simplest model for binary outcomes is Bernoulli distribution and is used extensively
in practice. A random variable x ∈ (0, 1) with parameter p has a Bernoulli distribution if
P (x = 0) = 1− p and P (x = 1) = p, i.e., its probability density function is given by

f(x) =

{
1− p x = 0
p x = 1

or equivalently f(x) = px(1− p)1−x and its cumulative distribution is

F (x) =

{
1− p x = 0
1 x = 1

The mean and variance of a Bernoulli random variable are E(x) = p and var(x) = p(1− p),
respectively. Therefore, having U ∼ U(0, 1), we can sample from a Bernoulli as follows:

if U < 1− p set x = 0

otherwise set x = 1

Example 10 Exponential distribution

The exponential distribution with mean θ has distribution

F (x) = 1− exp(−x/θ), x ≥ 0 (6.9)

This is the distribution of the times between jumps of a Poisson process with rate 1
θ .

Inverting the exponential distribution gives us the following:

X = −θ log(1− U) (6.10)

This can also be implemented as

X = −θ logU (6.11)

because U and 1−U have the same distribution. Therefore, having U ∼ U(0, 1), X =
−θ logU ∼ exp(θ).
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Example 11 Poisson distribution

A random variable x ∈ N+ has a Poisson distribution if its probability distribution function
is given by

f(x) = e−λλ
x

x!
(6.12)

The mean and variance of a Poisson random variable are E(x) = λ and var(x) = λ,
respectively. Sampling from a Poisson is straightforward, given samples from an exponential
distribution.

Example 12 Arcsine law distribution

Arcsine law distribution is the distribution of the time that a standard Brownian motion
attains its maximum (minimum) over the interval [0, 1]. The distribution is as follows:

F (x) =
2

π
arcsin(

√
x) 0 ≤ x ≤ 1 (6.13)

The inverse transform method for sampling from this distribution is

X = sin2
(
Uπ

2

)
, U ∼ U(0, 1) (6.14)

=
1

2
− 1

2
cos(πU) (6.15)

In all of the above examples, finding the inverse of the cumulative distribution function
analytically was relatively easy. If the inverse of the cumulative distribution function is not
analytically available one may find the inverse either (a) numerically; for instance, having
the characteristic function analytically, we can evaluate the CDF numerically and form a
lookup table or (b) find a very efficient analytical approximation of the CDF which an
instance of this is for the standard normal distribution as will be demonstrated later in this
Chapter. However, the process of numerically evaluating the CDF to generate a random
sample can be computationally expensive. In most cases, if we do not have an analytical
form of the inverse function, we would not attempt the inverse transform method and would
often use the acceptance–rejection method instead.

6.2.2 Acceptance–Rejection Method

The acceptance–rejection method is one of the most widely applicable methods for gen-
erating random variables. It involves generating random samples from a more convenient
distribution and then rejecting some in order to generate samples from another desired
distribution. It is typically used when the form of the target distribution makes it difficult
to sample from it directly. Suppose that we want to generate samples from a distribution
with density f defined on support Υ. Let g be a density on Υ from which we know how to
easily generate samples and which has the property

f(x) < cg(x) for all x ∈ Υ (6.16)

where c > 1 is an appropriate bound on f(x)
g(x) . To apply the acceptance–rejection method,

we generate a sample X from g and accept the sample with the probability f(X)
cg(X) . This can

easily be implemented by sampling U from U(0, 1) and accepting X if U ≤ f(X)
cg(X) . If X is
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rejected, a new candidate is sampled from g and the acceptance procedure is applied again.
The process repeats until the acceptance test is passed; the accepted value is returned as a
sample from f .
Acceptance–Rejection Method

1. generate X from distribution g

2. generate U from distribution U(0, 1)

3. if U ≤ f(X)
cg(X)

accept and return X

else

reject it and go to Step 1

Thus each sample generated via the acceptance–rejection method requires at least one
sample from the distribution g and one uniform random sample, along with the amortized
cost of each rejection.

In order to prove the validity of this algorithm, we need to prove that if U is sampled
from U(0, 1) and X is sampled from distribution g that

P

(
X ≤ x|U ≤ f(X)

cg(X)

)
= F (x) (6.17)

as this probability described our sampling procedure.
To prove this, we first need to calculate the probability that U ≤ f(X)

cg(X) , that is,

p = P

(
U ≤ f(X)

cg(X)

)

By first conditioning on X = x we get

P

(
U ≤ f(X)

cg(X)
|X = x

)
= P

(
U ≤ f(x)

cg(x)

)

=
f(x)

cg(x)

That is because U ∼ U(0, 1) and by construction the ratio f(X)
cg(X) is bounded between zero

and one. To calculate unconditional probability we integrate x out and obtain

p =

∫ ∞

−∞
P

(
U ≤ f(X)

cg(X)
|X = x

)
g(x)dx

=

∫ ∞

−∞

f(x)

cg(x)
g(x)dx

=
1

c

∫ ∞

−∞
f(x)dx

=
1

c

We can look at p as probability of success. Then the number of times that we generate
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X and U in steps 1 and 2 has a geometric probability with probability of success p and
therefore

P (N = n) = (1 − p)n−1p

That means on average the number of iterations required to successfully accept a sample
generated by steps 1 and 2 is

E(N) =
1

p
= c

Thus we hope to find a g such that c is as small as possible. We know from conditional
probability that

P

(
X ≤ x|U ≤ f(X)

cg(X)

)
=

P
(
U ≤ f(X)

cg(X) |X ≤ x
)
P (X ≤ x)

P
(
U ≤ f(X)

cg(X)

)

Except for the term P
(
U ≤ f(X)

cg(X) |X ≤ x
)
, all other terms are known.

P (X < x) = G(x)

P

(
U <

f(X)

cg(X)

)
=

1

c

And further we can prove that

P

(
U <

f(X)

cg(X)
|X < x

)
=

P
(
U < f(X)

cg(X) , X < x
)

P (X < x)

=

∫ x
−∞ P

(
U < f(X)

cg(X) |X = u
)
g(u)du

G(x)

=

∫ x
−∞

f(u)
cg(u)g(u)du

G(x)

=
1
c

∫ x
−∞ f(u)du

G(x)

=
1
cF (x)

G(x)

Thus we have

P

(
X ≤ x|U ≤ f(X)

cg(X)

)
=

1
cF (x)
G(x) G(x)

1
c

= F (x)

And thus we have proven the validity of this method.
In the following section we provide some examples of how to generate different distribu-

tions via the acceptance–rejection method.
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6.2.2.1 Standard Normal Distribution via Acceptance–Rejection

This example is borrowed from the write-up in [201] on acceptance–rejection techniques.
This method is not the most efficient way of generating normal random variables but it is
a way of generating standard normal via the acceptance–rejection method. We wish to
generate samples from the standard normal distribution Z ∼ N (0, 1). If we can generate
samples from the absolute value, |Z|, then by symmetry we can obtain Z by independently
generating a random variable S which will determine the sign of the sample as positive
or negative with probability 1

2 and setting Z = S|Z|. That means we must generate a
U ∼ U(0, 1) random sample and set Z = |Z| if U < 1

2 and set Z = −|Z| if U > 1
2 . |Z| is

one-sided, non-negative, and obviously has the following probability distribution function:

f(x) =
2√
2π

e−
x2

2 (6.18)

A natural choice is g(x) = e−x, x ≥ 0, the exponential density with mean 1 as a density to
sample from and we can easily sample from it. To use the acceptance–rejection method, we
need to find c > 1 such that f(x) < cg(x) for all x ≥ 0. In order to do this we define

h(x) =
f(x)

g(x)
=

√
2/πex−

x2

2 (6.19)

By simply calculating the maximum of h(x), we find the value of x that maximizes the

exponent x− x2

2 . It is easy to see that the maximum occurs at x = 1. Therefore c =
√
2e/π

and so

f(x)

cg(x)
= e−(x−1)2/2 (6.20)

Thus the algorithm for generating Z by the acceptance–rejection method is as follows:

1. generate X from distribution g; that is, generate U ∼ U(0, 1) and set X = − ln(U)

2. generate U ∼ U(0, 1)

3. if U < e−(X−1)2/2, set |Z| = X , otherwise start from Step 1

4. generate U ∼ U(0, 1), set Z = |Z| if U < 0.5, otherwise set Z = −|Z|.

But U < e−(X−1)2/2 if and only if (X− 1)2/2 < − lnU and since − lnU is exponential with
mean 1, we can simplify the above algorithm as follows:

1. generate two independent X1 and X2 from distribution g; that is, generate U1 and U2

from U(0, 1) and set X1 = − ln(U1) and X2 = − ln(U2)

2. if X2 > (X1 − 1)2/2, set |Z| = X1, otherwise start from Step 1

3. generate U ∼ U(0, 1), set Z = |Z| if U < 0.5, otherwise set Z = −|Z|.

As stated in [201], an interesting observation is the memoryless property of the exponential
distribution, the amount by which X2 exceeds (X1 − 1)2/2 in step 2 when X1 is accepted,
that is, X

.
= X2− (X1−1)2/2, is exponential from an exponential distribution with mean 1

and is independent of X1. Therefore we get back an independent exponential for free which
could then be used as one of the two exponentials that are needed in step 1, if we were
to want to start generating yet another independent N (0, 1) random variable. Thus, after
repeated use of this algorithm, the expected number of uniforms required to generate one
Z is (2c+ 1)− 1 = 2c ≈ 2.64.
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6.2.2.2 Poisson Distribution via Acceptance–Rejection

As stated earlier a random variable x ∈ N+ has a Poisson distribution if its probability
distribution function is given by

f(x) = e−λλ
x

x!
(6.21)

where x can be interpreted as the number of arrivals in a unit time. The inter arrival time
x1, x2, ... are exponentially distributed with a mean of 1

λ , that is λ arrivals in a unit time.
If there are n arrivals in a unit time, sum of the arrival times of the past n observations
has to be less than or equal to one, but if one more arrival time is added, it is greater then
one (unit time). From Example 10 we know that times between jumps can be generated by
−1
λ logUi where Ui ∼ U(0, 1)

n∑

i=1

−1
λ

logUi ≤ 1 <
n+1∑

i=1

−1
λ

logUi

multiplying both sides by −λ and using the logarithmic property to get

log
n∏

i=1

Ui ≥ −λ > log
n+1∏

i=1

Ui

or equivalently

n∏

i=1

Ui ≥ e−λ >
n+1∏

i=1

Ui

Now, we can apply the acceptance–rejection method to generate a sample from the Poisson
distribution.

1. Set n = 0, p = 1

2. Generate a random number Un+1 and replace p by p× Un+1.

3. If p < e−λ, then accept x = n which means there are n arrivals at this unit time.

4. else, reject the current n, increase it by one, return to Step 2.

It begs a question how many random numbers on average are required to generate a Poisson
variate. If x = n, then n + 1 random numbers are required. That is because of the n+1
random numbers product. For large value of λ (λ > 15) the acceptance–rejection technique
becomes too expensive. For large value of λ we can use normal distribution to approximate
Poisson distribution [4]. When λ is large

Z =
x− λ√

λ

is approximately normally distributed with mean zero and variance one, thus

x = ⌈λ+
√
λZ − 0.5⌉

is used to generate a Poisson random variable. Here ⌈x⌉ rounds x to the nearest integer
greater than or equal to x. That is why the quantity inside is adjusted by 0.5.
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6.2.2.3 Gamma Distribution via Acceptance–Rejection

Suppose x is a gamma random variable gamma(α, 1
β ) where α is the shape parameter

and β is the scale parameter. Thus this random variable has the distribution function

f(x) =
1

Γ(α)
βαxα−1e−βx

The gamma distribution can be simulated using acceptance–rejection by using the expo-
nential density g(x) = λe−λx in which 1

λ is chosen as the mean of the gamma distribution,
and it can be shown that this value is optimal.

First, we will explain why the mean of the gamma distribution is the optimal value for
λ. Define h(x) = f(x)

g(x) . We want to determine an upper bound c for h(x) such that h(x) < c
for all x > 0 and we know that

h(x) =
1

λΓ(α)
βαxα−1e(λ−β)x (6.22)

We observe that λ < β must if true if h(x) must be bounded. We find the maximum of
h(x) by taking the first derivative and set it equal to zero, which yields x∗ = α−1

β−λ . We
observe that for α smaller than one, x⋆ will be outside the domain. Actually for α < 1 h(x)
is strictly decreasing and approaches infinity at zero. Therefore, if we restrict α > 1 and we
have a maximum x∗ > 0 and h(x⋆)

h(x∗) =
1

λΓ(α)
βα(α− 1)α−1

(
1

β − λ

)α−1

e−(α−1) (6.23)

We would like to find λ that minimizes h(x∗) which is equivalent to minimizing 1
λ

(
1

β−λ

)α−1
.

We take its derivatives and set it equal to zero and we obtain λ∗ = β
α . Note that since α > 1

we still have λ < β.

6.2.2.4 Beta Distribution via Acceptance–Rejection

The beta distribution has the following probability density function on [0, 1]:

f(x) =
1

B(α,β)
xα−1(1− x)β−1 (6.24)

where α, β > 0 are shape parameters and B(α,β)) is a normalization constant to ensure
that the distribution function integrates to one

B(α,β) =

∫ 1

0
xα−1(1− x)β1 =

Γ(α)Γ(β)

Γ(α+ β)
(6.25)

Note that for α = β = 1 we get standard uniform distribution. If both parameters are
smaller than 1 we get a U -shaped distribution. If one parameter is equal to 1 and the other
is greater than 1 we get a strictly convex distribution except for being equal to 2 that would
be a straight line. In the case where both shape parameters are greater or equal to 1 we get
a unimodal distribution.

For the case where both shape parameters are greater than or equal to 1, f(x) has a
unimodal distribution and attains its maximum at α−1

α+β−2 . Therefore, if we choose g to be

standard uniform density, g(x) = 1 for 0 ≤ x ≤ 1, then f(x) ≤ cg(x) for all 0 ≤ x ≤ 1
where c is the value of f(x) evaluated at α−1

α+β−2 .

c =
1

B(α,β)

(
α− 1

α+ β − 2

)α−1 ( β − 1

α+ β − 2

)β−1

(6.26)
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Then we have

f(X)

cg(X)
=

f(X)

c
(6.27)

=
Xα−1(1−X)β−1

(
α−1

α+β−2

)α−1 (
β−1

α+β−2

)β−1
(6.28)

Thus the acceptance–rejection method for generating beta random variables would be as
follows:

1. generate U1 and U2 from U(0, 1)

2. if U2 ≤ Uα−1
1 (1−U1)

β−1

( α−1
α+β−2 )

α−1( β−1
α+β−2 )

β−1 set X = U1, otherwise start from Step 1

Note that in this case, and in fact in any beta example using g(x) = 1, we do not need to

know or compute the value of B(α,β) at all; it cancels out in the ratio f(x)
cg(x) .

While we have demonstrated the fact that we can generate a sample from a beta distri-
bution via acceptance–rejection, there are other ways to generate these samples as well. For
example, one can use the basic fact that if X1 is a gamma random variable with the shape
parameter n+1, and independently X2 is a gamma random variable with shape parameter
m+1, and both have the same scale parameter, then X = X1

X1+X2
is a beta distribution with

density f(x) = bxn(1− x)m.
Thus it suffices to have an efficient algorithm for generating the gamma distribution. In

general, when n and m are integers, the gamma becomes Erlang (represented by sums of
independently identically distributed exponentials); for example, if X1 and X2 are indepen-
dent and identically distributed exponentials, then X = X1

X1+X2
is uniform on (0, 1).

6.2.3 Univariate Standard Normal Random Variables

In the previous sections we have described methods for generating univariate random
samples and then using these to generate samples from other distributions via generalized
methods. However, standard normal distribution is the most widely used distribution in
simulation, and thus efficient generation of standard normal random samples is of paramount
importance to many applications. To give a few examples, Brownian motions are closely
linked to standard normal variables and in simulating Brownian motion we need to sample
from a standard normal distribution. Also, any semi-martingale is a time change Brownian
motion [215] and so simulating it will again require standard normal random samples. We
already covered a method of generating samples from a standard normal distribution via
the acceptance–rejection method. However, because of its central importance to simulation,
specialized methods have been developed to generate the samples.

6.2.3.1 Rational Approximation

The rational approximation routine uses rational approximation for lower tail quantile
for standard normal distribution function. This routine returns an approximation of the
inverse cumulative standard normal distribution function. That is, given p, where 0 < p < 1,
it returns an approximation to the z satisfying Φ−1(p), or equivalently P (Z ≤ z) = p where
Z is a random variable from the standard normal distribution. Algorithms for doing this
use a minimax approximation by rational functions [86]. Here we follow the algorithm by
Peter John Acklam [3] and the result has a relative error whose absolute value is less than
1.15e− 9.
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Define the low and high regions for p to be

pl = 0.02425

ph = 1.0− pl

(a) rational approximation for the lower region, that is, if p < pl:

q =
√
−2 log(p)

z = (((((c1q+c2)q+c3)q+c4)q+c5)q+c6)
((((d1q+d2)q+d3)q+d4)q+1)

(b) rational approximation for the central region, that is, if pl ≤ p ≤ ph:

q = p− 0.5

r = q2

z = (((((a1r+a2)r+a3)r+a4)r+a5)r+a6)q
(((((b1r+b2)r+b3)r+b4)r+b5)r+1)

(c) rational approximation for the upper region, that is, if p > ph:

q =
√
−2 log(1− p)

z = − (((((c1q+c2)q+c3)q+c4)q+c5)q+c6)
((((d1q+d2)q+d3)q+d4)q+1)

where the a vector coefficients are

a1 = −39.69683028665376
a2 = 220.9460984245205

a3 = −275.9285104469687
a4 = 138.3577518672690

a5 = −30.66479806614716
a6 = 2.506628277459239

b vector coefficients are

b1 = −54.47609879822406
b2 = 161.5858368580409

b3 = −155.6989798598866
b4 = 66.80131188771972

b5 = −13.28068155288572

c vector coefficients are

c1 = −0.007784894002430293
c2 = −0.3223964580411365
c3 = −2.400758277161838
c4 = −2.549732539343734
c5 = 4.374664141464968

c6 = 2.938163982698783
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d vector coefficients are

d1 = 0.007784695709041462

d2 = 0.3224671290700398

d3 = 2.445134137142996

d4 = 3.754408661907416

As mentioned, the relative error of the approximation has an absolute value less than
1.15e − 9. To get full machine precision we can perform one iteration of Halley’s rational
method.

e =
1

2
erfc(− z√

2
)− p

u = e
√
2π exp(

z2

2
)

z = z − u

1 + uz
2

where erfc(x) is the complementary error function [68] and the last two equalities are from
Halley’s rational formula [217].

6.2.3.2 Box–Muller Method

Let X and Y be independent and identically distributed (i.i.d.) standard normal random
variables N (0, 1) with joint PDF f(x, y).

f(x, y) =
1√
2π

e−x2/2 1√
2π

e−y2/2

=
1

2π
e−

x2+y2

2

with
∫ ∞

−∞

∫ ∞

−∞

1

2π
e−

x2+y2

2 dxdy = 1

We perform the following change of variables:

R2 = X2 + Y 2

θ = arctan(
Y

X
)

Under the new coordinate we can see that

X = R cos(θ)

Y = R sin(θ)

and using the fact that dxdy = RdRdθ we obtain

∫ 2π

0

∫ ∞

0

1

2π
e−

R2

2 RdRdθ = 1
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We perform one more change of variable by setting r = R2; under this change of variable
we have dr = 2RdR and X and Y can be written as coordinate

X =
√
r cos(θ)

Y =
√
r sin(θ)

and finally we get
∫ 2π

0

∫ ∞

0

1

2π
e−

r
2
1

2
drdθ = 1

Thus we can write the joint PDF as

fd,Θ(r, θ) =
1

2

1

2π
e−r/2

=
1

2π

1

2
e−r/2

= fΘ(θ)fd(r)

where fd(r) is the PDF of exponential distribution with mean 2, fΘ(θ) is the PDF of uniform
distribution on [0, 2π], U(0, 2π), with r = R2 = x2 + y2, θ = arctan( yx ). Therefore we can
generate two independent normal variables as follows:

• generate U1 and U2 i.i.d. U(0, 1)

• X =
√
−2 lnU1 cos(2πU2) and Y =

√
−2 lnU1 sin(2πU2)

As shown in earlier examples, −2 lnU1 is a sample from an exponential with mean 2 and
2πU2 is a sample from U(0, 2π). Note that at each draw/sample, Box–Muller actually gen-
erates a pair of independent standard normal random variables. While the Box–Muller
method is effective, it can be computationally expensive, as the evaluation of sin and cos
are generally computationally expensive operations.

6.2.3.3 Marsaglia’s Polar Method

An improved version of the Box–Muller is Marsaglia’s polar method, in which we can
circumvent the computationally expensive evaluations of trigonometric functions. Consider
v1 and v2 be two independent U(−1, 1),1 we can show that for v1, v2 with v21 + v22 < 1 the
following transformation (

S
θ

)
=

(
v21 + v22

1
2π arctan

(
v2
v1

)
)

generates two uniformly distributed random variables S and θ on [0, 1]. That means S ∼
U(−1, 1). In addition, v1 and v2 are obviously uniformly distributed in the square [−1, 1]×
[−1, 1]. Thus the angle of the vector (v1, v2) is also uniformly distributed and can be used
to calculate cos(θ) and sin(θ) using

sin θ =
v2

(v21 + v22)
1/2

cos θ =
v1

(v21 + v22)
1/2

Here we use acceptance–rejection to sample points uniformly in the unit disc and then
transform these points to normal by polar coordinate. v1 and v2 are i.i.d. U(−1, 1) accepting

1Note that if Ui ∼ U(0, 1) then Vi = 2Ui − 1 ∼ U(−1, 1), which is how we can generate these samples.
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TABLE 6.1: Elapsed time for sampling 100, 000, 000 standard normal random variables

method elapsed time (milliseconds)
acceptance–rejection 26,095.10
rational approximation 5,458.20
Box–Muller 15,077.30
Marsaglia polar 7,785.83

only those pairs inside the unit circle produces points uniformly distributed over a disc of
radius one. Conditional on acceptance, S is uniformly distributed between [0, 1]. Dividing
v1 and v2 by

√
S projects it from unit disc to the unit circle on which it is uniformly

distributed. Moreover v1√
S
and v1√

S
are independent of S conditional on S ≤ 1. Therefore we

can generate two independent normal variables as follows:

1. generate v1 and v2 i.i.d. U(−1, 1)

2. Set S = v21 + v22

3. If S > 1, then start over

Otherwise

x = v1

√
−2 lnS

S

y = v2

√
−2 lnS

S

In this algorithm there are rejections controlled by the condition S ≤ 1. The probability of
S accepted, the area of the unit circle inside the square [0, 1]2 to the area of the square, is

P (S < 1) ≈ 0.785

Therefore, 21% of uniform samples V1 and V2 are rejected, for which S > 1. Despite this
the algorithm is still more efficient than the one using trigonometric function calls. This is
the most common method of generating samples from N (0, 1).

Table 6.1 shows the elapsed time in milliseconds for generating 100, 000, 000 samples
from a standard normal distribution for the four methods: (a) sampling by acceptance–
rejection, (b) Box–Muller, (c) Marsaglia’s polar method, and (d) rational approximation.
As we see, rational approximation and Marsaglia polar methods are faster than the other
two.

6.2.4 Multivariate Normal Random Variables

Multivariate normal random variables play a very important role in financial appli-
cations, and in this section we will review how they can be generated. One-dimensional
standard normal random variables, N (0, 1), have the following probability and cumulative
distribution functions:

φ(x) =
1√
2π

e−
1
2x

2

(6.29)

Φ(x) =
1√
2π

∫ x

−∞
e−

1
2u

2

du (6.30)

(6.31)



Simulation Methods for Derivatives Pricing 219

If z ∼ N (0, 1) then x = µ+σz is a normal distribution with mean µ and standard deviation
σ, namely, N (µ,σ2). A d-dimensional normal distribution is characterized by a d-vector µ
and d× d covariance matrix Σ, where Σ is symmetric and positive semi-definite,

Σ =

⎛

⎜⎝
Σ11 · · · Σ1d
...

. . .
...

Σ1d · · · Σdd

⎞

⎟⎠ (6.32)

and can be decomposed and written as

Σ = σΛσ =

⎛

⎜⎝
σ1

. . .
σd

⎞

⎟⎠

⎛

⎜⎝
1 · · · ρ1d
...

. . .
...

ρ1d · · · 1

⎞

⎟⎠

⎛

⎜⎝
σ1

. . .
σd

⎞

⎟⎠ (6.33)

where Λ is the correlation matrix and σi the standard deviation of i-th dimension. A d-
dimensional normal distribution has the following probability distribution function:

φµ,Σ(x) =
1

(2π)d/2|Σ|1/2
e−

1
2 (x−µ)⊤Σ−1(x−µ) (6.34)

(6.35)

We know that if z ∼ N (0, I) and x = µ+ Az then x ∼ N (µ,AA⊤). Thus, the problem of
sampling x from the multivariate normal N (µ,Σ) reduces to finding a matrix A such that
AA⊤ = Σ. Matrix A is not unique, among all such As, a lower triangular one is particularly
convenient because it reduces the calculation of µ+Az to the following:

x1 = µ1 + a11z1

x2 = µ2 + a21z1 + a22z2
...

xn = µd + ad1z1 + ad2z2 + · · ·+ addzd (6.36)

The lower triangle A which satisfies AA⊤ = Σ can be found via Cholesky factorization.

6.2.5 Cholesky Factorization

For d× d covariance matrix Σ we need to solve

Σ = AA⊤

=

⎛

⎜⎜⎜⎝

a11
a21 a22
...

. . .
ad1 ad2 · · · add

⎞

⎟⎟⎟⎠

⎛

⎜⎜⎜⎝

a11 a21 · · · ad1
a22 · · · ad2

. . .
...

add

⎞

⎟⎟⎟⎠

Simply by multiplying it, we can see

a211 = σ11

a21a11 = σ21

...

ad1a11 = σd1

a221 + a222 = σ22

...

a2d1 + · · ·+ a2dd = σdd
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More compactly

σii =
i∑

l=1

a2il i = 1, . . . , d

σij =
j∑

l=1

ailajl j ≤ i

and we get

aii = σii −
i−1∑

l=1

a2il i = 1, . . . , d

aij =

(
σij −

j−1∑

l=1

ailajl

)
/ajj j < i

Thus the algorithm for generating the Cholesky decomposition is as follows:
Pseudo-Code for Cholesky Decomposition

Start with a d× d zero matrix

for j = 1, . . . , d

for i = j, . . . , d

xi = σij

for k = 1, . . . , j − 1

xi = xi − ajkaik

end for

aij = xi/
√
xj

end for

end for

6.2.5.1 Simulating Multivariate Distributions with Specific Correlations

As we will discuss later in Chapter 7 on calibration techniques, assuming one Brownian
motion (one factor) captures the behavior of the entire term structure is not realistic. For
that reason, we typically use three or four to confine its evolution, one factor for very short
maturity (3-month to 2-year), a second one f or short (2-year to 5-year), a third one for
medium (5-year to 10-year), and the fourth and the last for very long maturities (15-year
to 30-year). In order to simulate such a four factor model, we have to generate correlated
standard normal random variables. Assume we have generated 40,000 i.i.d. standard normal
random variables and resize them into four vectors of length 10,000; we expect to get an
identity matrix as its correlation. Table 6.2 shows the correlation matrix that is pretty close
to an identity matrix.

For factor correlation, we use a correlation of ten years of 3-month LIBOR rates, 5-year,
10-year, 30-year swap rates, which is illustrated in Table 6.3. We use Cholesky factorization
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TABLE 6.2: Correlation of standard normal random vectors

ρ Z1 Z2 Z3 Z4

Z1 1 -0.0034 -0.0216 -0.0083
Z2 -0.0034 1 0.0047 0.01
Z3 -0.0216 0.0047 1 0.0219
Z4 -0.0083 0.01 0.0219 1

TABLE 6.3: Historical correlation of LIBOR and swap rates

ρ 3m LIBOR 5-year swap 10-year swap 30-year swap
3m LIBOR 1 0.1638 0.0817 0.0814
5y swap 0.1638 1 0.7118 0.8595
10y swap 0.0817 0.7118 1 0.6816
30y swap 0.0814 0.8595 0.6816 1

to obtain

A =

⎛

⎜⎜⎝

1 0 0 0
0.1638 0.9865 0 0
0.0817 0.7080 0.7015 0
0.0814 0.8595 0.0965 0.4983

⎞

⎟⎟⎠

then use (6.36) to obtain

x1 = z1

x2 = 0.1638z1 + 0.9865z2

x3 = 0.0817z1 + 0.7080z3 + 0.7015z3

xn = 0.0814z1 + 0.8595z2 + 0.0965z3 + 0.4983z4

Having Xs we can now compute the correlation of them. Their correlations are displayed
in Table 6.4. Comparing correlations between the historical correlation matrix in Table 6.3
and correlations in Table 6.4 we see that they are pretty close as expected.

TABLE 6.4: Correlation of standard normal random vectors after Cholesky factorization

ρ X1 X2 X3 X4

X1 1 0.1624 0.0646 0.0724
X2 0.1624 1 0.7087 0.8558
X3 0.0646 0.7087 1 0.6855
X4 0.0724 0.8558 0.6855 1
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6.3 Models of Dependence

Here we discuss three models of dependence. Our discussion closely follows the work in
[163]. The models under consideration are (a) full rank Gaussian copula model, (b) corre-
lating Gaussian components in a variance gamma representation, and (c) linear mixtures
of independent Lévy processes.

6.3.1 Full Rank Gaussian Copula Model

From one viewpoint there is no use to compute correlations of non-Gaussian variates
as the result does not lead us to any ability of writing down the joint probability law. We
simply have correlation estimates. On the other hand, if data are transformed to standard
normal variates before correlation is computed, then computed correlations may be used
to write down the joint multivariate normal law of the transformed Gaussian variates with
original data being a non-linear transform of what just mentioned.

Let X = (x1, x2, . . . , xn) be a vector of dimension N . Marginal distribution for each xi

is given by

P (xi ≤ x) = Fi(x) (6.37)

We may transform the marginal to standard normal variates by

Zi = Φ−1(Fi(xi)) (6.38)

where Φ is the CDF of the standard normal variable. By construction Zi ∼ N (0, 1) and we
can recover xi by

xi = F−1
i (Φ(Zi)) (6.39)

We suppose vector Z = (Z1, Z2, . . . , ZN ) is standard multivariate normal with the correla-
tion matrix C.

6.3.2 Correlating Gaussian Components in a Variance Gamma Repre-
sentation

Suppose that the marginal distributions are centered variance gamma with

Xi = θi(gi − 1) + σi
√
giZi (6.40)

where gi and Zi are gamma and standard normal random variables.
We now further assume Z is multivariate normal with the correlation matrix C. The

joint probability density and the characteristic function are not available in closed form as
we have to integrate over a large number of independent gamma densities but they emerge
as products of square roots that do not separate out in either the density or characteristic
function. However, the joint law is easily simulated from a multivariate normal simulation
together with drawings from gamma densities.

6.3.3 Linear Mixtures of Independent Lévy Processes

Assume that

X = AY (6.41)
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where A is a mixing matrix and Y is independent. Given the characteristic function

φj(u) = E(eiuYi ) (6.42)

the joint characteristic function of X may be easily derived as

φX(u) =
N∏

j=1

φi((A
⊤u)j) (6.43)

6.4 Brownian Bridge

To simulate a standard Wiener process at time t we use the fact that

Wt −W0 ∼
√
tz where z ∼ N (0, 1) (6.44)

and knowing that W0 = 0 it simply becomes

Wt ∼
√
tz (6.45)

Suppose we have simulated Wt1 and Wt2 . It is now desired to fill in points in the interval
[t1, t2], that is, to interpolate between the already generated points Wt1 and Wt2 . To do this
we use a Brownian bridge that is required to go through the values Wt1 and Wt2 .

A Brownian bridge x is a process that at time t1 has the value a and at time t2 has the
value b. Between t1 and t2, x behaves like a Brownian motion. A Brownian bridge satisfies
the following stochastic differential equation:

dxt =
b− xt

t2 − t
dt+ dBt, xt1 = a (6.46)

where Bt is a standard Brownian motion.
The linear SDE (6.46) can be solved explicitly and the solution is

xt = a
t2 − t

t2 − t1
+ b

t− t1
t2 − t1

+ (t2 − t)

∫ t

t1

dBu

t2 − u
(6.47)

Knowing that the conditional distribution of xt is normal, it can be shown that its mean
and variance are

Et1(xt) = a+ (b− a)
t− t1
t2 − t1

(6.48)

V art1(xt) =
(t2 − t)(t− t1)

t2 − t1
(6.49)

As an example, let us assume we want to construct a Brownian bridge between 0 and
T to calculate its values at tj for j = 1, . . . ,m− 1 with 0 < t1 < t2 < · · · < tm−1 < tm = T .
We first generate WT at T = tm, then use a Brownian bridge to get the entire path at
{t1, t2, t3, . . . , tm−1}. Using the value of WT , and Wt0 = W0 = 0, it generates Wt1 . It
generatesWt2 using Wt1 and WT , and it generatesWt3 using Wt2 and WT . The construction
proceeds until we reach tm−1. Thus, the discretely sampled Brownian path is generated by
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determining its values at T, t1, t2, t3, . . . , tm−1 according to

WT =
√
Tz1

Wt1 = Wt0 + (WT −Wt0)
t1 − t0
T − t0

+

√
(T − t1)(t1 − t0)

T − t0
z2

Wt2 = Wt1 + (WT −Wt1)
t2 − t1
T − t1

+

√
(T − t2)(t2 − t1)

T − t1
z3 (6.50)

...

Wtm−1 = Wtm−2 + (WT −Wtm−2)
tm−1 − tm−2

T − tm−2
+

√
(T − tm−1)(tm−1 − tm−2)

T − tm−2
zm

where zi for i = 1, . . . ,m are independent and identically distributed standard normal
random variables N (0, 1).

6.5 Monte Carlo Integration

Consider the following integral ∫

Is

f(x)dx

where Is is the s-dimensional unit cube, Is = [0, 1] × · · · × [0, 1]. Assume we want to
numerically evaluate the integral for s = 20. For just 10 discretization points on each
dimension we will have 1020 number of grid points. The difficulty in computing the integral
due to the high dimensionality is referred to as the curse of dimensionality. To overcome this
hurdle, we employ Monte Carlo integration. Instead of trying to compute the integral via
some numerical integration scheme, we sample the set x1, . . . , xN , uniformly distributed N
vectors and evaluate the function f at a set of points x1, . . . , xN and evaluate the following
sum as an approximation for the integral:

θN =
1

N

N∑

i=1

f(xi)Îs

where Îs is the volume2 of the integration domain Is. Therefore the summation is an ap-
proximation for the integral ∫

Is

f(x)dx ≈ θN

2In this example Is = [0, 1]× · · ·× [0, 1] so it has volume 1.
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From the law of large numbers we have

lim
N↑∞

θN = lim
N↑∞

1

N

N∑

i=1

f(xi)Îs

= ÎsE(f(x))

= Îs

∫

Is

f(x)
1

Îs
dx

=

∫

Is

f(x)dx

where we use the fact that the probability of xi, that is uniform over Is, is 1
Îs
. Now we are

interested in how fast θN approaches the integral as N approaches infinity. To quantify the
convergence rate we define the error term δN as

δN ≡
∫

Is

f(x)dx− θN

=

∫

Is

f(x)dx− 1

N

N∑

i=1

f(xi)Îs

=
1

N

N∑

i=1

(∫

Is

f(x)dx − f(xi)Îs

)

=
1

N

N∑

i=1

(∫

Is

f(x)
1

Îs
dx− f(xi)

)
Îs

=
Îs
N

N∑

i=1

(∫

Is

f(x)
1

Îs
dx− f(xi)

)

Denote

∆f(xi) =

∫

Is

f(x)
1

Îs
dx− f(xi)

and we can see that

δN ≡ Îs
N

N∑

i=1

∆f(xi)

It is easy to show that ∆f(xi) has zero mean that is

E(∆f(xi)) = 0

and also considering that for i ̸= j, xi and xj are independent, then ∆f(xi) and ∆f(xj)
are uncorrelated.

E(∆f(xi)∆f(xi)) = E(∆f(xi))E(∆f(xj)) = 0

Having these properties we can analyze the variance of δN , that is,

Var(δN ) = E(δ2N )− (E(δN ))2

=
Î2s
N2

N∑

i=1

E(∆f(xi)
2)2 + 0

=
Î2s
N

{∫

Is

f2(x)
1

Îs
dx−

(∫

Is

f(x)
1

Îs
dx

)2
}
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Define

σ2(f) =

∫

Is

f2(x)
1

Îs
dx−

(∫

Is

f(x)
1

Îs
dx

)2

Then we get the following for the variance of the error term

Var(δN ) =
Î2s
N

σ2(f)

Observations are that the error in Monte Carlo integration can be reduced by increasing N
the number of sampling points. The rate of convergence is

√
Var(δN ) ∼ 1√

N

From the variance we can see how Monte Carlo integration resolves the curse of dimen-
sionality. As an example, for the integral of s = 20, if we sample N = 106 points, then

the Monte Carlo error is approximately O
(

1√
N

)
∼ 1√

106
= 10−3. It is important to notice

that the magnitude in error term δN is independent of the dimension s. However, knowing

that the error convergence rate is O
(

1√
N

)
makes the convergence pretty slow. In order to

improve this slow convergence, we should employ some kind of variance reduction method,
which will be discussed later.

Knowing the variance, we can set up an error bound as an indicator of how accurate
the Monte Carlo result is. This is not a strict bound. Despite this, by convention, a Monte
Carlo result is often written as

∫

Is

f(x)dx ≈ Îs
N

N∑

i=1

f(xi)±
Î2s
N

σ2(f)

to indicate the sense of accuracy.
Note that if f(x) is constant, f(x) ≡ c, then

σ2(f) =

∫

Is

f2(x)
1

Îs
dx−

(∫

Is

f(x)
1

Îs
dx

)2

=

∫

Is

c2
1

Îs
dx−

(∫

Is

c
1

Îs
dx

)2

= c2
∫

Is

1

Îs
dx− c2

(∫

Is

1

Îs
dx

)2

= c2 − c2

= 0

that is, what we expect to get if an integrand is a constant and obviously there is no need to
do the integral. The way to interpret σ2(f) is how much the function f(x) deviates from a
constant. If we can find a transformation that changes the coordinate x to a new coordinate
y in which the transformed function is rather flat, then we can reduce the variance of
Monte Carlo integration. This is the essence of variance reduction. Another observation is
that σ2(f) involves two integrals, which can be estimated approximately through the Monte
Carlo method by viewing 1

Îs
inside the integrals as the uniform probability density:

σ2(f) ≈ 1

N

N∑

i=1

f2(xi)−
(

1

N

N∑

i=1

f(xi)

)2

where xi are sampled uniformly from the domain Is.
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6.5.1 Quasi-Monte Carlo Methods

Quasi-Monte Carlo methods can be regarded as a deterministic equivalent of classical
Monte Carlo. They are used to evaluate multi-dimensional integrals with no closed-form
solution. Consider ∫

Is

f(x)dx

over the s-dimensional unit cube, Is = [0, 1]× · · · × [0, 1]. As explained earlier in classical
Monte Carlo integration we select set points x1, ..., xN , that is, a sequence of pseudo random
numbers, and approximate the integral by

θN =
1

N

N∑

i=1

f(xi)Îs

In quasi-Monte Carlo methods we select points deterministically. Specifically, quasi-Monte
Carlo methods produce a deterministic sequence of points that provides the best possible
spread in Is. These deterministic sequences are referred to as low-discrepancy sequences
(e.g., Niederreiter [182], Fang and Wang [113]). There exist a variety of different low-
discrepancy sequences. Quasi-random number generators produce highly uniform samples
of the unit hypercube. They are designed to minimize the discrepancy between the dis-
tribution of generated points and a distribution with equal proportions of points in each
sub-cube of a uniform partition of the hypercube [151]. As a result, quasi-random number
generators systematically fill the holes in any initial segment of the generated quasi-random
sequence. Examples include the Halton sequence [127], the Sobol sequence [205], the Faure
sequence [114], and the Niederreiter sequence [182]. In Figure 6.1 uniform random variables
where uniform sampled from a unit square are plotted. An example of a two-dimensional
low-discrepancy sequence from a Halton set is plotted in Figure 6.2 where it is clear from the
graph that unlike the uniform random variables there is nothing random about these points.
Unlike pseudo-random sequences, quasi-random numbers are too uniform to pass tradi-
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FIGURE 6.1: Plot of uniform random variables in unit square

tional tests of randomness (Kolmogorov–Smirnov test). In general, quasi-random sequences
fail many statistical tests for randomness. Approximating true randomness, however, is not
their goal. Quasi-random sequences seek to fill space uniformly, and to do so in such a way
that initial segments approximate this behavior up to a specified density. However, due to
their deterministic nature, statistical methods do not apply to quasi-Monte Carlo methods.
Moreover, determining the error of quasi-Monte Carlo method analytically can be extremely
difficult [51].
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FIGURE 6.2: Plot of low discrepancy points (Halton set) sampled from a unit square

6.5.2 Latin Hypercube Sampling Methods

Latin hypercube sequences, though not quasi-random in the sense of minimizing discrep-
ancy, nevertheless these sequences produce sparse uniform samples useful in experimental
designs. Latin hypercube sampling is a statistical method for generating a distribution of
plausible collections of parameter values from a multidimensional distribution. The sampling
method is often applied in uncertainty analysis. The technique was introduced by McKay,
Beckman, and Conover [176]. It was further elaborated by Iman, Helton, and Campbell
[145], [144]. A comparison of Latin hypercube sampling with other techniques is given in
Iman and Helton [143].

In the context of statistical sampling, a square grid containing sample positions is a
Latin square if and only if there is only one sample in each row and each column. A
Latin hypercube is the generalization of this concept to an arbitrary number of dimensions,
whereby each sample is the only one in each axis-aligned hyperplane containing it.

6.6 Numerical Integration of Stochastic Differential Equations

In the last section, we reviewed methods for generating random variables. However, most
models of asset prices or rates model the evolution of those prices or rates over time. As
we saw in Chapter 4, many models can be expressed in terms of a stochastic differential
equation (SDE). In this section we review how to simulate the evolution of a random process
using its SDE. If we can solve the SDE directly then there is no need to simulate the SDE
across a set of discrete points to arrive at a simulation of the process at some terminal time;
we can just use the solution of the SDE to simulate samples at any point in time directly.
However, it is rarely the case that the solution of an SDE is independent of its path and
therefore in most cases we need to discretize the SDE and then simulate over each time
interval in order to simulate paths of the process across time.

Consider the following generic one-dimensional SDE:

dXt = µ(Xt, t)dt+ σ(Xt, t)dWt t0 ≤ t ≤ T

X(t0) = X0

where W = {Wt, 0 ≤ t ≤ T } is a one-dimensional standard Wiener process, µ and σ are the
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drift and the diffusion coefficient respectively. The assumption is that µ and σ are defined
and measurable.

The Itô-Taylor expansion for this SDE is

Xt = Xt0 + µ(Xt0)

∫ t

t0

ds+ σ(Xt0)

∫ t

t0

dW (s)

+
1

2
σ(Xt0)σ

′(Xt0)
(
[W (t)−W (t0)]

2 − (t− t0)
)
+R (6.51)

where R is the remainder. Once we have the Itô-Taylor expansion, we can construct nu-
merical integration schemes for the SDE. A SDE defines the evolution of a random process
over continuous time period, at infinitely many points in time. Thus we cannot simulate
an SDE exactly subject to practical computational constraints. Thus, when we simulate an
SDE we generate samples of the discretized version of SDE at a finite number of points

X̂∆t, X̂2∆t, . . . , X̂m∆t (6.52)

where m is the number of time steps and ∆t is the time step assuming equidistant subin-
tervals, ∆t = T−0

m . To write it more formally

X̂t1 , X̂t2 , . . . , X̂tj , . . . , X̂tm

where tj = t0 + j∆t = j∆t for j = 1, . . . ,m. As ∆t approaches zero, our discretized path
will converge toward the theoretical continuous-time path. For the interval [tj , ti+1] , by
choosing

t0 = tj ,

t = tj+1,

∆t = tj+1 − tj ,

∆Wj = W (tj+1)−W (tj),

we get the following expression for (6.51)

Xtj+1 = Xtj + µ(Xtj )∆t+ σ(Xtj )∆Wj +
1

2
σ(Xtj )σ

′(Xtj )
(
(∆Wj)

2 −∆t
)
+R (6.53)

There are various schemes for simulating SDEs of this form, and the most common ones
are

Euler scheme

Milstein scheme

Runge–Kutta scheme

we will review each of these in turn.

6.6.1 Euler Scheme

The Euler scheme is the simplest discretization scheme available for discretizing SDEs.
Keeping the first three terms in Equation (6.53) gives us the explicit Euler method

X̂tj+1 = X̂tj + µ(X̂tj , tj)∆t+ σ(X̂tj , tj)∆Wj

= X̂tj + µ(X̂tj , tj)∆t+ σ(X̂tj , tj)
√
∆tZj

where Zj are i.i.d. N (0, 1). This approximation expands the drift term to O(∆t) but only
expands the diffusion term to O(

√
∆t), omitting the second term involving the diffusion

implied by Itô’s lemma.
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6.6.2 Milstein Scheme

The Milstein scheme improves upon the Euler discretization by adding a second diffusion
term, expanding the diffusion term to O(∆t). Milstein scheme is obtained by simply keeping
all terms of O(∆t) in Equation (6.53), that is

X̂tj+1 = X̂tj+µ(Xtj , tj)∆t+σ(Xtj , tj)∆Wj+
1

2
σ(Xtj , tj)σ

′(Xtj , tj)[(∆Wj)
2 −∆t]

= X̂tj+µ(X̂tj , tj)∆t+σ(X̂tj , tj)
√
∆tZj+

1

2
σ(Xtj , tj)σ

′(Xtj , tj)∆t(Z2
j −1)(6.54)

where σ′(x, t) = ∂
∂x(σ(x, t)). So while the Milstein scheme has a higher order in discretiza-

tion, it requires knowing the first derivative of the the volatility function.

6.6.3 Runge–Kutta Scheme

While the Milstein scheme improves on the accuracy of the Euler scheme, it requires
both knowledge of the first derivative of the volatility function, which may not be available
at all or may be expensive to compute. The Runge–Kutta scheme allows us to avoid using
the first derivative of the volatility function, by using the Runge–Kutta approximation,
while still keeping the same order of accuracy.

Start from Taylor expansion of σ(Xi +∆Xi)

σ(Xi +∆Xi) = σ(Xi) + σ′(Xi)∆X +O((∆X)2)

For ∆Xi = µ(Xi)∆t+ σ(Xi)∆Wi we have

σ(Xi +∆Xi)− σ(Xi) = σ′(Xi)[µ(Xi)∆t+ σ(Xi)∆Wi] +O((∆X)2)

= σ′(Xi)σ(Xi)∆Wi +O(∆t) (6.55)

as (∆X)2 ∼ O(∆t). Another look at the term σ(Xi +∆Xi) after substituting for ∆Xi by
adding and subtracting the term σ(Xi)

√
∆t to get

σ(Xi +∆Xi) = σ(Xi + µ(Xi)∆t+ σ(Xi)∆Wi)

= σ(Xi + µ(Xi)∆t+ σ(Xi)
√
∆t+ σ(Xi)(∆Wi −

√
∆t)) (6.56)

now using another Taylor expansion to get

σ(Xi +∆Xi) = σ(Xi + µ(Xi)∆t+ σ(Xi)
√
∆t+ σ(Xi)(∆Wi −

√
∆t))

= σ(Xi + µ(Xi)∆t+ σ(Xi)
√
∆t)

+ σ′(Xi + µ(Xi)∆t+ σ(Xi)
√
∆t)σ(Xi)(∆Wi−

√
∆t) +O((∆Wi−

√
∆t)2)

= σ(Xi + µ(Xi)∆t+ σ(Xi)
√
∆t)

+ σ′(Xi + µ(Xi)∆t+ σ(Xi)
√
∆t)σ(Xi)(∆Wi −

√
∆t) +O(∆t) (6.57)

Yet another Taylor expansion for the term σ′(Xi + µ(Xi)∆t+ σ(Xi)
√
∆t) to get

σ′(Xi + µ(Xi)∆t+ σ(Xi)
√
∆t) = σ′(Xi) + (µ(Xi)∆t+ σ(Xi)

√
∆t)σ′′(Xi) + . . .

= σ′(Xi) +O(
√
∆t) (6.58)

Substituting (6.58) into (6.57) we get

σ(Xi +∆Xi)=σ(Xi + µ(Xi)∆t+σ(Xi)
√
∆t)+σ′(Xi)σ(Xi)(∆Wi−

√
∆t)+O(∆t) (6.59)



Simulation Methods for Derivatives Pricing 231

Now substituting (6.59) into (6.55) and canceling the common term σ′(Xi)σ(Xi)∆Wi we
get

σ(Xi + µ(Xi)∆t+ σ(Xi)
√
∆t)− σ(∆Xi) = σ′(Xi)σ(Xi)

√
∆t+O(∆t)

which implies

σ′(Xi)σ(Xi) =
1√
∆t

[σ(Xi + µ(Xi)∆t+ σ(Xi)
√
∆t)− σ(Xi)] +O(

√
∆t)

To obtain Runge–Kutta scheme, we substitute (6.60) into the Milstein scheme (6.54). Thus,
we have the following Runge–Kutta scheme

X̂i = Xi + µ(Xi)∆t+ σ(Xi)
√
∆t

Xi+1 = Xi + µ(Xi)∆t+ σ(Xi)∆Wi

+
1

2
√
∆t

[
σ(X̂i)− σ(Xi)

]
((∆Wi)

2 −∆t)

A higher order Runge–Kutta scheme can be constructed in a similar way. For an overview
of methods of Runge–Kutta type for SDEs look at [50], for derivations of new classes of
stochastic Runge–Kutta schemes look at [1], [211] and [79]. Note that both the Milstein and
Runge–Kutta schemes reduce to the Euler scheme if σ(Xi) is constant.

6.7 Simulating SDEs under Different Models

In this section we will give a few practical examples of simulation via SDEs for a number
of different models.

6.7.1 Geometric Brownian Motion

As we saw in Chapter 1, geometric Brownian motion (GBM) is governed by the following
SDE:

dXt = µXtdt+ σXtdWt (6.60)

However, we explicitly know the solution to this SDE via Itô’s lemma

XT = X0 exp

{
(µ− σ2

2
)T + σWT

}
(6.61)

Thus for geometric Brownian motion, the distribution of XT is known and we can simulate
XT directly, so there is no need for discretization. We already know that WT ∼ N (0, T ) ∼√
TN (0, 1), which implies

XT = X0 exp

{
(µ− σ2

2
)T + σ

√
TZ

}
(6.62)

where Z ∼ N (0, 1). Unfortunately this is not true for most models.
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6.7.2 Ornstein–Uhlenbeck Process

As we saw in Chapter 1, the Ornstein–Uhlenbeck (OU) process is governed by the
following SDE:

dXt = κ(θ −Xt)dt+ σdWt (6.63)

And again, we know the solution to this SDE via Itô’s lemma

XT = e−κTX0 + θ(1− e−κT ) + σeκT
∫ T

0
eκsdWs (6.64)

Unlike the previous example, however, XT now depends on the entire path of the Brownian
motion. However, for this example the distribution of XT is also known and we can simulate
XT directly without having to discretize the SDE.

6.7.3 CIR Process

As we saw in Chapter 1, the CIR process is governed by the following SDE:

dXt = κ(θ(t) −Xt)dt+ σ
√

XtdWt (6.65)

There is no explicit solution to the SDE. We do not necessarily need an explicit solution to
determine the distribution of XT . In case of θ(t) = θ we know that XT is distributed as a
non-central chi-squared from which we can easily simulate. Unfortunately, once we move to
a CIR with a time varying θ(t), the distribution of XT is not available, and one method of
simulating XT indirectly is discretizing and simulating the SDE. This situation, where we
do not know the distribution of XT , is typical. Therefore, it is often necessary to simulate
an SDE.

For illustrative purposes, in Figure 6.3 we plot two simulated paths of Vasicek versus
CIR. In the simulation process we use the same normal random numbers for both for a fair
comparison. For both cases we use the following parameters: σ = 0.2, κ = 0.5, θ = 0.05,
and r0 = 0.05.

6.7.4 Heston Stochastic Volatility Model

The Heston stochastic volatility model is defined by the coupled two-dimensional SDE
as covered in Chapter 1

dSt = rStdt+
√
vtStdWS(t),

dvt = κ(θ − vt)dt+ σ
√
vtdWv(t),

where the two Brownian components WS(t) and Wv(t) are correlated with rate ρ. Condi-
tional on time s a Euler discretization of the variance process for t > s reads

v(t) = v(s) − κ(θ − v(s))∆t + σ
√

v(s)
√
∆tzv

where ∆t = s − t with zv ∼ N (0, 1). One can show the above scheme can go negative
with positive probability and that is the main issue with this scheme [213], [10]. There are
several fixes in the literature on this issue. Lord et al. [173] unify several Euler schemes in
the following framework:

v(t) = f1(v(s))− κ(θ − f2(v(s)))∆t + σ
√

f3(v(s))
√
∆tzv
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FIGURE 6.3: Simulated paths of Vasicek versus CIR

where all should satisfy fi(x) = x for x ≥ 0 and f3(x) ≥ 0 for all x. The one that seems
to work the best is produced by full truncation scheme that chooses f1(x) = x , f2(x) =
f3(x) = x+ where x+ = max(x, 0). The resulting scheme is

v(t) = v(s)− κ(θ − v(s)+)∆t+ σ
√

v(s)+
√
∆tzv (6.66)

Now having a discretization scheme for the variance process, we now need to specify the
simulation schemes of the asset price process. The most straightforward choices would be
to either directly apply an Euler discretization scheme to the asset process or to simulate
the price process from its exact (conditional) distribution. Direct discretization yields the
following Euler scheme

S(t) = S(s) + rS(t)∆t + S(s)
√

v(t)+
√
∆tzS

Alternatively the exact solution by applying Itôs lemma yields

S(t) = S(s) exp

[∫ t

s
(r − 1

2
v(u))du+

∫ t

s

√
v(u)dWS(u)

]

By taking the log and utilizing Euler discretization we obtain the following scheme

log(S(t)) = log(S(s)) + [r − 1

2
v(s)]∆t +

√
v(s)+

√
∆tzS (6.67)

where zS = ρzv +
√
1− ρ2z with z ∼ N (0, 1).

6.7.4.1 Full Truncation Algorithm

Following the above argument, the full truncation scheme for the Heston can be sum-
marized by the following algorithm:

Generate a random sample zv from a standard normal distribution.
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Having v(s), compute v(t) from Equation (6.66).

Generate a random sample z from the standard normal distribution and set zS =
ρzv +

√
1− ρ2z.

Having logS(s), compute logS(t) using Equation (6.67).

In [213], the authors give an overview of the existing schemes for simulation of the Heston
model. They found it rather remarkable that Euler full truncation scheme [173] outperforms
by far many more complex schemes like the almost exact simulation method of Smith [204]
and the Kahl and Jäckel scheme [158] in terms of computational efficiency. It is pointed that
even though the Euler full truncation method is simple and straightforward to implement,
it produces biased estimates for coarse time intervals. In their setting, they found at least
one has to use 32 time steps per year to obtain reasonable small biases. This is of no
surprise considering that the Euler scheme uses no analytical properties of the non-central
chi-squared distribution of the variance process. The drift interpolation scheme of Broadie
and Kaya [48] and the scheme proposed by Andersen in [10] do not have the biases and do
not suffer from computational inefficiency.

6.7.5 Variance Gamma Process

Formally the VG process X(t;σ, ν, θ) is obtained by evaluating Brownian motion with
drift θ and volatility σ at a random time given by a gamma process γ(t; 1, ν) with mean
rate unity and variance rate ν as

X(t;σ, ν, θ) = θγ(t; 1, ν) + σW (γ(t; 1, ν))

with the characteristic function

φ(u) = E(eiuXt) =

(
1

1− iuθν + σ2u2ν/2

)t/ν

We suppose the stock price process is given by the geometric VG law with parameters σ,
ν, θ and the log price at time t is given by

lnSt = lnS0 + (r − q + ω)t+X(t;σ, ν, θ)

where

ω = −1

t
log(φ(−i))

=
1

ν
ln(1 − θν − σ2ν/2)

is the usual Jensen’s inequality correction ensuring that the mean rate of return on the asset
is risk neutrally (r − q).

In addition to the volatility of the normal distribution σ, there are parameters that
control for (i) kurtosis, ν (long tailedness, a symmetric increase in the left and right tail
probabilities relative to the normal for the return distribution) and (ii) skewness, θ, that
allows for the asymmetry of the left and right tails of the return density. An additional
attractive feature of the model is that it nests the lognormal density and the Black–Scholes
formula as a parametric special case (ν = 0 and θ = 0).3 Also, there is a closed-form formula

3In the case of ν = 0 and θ = 0, we have

lim
ν↓0 and θ↓0

ω =
1

ν
ln(1 − θν − σ2ν/2) = −

1

2
σ2
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for pricing European options when the underlying asset follows the log VG process in terms
of the special functions of mathematics as explained in [175].

Assume N equidistant time intervals of length h where h = T/N . To sample for a time
interval of length h, we sample from a gamma distribution with mean h and variance νh.
A gamma process with the shape parameter α and the scale parameter β has the following
probability distribution function:

f(x,α,β) =
1

Γ(α)βα
xα−1e−

x
β

where its mean and variance are

µ = αβ

σ2 = αβ2

In the case of the variance gamma process we have

αβ = h

αβ2 = νh

which implies

α =
h

ν
β = ν

Therefore a sample for the VG process, X(h;σ, ν, θ), is

θg(h/ν, ν) + σ
√

g(h/ν, ν)z

where z ∼ N (0, 1) and g(h/ν, ν) ∼ gamrand(h/ν, ν).
The following is an algorithm for simulating a VG process.

for i = 1, . . . , N

z ∼ N (0, 1)

g ∼ gamrand(h/ν, ν)

Xi = θg + σ
√
gz

end

For the log of stock price we have

for i = 1, . . . , N

logSi = logSi−1 + (r − q)h+ ωh+Xi

end

Also

X(t; σ, 0, 0) = σW (γ(t; 1, 0)) = σWt

which yields

lnSt = lnS0 + (r − q −
1

2
σ2)t+ σWt

which is exactly the evolution for geometric Brownian motion (Black–Scholes process).
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FIGURE 6.4: VG simulated paths versus GBM simulated paths

where ω = 1
ν log(1− θν − σ2ν/2)

In Figures 6.4(a) and 6.4(b) we plot two simulated paths for VG stock price evolution
versus stock price GBM. In the simulation process we use the same normal random numbers
for both for a fair comparison. For VG we use the following parameters: σ = 0.2, ν = 0.2,
θ = −0.1, and for Black–Scholes σ = 0.2. For risk-free interest rate and dividend rate
r = .01 and q = 0.02, respectively.

6.7.6 Variance Gamma with Stochastic Arrival (VGSA) Process

As quoted in [54] the basic intuition underlying the approach to stochastic volatility
arises from the Brownian scaling property. This property relates changes in scale to changes
in time and thus random changes in volatility can alternatively be captured by random
changes in time. This rate of time change must be mean reverting if the random time
changes are to persist. The classic example of a mean-reverting positive process is the
square root process of Cox, Ingersoll, and Ross. To obtain variance gamma with stochastic
arrival (VGSA), as explained in [54], we take the VG process which is a homogeneous Lévy
process and build in stochastic volatility by evaluating it at a continuous time change given
by the integral of a Cox, Ingersoll, and Ross [82] (CIR) process. The mean reversion of the
CIR process introduces the clustering phenomena often referred to as volatility persistence.
This enables us to calibrate to market price surfaces that go across strike and maturity
simultaneously. This process is tractable in the analytical expressions for its characteristic
function.

Formally we define the CIR process y(t) as the solution to the stochastic differential
equation

dyt = κ(η − yt)dt+ λ
√
ytdWt

where Wt is a Brownian motion, η is the long-term rate of time change, κ is the rate of
mean reversion, and λ is the volatility of the time change.

The process y(t) is the instantaneous rate of time change and so the time change is given
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by Y (t) where

Y (t) =

∫ t

0
y(u)du

The characteristic function for Y (t) is given by

E(eiuY (t)) = φ(u, t, y(0),κ, η,λ) (6.68)

= A(t, u)eB(t,u)y(0)

where

A(t, u) =
exp

(
κ2ηt
λ2

)

(
cosh(γt/2) + κ

γ sinh(γt/2)
)2κη/λ2

B(t, u) =
2iu

κ+ γ coth(γt/2)

with

γ =
√
κ2 − 2λ2iu

The stochastic volatility Lévy process, termed the VGSA process, is defined by

Z(t) = XV G(Y (t);σ, ν, θ)

= θγ(Y (t); 1, ν) + σW (γ(Y (t); 1, ν)) (6.69)

Thus σ, ν, θ, κ, η, and λ are the six parameters defining the process. Its characteristic
function is given by

E(eiuZV GSA(t)) = φ(−iΨV G(u), t,
1

ν
,κ, η,λ)

where φ is the characteristic function of Y (t) given in (6.68)and ΨV G is the log characteristic
function of the variance gamma process at unit time, namely,

ΨV G(u) = −
1

ν
log

(
1− iuθν + σ2νu2/2

)

We define the stock process at time t by the random variable

S(t) = S(0)
e(r−q)t+Z(t)

E[eZ(t)]
(6.70)

We note that

E[eZ(t)] = φ(−iΨV G(−i), t,
1

ν
,κ, η,λ) (6.71)

which is equivalent to e−ωt in the VG case. Therefore the characteristic function of the log
of the stock price at time t is given by

E[eiu logSt ] = exp(iu(logS0 + (r − q)t))×
φ(−iΨV G(u), t,

1
ν ,κ, η,λ)

φ(−iΨV G(−i), t, 1
ν ,κ, η,λ)

iu

With a closed form for the VGSA characteristic function for the log price, one can employ
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various transform techniques to price European call and put options [60], [21], and [111].
The resulting model may be used to estimate parameter values consistent with market
option prices for vanilla options across the entire strike and maturity spectrum.

To simulate the VGSA process, as before, we assume N equidistant time intervals of
length h where h = T/N . We wish to simulate the VGSA process over each subinterval h
at time t+ h. From Equation (6.69) we can write

∆Zt = Z(t)− Z(t− h)

= θγ(Y (t); 1, ν) + σW (γ(Y (t); 1, ν))

− (θγ(Y (t− h); 1, ν) + σW (γ(Y (t− h); 1, ν)))

= θ(γ(Y (t); 1, ν)− γ(Y (t− h); 1, ν))

+ σ
√

γ(Y (t); 1, ν)− γ(Y (t− h); 1, ν)z

where z is N (0, 1). The gamma process γ(Y (t); 1, ν) with mean Y (t) and variance Y (t)ν
has the following shape and scale parameters

α =
Y (t)

ν
β = ν

That implies

γ(Y (t); 1, ν)− γ(Y (t− h); 1, ν)) = Gamma

(
Y (t)

ν
, ν

)
−Gamma

(
Y (t− h)

ν
, ν

)

= Gamma

(
Y (t)− Y (t− h)

ν
, ν

)

by the summation property of gamma processes. Hence

∆Zt = θGamma

(
Y (t)− Y (t− h)

ν
, ν

)
+ σ

√

Gamma

(
Y (t)− Y (t− h)

ν
, ν

)
z (6.72)

where Y (t)− Y (t− h) =
∫ t
t−h y(u)du. For simulation, we first start by discretization of the

CIR process. Milstein discretization of the CIR process gives

yj = yj−1 + κ(η − yj−1)h+ λ
√
yj−1

√
hz +

λ2

4
h(z2 − 1)

where yj is an approximation to y(tj) with tj = jh for j = 0, . . . , N and z ∼ N (0, 1). For
the interval (tj−1, tj) the new clock is given by the integral

∫ tj

tj−1

y(u)du

and by the trapezoidal rule we get

∫ tj

tj−1

y(u)du =
h

2
(yj−1 + yj)

Therefore to simulate a VGSA process we do the following:
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for j = 1, . . . , N

z ∼ N (0, 1)

yj = yj−1 + κ(η − yj−1)h+ λ
√
yj−1

√
hz + λ2

4 h(z2 − 1)

t̂j = h
2 (yj + yj−1)

g = gamrand( t̂jν , ν)

z ∼ N (0, 1)

Xj = θg + σ
√
gz

end

where Xj is an approximation to ∆Ztj . An alternative is to use the scaling property of
gamma processes and do simulation as follows:

for j = 1, . . . , N

z ∼ N (0, 1)

yj = yj−1 + κ(η − yj−1)h+ λ
√
yj−1

√
hz + λ2

4 h(z2 − 1)

t̂j = h
2 (yj + yj−1)

σ̂ = σ
√

t̂j

ν̂ = ν/t̂j

θ̂ = θt̂j

g = gamrand( 1ν̂ , ν̂)

z ∼ N (0, 1)

Xj = θ̂g + σ̂
√
gz

end

For the logarithmic of stock price, from Equation (6.70) we have

logSt = logS0 + (r − q)t+ Z(t)− log(E(eZ(t))

logSt−h = logS0 + (r − q)(t− h) + Z(t− h)− log(E(eZ(t−h))

Subtracting the two equations yields

logSt = logSt−h + (r − q)h+ Z(t)− Z(t− h) + log(E(eZ(t−h))− log(E(eZ(t))

= logSt−h + (r − q)h+∆Zt + log(E(eZ(t−h))− log(E(eZ(t))

= logSt−h + (r − q)h+∆Zt +∆ωt

Thus the simulation of the logarithmic of stock price under VGSA becomes

for j = 1, . . . , N

∆̂ωj = log(φ(−iΨV G(−i), (j−1)h, 1
ν ,κ, η,λ))− log(φ(−iΨV G(−i), jh, 1

ν ,κ, η,λ))

logSj = logSj−1 + (r − q)h+ ∆̂ωj +Xj

end
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6.8 Output/Simulation Analysis

Once we have decided on a discretization scheme, we need a general algorithm for deriva-
tives pricing. As we saw in Section 1.3, most derivatives pricing problems can be expressed
as an expectation of the form θ = E(f(XT )) where Xt is the t-time value of the underlying
security and XT is the T -time simulated price under our model, assuming T is the matu-
rity or a time of importance to us, and where the expectation is taken under the correct
measure. To estimate this expectation, we can use the following algorithm:
Valuation via SDE Simulation

for j = 1, . . . ,N

X̂ = X0

t = 0

for i = 1, . . . ,M

Z ∼ N (0, 1)

X̂ = SDEStep(X̂, t)

t = t+ h

end

fj = f(X̂)

end

θ̂N = (f1 + · · ·+ fN )/N

σ̂2
N =

∑N
j=1(fj − θ̂N )2/(N − 1)

where SDEStep(X̂, t) is the discretization function based on the scheme we have chosen. We
can use the central limit theorem to calculate the 100(1− α)% confidence interval, which

is
[
θ̂N − z1−α

2

σ̂N√
N

θ̂N + z1−α
2

σ̂N√
N

]
where z1−α

2
is a z such that P (−z ≤ Z ≤ z) = 1 − α.

That implies

Φ(z) = P (Z ≤ z) = 1− α

2

z = Φ−1(Φ(z)) = Φ−1(1− α

2
)

We see that we can make the confidence interval tighter and thus our estimates more accu-
rate by either (a) reducing the variance, σ̂2

N , and/or (b) increasing the number of simulation
paths, N . In the next section, we will be focusing on variance reduction techniques and pro-
vide examples on performance of each method.
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6.9 Variance Reduction Techniques

As we mentioned in the beginning of this chapter, while simulation methods for deriva-
tives pricing are the most flexible, the cost of the flexibility is typically the highest com-
putational cost. And as we mentioned in the beginning of the last section, there are two
ways to improve the accuracy of our estimates, either computing additional samples, or we
can reduce the variance of the estimator itself. Increasing the number of samples, N , can
be costly, especially if the pricing function or the simulation is computationally intensive.
Thus we would prefer to focus on reducing the variance of the estimator assuming N is
fixed. Variance reduction techniques are a set of techniques which are designed to reduce
the variance of our estimator and thus reduce the time we need to calculate our estimates.
Typically variance reduction methods allow us to use information about the pricing prob-
lem or the model to adjust the simulation, allowing our estimator to take advantage of this
information so we apply the randomness of our sampling in the most efficient way possible.
As such, variance reduction techniques typically have to be tailored to the problem itself,
and not all techniques are applicable to all pricing problems. There might be cases that no
technique would reduce the variance. The six principal methods used for variance reduction
in financial applications are:

Control Variate Method

Antithetic Variates

Conditional Monte Carlo

Importance Sampling

Stratified Sampling

Common Random Number

This section will review these methods of variance reduction; however, a full accounting of
these methods is beyond the scope of this book. We refer readers to [122] for more infor-
mation about variance reduction techniques. Throughout this section, we adopt notations
used by Martin Haugh, my colleague and friend at Columbia University, in his simulation
course.

6.9.1 Control Variate Method

The control variate method is based upon using a random variable which is associated
with the quantity we have to estimate, but which has a known or easily computable expected
value, to adjust our estimator and reduce its variance. If we can find such a random variable,
which is well correlated with the quantity we wish to estimate but whose mean is known, we
can use our explicit knowledge about this high correlation to reduce our estimator variance.

Suppose we want to estimate

θ = E(h(X)) (6.73)

Assume that Z is also an output of the simulation and moreover assume that E(Z) is
known and Z is correlated with the random variable whose expectation we wish to find.
Then we can construct an unbiased estimator of θ as follows:

θ̂ = Y The usual estimator
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θ̂c = Y + c(Z − E(Z)) for some number c

It is clear that

E(θ̂c) = θ (6.74)

so the new estimator will still converge to the correct value by the law of large numbers.
The question we should ask is can we find a c such that θ̂c has a lower variance than θ̂. Let
us look at the variance of θ̂c.

V ar(θ̂c) = V ar(θ̂) + c2V ar(Z) + 2cCov(Y, Z) (6.75)

We choose c such that V ar(θ̂c) is minimized and that is

c∗ = −Cov(Y, Z)

V ar(Z)
(6.76)

and substituting c∗ in V ar(θ̂c) we obtain

V ar(θ̂c∗) = V ar(θ̂)− Cov(Y, Z)2

V ar(Z)
(6.77)

So as long as Cov(Y, Z) is non-zero we can reduce the variance. In this case, Z is called a
control variate for Y .

Example 13 Pricing an Asian option using a control variate

An arithmetic geometric Asian option has the following payoff at maturity T :

max

(∑m
i=1 Sti

m
−K, 0

)

where K is the strike price and Sti is the level of the underlying asset (stock) at i-th
monitoring time ti. We assumem total monitoring times 0 < t1 < t2 < · · · < tm−1 < tm = T .
To price it via simulation we do it as follows. Assuming St follows geometric Brownian
motion,

compute St1 =St0 exp
(
(r−q− σ2

2 )(t1−t0)+σ
√
t1−t0z1

)
where z1∼N (0, 1)

compute St2 =St1 exp
(
(r−q− σ2

2 )(t2−t1)+σ
√
t2−t1z2

)
where z2∼N (0, 1)

...

compute Stm =Stm−1 exp
(
(r−q− σ2

2 )(tm−tm−1)+σ
√
tm−tm−1zm

)
where zm∼N (0, 1)

or in short

Sti =St0 exp

⎛

⎝(r−q− σ2

2
)(ti−t0)+σ

i∑

j=1

√
tj−tj−1zj

⎞

⎠ (6.78)

To reduce variance one might use either geometric Brownian motion or the geometric Asian
option as the control variate. The closed-form solution for the geometric Asian option is
given by

C = S0e
(b−r)TΦ(d1)−Ke−rTΦ(d2)



Simulation Methods for Derivatives Pricing 243

TABLE 6.5: Asian premiums with and without control variates

without control variate with European option with geometric Asian
as control variate option as control variate

M price stdev c⋆ price stdev c⋆ price stdev
1000 18.5613 21.3603 -0.4470 17.6039 11.5645 -1.0796 17.9862 1.7200
10000 16.9393 20.1972 -0.4665 17.0014 10.4591 -1.0710 17.0311 1.1893
50000 17.0900 20.5631 -0.4671 17.0515 10.5713 -1.0735 17.1246 1.1891
100000 16.9462 20.3033 -0.4675 17.0572 10.4341 -1.0726 17.0419 1.1742
500000 17.0314 20.4656 -0.4657 17.0139 10.5054 -1.0740 17.0923 1.2005

where Φ is the cumulative distribution function of a standard normal random variable and

d1 =
ln S0

K + (b+ 1
2σA)T

σAT

d2 = d1 − σAT

σA =
σ√
3

b = r − q

Table 6.5 shows numerical results for pricing an Asian option via simulation with and
without control variates. The parameter set for this example is S0 = 100, K = 90, σ = 0.3,
r = 5%, number of monitoring times N = 20, maturity T = 2. In Table 6.5 we illustrate
the optimal value c⋆ for each control variate as well as its standard deviation. As will see
using geometric Asian as control variate has much smaller standard deviation than using
European option as control variate as expected.

6.9.2 Antithetic Variates Method

The antithetic variates method is based on using correlations between pairs of samples
to reduce the variance of our desired estimator.

As before, let us suppose we want to estimate

θ = E(h(X)) = E(Y ) (6.79)

By using knowledge about the correlation of the underlying samples of X we can induce
anti-correlation in the resulting samples of the contract payoff Y which will reduce the
variance of our estimator. Suppose we have generated two samples, Y1 and Y2. Then an
unbiased estimator of θ is

θ̂ =
Y1 + Y2

2
(6.80)

and

V ar(θ̂) =
V ar(Y1) + V ar(Y2) + 2Cov(Y1, Y2)

4
(6.81)

If Y1 and Y2 are i.i.d. then

V ar(θ̂) = V ar(Y )/2 (6.82)
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However, we can reduce V ar(θ̂) if we have Cov(Y1, Y2) < 0. Typically this is done by explic-
itly inducing negative covariance in the samples Y . This can be done fairly easily in most
cases if the simulation methods we use are based on uniform sampling and inverse trans-
form methods. Since U and 1− U have the same distribution, but are perfectly negatively
correlated when they are used as a basis for the inverse transform method, as the inverse
distribution function is monotone this negative correlation is preserved. This can also be
easily done if our simulation is based on a symmetric distribution like the normal distribu-
tion; we can simply invert the signs of the samples to generate two perfectly anti-correlated
samples. While the pricing function h(X) may reduce the effects of the anti-correlation,
typically it preserves some of them and reduces the variance.

Example 14 Pricing an Asian option using antithetic variates

We already covered the steps in simulating an arithmetic geometric Asian option in Exam-
ple 13. In this example, we aim to reduce variance using antithetic variate. Applying an
antithetic variate to reduce variance in Example 13 we have

compute S+
t1 =St0 exp

(
(r−q− σ2

2 )(t1−t0)+σ
√
t1−t0z1

)

compute S+
t2 =S+

t1 exp
(
(r−q− σ2

2 )(t2−t1)+σ
√
t2−t1z2

)

...

compute S+
tm =S+

tm−1 exp
(
(r−q− σ2

2 )(tm−tm−1)+σ
√
tm−tm−1zm

)

and

compute S−t1 =St0 exp
(
(r−q− σ2

2 )(t1−t0)−σ
√
t1−t0z1

)

compute S−t2 =S−t1 exp
(
(r−q− σ2

2 )(t2−t1)−σ
√
t2−t1z2

)

...

compute S−tm =S−tm−1 exp
(
(r−q− σ2

2 )(tm−tm−1)−σ
√
tm−tm−1zm

)

For each simulation path we have

max

(∑m
i=1 S+

ti
m −K, 0

)
+max

(∑m
i=1 S−ti
m −K, 0

)

2

and the premium would be the average of these quantities. Table 6.6 compares the results
for the Asian call option without and with antithetic variates.

6.9.3 Conditional Monte Carlo Methods

Conditional Monte Carlo methods are based on conditioning the expectation which
determines our contract value on as much information as possible which is either known
explicitly or which can be calculated easily, in order to reduce the variance of the resulting
expectation.

Suppose we wish to estimate

θ = E(h(X)) = E(Y ) (6.83)
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TABLE 6.6: Asian option premiums using the antithetic variates method

without antithetic using antithetic
variates variates

M price stdev price stdev
1000 18.5613 21.3603 17.3759 9.2149
10000 16.9393 20.1972 17.2101 9.0221
50000 17.0900 20.5631 17.0499 8.7409
100000 16.9462 20.3033 17.0066 8.8537
500000 17.0314 20.4656 17.0386 8.8476

where X = (X1, . . . , Xm). Computing θ analytically is equivalent to solving an m-dim
integral. However, it may be possible to evaluate part of the integral analytically. If so, we
will use simulation to solve the other part and that way reduce the variance.

Before explaining the method, we give a quick review of conditional expectation and
conditional variance. Suppose X and Z are random vectors and Y = h(X). Suppose

V = E(Y |Z) (6.84)

Then V itself is a random vector that depends on Z. We may write

V = g(Z) (6.85)

We also know that

E(V ) = E(E(Y |Z)) = E(Y ) (6.86)

so that if we are trying to estimate

θ = E(h(X)) = E(Y ) (6.87)

one possibility would be to simulate V instead of simulating Y. It is still necessary to
compute V ar(Y ) and V ar(E(Y |Z)). Recall that the conditional variance formula is

V ar(Y ) = E(V ar(Y |Z)) + V ar(E[Y |Z])) (6.88)

Therefore

V ar(Y ) ≥ V ar(E[Y |Z]) = V ar(V ) (6.89)

So we can conclude that V is a better estimator of θ than Y since we can eliminate the
variance contributed by V ar(E[Y |Z])). To be able to reduce variance via conditional Monte
Carlo we must have another variable Z that satisfies the following:

Z can be easily simulated

V = g(Z) = E(Y |Z) can be computed exactly

6.9.3.1 Algorithm for Conditional Monte Carlo Simulation

We can implement conditional Monte Carlo simulation algorithm as follows:

For j = 1, . . . ,N
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generate Zj

compute g(Zj) = E(Y |Zj)

set Vj = g(Zj)

end

θ̂N,CM = V̂N =
∑N

j=1 Vj/N

σ̂2
N,CM =

∑N
j=1(Vj − V̂N )2/(N − 1)

and the 100(1− α)% confidence interval is
[
θ̂N,CM − z1−α

2

σ̂N,CM√
N

θ̂N + z1−α
2

σ̂N,CM√
N

]
.

Example 15 Pricing delayed/forward start options using conditional Monte Carlo

In delayed/forward start options, the strike is set at some future time as a factor of the
level of stock at that time. The time and the factor are specified in the contract in advance.
To price the contract using simulation we do as follows:

for j = 1, . . . ,N

generate Z1∼N (0, 1) and compute St1 =S0 exp((r−q− σ2

2 )t1+σ
√
t1Z1)

set K = λSt1

generate Z2∼N (0, 1) and compute ST =St1 exp((r−q− σ2

2 )(T−t1)+σ
√
T−t1Z2)

discounted payoff fj = e−rT max(ST −K, 0)

end

θ̂ = 1
N

∑N
j=1 fj

In the above simulation, for each simulated path we have to generate two normal random
numbers. Using conditional Monte Carlo we can reduce that to one. By conditioning on the
level of stock at t1 we can price the option from t1 to T using the Black–Scholes formula,
hence

for j = 1, . . . ,N

generate Z1∼N (0, 1) and compute St1 =S0 exp((r−q− σ2

2 )t1+σ
√
t1Z1)

set K = λSt1

fj = e−rt1 × BlackScholes(St1 ,K,σ, r, q, T − t1)

end for

θ̂CM = 1
N

∑N
j=1 fj

The closed-form solution for delayed/forward start European options with spot St1 and
strike price λSt1 is calculated as follows:

e−r(t1−t0)

∫ ∞

0
BlackScholes(St1 ,λSt1 ,σ, r, q, T − t1)f(St1 |St0)dSt1
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TABLE 6.7: Delayed start European options (closed-form solution is 31.5482)

without conditional with conditional
Monte Carlo Monte Carlo

M premium stdev premium stdev
1000 32.5218 53.5932 31.6853 9.8011
10000 31.0281 49.7165 31.6426 9.7275
50000 31.8873 51.8664 31.5728 9.6227
100000 31.3153 50.8236 31.5115 9.6616
500000 31.5470 51.3883 31.5587 9.6868

Or equivalently (due to linear homogeneity)

e−r(t1−t0)BlackScholes(1,λ,σ, r, q, T − t1)

∫ ∞

0
St1f(St1 |St0)dSt1

where f(St1 |St0) is the conditional lognormal density. By integrating out St1 , we can show
that the price is

S0e
−r(t1−t0)BlackScholes(1,λ,σ, r, q, T − t1)

Table 6.7 shows the results for the parameter set S0 = 100, σ = 0.3, r = 5%, maturity
T = 4 years, t1 = T

4 , and λ = 0.9. Cliquet options are a series of forward start options
where the strike of each forward is set at the expiry of the previous forward start options.
Cliquet options are widely traded and they are embedded in many structured products.
The valuation of cliquet options are hard and it is claimed that some dealers are mispricing
them [186].

6.9.4 Importance Sampling Methods

Importance sampling is one of the most powerful methods of variance reduction available.
The method is based on using knowledge of the pricing problem to focus our sampling on
critical areas of interest, values of the underlying variable which yield important results,
which in turn reduces the variance of our estimator. One obvious example of where this can
be applied is out-of-the-money options, where payoffs only occur at very large (or small)
values of the underlier, and so sampling in these regions makes our estimator less variable.

Suppose we are interested in computing

θ = Ef (h(X)) (6.90)

where X had a probability distribution function f . Let g be another probability distribution
function with the property that g(x) ̸= 0 whenever f(x) ̸= 0. Then

θ = Ef (h(X)) =

∫
h(x)f(x)dx (6.91)

=

∫
h(x)

f(x)

g(x)
g(x)dx (6.92)

= Eg

(
h(X)

f(X)

g(X)

)
(6.93)

= Eg(h
∗(X)) (6.94)
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where f(X)
g(X) is known as the likelihood ratio and should be easily computable. This has very

important implications for estimating θ. In our original estimation algorithm, we generate
N samples of X from f(.) and set

θ̂N =
1

N

N∑

j=1

h(Xj) (6.95)

In the alternative estimation algorithm, however, we generate N values from g(.) and set

θ̂N,IS =
1

N

N∑

j=1

h(Xj)
f(Xj)

g(Xj)
(6.96)

θ̂N,IS is then an importance sampling estimator of θ.

6.9.4.1 Variance Reduction via Importance Sampling

Variance reduction is achieved via importance sampling by knowing that both of the
following expectations are equivalent:

θ = Ef (h(X)) (6.97)

= Eg(h
∗(X)) (6.98)

and this gives rise to two estimators

h(X) where X ∼ f(.)

h∗(X) where X ∼ g(.)

The variance of the importance sampling estimator is given by

V arg(h
∗(X)) =

∫
h∗(x)2g(x)dx − θ2

=

∫
h2(x)f2(x)

g2(x)
g(x)dx− θ2

=

∫
h2(x)f(x)

g(x)
f(x)dx − θ2

Also we know that

V arf (h(X)) =

∫
h2(x)f(x)dx − θ2

So

V arf (h(X))− V arg(h
∗(X)) =

∫
h2(x)

(
1− f(x)

g(x)

)
f(x)dx (6.99)

In order to achieve a variance reduction the integral should be positive. For this to happen
we should have

f(x)
g(x) > 1 where h(x)f(x) is small

f(x)
g(x) < 1 where h(x)f(x) is large
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Let us say that there is a region, A, where h(x)f(x) is large. Then by the above argument
we would like to choose g so that f(x)/g(x) is small whenever x is in A, which means we
would like a density g that puts more weight on A.

Note that when h involves a rare event so that h(x) = 0 over most of the state space, it
can then be particularly valuable to choose g so that we often sample from that part of the
state space where h(x) ̸= 0. Also note that if we choose g to be

g(x) = h(x)f(x)/θ (6.100)

then we have V arg(h⋆(X)) = θ2 − θ2 = 0. We know that in reality θ is not known and
actually it is the quantity that we are trying to calculate. However, it tells us the closer g
is to the shape of h(x)f(x) the lesser the variance.

Example 16 Estimating a rare normal event using importance sampling

Consider the problem of estimating

θ = P (X > 8)

where X ∼ N (0, 1). If one tries to estimate θ via simulation without doing importance
sampling, we will often get zero as this event is extremely rare. Now we try to estimate θ by
doing importance sampling with a new random variable Y ∼ N (µ, 1) with some appropriate
choice for µ.

θ = P (X > 8)

= Ef ( X>8)

=

∫
z>8

1√
2π

e−z2/2dz

=

∫
z>8

1√
2π

e−z2/2

1√
2π

e−(z−µ)2/2

1√
2π

e−(z−µ)2/2dz

=

∫
z>8e

−µz+µ2/2 1√
2π

e−(z−µ)2/2dz

= Eg( X>8e
−µX+µ2/2)

where g(.) is the probability distribution function of N (µ, 1). It is clear that g(.) attains its
maximum at x = µ. Therefore an optimal choice for µ could be

µ = argmax
x

h(x)f(x)

= argmax
x

x>8
1√
2π

e−x2/2

= argmax
x≥8

e−x2/2

= 8

Another very useful application of importance sampling is for deep out-of-the-money op-
tions.

6.9.5 Stratified Sampling Methods

Stratified sampling is a probability sampling technique which involves the division of a
population into subgroups known as strata, then randomly selects the final subjects propor-
tionally from the different strata. Suppose for some random variable Y we want to estimate
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θ = E(Y ). Assuming X is another random variable such that (a) for any arbitrary interval
δ ⊂ R we can easily calculate P (X ∈ δ), (b) it is easy to generate Y given X in δ that is
(Y |X ∈ δ). Forming m non-overlapping divisions δi with

⋃m
i=1 δi = R we have

∑m
i=1 pi = 1

where pi = P (X ∈ δi).
Let θi = E(Y |X ∈ δi) and σ2

i = Var(Y |X ∈ δi) and define yet another random variable
I by setting it equal to i if X ∈ δi and let Y (i) = (Y |I = i) = (Y |X ∈ δi).

Now, we can write

θ = E(Y )

= E(E(Y |I))
= p1E(Y |I = 1) + p2E(Y |I = 2) + · · ·+ pmE(Y |I = m)

= p1θ1 + p2θ2 + · · ·+ pmθm

If we use a total of n samples to estimate θ and ni samples to estimate θi, where n =
n1 + n2 + · · ·+ nm, then an estimate of θ is given by

θ̂ = p1θ̂1 + p2θ̂2 + · · ·+ pmθ̂m

If for each i, θ̂i is an unbiased estimate of θi, then clearly θ̂n would be an unbiased estimate
of θ as well. The very first choice for ni might be ni = npi. For this choice of ni we obtain

Var(θ̂n) = Var(p1θ̂1 + · · ·+ pmθ̂m)

= p21
σ2
1

n1
+ · · ·+ p2m

σ2
m

nm

= p1
σ2
1

n
+ · · ·+ pm

σ2
m

n

=
1

n

m∑

i=1

piσ
2
i

where σ2
i

ni
= Var(θ̂i). Recall that the estimator of θ without any variance reduction has a

variance of σ2/n. We want to show
∑m

i=1 piσ
2
i < σ2. From the definition of conditional

variance we have

σ2 = Var(Y )

= E(Var(Y |I)) + Var(E(Y |I))
≥ E(Var(Y |I))

=
m∑

i=1

piσ
2
i

Thus the above stratification reduces the variance. One might ask, is it possible to do better.
The optimal stratification is to choose ni to minimize Var(θ̂n), that is,

min
ni

m∑

i=1

p2i
σ2
i

ni

subject to
m∑

i=1

ni = n

Applying a Lagrange multiplier, the optimal solution to this constrained problem is

n⋆
i =

piσi∑m
i=1 piσi

n (6.101)
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Substitute n⋆
i into the variance equation and we get the following term for minimized

variance:

Var(θ̂n) =
1

n

(
m∑

i=1

piσi

)2

6.9.5.1 Findings and Observations

Equation (6.101) indicates sampling more from regions with high p and/or high σ, which
makes sense. A drawback with optimal n⋆

i is that we need to know values of σi in advance
in order to compute n⋆

i and obviously they are not known. As before we can set a pilot
program to find an estimate of σi. Using those estimated σi to calculate n⋆

i and run the
main program.

It is clear to see if the population density varies greatly within a division, stratified
sampling ensures that estimates can be made with equal accuracy in different parts of that
division, and that comparisons of sub-regions can be made with equal statistical power.
Randomizing stratification can be used to improve the final result.

6.9.5.2 Algorithm for Stratified Sampling Methods

We can implement the stratified sampling method algorithm as follows:

Choose m and set δi and ni for i = 1, . . . ,m

Calculate pi for i = 1, . . . ,m

Set θ̂n,st = 0 and σ̂2
n,st = 0

for i = 1, . . . ,m

set si = 0 and ui = 0

for j = 1, . . . , ni

generate X ∈ δi and given X generate Y (i)
j

si = si + Y (i)
j

ui = ui + (Y (i)
j )2

end for

calculate mean which is θ̂i =
si
ni

calculate variance which is σ̂2
i = ui−s2i /ni

ni−1

θ̂n,st = θ̂n,st + piθ̂i

σ̂2
n,st = σ̂2

n,st + σ̂2
i p

2
i /ni

end for

and the 100(1− α)% confidence interval is
[
θ̂n,st − z1−α

2
σ̂n,st θ̂n,st + z1−α

2
σ̂n,st

]
.

Example 17 Pricing a European put option via stratified sampling



252 Computational Methods in Finance

TABLE 6.8: Non-overlap subintervals for X ∼ N (0, 1) and their probabilities

δi pi ni = npi n⋆
i

(−∞,−2) Φ(−2)−Φ(−∞) = 0.0228 2275 7021
[−2,−1) Φ(−1)−Φ(−2) = 0.1359 13591 41281
[−1, 1) Φ(1)−Φ(−1) = 0.6827 68269 51698
[1, 2) Φ(2)−Φ(1) = 0.1359 13591 0
[2,∞) Φ(∞)−Φ(2) = 0.0228 2275 0

TABLE 6.9: European put option premium using a stratified sampling method (Black–
Scholes premium 26.2172)

without using with suboptimal with optimal
stratified sampling stratified sampling stratified sampling

n premium stdev premium stdev premium stdev
100000 26.4776 0.1935 26.1030 0.0648 26.2024 0.0480

Assume a spot price of 1260 for S&P 500. We want to price an out-of-the-money European
put for a strike of 1100 and a maturity of 3 months, T = 1/4. Assume volatility of 35%,
risk-free rate of interest 0.25% and dividend rate 1%. Under Black–Scholes we get 26.2172
for its premium. Now we employ a stratified sampling method with regular and optimal pi
and compare results. Set X = Z ∼ N (0, 1). Assume five non-overlapping sub-intervals for
X as shown in Table 6.8. To guarantee Z ∼ N (0, 1) ∈ δi, we draw Û ∼ U(Φ(lδi),Φ(uδi))

4

where lδi and uδi are lower and upper bounds of the subinterval δi and Φ is the CDF of the
standard normal random variable. Having Û , we calculate Z = Φ−1(Û) and plug it into

S(i)
T,j = S0e

(r−q−σ2

2 )T+σ
√
TZ(i)

j

to calculate S(i)
T,j and subsequently calculate Y (i)

j = e−rT max(K − S(i)
T,j , 0). Table 6.9 il-

lustrates results for simulation with no variance reduction, simulation with a sub-optimal
stratified sampling method, and simulation with an optimal stratified sampling method.
For n⋆

i we first use a pilot program (500 samples for each i) to find σi for each i. As we see
the optimal stratified sampling method yields the best variance reduction but for this case
it seems to be pretty marginal.

Example 18 Pricing an Asian option via stratified sampling methods

A natural choice is to set X =
∑m

i=1 yi where yi ∼ N (0, T/m). We know that if yi ∼
N (0, T/m), then X =

∑m
i=1 yi ∼ N (0, T ). It is pretty straightforward to calculate pi.

Assume five non-overlapping sub-intervals for X as shown in Table 6.10. To guarantee that
X ∈ δi we use the idea of a Brownian bridge. Instead of calculating Sti according to the
following formula

Sti =St0 exp

⎛

⎝(r−q− σ2

2
)(ti−t0)+σ

i∑

j=1

√
tj−tj−1zj

⎞

⎠ (6.102)

4If U ∼ U(0, 1), then Û = a+ (b − a)U ∼ U(a, b).
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TABLE 6.10: Non-overlap subintervals for X ∼ N (0, T ) and their probabilities

δi pi ni = npi ncall
i nput

i

(−∞,−0.8) 0.1289 25790 6231 92357
[−0.8,−0.4) 0.1569 31371 18155 62617
[−0.4, 0.4) 0.4284 85679 95362 45025
[0.4, 0.8) 0.1569 31371 35933 0
[0.8,∞) 0.1289 25790 44320 0

TABLE 6.11: Asian option premium using a stratified sampling method

without using with suboptimal with optimal
stratified sampling stratified sampling stratified sampling

M Premium stdev Premium stdev Premium stdev
50000 20.5127 51.0703 20.8177 14.1565 20.8630 13.9744
100000 20.7692 51.1957 21.0222 14.0383 21.1066 14.0082
200000 21.0376 51.7771 20.9079 14.0220 20.9522 13.9823

we do as follows:

Sti =St0 exp

(
(r−q−σ2

2
)(ti−t0)+σWti

)
(6.103)

where Wti are exactly generated according to Equation (6.51).
For an Asian put option, we consider a strike price of $1100, maturity of half a year,

monitoring interval of one month (6 monitoring times), volatility of 35%, risk-free rate of
interest 0.25%, and dividend rate 1%. Table 6.11 illustrates simulation results with no vari-
ance reduction, simulation with a sub-optimal stratified sampling method, and simulation
with an optimal stratified sampling method.

6.9.6 Common Random Numbers

To calculate Greeks, we typically use the finite difference approximation

∆ =
∂C

∂S

=
C(S +∆S)− C(S −∆S)

∆S

In calculating C(S + ∆S) and C(S − ∆S) via Monte Carlo simulation, we use the same
random variable at each time step and for each path starting from S0+∆S and S0−
∆S respectively as opposed to different random numbers. That would reduce variance in
calculating Greeks. The following example illustrates the effect of common random numbers
in calculating Greeks.

Example 19 Calculating Greeks in Black–Scholes using common random numbers

As an example, we use common random numbers to calculate ∆ in a Black–Scholes case.
Table 6.12 shows the results for ∆ with and without common random numbers
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TABLE 6.12: Black–Scholes ∆ = 0.7479

without using with using
common number common number

M value stdev value stdev
1000 0.5578 5.6484 0.755 0.5896
10000 0.7603 6.0394 0.7498 0.5832
50000 0.7001 5.9939 0.7444 0.5877
100000 0.7270 5.9491 0.7458 0.5873

Problems

1. (a) By rejection from a Gaussian distribution,

g(x) =
1√
2πσ

exp

[
−1

2

(x
σ

)2
]

we can sample from the following density:

f(x) =
1

A
e−x4/4

where A =
∫ +∞
−∞ e−x4/4dx. Find an optimal value of σ such that the rejection

method becomes efficient.

(b) Explain how to sample a random variable from a standard double exponential
distribution using the Inverse Transform Method. The probability density func-
tion of the standard double exponential is

f(x) =
1

2
e−|x|

(c) Consider the problem of estimating

θ = P (Z > 8)

where Z ∼ N (0, 1).

(a) Estimate θ via simulation without doing importance sampling.

(b) Estimate θ by doing importance sampling with a new random variable Y ∼
N (µ, 1) with some appropriate choice for µ.

2. Assume that the stock price follows the following process:

dSt = rStdt+ σStdWt

Now, consider simulation of a European put with the following parameters: S0 = 100,
K = 110, r = 4.75%, σ = 20%, and maturity T = 0.5.

(a) Use the Euler method with the time step size ∆t = 0.0005 to generate 10, 000
realizations of ST and compute the value of the discounted payoff

V (i)
0 = e−rT (K − S(i)

T )+

Estimate the mean and the variance of V0. Compare the value of the put obtained
using Monte Carlo simulation with the Black–Scholes formula.
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(b) Repeat the above analysis using the antithetic variates. What can you conclude?

(c) Repeat the analysis in (b) using the Milstein method. Is there any significant
improvement? If yes, why? If not, why not?

3. Assume that the stock price follows the following process:

dSt = rStdt+ σ(St, t)StdWt

For the following parameters: spot price S0 = 100, strike price K = 110, risk-free rate
r = 4.75%, local volatility surface σ(S, t) = 0.5e−t(100/S)0.3, and maturity T = 1.0,
price a European put option via

(a) finite differences

(b) Monte Carlo simulation

(c) Monte Carlo simulation with a control variate

and compare.

4. In the Heston stochastic volatility model, stock price follows the process:

dSt = rStdt+
√
vtStdW

(1)
t

dvt = κ(θ − vt)dt+ σ
√
vtdW

(2)
t

where the two Brownian components W (1)
t and W (2)

t are correlated with rate ρ. The
parameters κ, θ, and σ have certain physical meanings: κ is the mean reversion speed,
θ is the long run variance, and σ is the volatility of the volatility.

The characteristic function for the log of the stock price process is given by

Φ(u) = E(eiu lnSt)

=
exp{κθt(κ−iρσu)

σ2 + iutr + iu lnS0}
(cosh γt

2 + κ−iρσu
γ sinh γt

2 )
2κθ
σ2

exp

{
− (u2 + iu)v0
γ coth γt

2 + κ− iρσu

}

where γ =
√
σ2(u2 + iu) + (κ− iρσu)2, and S0 and v0 are the initial values for the

price process and the volatility process, respectively. Apply the following methods to
price a European call:

• Fast Fourier transform technique

• Monte Carlo simulation (with and without variance reduction)

and compare you results for the following parameters: spot price, S0 = $100, strike
price K = 90, maturity T = 1 year, risk-free interest rate r = 5.25%, volatility of
volatility σ = 30%, κ = 1, θ = 0.08, ρ = −0.8, and ν0 = 0.04.

5. In this problem we aim to investigate biases in the Euler full truncation scheme dis-
cussed in Section 6.7.4. Assume that the stock price follows Heston stochastic volatility

dSt = (r − q)Stdt+
√
vtStdW

1
t ,

dvt = κ(θ − vt)dt+ λ
√
vtdW

2
t

Consider pricing a European put option via simulation for the following parameters:
S0 = 100, K = 110, r = 1.5%, σ = 30%, κ = 1, θ = 0.08, ρ = −0.8, ν0 = 0.04 and
maturity T = 1.
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Use the Euler full truncation scheme to price the option for the time step sizes
∆t = 1

12 ,
1
50 ,

1
250 to generate 100, 000 realizations of ST and compute the value of

the discounted payoff. Compare the value of the put obtained using Monte Carlo
simulation with those of fractional fast Fourier transform and conclude.

6. Let b(t; θ,σ) ≡ θt + σW (t) be a Brownian motion with constant drift rate θ and
volatility σ, where W (t) is a standard Brownian motion. Denote by γ(t; ν) the gamma
process with independent gamma increments of mean h and variance νh over non-
overlapping intervals of length h.

The three parameter VG process, X(t;σ, θ, ν), is defined by

X(t;σ, θ, ν) = b(γ(t; ν), θ,σ)

We see that the process X(t) is a Brownian motion with drift evaluated at a gamma
time change. The characteristic function for the time t level of the VG process is

φX(t)(u) = E(eiuX(t)) =

(
1

1− iuθν + σ2u2ν/2

) t
ν

(6.104)

The VG dynamics of the stock price mirrors that of geometric Brownian motion
for a stock paying a continuous dividend yield of q in an economy with a constant
continuously compounded interest rate of r. The risk-neutral drift rate for the stock
price is r − q and the forward stock price is modeled as the exponential of a VG
process normalized by its expectation. Let S(t) be the stock price at time t. The VG
risk-neutral process for the stock price is given by

S(t) = S(0)e(r−q)t+X(t)+ωt (6.105)

where the normalization factor eωt ensures that E0[S(t)] = S(0)e(r−q)t. It follows from
the characteristic function evaluated at −i that

ω =
1

ν
ln(1− σ2ν/2− θν)

By the definition of risk neutrality, the price of a European put option with strike K
and maturity T is

p(S(0);K, t) = e−rTE0((K − S(T ))+).

For the following parameters: spot price S0 = $100, strike price K = 105, maturity
T = 1 year, risk-free interest rate r = 4.75%, continuous dividend rate q = 1.25%,
σ = 25%, ν = 0.50, θ = −0.3, price a European put option via

(a) FFT technique

(b) simulation

and compare.

7. Assume that the stock price follows the following process:

dSt = rStdt+ σStdWt

Assume that we would like to calculate the price of a European put option that has
the following payoff:

h(X) =

⎧
⎨

⎩

(K1 − ST )+ : if ST/2 < H

(K2 − ST )+ : otherwise
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where X = (ST/2, ST ). The price of the European put option can be written as

P (S0, t = 0;K1,K2, T ) = e−rTE
(

ST/2<H{(K1 − ST )
+}+ ST/2>=H{(K2 − ST )

+}
)

Now, explain how one would estimate the price of this option via simulation using
just one normal random variable per path.

8. Assume we can easily sample from U(0, 1). Also assume that we can easily calculate
both Φ(x), the cumulative distribution function of N (0, 1)

Φ(x) =

∫ x

−∞

1√
2π

e−
1
2x

2

dx

and its inverse Φ−1(x).

Show how to sample from the following truncated normal distribution:

g(x) =
1√

2πAσ
exp

[
−1

2

(
x− µ

σ

)2
]

where A =
∫ b
a

1√
2πσ

exp
[
− 1

2

(x−µ
σ

)2]
dx.

9. Consider estimating the following integral

θ =

∫ 0

−∞
e−x2

dx

(a) Describe the standard Monte Carlo integration method for estimating θ. Hint:
First convert it to a definite integral by change of a variable.

(b) Describe another Monte Carlo simulation method to estimate θ that does not
require a change of variable in the integration. Hint: You might consider writing

θ =

∫ 0

−∞
e−x2 h(x)

h(x)
dx

for an appropriate density function h(x). You do not necessarily have to specify
a particular h(.), but you should state what properties h(.) should possess and
how you would use it to estimate θ.

10. Suppose the following is the probability density function of the random variable X .

f(x) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0 : x < −3

κ(x + 3) : −3 ≤ x ≤ 0

κ(3 − x) : 0 ≤ x ≤ 3

0 : x > 3

(a) What is the value of κ?

(b) Utilize the inverse transform method to generate a sample of X given a uniform
random variable U ∼ U(0, 1).

(c) Utilize the acceptance–rejection algorithm to generate a sample of X given a
uniform random number U ∼ U(0, 1). How many uniform random variables on
average will be required to generate one sample of X?
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Chapter 7

Model Calibration

The first six chapters of this book have dealt with different pricing methods for a num-
ber of different derivatives under a variety of models. To recap, in the case of having the
characteristic function of the underlying process in an analytical/semi-analytical form, we
can utilize one of the transform techniques to price European options or some weakly path-
dependent derivatives, as explained in Chapter 2. In case of not having the closed form for
the characteristic function of the process or interested in pricing path-dependent options,
one can apply numerical methods to solve a PDE/PIDE to price most derivative contracts
as long as the process is Markov as covered in Chapters 4 and 5. In case the process is
Markov with high dimensional framework or non-Markov or perhaps the payoff structure is
quite complex, then we are forced to use Monte Carlo methods as covered in Chapter 6.

In Table 7.1, we have summarized pricing methods that can be applied for valuing deriva-
tives under processes covered sofar in a matrix of solution methods available indexed by the
model, computational method and payoff type. In that table, vanilla implies European-type
options, weak means weak path dependency, derivatives like one-touch barriers, and exotics
mean derivatives with complex payoff and/or strong path dependency like American op-
tions. The check mark symbol indicates the method can be applied overall. The cross mark
symbol points out the method cannot be applied in most cases or if it does would be fairly
complicated to be used.

However, all of these pricing models require a set of model parameters in order to fully
define the dynamics of each model. Additionally, none of these models is applicable to real
world derivative markets unless the model is made congruent with some set of actual market
prices. The process of adjusting these model parameters such that the model prices are
compatible with market prices is called calibration. This essential step in derivative pricing
can be used to price exotic derivatives utilizing the prices of their more liquid counterparts.
Lastly, they can also spot arbitrage opportunities among liquidly traded derivatives, among
other applications.

Pricing routines for derivative contracts take as input two mutually exclusive sets
of parameters: (a) Contractual/Market parameters and (b) Model parameters. Contrac-
tual/Market parameters reflect attributes of the derivative which are specified in the con-
tract, such as maturity, strike price and the like, which are obviously model free. Model
parameters, associate with the choice of the model for evolution of the underlying process;
are subjective and absolutely model dependent.

Until now we have assumed that model parameters for all the models considered were
known. In order to make a model relevant to real markets and applicable for pricing, risk
management, or trading, we must perform calibration, which is the process of determining a
parameter set such that model prices and market prices match very closely for a given set of
liquidly traded instruments. These liquid instruments are called benchmark or calibration
instruments and their calibrated prices are typically recorded together in a market snapshot.
The so-called calibration procedure delivers the optimal parameter set for the model based
on these calibration instruments. For many applications, this set represents the majority if
not the entirety, of the set of liquidly traded derivatives in a given market. Furthermore,
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TABLE 7.1: Pricing schemes for various different models/processes

Pricing Model/Method
Transform Techniques PDEs/PIDEs MC simulationmodel
vanilla weak exotic vanilla weak exotic vanilla weak exotic

E
q/

F
x/

C
m
d
ty
/C

re
d
it GBM " " × " " " " " "

LV × × × " " " " " "
CEV × × × × × × " " "

Heston SV " " × " " " " " "
SLV × × × " " " " " "

VG/NIG " " × " " " " " "
CGMY " " × " " " × × ×
VGSA " " × " " " " " "

CGMYSA " " × " " " × × ×
NIGSA " " × " " " " " "

1-
fa
ct
or OU/Vasicek " " × " " " " " "

CIR " " × " " " " " "
Hull-White " " × " " " " " "
Ho-Lee " " × " " " " " "

n
-f
ac
to
r

Vasicek " " × " " " " " "
CIR " " × " " " " " "

ATSM " " × × × × " " "
HJM × × × × × × " " "
LMM × × × × × × " " "

calibration is typically done very frequently (e.g. 2-3 times per day), in order to keep model
derived prices close to their real world equivalents.

If using a model in which the set of its parameters is larger than the set of prices for
the calibration instruments, then the solution obviously would not be unique. This type
of problem is over-parameterized. This is often the case in markets with small numbers
of derivatives and complex dynamics. In cases of over-parametrization, no set of model
parameters can be found which forces the model prices to exactly match the market prices
of the calibration instruments; so in practice, an approximate solution is determined by
solving an appropriately constructed optimization problem. Conversely, there could be a
case that the model class is too narrow to reproduce a full set of prices for the set of
calibration instruments; then the solution does not exist. Moreover, this type of problem is
under-parameterized. The best case for it is option pricing in the Black–Scholes framework
where we have only one free parameter, volatility, yet many liquidly traded options. In the
case of under-parametrization the model, is typically calibrated in such a way that smaller
subsets of calibration instruments have their market prices matched with the model prices
under different model parameters. The most obvious example is the classic Black–Scholes
volatility surface, where a calibrated volatility exists for every liquidly traded option. Hence,
the model calibration is typically an ill-posed problem [74].

There are a number of different ways one can choose the objective function for a calibra-
tion routine depending on the desired results and their uses. We will assume that F (Θ,Λi)
is a pricing model1 which is derived from a stochastic model with uncalibrated model pa-
rameters Θ and the known contractual/market parameters Λi for instrument i. We will use

1As covered in earlier chapters, model prices are calculated analytically, semi-analytically via
Fourier/transform methods or numerically by solving a partial (integro) differential equation or via Monte
Carlo simulation.
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the shorthand CΘ
i for the model price of the i-th instrument using parameter set Θ. In most

generic cases, we can write the optimization problem as

inf
Θ∈O

I∑

i=1

H(CΘ
i − Ci) (7.1)

where O is the space for all possible parameter sets and H is an objective function applied
to the discrepancy CΘ

i − Ci, between market and model prices. Once we have formulated
this calibration problem, an optimization algorithm is then applied to compute a solution
and determine the calibrated model parameters.

The primary concern when performing calibration is the stability of the reconstructed
model prices as a function of the input market prices. In case of under-parameterized or
fully parameterized calibration problem, the market prices for a full set or subset of the
calibration instruments can often be reproduced exactly if the model is sufficiently robust.
However, if the resulting calibrated model parameters fluctuate wildly for every calibration,
the usefulness of the model in terms of providing consistent pricing of exotics, detecting ar-
bitrage, or gauging risk is dubious as the model is more than likely will have little predictive
value. Furthermore, the model will likely not have correctly approximated the underlying
evolution of market prices. In the case of an over-parameterized model, this problem can
become even more acute as the calibration problem cannot be solved exactly. So as not only
the derived model prices have uncertainty related to the inability of the model to reproduce
the current market prices, but they also have uncertainty related to the stability of the
underlying parameters [74].

The rest of this chapter will deal with the various aspects of calibration routines, used
for approximating the current market prices of the calibration instruments. We will first
discuss different methods for formulating the optimization problem for under-parameterized
calibrations. Explaining a few different formulations and their possible uses. Next, we will
present a number of different models, promoting their common uses. Furthermore, we will
explore real world examples under the guise of calibration of the models and discuss the
results. Finally, we will move on to a discussion of model risk, which relates to the validity
of one’s calibrated model and we will review its acceptable use for different applications.

7.1 Calibration Formulation

The purposes of optimal formulation of the optimization problem which drives our cal-
ibration is largely dependent on two attributes: planned application of the resulting cali-
brated prices and sensitivities. When utilizing the calibrated model for the pricing of exotic
derivatives, the most important aspect of the calibration is its ability to correctly reproduce
the prices and hedge ratios for the calibrated instruments, as well as exotic derivatives and
making sure that the results are stable in time. Exact pricing in risk management may be
less important than the stability of calibrated results over longer periods of time. This is due
to the fact, that calibration is performed less often in this setting. For arbitrage/mispricing
detection purposes, it could be advantageous to adjust the calibration to exclude or inten-
tionally underweight the model results for instruments believed to be mispriced in order
to identify arbitrage opportunities. Because there exist various goals for different calibra-
tion routines, we will review a number of different methods for formulating the calibration
problem.
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7.1.1 General Formulation

General formulation for the objective function H could be as follows:

H(CΘ
i − Ci) = wi|CΘ

i − Ci|p

or

H(CΘ
i − Ci) = wi|C

Θ
i −Ci

Ci
|p

or

H(CΘ
i − Ci) = wi| lnCΘ

i − lnCi|p

where p ≥ 1 and wi is a positive weight often chosen inversely proportional to the squared
of bid-offer spread of Ci. The results may vary with the choice of the objective function.

7.1.2 Weighted Least-Squares Formulation

The most common formulation of the calibration problem is the least-squares formula-
tion:

inf
Θ∈O

I∑

i=1

wi(C
Θ
i − Ci)

2 (7.2)

Least-squares solutions to model fitting problems are popular in a number of disciplines and
derivatives, pricing is no exception; typically, this is the most popular formulation of the
calibration. Furthermore, many other formulations will assume market prices are equally
valid and as such, will set all the weights in this least-squares formulation to one. Somewhat
more accurate formulations will account for the fact that most derivative prices are defined
only up to a bid-offer spread. A model may generate prices compatible with the market
but may not exactly fit the mid-market prices for any given Θ ∈ O. Therefore, we may
reformulate calibration as a least-squares problem where Ci is the mid-market quote for the
i-th instrument and wi its corresponding weight which is positive and often chosen inversely
proportional to the square of the bid-offer spread of Ci. Thereby placing smaller weight on
prices with larger spreads to express the additional uncertainty in those prices. Additionally,
if the calibration routine is going to be used for arbitrage detection, the formulation may
be made to exclude prices for certain calibration instruments which are believed to be
mispriced or the weights for these instruments may be set very low. Then the generated
model prices may be used to gauge relative mispricing for various different subsets of the
calibrated instruments.

7.1.3 Regularized Calibration Formulations

In most cases, model price CΘ
i depends continuously on Θ and the parameter space O is

a subset of a finite dimensional space and in this case the least-squares formulation, it always
grants a solution. However, because the calibration problem is often under-parameterized,
the solution may not be unique. As the case maybe for the existence of several local minima,
any of which could be taken as the true global optimal solution when using: (a) different
optimization routines, (b) different starting point, (c) different objective function, or (d)
different restriction on the parameter set. Thus, even if the number of observed prices is
much higher than the number of model parameters, this does not imply unique identifiability
of parameters.

Regularization methods can be used to overcome this problem. A common method is
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to have a convex penalty term R, called the regularization term, added to the pricing error
and solve the auxiliary problem. This regularization technique should be used to solve an
ill-posed problem or to prevent overfitting. It introduces an additional requirement, such as
restriction for smoothness or bounds on the vector space norm.

An example of regularization methods for calibration formulation is presented by Marco
Avellaneda in [19]. This paper presents a minimum entropy algorithm to fit the U.S. LIBOR
curve and shows the corresponding sensitivities of fixed income securities to the input price.
The author also proposes several regularizations at the level of forward-curve building.

Another example of regularization is done by Herbert Egger and Heinz W. Engl [108]
where they utilize a Tikhonov regularization method for calibration problems by applying
the Tikhonov regularization to the inverse problem of option

pricing. They focus on the stability of Tikhonov regularization and study the convergence
rate. This technique adds a regularization term to the minimum object, and therefore avoids
the non-unique solution phenomenon. In [65], the authors discuss a convex regularization
framework for local volatility calibration in derivative markets.

7.2 Calibration of a Single Underlier Model

In this section we will examine the calibration procedure for a number of different
models, specifically on the evolution of a single underlier. Although, many derivatives may
be traded on this underlier, it will include most equity, commodity, and foreign exchange
(FX) markets where derivatives are usually dependent on only a single underlying asset
or rate. Thus, when employing the common uses of these models, we will utilize common
techniques for calibration under these models, present calibration results from real world
data sets, and discuss the results.

7.2.1 Black–Scholes Model

The Black–Scholes model, which assumes a geometric Brownian motion for the under-
lying asset, is the simplest stochastic model that can be used for evolution of an underlying
process (stock price, exchange rate, commodity price, etc.) that guarantees that the price
stays positive. As discussed previously, under the risk-neutral measure, the underlying price,
St, satisfies the following stochastic differential equation.

dSt = (r − q)Stdt+ σStdWt

where r, q and σ are a continuous interest rate, a continuous dividend rate and the instan-
taneous volatility, respectively. The exact solution to the SDE is given by

St = S0e
(r−q−σ2/2)t+σWt

The Black–Scholes PDE, gives us the price of derivative securities depending on the terminal
and boundary conditions we apply to it. However, the only non-observable model parameter
in this model, is the volatility of the underlying asset. In that parameter set, where we need
to determine during calibration, it is simply Θ = {σ}, the implied volatility of the traded
option. Thus, this model is under-parameterized, as are most markets options are traded at a
variety of different strikes and maturities. Attempting to fit all market prices simultaneously
would be unrealistic because we would be assuming a constant volatility for all traded
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options with different strike prices and maturities. It is well documented that at-the-money
option’s volatility is lower than out-of-the-money options volatility [95]. Therefore, when
calibrating to at-the-money options, we would underestimate out-of-the-money prices. In
contrast, in calibrating to out-of-the-money options, we would overestimate at-the-money
premiums. This is called, the volatility smile phenomenon ([95],[194]). This is a well-known
issue with the Black–Scholes model. However, because of the simplicity of the Black–Scholes
model, its analytical tractability, and the general robustness of generated hedging ratios,
the market continues to embrace it. While electing to quote option prices not in terms of
premiums, instead in terms of the so-called implied volatility.

The calibration procedure under the Black–Scholes model, involves solving for the im-
plied volatility. That is, given a single European option premium, find for the volatility that
makes the Black–Scholes price the same as the market price.

As long as a call premium is between (S0 −K)+ and S0 and a put premium is between
(K−S0)+ and K by applying the bisection method or Newton-Raphson method one should
be able to find the implied volatility with no issues. Therefore, generating the discrete points
on an implied volatility surface consists of simply doing this single option calibration for all
quoted option prices.

7.2.2 Local Volatility Model

While the Black–Scholes model is the simplest formulation for derivative pricing and
is still utilized for many other simpler derivative contracts. Here the need for a volatility
surface, which implies different underlying parameters for every quoted option is needed
and the model’s inability to correctly model the evolution of the underlying asset. Limiting
the usefulness in pricing and hedging more exotic derivative contracts and thus extensions
were developed.

To overcome the shortcomings of the Black–Scholes model, Derman and Kani [95] pro-
posed a local volatility model which parameterized underlier volatility in terms of the cur-
rent underlier price and the calendar time. Extending the parameterization of the standard
Black–Scholes model to include both underlier price and time which will allow us to simul-
taneously calibrate to many or all liquid vanilla option contracts. In addition, as the same
time, allowing this model to be more realistically applied to exotic derivatives. The local
volatility model has the following SDE:

dSt = (r(t) − q(t))Stdt+ σ(St, t)StdWt

Here the assumption is a deterministic term structure for both interest rate and dividend
rate. Prices of options under this model, will satisfy the so-called generalized Black–Scholes
PDE, which gives the pricing of derivatives securities, depending on the terminal condition
and boundary conditions we apply to it.

∂V

∂t
+

1

2
σ2(S, t)S2 ∂

2V

∂S2
+ (r(t) − q(t))S

∂V

∂S
= r(t)V (S, t)

The popularity of the local volatility model is due to its simplicity. Arriving at solutions and
derivative prices under the local volatility model requires, only a few simple modifications
of the Black–Scholes model. This along with its additional flexibility in consistently pricing
a full set of options, is why most traders and firms actively utilize this model. Marking and
pricing of derivatives is simple and calculating hedge ratios is straightforward. Moreover,
as explained in [136], local volatility models re-engineer semi-martingale models for vanilla
options. However, for path-dependent options, local volatility and semi-martingales could
behave very differently [137].
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The set of calibration parameters under the local model is Θ = {σ(St, t)} and the set of
contract parameters and deterministic market parameters is Λ = {S0,K, T, r(t), q(t)}.

Thus, the objective of the calibration procedure for local volatility models is to find the
local volatility surface σ(S, t). So that model prices will closely match market prices for
options at available strikes and maturities. One way to accomplish this is to formulate the
calibration problem as follows:

argmin
Θ

1

M

1

N

N∑

i=1

M∑

j=1

∥Vij − V̂ij∥

where Vij and V̂ij are market and model prices for strike Ki and maturity Tj, respectively.
Note that for each set of strike and maturity we assume the same volatility surface σ(S, t),
yet we have to solve the generalized Black–Scholes PDE for each set of maturity and strike
separately, in order to generate the market prices for any and all available options. For a
fixed strike price the option payoff is the same, but it is paid at a different time (maturity),
which would result in a different set of option prices. For the fixed maturity, the option has
a different payoff depending on the strike price that would again result in a different set of
option prices.

7.2.2.1 Forward Partial Differential Equations for European Options

The pricing and hedging derivatives in a manner consistent with the volatility smile has
been a major research area for over a decade and the development of the local volatility
model was a significant step in improving performance in this area. However, as noted in the
last section, the basic construction of the calibration problem for local volatility surfaces,
when utilizing the generalized Black–Scholes PDE. It requires us to solve the PDE, again
for every calibrated derivative price and for every iteration of the optimization routine. This
involves a great many PDE solutions and if possible, we would like to be able to solve for
every option price in the strike and maturity grid simultaneously. This could reduce our
computation time for the calibration procedure significantly.

A breakthrough occurred in the mid-nineties with the recognition that in certain mod-
els, European option values satisfied forward evolution equations, in which the independent
variables are the options strike and maturity. Specifically, Bruno Dupire [104] showed that
under deterministic carrying costs and a diffusion process for the underlying price, no ar-
bitrage implies that European option prices satisfy a certain partial differential equation
(PDE), now called the Dupire equation. If we assume that one can observe European op-
tion prices at all strikes and maturities, then this forward PDE can be used to explicitly
determine the underlying’s instantaneous volatility as a function of the underlying’s price
and time.

Once this volatility function is known, the value function for European, American and
many exotic options can be determined by a wide array of standard methods. Because this
value function relates to theoretical prices of these instruments to the underlying’s price and
time, it can also be used to determine many hedge parameters (Greeks) of interest as well.
In addition to their usefulness in determining the volatility function, forward equations also
serve another useful purpose. Once the volatility function is known, either by an explicit
specification or by a prior calibration, the forward PDE, can be solved via finite differences
to efficiently value a collection of European options of different strikes and maturities, all
written on the same underlying asset. Assuming a known local volatility surface, this will
allow us to solve for every option price in strike and maturity space simultaneously on the
same grid and as pointed out in [16], all the Greeks of interest satisfy the same forward
PDE and hence can also be efficiently determined in the same way. This will allow us to
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solve the implied volatility calibration problem, in a much more computationally efficient
manner.

As stated in Section 4.6, the Dupire PDE gives European call prices for all strikes and
maturities.

−∂C

∂T
+

1

2
σ2(K,T )K2 ∂

2C

∂K2
− (r(T )− q(T ))K

∂C

∂K
= q(T )C

Assuming market quotes of option prices C(Ki, Tj), we can then calculate the local volatility
surface from market prices explicitly using the following inversion formula:

σ(K,T ) =

(
∂C
∂T + (r(T )− q(T ))K ∂C

∂K + q(T )C
1
2K

2 ∂2C
∂K2

)1/2

(7.3)

To apply the local volatility inversion formula from the Dupire equation, we must work
under the assumption that we have a very smooth surface for the call price premiums in
terms of strike and maturity, C(K,T ). In addition, we must also be able to calculate the
calendar spread, ∂C

∂T , butterfly spread, ∂C
∂K and second partial derivative with respect to

strike price, ∂2C
∂K2 , at arbitrary points on the surface of call price premiums.

This is the key difficulty in implementing this method; option prices are only available
in the market on a finite grid of strike prices and maturities, where interpolation schemes
must be invoked to infer prices for the intermediate strike prices and maturities. Here
interpolations used, may or may not be consistent with the requirements of the absence of
at least static arbitrage across the strike price and maturity spectrum. Even when this is
accomplished, the interpolation schemes can introduce non-differentiability at various levels,
leading to local volatility functions that are erratic and inspire little confidence. The task of
properly interpolating the surface of option prices consistent with observed market prices, is
essentially the task of formulating and estimating a market with a consistent option pricing
model. As illustrated in [74], the local volatility can be very sensitive to small changes in
inputs. In the coming section on calibration of local volatility surfaces, we will explore a
number of different methods proposed to construct a smooth, stable, and consistent local
volatility surfaces.

7.2.2.2 Construction of the Local Volatility Surface

The formulated calibration which will in theory solve for a fully specified local volatil-
ity surface, in practice will not have enough market quoted option prices to generate a
fully specified and smooth surface for option premiums, which makes constructing a local
volatility surface very challenging. This stems from the fact that we typically solve the
option pricing PDE, on a mesh, which is much finer than the grid of available option pre-
miums arranged by strike price and maturity. Therefore making this calibration problem is
over-parameterized. Thus, it is usually the case that we must interpolate/extrapolate from
market prices to get option prices at any strike price and maturity and then apply some
smoothing technique to get a smooth surface.

Naturally, the first attempt at this solution is bi-cubic spline interpolation. This could be
done on either the call prices or implied volatilities to calculate call prices or implied volatili-
ties for a range of strike prices and maturities and then substitute interpolated/extrapolated
values into the calibration routine to construct the local volatility surface. However, the re-
sulting local volatility surface is generally a very non-smooth and non-differentiable surface,
as reported in [137].

Constructing a smooth local volatility surface from a limited set of option prices has been
a topic of interest for some years now and there have been a number of papers written on
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the topic. One approach is, to use a suitable functional form for the local volatility surface
that reflects the shape of the implied volatility surface in a given market, usually having
a smile or smirk for shorter maturities and decaying with time and flattening for longer
maturities. This functional form, might take four to six parameters, and we can redefine
this to be the set of model parameters that we will solve for in our calibration routine.

In [2], the authors propose several algorithms to find the volatility surface. This paper
does not deal with local volatility models, but with the Black–Scholes model and how to
fit the Dupire equation utilizing plain vanilla European option prices. Even though the
principles are applicable to local volatility surface calibration as well. The authors reach
the conclusion that using mesh adaptation/multi-level strategies can reduce the computing
time significantly.

The work in [71] follows the same train of thought. This paper discusses the well rec-
ognized fact that index option markets typically exhibit a volatility smile and therefore
demonstrate that the constant volatility of Black–Scholes option pricing formula is not re-
alistic. The very existence of different implied volatilities for different options, demonstrates
that the constant volatility model does not adequately describe the underlying price dy-
namics. The authors demonstrate that under a one-factor continuous diffusion model, the
constant volatility method, with different implied volatilities applied to options of different
strike prices and maturities, is able to price the vanilla options accurately and the hedge
ratios that are computed by using these implied volatilities, can be erroneous.

The authors propose a method for computing a smooth local volatility function assuming
that the underlying asset follows a one-factor continuous diffusion model. In the paper,
they emphasize that accurately approximating the local volatility function under a one-
factor model, is crucial in hedging even simple European and in pricing exotic options.
To approximate a local volatility function, they use a spline functional approach, wherein
the local volatility function is represented, by a spline whose values at chosen knots are
determined by solving a constrained nonlinear optimization problem. This optimization
formulation, is amenable to various option evaluation methods and in the paper they use
as an example of a partial differential equation implementation.

Using a synthetic European call option example, they illustrate the ability of the pro-
posed method to reconstruct the unknown local volatility function. Also demonstrated is
the spline volatility function, which yields smaller average absolute hedging error than the
implied/constant volatility method due to more accurate hedge parameters. In addition,
market European call option data on the S&P 500 stock index, was used to compute the
local volatility function under their spline function method it shows that in both the S&P
500 index option and futures option markets, the average hedging error using the volatil-
ity function approach, is always smaller than that of the implied/constant volatility error.
Moreover, it is smaller for a sufficiently long hedge horizon.

In a followup paper [69], they illustrate the spline volatility function proposed in
[71]. It yields smaller than average, the absolute hedging error is compared with the im-
plied/constant volatility method for more accurate hedge parameters. When comparing the
hedge performance in the S&P 500 index option, as well as the futures option markets,
which observe similar results in the delta from the implied/constant volatility method, is
typically greater than that of the local deterministic volatility function approach. In both
the S&P 500 index option and futures option markets, the observation is that the average
hedging error using the volatility function approach is consistently smaller than that of
the implied/constant volatility error. Moreover, the average absolute hedging error utilizing
the volatility function, is smaller than that of the implied/constant volatility method for a
sufficiently long hedge horizon. For approximately 17 days for the S&P 500 index options
and 6 days for the S&P 500 futures options.

Another method for calibrating a pricing model to a set of market quoted option prices,
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is presented in [20]. In this paper the authors describe an algorithm which yields an arbitrage
free diffusion process, that minimizes the relative entropy distance to a prior diffusion and
then solve a constrained (min-max) optimal control problem utilizing a finite-difference
scheme for a Bellman parabolic equation, combined with a gradient based optimization
routine. The number of unknowns in the optimization step is made equal to the number
of market quoted option prices that need to be matched. That number is independent of
the mesh size used for the scheme. This results in an efficient nonparametric calibration
method, that can match an arbitrary number of option prices, to any desired degree of
accuracy. The algorithm can be used to interpolate implied volatilities of traded options, in
both the strike and maturity dimensions. Furthermore it can also be used to price exotic
derivatives. The stability and qualitative properties of the computed volatility surface are
reviewed, including the effect of the Bayesian prior on the shape of the surface and on the
implied volatility smile/skew.

Another work which deals with stable calibrations of a full set of market traded options
is [13], in which the authors illustrate how to construct an unconditionally stable finite
difference lattice consistent with the equity option volatility smile. In particular, their work
shows how to extend the method of forward induction on Arrow–Debreu securities to gener-
ate local instantaneous volatilities in implicit and semi-implicit (Crank–Nicolson) lattices.
The technique developed in the paper provides an accurate fit to the entire volatility smile
and offers convergence properties and high flexibility of asset- and time-space partitioning.
In contrast to standard algorithms based on binomial trees, this approach is well suited to
price options with discontinuous payouts (e.g., knock-out and barrier options) and does not
suffer from problems arising from negative branching probabilities. However, the previous
two approaches presented in [20] and [13], suffer from the drawback that the constructed
calibration surface is non-smooth.

Another attempt at stable local volatility surface construction is presented in [85], which
describes a method that uses trinomial trees and Tikhonov regularization to calibrate the
local volatility. The author demonstrates an implementation of this method on the inverse
problem of calibrating a local volatility function from observed vanilla option prices in a
generalized Black–Scholes model and claims the methodology is numerical stability [65].

A more generic algorithm for estimating parameters of option pricing models from a set
of observed option prices is presented in [128], wherein the authors propose a probabilistic
approach. The approach is based on a stochastic optimization algorithm which generates
a random sample from the set of global minima of the in-sample pricing error and allows
for the existence of multiple global minima. Starting from an independently and identically
distributed population of candidate solutions, drawn from a prior distribution of the set of
model parameters, the population of parameters is updated through cycles of independent
random moves followed by selection according to pricing performance. The authors examine
conditions under which an evolving population converges to a sample of calibrated models.
The heterogeneity of the obtained sample can be used to quantify the degree of ill-posedness
of the inverse problem. It provides a natural example of a coherent measure of risk, which
is compatible with observed prices of vanilla options and takes into account the model
uncertainty, resulting from incomplete identification of the model. They go on to describe
a fully specified algorithm in the case of a diffusion model, with the goal of retrieving
the unknown local volatility surface from a finite set of option prices and illustrate its
performance on simulated and empirical data sets of index options.

In [137], the authors propose inferring a local volatility surface, from the calibrated
parameters by simply calculating call prices for a range of strike prices and maturities for
the model under consideration and substituting those premiums in Equation (7.3) to obtain
the local volatility surface. Any stochastic volatility model, such as the Heston stochastic
volatility model or the variance gamma with stochastic arrival (VGSA) model, can be
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successfully calibrated to market European option prices across all strikes and maturities.
The obvious result being those calibrated models can deliver a smooth surface for call/put
prices in both dimensions. For the VGSA model, they have shown the scheme generates a
pretty smooth local volatility surface. The obtained local volatility surface is fully dependent
on the model originally used to interpolate European option prices in strike and maturity
space. Obviously it is not going to be unique. Figures 7.3 and 7.9 illustrate the constructed
local volatility surface for the S&P 500 stock index as of December 10, 2000 using this
approach for the VGSA and Heston stochastic volatility models, respectively.

We can see in these figures, volatility surfaces look pretty similar. The drawback to this
method, is that the use of stochastic volatility models tend to compensate for elevated deep
out-of-the-money option prices, by pushing up volatility to a level that might be unrealistic,
as reported in [136].

Setting aside computational problems in construction of the local volatility surface , there
are more significant semantic issues, as cited in [94]. Looking at the future local volatilities in
these models consistent with todays implied volatilities, are not reassuring. Local volatility
models have a scale that depends specifically on future index levels and time. Far in the
future, the local volatilities are roughly flat, predicting a future smile that is much flatter
than current smiles, an uncomfortable and unrealistic forecast that contradicts the nature
of the skew. If these models forecast unrealistic future volatilities, then the question begs,
how much one can trust prices and hedge ratios from these models? For all these reasons it
is compelling to look at models of a different nature.

7.2.3 Constant Elasticity of Variance (CEV) Model

The shortcomings of the Black–Scholes model in terms of calibration, as compared to a
full set of market prices for options, have been well known for many years. As discussed in
the last section, local volatility models provide enough scale of freedom to fit an arbitrary
number of market option prices. Also noted, is that construction of a smooth volatility
surface, is a very difficult task and as such, some sought more parsimonious models for the
underlying asset.

The existence of the volatility smile, prompted the idea that the Black–Scholes model
with constant volatility was not sufficient and even before the full local volatility model was
developed, models which included volatility, with asset price dependency were used. The
constant elasticity of variance (CEV) process [81] developed by Cox, assumes that the asset
price follows this process

dSt = (r − q)Stdt+ δSβ+1
t dWt

for t > 0, S0 > 0. The two model parameters are δ and β, where the latter can be interpreted
as the elasticity of the local volatility function and the former is a scale parameter that
may be used to calibrate the initial instantaneous volatility. Though not as flexible as the
local volatility model, this model does have more flexibility in matching the stock return
distribution implied by vanilla options at a given maturity date than the Black–Scholes
model. In addition, for the CEV process with β < 0 and r − q > 0, the price of the plain
vanilla put is also given by a quasi closed-form solution. This complex functional form is
derived in detail in [89] and [90]. The price of the plain vanilla call is obtained using put-call
parity.

Below is an example of the CEV model calibration. Table 7.2 shows CEV parameters
obtained from calibration of out-of-the-money call and put vanilla option values for the
S&P 500 of October 19, 2000.

We note the relative constancy of the parameter σ across maturity. The parameter β
declines with maturity and it seems that this parameter is attempting to cope with both
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TABLE 7.2: CEV parameters obtained from calibration of the S&P 500 on October 19,
2000

Time to maturity σ β r q Spot
0.07934 0.2162 -2.1100 0.0663 0.0125 1389.459
0.15585 0.2239 -4.2195 0.0663 0.0128 1389.869
0.40504 0.2202 -2.6892 0.0667 0.0119 1389.459
0.65424 0.2208 -2.1729 0.0660 0.0117 1389.708
0.92273 0.2257 -1.9863 0.0654 0.0116 1390.906

changes in implied skewness and kurtosis. Though it is not clear, which is the dominating
influence. We observe from Figure 7.1 CEV does pretty poorly in calibration to out-of-the-
money options with short maturities; however, for longer maturities the fit seems to be
good.

7.2.4 Heston Stochastic Volatility Model

While the CEV model is an improvement upon the Black–Scholes model in terms of
flexibility for calibration, in that it allows for volatility to vary with the underlier price.
The volatility still has no time component. This is somewhat at odds, with the observation
in many markets of a term structure of implied volatilities under the Black–Scholes model,
indicating an effective change in volatility over time. The Heston stochastic volatility model,
presented in [134], models volatility itself as stochastic, allowing for both asset level and
time effects to be expressed in this model. Under the Heston model the asset price has the
following form:

dSt = (r − q)Stdt+
√
vtStdW

1
t

dvt = κ(η − vt)dt+ λ
√
vtdW

2
t

dW 1
t dW

2
t = ρdt

This allows volatility to be stochastic but models it as mean-reverting,. Reflecting the ob-
servation that volatility generally does not diffuse to extreme levels and remains somewhat
range bound. The parameter η, represents the long term mean volatility, while κ represents
the rate of mean reversion. The variable λ represents the volatility of variance and ρ, repre-
sents the correlation between the two driving Brownian motions. As follows, the parameters
to be calibrated are Θ = {κ, η,λ, ρ, v0}. For the square-root process the variance stays pos-
itive and if 2κη > λ2, then it never reaches zero. An observation is that the drift term of
the variance process is asymptotically stable if κ > 0 and equilibrium point is vt = η. As
demonstrated in Chapter 2, the characteristic function of the log of the underlying process is
available under this model and so we can price European and some weakly path-dependent
options via transform methods. Other derivative prices are available via numerical solution
of the two-dimensional PDE, as discussed in Chapter 4.

Minimizing the objective function is clearly a nonlinear programming problem, with the
nonlinear constrain 2κη > λ2. This condition ensures that the volatility process cannot
reach zero. Unfortunately the objective function is far from being convex and it turns
out that usually there exist many local minima. As a consequence, we should try various
starting points to make sure we get the optimal parameter set. We might use a penalty
function, R(Θ,Θ0), to make the calibration some additional stability as suggested in [179].
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FIGURE 7.1: CEV vs. market premiums for the S&P 500 on October 19, 2000 for different
maturities
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For example we might set R(Θ,Θ0) = ∥Θ − Θ0∥2 the distance from the original starting
parameter set.

We provide an example of the Heston stochastic volatility model parameters generated
from calibration of S&P 500 prices on October 19, 2000.

λ = 1.0143

κ = 4.9549

η = 0.0562

ρ = −0.6552
v0 = 0.057

In Figure 7.2 we display Heston stochastic volatility premiums vs. market premiums for S&P
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FIGURE 7.2: Heston vs. market premiums for the S&P 500 on October 19, 2000 for
various maturities

500 option premiums on October 19, 2000 across all maturities. The fit across all maturities
seems to be good. Having parameters from calibration, we can calculate premiums for
any strike and any maturity and construct the vanilla call surface. Having the call surface
utilizing Equation (7.3) to find the local volatility surface implied from the call surface. The
local volatility surface is illustrated in Figure 7.3.
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FIGURE 7.3: Local volatility surface obtained from the call price surface of the Heston
stochastic volatility model

7.2.5 Mixing Model — Stochastic Local Volatility (SLV) Model

As described in Section 1.2.4, the stochastic local volatility (SLV) model is a mixture of
the local volatility model and the stochastic volatility model given by [209]

dSt = (r − q)Stdt+ L(St, t)VtStdW
1
t

dVt = κ(η − Vt)dt+ λVtdW
2
t

dW 1
t dW

2
t = ρdt

Two parameter sets need to be calibrated. One is stochastic parameters and the other one
is the local volatility component L(St, t), called leverage surface. As stated in [171], the
calibration procedure is an ill-posed and unstable inverse problem. This fact is shown by
the classical formula that connects the local and implied volatilities in the presence of the
term structure.

Given a set of stochastic parameters, we can calibrate the leverage surface to match
the vanilla market. Given different sets of stochastic parameters we can fit the vanilla
market quite well by re-calibrating the leverage surface L. However, this will correspond to
a different dynamics.

First, we calculate local volatility surface σ(St, t) using the Dupire formula. The marginal
distribution of the stochastic local volatility model is the same as the marginal distribution
of the local volatility model [126]. Using integral form of the conditional expectation and
Kolmogorov PDE, by the convergence of L, we obtain L(S, t) numerically. We solve the
PDE using a finite difference method [209].

For stochastic parameters, we find κ, θ,λ and ρ to match vanilla market as closely as
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possible in pure stochastic model. Then we choose a mixing fraction that represents the
percentage of stochastic model in the stochastic local volatility model. We can calibrate the
mixing fraction parameter by letting the model match key barrier option prices or matching
the historical dynamics of the volatility surface. We calibrate leverage surface to match the
vanilla market more often than stochastic parameters. In practice, stochastic parameters
are not supposed to be recalibrated frequently.

We refer readers to [209] and [191] for more detail on calibration of the stochastic local
volatility model.

7.2.6 Variance Gamma Model

The presence of sometimes very large volatility smiles for option prices, especially for
short durations, can lead to very large changes in modeled volatilities under diffusion mod-
els. This will allow for non-constant volatility, such as the local volatility, CEV, and Heston
models. This issue has led many researchers to concentrate their efforts on modeling underly-
ing asset prices with jump models, which allow for discrete jumps in asset prices which may
more readily explain the volatility smile. One such model, is the variance gamma model
which was described in Chapter 1. As explained, it is a three-parameter model with the
calibration parameters being Θ = {σ, θ, ν}, volatility, skewness, and kurtosis respectively.

Results indicate that for a fixed maturity the model does an adequate job fitting across
various strike prices. This would suggest that for each maturity, we should do a separate
calibration and as a result would have a separate set of parameters. In calibration, we
typically observe that the volatility parameter of the variance gamma model reduces from
shorter to longer maturities, however, overall volatility stays in a tight range. Kurtosis
increases for longer maturity; skewness, on the other hand, reduces. For equity options we
typically observe negative skew.

Here we present a couple of calibration cases for the VG model. In the first case, we look
into the limiting behavior of the variance gamma model. We show that if out-of-the-money
call and put prices from a Black–Scholes model with a constant volatility are provided as
market prices, the VG model can detect premiums are coming from Black–Scholes with a
constant volatility and that indicates that VG can recover a pure diffusion model under the
special case of ν = 0 and θ = 0.

Parameters used for this example are spot price $100, volatility σ = 0.40, maturity
T = 1.0 year, risk-free rate r = 5%, dividend rate q = 0.0%, strike prices ranging from
80, 85, 90, . . . , 125. Initial parameters used for VG model are σ = 0.10, ν = 0.10, and θ =
0.10. Obtained parameters from calibration using simplex optimization are σ = 0.400304,
ν = 0.041651, θ = 0.037529. In Figure 7.4 we plot VG calibrated prices versus Black–Scholes
prices. Obviously, they match very closely. For illustrative purposes on how prices depart
from Black–Scholes, we do the following scenarios. In the first graph we keep θ fixed and
start increasing ν and in the second graph ν is fixed while θ changes. As shown in Figure
7.5(a), for out-of-the-money puts premiums decrease as ν increases. For out-of-the-money
calls it is exactly the reverse, premiums increase as ν increases. As shown in 7.5(b), in
general premiums increase as we depart from zero skewness for both out-of-the-money calls
and puts.

In the second calibration case, we obtain variance gamma parameters from calibration
to S&P 500 options. Table 7.3 displays the variance gamma parameters obtained from
calibration of S&P 500 out-of-the-money European option prices (calls/puts) on October
19, 2000, across various different maturities. We note negative values for θ that decline with
maturity. This is a reflection of negative skewness induced by risk aversion that declines in
the implied annualized risk-neutral density. The parameter ν is rising with maturity and
reflects an increase in excess kurtosis for the implied annualized risk-neutral density. In this
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FIGURE 7.4: VG calibrated to Black–Scholes

TABLE 7.3: VG parameters obtained from calibration of the S&P 500 on October 19,
2000

Time to maturity σ ν θ r q Spot
0.07934 0.2085 0.0735 -0.4986 0.0663 0.0125 1389.459
0.15585 0.2100 0.1267 -0.3599 0.0663 0.0128 1389.869
0.40504 0.1925 0.2509 -0.2820 0.0667 0.0119 1389.459
0.65424 0.1902 0.4352 -0.2283 0.0660 0.0117 1389.708
0.92273 0.1939 0.6088 -0.1991 0.0654 0.0116 1390.906

case, the volatility parameter is fairly constant across maturity. We observe from Figure
7.6, unlike the CEV model, the variance gamma model does pretty well for short maturities
as well as longer maturities.

7.2.7 CGMY Model

As shown in Chapter 2, the characteristic function of the log of the underlying process is
available under CGMY, and so we can price European and some exotic options via transform
methods. Other derivative prices are available via numerical solution of the PIDE discussed
in Chapter 5. CGMY parameters are obtained from calibration

to S&P 500 prices on October 19, 2000. We observe from Figure 7.7 CGMY like the
variance gamma model does well for short maturities as well as longer maturities.

7.2.8 Variance Gamma with Stochastic Arrival Model

As described in Chapter 1, the variance gamma with stochastic arrival model is an ex-
tension of the variance gamma model which allows for a stochastic volatility model through
stochastic arrival of jump times. The parameter set for the model is Θ = {σ, ν, θ κ, ν,λ}.



278 Computational Methods in Finance

80 85 90 95 100 105 110 115 120 125

6

8

10

12

14

16

O
p

tio
n
 P

re
m

iu
m

s

Strike Prices

 

 

S = 0.0
S = 0.20
S = 0.40
S = 0.60
S = 0.80

(a)

80 85 90 95 100 105 110 115 120 125

6

8

10

12

14

16

O
p

tio
n
 P

re
m

iu
m

s

Strike Prices

 

 

V = 0.0
V = −0.40
V = −0.20
V = 0.20
V = 0.40

(b)

FIGURE 7.5: VG with various ν and θ

TABLE 7.4: CGMY parameters obtained from calibration of the S&P 500 on October 19,
2000

Time to maturity C G M Y r q Spot
0.07934 0.6083 7.6829 39.9301 0.8571 0.0663 0.0125 1389.459
0.15585 0.6688 6.6770 27.1778 0.7266 0.0663 0.0128 1389.869
0.40504 0.2077 3.5402 27.3654 0.9573 0.0667 0.0119 1389.459
0.65424 0.2125 3.0505 24.5504 0.8695 0.0660 0.0117 1389.708
0.92273 0.1344 2.0388 25.9019 0.9684 0.0654 0.0116 1390.906
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FIGURE 7.6: VG vs. market premiums for the S&P 500 on October 19, 2000 for different
maturities
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FIGURE 7.7: CGMY vs. market premiums for the S&P 500 on October 19, 2000 for
different maturities
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Unlike VG, the model can be steadily calibrated across both maturity and strike simulta-
neously.

To illustrate, we provide an example of the VGSA parameters generated from calibration
of S&P 500 prices on December 13, 2000.

σ = 0.1022

ν = 0.1819

θ = −0.0761
κ = 8.1143

η = 2.8060

λ = 10.3646

We note that σ, ν and θ are very close to the shorter maturity of VG parameters. As in
VG, θ < 0 and this is a reflection of negative skewness. The left tail of the Lévy density
has a slower rate of exponential decay and hence we have higher prices for equal percentage
down moves compared with up moves. The rate of mean reversion reflects a half life of 3.82
months and this is consistent with a reasonable level of volatility persistence. Long term
levels of activity are a third of their current levels; hence market prices for hedging moves
in the future are lower when compared with the costs of hedging near term market moves.
Note that the volatility of volatility is substantial in comparison to the level of long term
volatility.

In Figure 7.8 we display VGSA premiums versus market premiums for the S&P 500 on
October 19, 2000 across all maturities. The fit across all maturities seems to be good. Using
parameters from calibration, we can calculate the premiums for any strike and maturity and
construct the vanilla call surface. Having the call surface using Equation (7.3) to find the
local volatility surface implied from the call surface. The local volatility surface is illustrated
in Figure 7.9.

At the first glance local volatility surfaces from Heston and VGSA look pretty similar
but considering that for very short maturity Heston was underpricing we expect to get
higher volatilities for shorter maturities. To better visualize this we also plot both surfaces
against each other. That would give us a better sense of comparison on how much they differ
as shown in Figure 7.10. We can see that the local volatility levels implied from Heston is
a bit larger than the local volatility levels implied from VGSA.

7.2.9 Lévy Models

Calibration of Lévy models across a full set of options, including options of varying
maturity and strike, remains a somewhat unstable problem when using a least-squares
based formulation. In [76], the authors present a non-parametric method for calibrating
jump diffusion and more generally exponential Lévy models, to a finite set of observed
option prices. They demonstrate that the usual formulations of the inverse problem via
non-linear least squares are ill-posed and propose a regularization method based on relative
entropy. To this end, they reformulate the calibration problem into a problem of finding
a risk-neutral exponential Lévy model that reproduces the observed option prices and has
the smallest possible relative entropy with respect to a chosen prior model. This approach
allows us to reconcile the idea of calibration by relative entropy minimization with the
notion of risk-neutral valuation in a continuous time model. They demonstrate a numerical
implementation of the method using a gradient-based optimization algorithm and show that
the entropy penalty resolves the numerical instability of the calibration problem.
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7.3 Interest Rate Models

The models we have discussed thus far deal with derivatives whose value depends on a
single underlying asset as in single name equity, foreign exchange and commodities and the
calibration routines we have discussed are designed to closely match the prices of a full set
of derivatives which are traded in the market. However, these models are not applicable to
interest rate derivatives, whose value can depend on the evolution of the entire yield curve.
Models designed to capture the evolution of the yield curve, are often called term structure
models and have been a topic of research for decades and in this section we will discuss an
increasingly complex series of these models.

Term structure models are particularly onerous to develop and calibrate for a number of
reasons. Although the first models for yield curves contained only one factor, models which
capture the full set of possibilities in terms of the shape of the yield curve require modeling
multiple correlated underliers. In addition, the shape of the yield curve is usually restricted
by real world arbitrage conditions, disallowing negative forward rates for instance, which
dictate the possible future states of the yield curve.

The primary goal of calibration in term structure models and usually the most difficult,
is the process of determining the singular volatility (in the case of a single factor model) or
correlation matrix (in the case of single factor models) that are used in the term structure
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model. Additionally, parameters relating to the mean or means of the relevant factors,
including parameters relating to the long term mean, mean reversion, or its term structure,
will need to be calibrated as well, depending on the model used.

There are various different highly liquid instruments that we can use as calibration in-
struments for interest rate models. They include LIBOR rates, swap rates, zero-coupon
bonds and options on bonds, just to name a few. Most of these different rates can be ex-
pressed as a simple function of zero coupon bond prices2, P (t, T ), which are of fundamental
interest in fixed income pricing. For instance, LIBOR rates are simply compounded interest
rates, which relate to the zero-coupon bond prices as follows:

L(t, T ) =
100

T − t

(
1

P (t, T )
− 1

)
(7.4)

where the maturities are compounded based on the ACT/360 day count convention, starting
two business days forward. This is exactly the same as Equation (7.24) where derivation of
it is done in Section 7.9. Swap rates relate to the zero-coupon prices by

s(t, T ) = 100
1− P (t, T )

∆
∑N

j=1 P (t, Tj)
(7.5)

where Tj for j = 1, . . . , n are reference dates with Tn = T denoting the swap term or the
maturity of the swap and ∆ denotes the length of the period [Tj−1, Tj] in the corresponding
day count convention. The tenor of s(t, T ) is the time T − t. For U.S. swap contracts, the

2P (t, T ) is the value of zero-coupon bond at time t, the amount willing to pay at t to receive at one
dollar at maturity time T . Obviously P (T, T ) = 1.
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number of payments is every six months, ∆ = 1
2 , a half-year tenor. In addition to these

instruments, markets for interest rate caps and floors, as well as swaptions, is very liquid
and remains a valuable source of market price data which can be used to help calibrate
volatility and correlations.

The number of markets one can use to calibrate a chosen interest rate model depends
largely on the degrees of freedom provided by the model. For instance, the simplest short
rate models will not even be able to reproduce the current term structure of interest rates
perfectly. When these models are augmented with time-varying parameters they can typ-
ically be made to perfectly calibrate to the current yield curve, but usually cannot be
simultaneously and perfectly calibrated against the cap, floor, and swaption markets. For
risk management or marking purposes, we typically want to use a single framework for
pricing and calculating hedge ratios and as a consequence would be of interest to be able to
calibrate the whole set of market price simultaneously. However, it is market making and
trading that would not be the goal.

The majority of these models require the current yield curve to be specified to determine
the initial state. However, constructing the current yield curve from bond prices, LIBOR
rates, swap rates, or interest rate futures is a non-trivial problem in and of itself. It is made
more difficult by the fact that the yield curve can go out twenty or thirty years and there
are not enough traded instruments to represent every tenor, but we often need to construct
a smooth curve based on a few instruments going out thirty years. The procedure used to
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extract today’s yield curve from the market quoted rates and prices is called the cooking
process or construction of the yield curve. We will briefly cover this procedure in Section
7.7 at the end of this chapter.

7.3.1 Short Rate Models

The first attempts to model the evolution of interest rates followed the same pattern
as models in markets with a single underlying asset. We model the evolution of the term
structure of interest rates in terms of the instantaneous short rate rs at time s. This is
the instantaneous continuously compounded interest rate, so discounting the exponential of
integral of this rate from the current time to any future time and taking the expectation
gives the zero-coupon bond price for that maturity, that is

P (t, T ) = EQ
t

(
e−

∫ T
t rsds

)

Modeling interest rates in terms of a single factor short rate leads to a simple transition
from models for other assets to interest rates models. However, because we have only a
single underlying factor, these models typically imply perfect correlation between all points
on the yield curve, and thus we lose the ability to model changes in the shape of the yield
curve. This can be a critical disadvantage when attempting to price or hedge interest rate
dependent instruments whose value is highly dependent on the shape of the yield curve
and the correlation between different points in the term structure of rates. That being
said, short rate models still remain popular because of their parsimoniousness and ease of
implementation, especially in situations where the level of rates, and not the shape of the
term structure, is of primary importance. Another reason for its popularity is the fact that
by construction it yields a functional form for p(t, T ) which a smooth curve.

7.3.1.1 Vasicek Model

One of the first short rate models developed was the Vasicek model. Like the Black–
Scholes model, the Vasicek model is the simplest model for the evolution of interest rates.
The Vasicek model assumes that the instantaneous short rate, rt, follows the following
stochastic differential equation:

drt = κ(θ − rt)dt+ σdWt

This is very similar to the Bachelier model except in this case, the short rate is given a
mean reversion component, with θ being the long term mean of the short rate and κ being
the mean reversion rate. This was included in even the earliest interest rate models in
recognition of the fact that interest rates rarely see the type of diversions from their long
term mean that is seen in other market variables; in the long term they tend to remain
somewhat range bound. In addition, the mean reversion can help to mitigate one of the
disadvantages of the Vasicek model, which allows for negative interest rates, which are a
rarity in real markets3. By including mean reversion, the model can limit the number of
scenarios in which negative rates can occur. The exact solution to the Vasicek SDE given
by

rt = eκtr0 + θ(1− e−κt) + σe−κt

∫ t

0
eκsdWs

While this solution is useful, the most important quantity when pricing fixed income in-
struments is not the actual short rate, but the zero-coupon bond prices. Under Vasicek,

3This is possible when interest rate is smaller than inflation rate.
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TABLE 7.5: LIBOR rates
LIBOR rates

maturity (months) Oct. 29, 2008 rate (%) Feb. 14, 2011 rate (%)
1 3.1175 0.2647
2 3.2738 0.2890
3 3.4200 0.3140
6 3.4275 0.4657
12 3.4213 0.7975

zero-coupon bond prices are given by

P (t, T ) = EQ
t

(
e−

∫ T
t rsds

)

= eA(t,T )−B(t,T )rt

where the loading factors are

B(t, T ) =
1− e−κ(T−t)

κ

A(t, T ) = (θ − σ2

2κ2
)[B(t, T )− (T − t)]− σ2

4κ
B2(t, T )

Note that the function P (t, T ) is time-homogeneous. From these results, if interested in the
evolution of zero-coupon bond prices under this model, we can show that zero-coupon bond
prices, P (t, T ), satisfy the following SDE:

dP (t, T ) = rtP (t, T )dt− P (t, T )B(t, T )σdWt

The calibration procedure for the Vasicek model is straightforward. It is a four-parameter
model and the set of parameters which need to be calibrated is Θ = {κ, θ,σ, r0}. It is
important to note that the parsimonious set of parameters associated with this model
provides very little in the way of degrees of freedom, which will be essential in model
calibration. Because we have only four free parameters, it is impossible to perfectly calibrate
the model to the current term structure of interest rates, let alone cap, floor, or swaption
implied volatilities. This limits the practical usefulness of the model.

For illustration purposes, we calibrate the Vasicek model to LIBOR rates and swap
rates. We will use LIBOR rates with maturities of one, two, three, six, and twelve months
and swap rates with maturities of two, three, five, seven, ten, fifteen and thirty years.

Tables 7.5 and 7.6 contain LIBOR and swap rates used for calibration as of October 29,
2008 and February 14, 2011 (using Bloomberg data).

For any guestimate for the parameter set, we calculate zero-coupon bond prices using
the closed-form solution. We then use zero-coupon bond prices to compute the LIBOR and
swap rates implied by our model utilizing Equations (7.4) and (7.5), respectively. We define
our objective function as the sum of the squares of relative errors (SSRE) between LIBOR
and swap rates implied by the model and the market LIBOR and swap rates. In other words,
if model LIBOR rates are LMODEL, market LIBOR rates are LMARKET , model swap rates
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TABLE 7.6: Swap rates
Swap rates

term (year) Oct. 29, 2008 rate (%) Feb. 14, 2011 rate (%)
2 2.6967 1.0481
3 3.1557 1.5577
5 3.8111 2.5569
7 4.1497 3.1850
10 4.3638 3.7225
15 4.3753 4.1683
30 4.2772 4.4407

are SMODEL, and market swap rates are SMARKET , our objective is to minimize

SSRE =
I∑

i=1

((
LMODEL(i) − LMARKET (i)

)
/LMARKET (i)

)2

+
J∑

j=1

((
SMODEL(j) − SMARKET (j)

)
/SMARKET (j)

)2

We find the minimum SSRE using a numerical optimizer. Note that throughout this report,
results are sensitive to the exact optimization parameters used. We use the simplex method
with a tolerance of 1e−4, and 1, 000 maximum iterations. Using data from October 29, 2008,
we obtain the following parameters from calibration: κ = 0.1153, θ = 0.0532, σ = 0.0028
and r0 = 0.0309. Using data from February 14, 2011, we obtain the following parameters
from calibration: κ = 0.1717, θ = 0.0670, and σ = 0.0009. We also obtain rt = 0.0020.

The top panels of Figures 7.11 and 7.12 display zero-coupon bond prices for the Vasicek
model using the calibrated parameters. The middle panel displays the market LIBOR rates
as well as the LIBOR rates produced by the calibrated Vasicek model. The bottom panel
displays the market swap curve, as well as the swap curve produced by the calibrated
Vasicek model. The Vasicek model provides a good fit on February 14, 2011, but a poor fit
on October 29, 2008. This is likely because a single factor model cannot capture the odd
shape of market rates prevalent on that date.

7.3.1.2 Pricing Swaptions with the Vasicek Model

After calibrating to the market LIBOR rates and swap curve, we produce swaption prices
through simulation. Using a discretized version of the Vasicek model for the instantaneous
short rate, we produce a large number of realized interest rate paths. Each path gives us
a realized swaption value, and the price of the swaption is the discounted expected value
(e.g., the discounted average across paths).

Table 7.7 contains market swaption prices as of October 29, 2008 and February 14, 2011.
Table 7.8 contains the results from pricing swaptions via simulation using our calibrated
parameters. In this scenario, all of our swaption prices are zero. This occurs because our
simulation results in swaptions which never finish in the money. While our simple model
performs reasonably well at fitting market swap and LIBOR rates, it fails to produce rea-
sonable swaption prices.



288 Computational Methods in Finance

0 5 10 15 20 25 30
0.2

0.4

0.6

0.8

1

time to maturity

Ze
ro
−c

ou
po

n 
pr

ic
es

 P
(t,

T)

 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
3.1

3.2

3.3

3.4

3.5

maturity

LI
B

O
R

 ra
te

s

 

 

0 5 10 15 20 25 30
2

3

4

5

swap term

S
w

ap
 C

ur
ve

 

 

Vasicek

market
Vasicek

market
Vasicek

FIGURE 7.11: Vasicek model (single factor) vs. market on October 29, 2008

7.3.1.3 Alternative Vasicek Model Calibration

Our first calibration of the Vasicek model focused on choosing model parameters to
mimic the behavior of interest rates directly. While we achieved reasonable fit to LIBOR and
swap rates, our model failed to produce reasonable swaption prices. In an attempt to produce
more reasonable swaption prices, we test an alternative calibration, where we add a relative
error term for the fit to selected swaption values to our objective function. Specifically, if
LIBOR and swap rates are indicated as above, model swaption rates are OMODEL, market
swaption rates are OMARKET and we consider N different option maturities on M different
swap maturities, our objective is to minimize:

SSRE =
I∑

i=1

((
LMODEL(i) − LMARKET (i)

)
/LMARKET (i)

)2

+
J∑

j=1

((
SMODEL(j) − SMARKET (j)

)
/SMARKET (j)

)2

+
M∑

m=1

N∑

n=1

((
OMODEL(m,n) −OMARKET (m,n)

)
/OMARKET (m,n)

)2

for example, our objective function is extended by including relative error terms for four
swaptions corresponding to the four pairs of shortest and longest option and swap maturities.
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FIGURE 7.12: Vasicek model (single factor) vs. market on February 14, 2011

We find the minimum SSRE of the alternative objective using a numerical optimizer.
Using data from October 29, 2008, we obtain the following parameters from calibration:
κ = 1.7726, θ = 0.0394, σ = 0.0777 and r0 = 0.0301. Using data from February 14, 2011,
we obtain the following parameters from calibration: κ = 4.0528, θ = 0.0246, σ = 0.5008
and r0 = −0.0051. While the fit to the term structure of interest rates is much poorer, here
we are primarily interested in how well we price swaptions.

Table 7.9 contains the results from pricing swaptions via simulation using our parameters
calibrated under the alternative objective function. A comparison of these values to Table 7.7
shows that while our errors are still large, our swaption prices are at least non-zero, and the
shape of the pricing surface is beginning to very roughly correspond to market prices. The
sum of squared errors (SSE) between simulated prices and actual prices has decreased, which
we see by comparing Tables 7.9 and 7.8. However, we also see that swaption prices depend
primary on option maturity, with very little variation in pricing across swap maturities,
which is not the case for market prices. This indicates that our simple model may be too
limited to reflect market behavior as expected.

7.3.1.4 CIR Model

One of the major drawbacks of the Vasicek model is that the instantaneous short rate
can become negative, implying negative interest rates. In order to address this shortcoming,
the CIR model was developed. In the CIR process we assume that the instantaneous short
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TABLE 7.7: Market at-the-money swaption prices (maturity in years)

Oct. 29, 2008 Feb. 14, 2011
Swap Maturity Swap Maturity

Option Option
Maturity 2 5 10 Maturity 2 5 10

1 227.6 547.0 896.4 1 174 428 730
2 286.4 663.8 1094.8 2 256 591 993
5 325.8 745.4 1251.2 5 340 756 1265
10 269.8 634.4 1090.2 10 307 681 1127

TABLE 7.8: Simulated swaption prices from the Vasicek model (single factor, maturity in
years)

Oct. 29, 2008 Feb. 14, 2011
Swap Maturity Swap Maturity

Option Option
Maturity 2 5 10 Maturity 2 5 10

1 0 0 0 1 0 0 0
2 0 0 0 2 0 0 0
5 0 0 0 5 0 0 0
10 0 0 0 10 0 0 0

SSE: 6.8e6 SSE: 6.3e6

TABLE 7.9: Simulated swaption prices from the Vasicek model, with the addition of
selected swaption price relative error to objective function (single factor, maturity in years)

Oct. 29, 2008 Feb. 14, 2011
Swap Maturity Swap Maturity

Option Option
Maturity 2 5 10 Maturity 2 5 10

1 203.80 214.52 214.51 1 488.75 488.76 488.75
2 223.94 235.79 235.82 2 560.13 560.16 560.16
5 253.97 267.43 267.46 5 846.02 846.07 846.07
10 318.93 335.84 335.88 10 1678.44 1678.54 1678.54

SSE: 3.4e6 SSE: 4.1e6
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rate, rt, follows the following stochastic differential equation:

drt = κ(θ − rt)dt+ σ
√
rtdWt

We note that this is very similar to the Vasicek model, with the single addition of the
√
rt

term. This term will go to zero as the short rate approaches zero, effectively eliminating
volatility as the short rate declines. The addition of this term will force rt to remain non-
negative in the CIR model, unlike the Vasicek model. However, one large downside is that the
addition of the volatility limiting term causes the CIR model, unlike the Vasicek model, to
be non-Gaussian. That means that pricing under the model is not nearly as straightforward
as Vasicek. However, a closed-form solution does exist for zero-coupon bond prices. That is,

P (t, T ) = EQ
t

(
e−

∫ T
t rsds

)

= eA(t,T )−B(t,T )rt

where

A(t, T ) =
2κθ

σ2
ln

(
exp(κ(T − t)/2)

cosh(γ(T − t)/2) + κ
γ sinh(γ(T − t)/2)

)

B(t, T ) =
2

κ+ γ coth(γ(T − t)/2)

with

γ =
√
κ2 + 2σ2

Closed-form solutions do not exist for most interest rate derivatives under this model, so if
we are interested in pricing derivatives we generally must use either Monte Carlo simulation
or numerical solutions of the PDE. While in the CIR model, we do have to deal with the
issue of negative rates, its similarly small parameter set means it too cannot be calibrated
to the current term structure of interest rates.

The calibration procedure for the CIR model is analogous to the calibration procedure
for the Vasicek model. We have three parameters to be calibrated: Θ = {κ, θ,σ, r0}. While
the CIR model eliminates the negative interest rate problem, we still have only four free
parameters, so we cannot expect to match the current term structure of interest rates
exactly, nor price derivatives accurately.

We now repeat our earlier calibration exercise, using the CIR model to model LIBOR
and swap rates. We make use of the same market data as before, given in Tables 7.5 and
7.6 (LIBOR and swap rates as of October 29, 2008 and February 14, 2011). We start with
an initial guess of our parameters and use the closed-form solution for zero-coupon bond
prices to find the zero-coupon bond prices given by the model and our choice of parameters.
We then use the zero-coupon bond prices to find the LIBOR and swap rates implied by
our model. Our objective function is defined as before: we seek to minimize the sum of the
squares of relative errors (SSRE) between model LIBOR and swap rates and market LIBOR
and swap rates. We find the minimum SSRE, using a numerical optimizer. Using data
from October 29, 2008, we obtain the following parameters from calibration: κ = 0.0912,
θ = 0.0589, and σ = 0.0430. We also obtain rt = 0.0309. Using data from February 14,
2011, we obtain the following parameters from calibration: κ = 0.0044, θ = 2.2662, and
σ = 0.2364. We also obtain rt = 0.0021.

The top panels of Figures 7.13 and 7.14 display zero-coupon bond prices for the CIR
model using the calibrated parameters. The middle panel displays the market LIBOR rates
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FIGURE 7.13: CIR model vs. market on October 29, 2008

as well as the LIBOR rates produced by the calibrated CIR model. The bottom panel
displays the market swap curve, as well as the swap curve produced by the calibrated CIR
model. Similarly to the Vasicek model, the CIR model provides a good fit on February 14,
2011, but a poor fit on October 29, 2008. Again this is likely because a single factor model
cannot capture the shape of market rates prevalent on that date.

7.3.1.5 Pricing Swaptions with the CIR Model

After calibrating to the market LIBOR rates and swap curve, we produce swaption prices
through simulation. Using a discretized version of the CIR model for the instantaneous short
rate, we produce a large number of realized interest rate paths. Each path gives us a realized
swaption value, and the price of the swaption is the discounted expected value (e.g., the
discounted average across paths).

Table 7.7 contains the market swaption prices. Table 7.10 contains the results from pric-
ing swaptions via simulation using our calibrated parameters.We see that the CIR one-factor
model produces somewhat reasonable swaption prices for October 29, 2008. For February
14, 2011, prices at short option maturities are reasonable, but quickly grow unreasonably
large at longer option maturities.
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FIGURE 7.14: CIR model vs. market on February 14, 2011

7.3.1.6 Alternative CIR Model Calibration

Our first calibration of the CIR model focused on choosing model parameters to mimic
the behavior of interest rates directly. While some of our swaption prices were reasonable,
others were much too large and we would like to see if we can improve upon this.

In an attempt to produce swaption prices closer to those observed in the market, we
again test an alternative calibration, where we add a relative error term for the fit to selected
swaption values to our objective function. Our objective function is extended by including
relative error terms for four swaptions corresponding to the four pairs of shortest and longest
option and swap maturities.

We find the minimum SSRE of the alternative objective using a numerical optimizer.
Using data from October 29, 2008, we obtain the following parameters from calibration: κ =
1.4573, θ = 0.0442, and σ = 0.3359. We also obtain rt = 0.0185. Using data from February
14, 2011, we obtain the following parameters from calibration: κ = 1.5718, θ = 0.0210 and
σ = 0.4990. We also obtain rt = 0.0003. While the fit to the term structure of interest rates
is much poorer, here we are primarily interested in how well we price swaptions.

Table 7.11 contains the results from pricing swaptions via simulation using our param-
eters calibrated under the alternative objective function. A comparison of these values to
Table 7.7 shows that our errors are still large. Comparing Tables 7.11 and 7.10, we see that
the SSE has decreased for February 14, 2011, while it has increased for October 29, 2008.
If we look at the relative errors for October 29, 2008, for just the swaptions that were used
in our objective function, we see that the SSRE for those swaption prices did decrease.
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TABLE 7.10: Simulated swaption prices from the CIR model (single factor, maturity in
years)

Oct. 29, 2008 Feb. 14, 2011
Swap Maturity Swap Maturity

Option Option
Maturity 2 5 10 Maturity 2 5 10

1 79.1 198.6 315.6 1 207.0 505.2 684.4
2 119.2 297.2 468.0 2 422.7 980.6 1280.4
5 214.2 527.4 819.7 5 1560.5 3145.3 3832.7
10 380.7 925.2 1419.7 10 28566.5 39743.2 42396.1

SSE: 1.5e6 SSE: 4.0e9

TABLE 7.11: Simulated swaption prices from the CIR model, with the addition of selected
swaption price relative error to objective function (single factor, maturity in years)

Oct. 29, 2008 Feb. 14, 2011
Swap Maturity Swap Maturity

Option Option
Maturity 2 5 10 Maturity 2 5 10

1 178.0 199.6 201.1 1 161.9 176.8 177.7
2 215.7 238.9 239.4 2 209.5 226.6 226.8
5 251.2 277.4 277.6 5 234.8 253.6 253.7
10 322.5 356.0 356.3 10 282.8 305.4 305.6

SSE: 3.3e6 SSE: 3.2e6

However, overall the fit is worse. Once could potentially improve upon this result by using
an alternative objective function, such as incorporating a greater number of swaption points
or using SSE in place of SSRE.

A comparison to Table 7.9 shows that the single factor CIR model does not perform
any better than the Vasicek model for swaption pricing. Interestingly, similar to the Vasicek
calibration, we see that swaption prices now depend primarily on option maturity, with very
little variation in pricing across swap maturities, which is not the case for market prices
and was not the case in our initial calibration. It seems that we have sacrificed reflecting
the proper shape of market prices in order to reduce overall error. This indicates that
our simple model may be too limited to reflect market behavior — a model with more
parameters should be able to do both.

7.3.1.7 Ho–Lee Model

The CIR model added an additional term to the Vasicek model in order to prevent
negative interest rates; however, both have the same mean-reverting dynamics for the short
rate. As discussed, the small number of parameters which can be calibrated in these models
typically prohibits calibration of the model to the current term structure of interest rates.
To allow for more degrees of freedom, which will allow us to calibrate to the current yield
curve, Ho and Lee introduced a term structure of means of the short rate. By allowing
a term structure of parameters of arbitrary degree into the model, we explicitly allow for
perfect calibration of the model to the current term structure of interest rates.
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The Ho–Lee model assumes that the instantaneous interest rate follows the following
SDE:

drt = θ(t)dt + σdWt

where θ(t) is a deterministic function and Wt is a Q-Brownian motion.
For the Ho–Lee model, we give the full derivation of the zero-coupon bond price. The

same procedure can be applied for the other models. Like the previously discussed models,
calibrating the Ho–Lee model is dependent on being able to value zero coupon bonds, which
can be used to price a number of the most liquidly traded interest rate derivatives. Deriving
the price of zero-coupon bonds in this model is somewhat less straightforward than in the

previously discussed models, but can be done as follows: First we let XT =
∫ T
0 Wtdt, which

has a Gaussian distribution and Gaussian increments as it is the integral (sum) of Brownian
motions. Therefore we can find an analytical expression for EQ [exp(−XT )]. To do that we
need to find the mean and variance of XT .

E(XT ) = E
(∫ T

0
Wtdt

)
=

∫ T

0
E(Wt)dt = 0

E(X2
T ) = E

(∫ T

0

∫ T

0
WtWsdtds

)

Applying Fubini’s theorem to interchange expectation and the integral and using the fact
that E(WtWs) = t ∧ s we obtain

E(X2
T ) =

∫ T

0

∫ T

0
E(WtWs)dsdt =

∫ T

0

∫ T

0
(t ∧ s)dsdt =

∫ T

0

∫ t

0
sdsdt+

∫ T

0

∫ T

t
tdsdt =

T 3

3

So XT ∼ N (0, T 3

3 ). From the properties of the moment generating function for normal

distribution N (µ,σ2) we know that if X is normal then E(exp(θX)) = exp(θµ + θ2σ2

2 ).

Hence E(exp(−XT )) = exp(T
3

6 ). Now by integrating the SDE we can see that

r(u) = r(t) +

∫ u

t
θ(s)ds+ σ(Wu −Wt)

for all u in [t, T ]. Therefore for zero-coupon bond prices, P (t, T ) can be expressed as

P (t, T ) = EQ
t

(
e−

∫ T
t r(u)du

)

= e−r(t)(T−t)−
∫ T
t

∫ u
t θ(s)dsduEQ

t

(
e−σ

∫ T
t (Wu−Wt)du

)

= e−r(t)(T−t)−
∫ T
t

∫ u
t θ(s)dsdu+σ2(T−t)3

6

From this equation we can see that P (t, T ) is an affine function and can be written as

P (t, T ) = eA(t,T )−B(t,T )rt (7.6)

where B(t, T ) = T − t. Using these results we can see that the time-zero, t = 0, zero-coupon

bond price P (0, T ) observed in the market for maturity T is P (0, T ) = exp(−
∫ T
0 f(0, t)dt)

or equivalently f(0, T ) = − ∂ logP (0,T )
∂T . From this equation we have

P (0, T ) = e−r(0)T−
∫ T
0

∫ u
0 θ(s)dsdu+σ2T3

6
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Taking the logarithm and equating we have
∫ T

0
f(0, t)dt = r(0)T +

∫ T

0

∫ u

0
θ(s)dsdu − σ2T 3

6

Differentiating twice with respect to T and putting maturity to t we will get

θ(T ) =
∂

∂T
f(0, T ) + σ2T.

Hence if we are given the initial instantaneous forward rate curve f(0, T ) we can calculate
the term structure of interest rate means, θ(T ).

Not only can we price zero-coupon bonds and derive the term structure of means ana-
lytically in this model, but we can also price a European option on a zero-coupon bond ana-
lytically as well. Define F (x) = (x−K)+, the payoff of a call option on x, F (x) = (K−x)+,
the payoff of a put option on x. We can express the time t price Vt of a European option on a
zero-coupon bond that expires at time T with payoff VT = F (P (T, U)) with the expression4

Vt = EQ
t [

Bt

BT
VT ]

= EQ
t [

Bt

BT
F (P (T, U))]

= P (t, T )EQ
t [

BtP (T, T )

P (t, T )BT
F (P (T, U))]

= P (t, T )EPT

t [F (Z(T, U))]

where Bt = e
∫ t
0 rsds for t < T < U is the money-market account. Here we have expressed the

expectation under the forward measure PT , where P (t, T ) is the numeraire and BtP (T,T )
P (t,T )BT

is
the Radon-Nikodym derivative. For detail see Section 1.3.3. This expression is valid because
P (T, T ) = 1.

To find an analytical expression for the expectation we proceed as follows. First, applying
Itô’s lemma to (7.6) to see that

dP (t, T ) = P (t, T )(rtdt− σB(t, T )dWt)

Then, define Z(t, U) = P (t,U)
P (t,T ) and apply Itô’s lemma again to show that

dZ(t, U) = Z(t, U)S(t, T )[S(t, T )− S(t, U)]dt+ Z(t, U)[S(t, T )− S(t, U)]dWt (7.7)

where S(t, T ) = σB(t, T ). Now, under the definition of the forward measure PT , Z(t, U) is
a PT -martingale. By Girsanov’s theorem we have

W PT

t =

∫ t

0
S(u, T )du+Wt

which is a PT standard Brownian motion. Thus we can now write (7.7) as

dZ(t, U) = Z(t, U)[S(t, T )− S(t, U)]dW PT

t (7.8)

From this we can conclude that the PT -distribution of Z(T, U) is log-normal, and more
specifically we have

lnZ(T, U) ∼ N (ln(P (t, U)/P (t, T ))− 1

2
σ2(U − T )2(T − t),σ2(U − T )2(T − t))

4To be clear, T is the maturity of the option and U is the bond maturity.
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Hence we get a Black–Scholes like formula for the price of the call option, that is,

Ct = P (t, T )EPT

t [(Z(T, U)−K)+] = P (t, U)Φ(m)−KP (t, U)Φ(m− n)

where

m =
1

n
ln

(
Z(t, U)

K

)
+

1

2
n

n2 = σ2(U − T )2(T − t)

The parameter set of the Ho–Lee model for calibration is Θ = {θ(t),σ, r0}.

7.3.1.8 Hull–White (Extended Vasicek) Model

While the Ho–Lee model has the ability to handle a term structure of mean short rates
and thus can be perfectly calibrated to the current yield curve, it does not necessarily model
the mean reverting behavior of interest rates that is frequently seen empirically. To allow the
modeling of both this mean reverting behavior and maintain the freedom to specify a term
structure of means, Hull and White extended the Vasicek model to allow for a deterministic
term structure of long term means along with mean reverting behavior. In this model the
short rate follows the following SDE:

drt = κ(θ(t)− rt)dt+ σdWt

where κ is fixed as in Vasicek but θ(t) is a deterministic function as in the Ho–Lee model
and Wt is a Q-Brownian motion. The parameter set we need to determine for calibration is
Θ = {κ, θ(t),σ, r0}. For pricing zero-coupon bonds and options we typically assume some
functional or parametric form for θ(t) and calculate zero-coupon bonds and options via
simulation.

7.3.2 Multi-Factor Short Rate Models

The previously discussed short rate models can also be extended to a multi-factor setting,
wherein we assume that the instantaneous short rate has the following form:

rt =
n∑

i=1

X i
t

where n is the number of factors and X i
t is the ith factor.

Moving to the multi-factor setting has the advantage of giving us more degrees of free-
dom in terms of calibration. We should be able to improve our fit to the term structure
as well as improve our pricing of the many liquidly traded instruments which depend on
the term structure of interest rates. For example, maintaining a term structure as part of
the dynamics of the short rate but adding multiple factors allows us to simultaneously cal-
ibrate perfectly the current yield curve while still leaving enough free parameters to more
accurately approximate the volatility structure of rates implied by the prices of caps, floors,
and swaptions. The amount of flexibility we have in calibrating to the option market will
depend on the number of factors we allow in the model.

However, moving to a multi-factor model also increases the complexity of our calibration.
In particular, for unrestricted multi-factor models, we have no closed-form solution for zero-
coupon bond prices. We can still determine zero-coupon bond prices, but are forced to rely
on simulation. This means that if we wish to calibrate a set of parameters, every iteration of
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the calibration must run multiple simulations. For any reasonable degree of pricing accuracy,
the number of simulations required for each step is prohibitively high to conduct an accurate
calibration in well vectorized code.

We could perhaps calibrate an unrestricted multi-factor model using well written C++
or a similar high performance language. However, we are interested only in providing easily
reproducible examples for illustrative purposes, so instead we restrict ourselves to models
with closed-form solutions for zero-coupon bond prices.

7.3.2.1 Multi-Factor Vasicek Model

Extending the Vasicek model to a multi-factor setting is very straightforward, assuming
the short rate follows as

rt =
n∑

i=1

X i
t

where

dXt = A(θ −Xt)dt+ ΣdWt

with n being the number of factors, A a lower n × n lower diagonal matrix, θ an n × 1
vector, Σ an n × n positive-definite volatility matrix, and Wt an n-dimensional Brownian
motion. The exact solution to this SDE is

Xt = e−AtX0 +

∫ t

0
e−A(t−s)θds+

∫ t

0
e−A(t−s)ΣdWs

The parameter set that is being calibrated is Θ = {A,Σ, θ}.

7.3.2.2 Multi-Factor CIR Model

The CIR model can also be extended to a multi-factor setting and in a very similar way
to the Vasicek model. The short rate again is merely a sum of factors:

rt =
n∑

i=1

x(i)
t

and in this case the factors simply follow a CIR type process

dx(i)
t = κi(θi − x(i)

t )dt+ σi

√
x(i)
t dW (i)

t

If we assume that W (i)
t are mutually independent then we have

P (t, T ) = EQ
t

(
e−

∫ T
t rsds

)

= EQ
t

(
e−

∫ T
t

∑n
i=1 x(i)

s ds
)

= Πn
i=1E

Q
t

(
e−

∫ T
t x(i)

s ds
)

= Πn
i=1e

Ai(t,T )−Bi(t,T )x(i)
t
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where as before

Ai(t, T ) =
2κiθi
σ2
i

ln

(
exp(κi(T − t)/2)

cosh(γi(T − t)/2) + κi
γi

sinh(γi(T − t)/2)

)

Bi(t, T ) =
2

κi + γi coth(γi(T − t)/2)

with

γi =
√
κ2
i + 2σ2

i

In case ρij = corr(W (i)
t ,W (j)

t ) is non-zero then we should develop some analytical/semi-
analytical way of pricing; if it is not available use simulation for pricing.

7.3.2.3 CIR Two-Factor Model Calibration

We demonstrate a calibration for the two-factor case. The calibration procedure for the
CIR two-factor model is very similar to the calibration procedure for the single factor CIR
model. We now have three parameters each of two factors to be calibrated: Θ = {κ, θ,σ}.

We repeat our earlier calibration exercise, using the CIR two-factor model to model
LIBOR and swap rates. We make use of the same market data as before, given in Tables
7.5 and 7.6 (LIBOR and swap rates as of October 29, 2008 and February 14, 2011).

We begin by calibrating a single factor CIR model using the same procedure as before.
After finding the single factor calibrated values κ1, θ1, and σ1, we use the results as the initial
guess for our two-factor model calibration. For example, our initial guesses are κ2 = [κ1,κ1],
θ2 = [θ1, θ1], and σ2 = [σ1,σ1]. Given these parameters, we use the closed-form solution
for the zero-coupon bond prices given by the model and our choice of parameters. We then
use the zero-coupon bond prices to find the LIBOR and swap rates implied by our model
in the same manner as before. Our objective function is also defined as before: we seek to
minimize the sum of the squares of relative errors (SSRE) between model LIBOR and swap
rates and market LIBOR and swap rates.

We find the minimum SSRE, using Nelder–Mead simplex method as an optimizer.
Using data from October 29, 2008, we obtain the following parameters from calibration:
κ = [0.1226,−0.0149], θ = [0.0520, 0.0635], and σ = [0.1153, 0.3464]. We also obtain
rt = [0.1256,−0.0914]. Using data from February 14, 2011, we obtain the following param-
eters from calibration: κ = [−0.0303, 0.0635], θ = [0.0990, 0.2073], and σ = [0.0157, 0.0662].
We also obtain rt = [0.0024,−0.0003].

The top panels of Figures 7.15 and 7.16 display zero-coupon bond prices for the CIR
models using the calibrated parameters. The middle panel displays the market LIBOR
rates as well as the LIBOR rates produced by the calibrated CIR models. The bottom
panel displays the market swap curve, as well as the swap curve produced by the calibrated
CIR models. In all panels, results for both one- and two-factor models are shown. While
it is difficult to see visually, the two-factor model does provide a slightly better fit to the
term structure of rates, and our objective function returns noticeably lower values. However,
overall, our fit for the term structure on October 29, 2008 is still poor. Likely this is due
to the hump in the term structure of LIBOR rates on this date. A model with additional
factors would be necessary to capture this behavior.

7.3.2.4 Pricing Swaptions with the CIR Two-Factor Model

After calibrating to the market LIBOR rates and swap curve, we produce swaption
prices through simulation. As before, we use a discretized version of the CIR model for
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FIGURE 7.15: CIR one- and two-factor models vs. market on October 29, 2008

the instantaneous short rate (but now with 2 factors), and we produce a large number of
realized interest rate paths. Each path gives us a realized swaption value, and the price of
the swaption is the discounted expected value (e.g., the discounted average across paths).

Table 7.7 contains the market swaption prices. Table 7.12 contains the results from
pricing swaptions via simulation using our calibrated parameters. Interestingly, we see that
the CIR two-factor model produces swaption prices closer to the market on February 14,
2011. However, the lower SSE is primarily because the swaption prices for longer option
maturities are more reasonable. The negative swaption values for short option maturities
are clearly unreasonable. On October 29, 2008, the swaption prices from the two-factor
model are significantly worse, with an SSE two orders of magnitude larger. While this is
surprising, our objective function did not include fit to swaption prices at this stage, so it
may indicate that swaption prices were not consistent with the term structure of interest
rates on that date.

7.3.2.5 Alternative CIR Two-Factor Model Calibration

As before, our first calibration of the CIR two-factor model focused on choosing model
parameters to mimic the behavior of interest rates directly. While our fit to the term struc-
ture improved relative to the CIR one-factor model, our swaption prices were very poor,
and we would like to see if we can improve upon this.

We again test our alternative calibration, where we add a relative error term for the fit
to selected swaption values to our objective function. Our objective function is extended by



Model Calibration 301

0 5 10 15 20 25 30
0

0.5

1

time to maturity

Ze
ro
−c

ou
po

n 
pr

ic
es

 P
(t,

T)

 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.2

0.4

0.6

0.8

1

maturity

LI
B

O
R

 ra
te

s

 

 

0 5 10 15 20 25 30
1

2

3

4

5

swap term

S
w

ap
 C

ur
ve

 

 

CIR 2−factor
CIR 1−factor

market
CIR 2−factor
CIR 1−factor

market
CIR 2−factor
CIR 1−factor

FIGURE 7.16: CIR one- and two-factor models vs. market on February 14, 2011

including relative error terms for four swaptions corresponding to the four pairs of shortest
and longest option and swap maturities.

We find the minimum SSRE using simplex method. Using data from October 29, 2008, we
obtain the following parameters from calibration: κ = [0.0725, 0.2384], θ = [0.0030, 0.0290],
and σ = [0.0447, 0.1035]. We also obtain rt = [0.0118, 0.0104]. Using data from February
14, 2011, we obtain the following parameters from calibration: κ = [0.0386, 0.1120], θ =
[0.0779, 0.0304], and σ = [0.0612, 0.0516]. We also obtain rt = [0.0009, 0.0027]. The fit to
the term structure of interest rates is much poorer, but here we are primarily interested in
how well we price swaptions.

Table 7.13 contains the results from pricing swaptions via simulation using our param-
eters calibrated under the alternative objective function. A comparison of these values to
Table 7.7 shows that our errors are still larger than we would like, but that our simulated
prices are finally beginning to take shape in a realistic manner. Comparing Tables 7.13 (two-
factor model with swaption pricing in the objective function) and 7.12 (two-factor model
with basic objective function), we see that the SSE has decreased greatly for both dates.
Even more importantly, comparing Tables 7.13 (two-factor model with swaption pricing in
the objective function) and 7.11 (single factor model with swaption pricing in the objective
function), we see that the SSE has decreased noticeably for both dates. This means that
using the same objective function, the CIR two-factor model substantially outperforms the
CIR single factor model. In fact, for both dates these are the most accurate prices (low-
est SSE) we have produced so far. In addition, we finally see that our swaption prices are
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TABLE 7.12: Simulated swaption prices from the CIR model (two-factor, maturity in
years)

Oct. 29, 2008 Feb. 14, 2011
Swap Maturity Swap Maturity

Option Option
Maturity 2 5 10 Maturity 2 5 10

1 2461.9 4632.7 5318.9 1 -39.4 -68.3 -10.3
2 2361.3 4360.7 5132.6 2 64.5 234.1 565.1
5 2345.1 4661.5 5976.5 5 471.2 1352.8 2576.9
10 4444.8 9015.4 11725.1 10 2045.6 5325.8 9144.0

SSE: 3.2e8 SSE: 9.2e7

TABLE 7.13: Simulated swaption prices from the CIR model, with the addition of selected
swaption price relative error to objective function (two-factor, maturity in years)

Oct. 29, 2008 Feb. 14, 2011
Swap Maturity Swap Maturity

Option Option
Maturity 2 5 10 Maturity 2 5 10

1 109.9 245.3 350.3 1 34.6 91.7 156.4
2 161.2 355.6 501.8 2 67.7 177.3 295.5
5 275.4 596.2 825.4 5 172.6 441.7 713.8
10 441.7 944.4 1286.2 10 412.3 1027.7 1614.7

SSE: 1.2e6 SSE: 1.9e6

dependent on both option and swap maturities (proper shape), without incredibly large
errors.

7.3.2.6 Findings

In summary, we have seen that

• A single factor model can give a good fit to the term structure of interest rates in
limited circumstances. For some market dates, a single factor model cannot adequately
capture the shape of the term structure.

• In terms of calibration, the CIR model is not likely to outperform the Vasicek model,
but does have the advantage that we will not encounter negative interest rates in
simulations.

• Single factor models provide an extremely poor fit to derivative instruments which
depend on the term structure of interest rates. This holds even when we include the
errors in pricing of the derivatives in our objective function.

• Increasing the number of factors in our model improves our fit to the term structure
of interest rates, and provides more flexibility in fitting the term structure for unusual
market data. However, even two factors can be insufficient to capture unusual term
structure shapes.
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• Increasing the number of factors in our model also allows us to provide much better
pricing for derivative instruments, provided we include the pricing errors of those
instruments in our objective function. If we do not include the pricing errors of the
derivative instruments in our objective and only calibrate to the term structure, we
may see improved term structure fit but larger derivative pricing errors. This may
indicate that market derivative pricing is inconsistent with the market term structure
of interest rates, or that our models are still too simplistic to capture market behavior.

7.3.3 Affine Term Structure Models

We can expand on the previous models by allowing for a slightly more flexible represen-
tation of the short rate. If we add a deterministic scalar component and weight the sum of
factors, we arrive at a short rate model wherein the short rate is an affine function of the
underlying factors. Under this class of models, the short rate can be expressed as

rt = ar + b⊤r xt

where ar is a scalar and br is an n × 1 vector with n being the number of the factors.
We assume the vector of underlying factors xt follows the matrix OU equation driven by
Brownian noise

dxt = (−bγ −Bxt)dt+ ΣdWt

In general, matrix B may be full, with all eigenvalues having a positive real part.
If we are interested in using a stochastic interest rate model with stochastic volatility,

we can incorporate stochastic volatility by making the square root equation for variance vt
stochastic and defining its SDE as

dvt = κ(θ − vt)dt+ λ
√
vtdZt

The variablesWt and Zt represent n×1 and 1×1 dimensional univariate Brownian processes,
respectively. The correlation between Wt and Zt is denoted by the vector ρ = d <Wt, Zt>.
We now reformulate the equation for xt as

dxt = (−bγ −Bxt)dt+ Σ
√
vtdWt

We can have a discrete time model in nature; thus there is no need for discretization. In
[138], the authors propose a discrete time stochastic volatility model in an affine framework

xt+1 = xt + (−bγ −Bxt)∆t+ Σ
√
vt+1∆tzt+1

where bγ is an n × 1 vector, B is a lower-diagonal n × n matrix, Σ is an n × n volatility
matrix, and zt, t = 1, . . . , T is a standard Gaussian sequence.

The dynamics for the variance sequence can be derived explicitly and are given by a
double gamma model. The gamma variate Gamma(γ, c) has shape parameter γ and scale
parameter c with density f(x), where

f(x) =
cγxγ−1e−cx

Γ(γ)
, x > 0

Denote by u ∼ Gamma(γ, c) an independent draw of such a variate. The sequence (vt, t ≥ 0)
satisfies

vt+1 ∼ Gamma (λvt + yt+1, d)

yt+1 ∼ Gamma (γ, c)
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Under both continuous-time and discrete-time framework caps, floors, and swaptions
can be priced semi-analytically. In [141], the authors derive the characteristic function of
the log of the future forward rate under both models. Having the characteristic functions,
they employ Fourier techniques to price caps. In [132] and [138] they derive the characteris-
tic function of the log swap rate under swap measure for continuous-time and discrete-time
models respectively and as previously done employ Fourier techniques (FFT) to price swap-
tions. To be able to price both caps and swaptions analytically is quite unique in the short
rate models and indeed any interest rate models and facilitates the calibration procedure.

Once parameters are calibrated from the cap, floor, and swaption prices, we can price
other instruments via Monte Carlo simulation. The underlying factors can be simulated
using a single Euler expansion.

7.3.4 Forward Rate (HJM) Models

All of the models considered thus far model only the evolution of the instantaneous short
rate models. Given this rather simple parameterization of the term structure of interest
rates, researchers have been able to produce a surprising array of models which successfully
calibrate to a wide variety of markets. While the simplest models cannot even calibrate to
the current yield curve, more complex models can calibrate to the current term structure and
additionally to cap, floor, and swaption markets with a large degree of success, incorporating
both the current rates and volatility structure of rates.

However, the quantity being modeled is still a single unobservable and instantaneous
rate, which causes difficulties in the calibration process. For instance, simultaneously cal-
ibrating perfectly to the current yield curve while capturing the covariance structure of
forward rates is difficult. In addition, forward rates play a much more central role in market
traded fixed income and interest rate derivative instruments and thus are much more read-
ily observable. As such it becomes more natural to model the instantaneous forward rate.
Let f(t, s) denote the instantaneous forward rate at calendar time t for the forward period
[s, s+ dt]. If the instantaneous forward rates are known, then calculating zero-coupon bond
prices is straightforward.

P (t, T ) = e−
∫ T
t f(t,u)du

Thus modeling the evolution of forward rates can be both a more natural and a similarly
tractable approach to modeling the term structure of interest rates. The framework of
forward rate models has a theoretically infinite number of underlying stochastic factors,
since at any given point in time there are infinitely many distinct instantaneous short rates,
one for every maturity. In the most abstract sense, the evolution of the term structure
depends on the theoretically infinite dimensional volatility structure of these rates. Thus
this framework ends up being extremely general; indeed most significant short rate models
can be seen as special cases of it, and in practical implementations we require a more specific
model which reduces the model to a finite dimension.

Modeling the evolution of instantaneous forward rates was pioneered by Heath, Jarrow,
and Morton, and models of this type are known as HJM models. HJM models thus describe
the evolution of forward rates in the following form:

df(t, s) = µ(t, s)dt+ σ(t, s)⊤dWt

where Wt is d-dimensional Brownian motion under risk-neutral measure Q. However, we
do not have as much freedom in specifying the model parameters as in short rate models.
No-arbitrage constraints dictate the following restriction on drift [131]:

µ(t, s) = σ(t, s)⊤
∫ s

t
σ(t, u)du
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and so the evolution of forward rates is described by

df(t, s) =

(
σ(t, s)⊤

∫ s

t
σ(t, u)du

)
dt+ σ(t, s)⊤dWt

Note that for all s > t the same set of shocks (Brownian motions) being applied. The
assumption of the existence of an equivalent martingale measure Q is a non-trivial one.
For a given choice of the diffusion process σ(t, s) we have to check to make sure that it
exists[63]. The set of model parameters which need to be calculated in HJM includes the
initial term structure of instantaneous forward rates and the volatility structure of the rates,
Θ = {f(0, t),σ(t, s)}. However, today’s instantaneous forward curve f(0, t) is not directly
observable, like the instantaneous short rate. It must be derived from the term structure of
zero-coupon bond prices.

f(0, t) = −∂ logP (0, t)

∂t

However, in practice zero-coupon bond prices only exist for a finite number of maturities.
This means that deriving f(0, t) for all t requires some modeling as well, especially because
the derived zero coupon bond curve has to be smooth, considering that we need to dif-
ferentiate it. In practice market rates such as swap rates and futures are also used along
with zero-coupon bond prices to help construct the yield curve. This process is explained
in detail in Section 7.7.

To specify σ(t, s) we have to choose σ(t, s) so that the model prices and market prices
of the calibration instruments closely match. Given the very large number of free variables5

in σ(t, s), depending on how many forward rates are modeled, this is typically achieved by
assuming a functional form for σ(t, s). While this seems like a natural solution, picking the
right functional form and calibrating it stably has proven very challenging to achieve.

One model which assumes a functional form of σ(t, s) which has gained wide exposure in
the interest rate derivative community is the linear diffusion Heath–Jarrow–Morton model
[131] specified by the SDE

df(t, s) = µ(t, s)dt+ V (t, s)min(f(t, s),λ)ρ(t, s)dWt (7.9)

where V is a deterministic function called the volatility matrix (V : [0, T ]× [0, T ]→ R), ρ
is the factor structure (ρ : R → Rd), and λ > 0 the rate cutoff. It can be shown that this
model exists and generates non-negative forward rates [131]. Under this model, caplets and
swaptions are approximated very accurately with the Black formula, which implies calibra-
tion of the volatility matrix V to Eurodollar futures options and caps is straightforward and
the calibration to swaptions is more manageable. However, this model does not price in-the-
money and out-of-the-money options correctly in comparison with at-the-money options.
This is due to the fact that the distribution generated by this model has too much weight
for states in which rates are large. Researchers have considered other diffusion processes for
the forward rates. The square-root diffusion HJM model [63] is specified by the SDE

df(t, s) = µ(t, s)dt+ V (t, s)
√

f(t, s)ρ(t, s)dWt (7.10)

It can be shown that this model exists and generates non-negative forward rates [63]. The
normal HJM model is given by

df(t, s) = µ(t, s)dt+ V (t, s)ρ(t, s)dWt (7.11)

5Note that for t < s we have σ(t, s) = 0 because the forward rate ceases to exist.
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This model exists, but generates negative forward rates, and thus is not arbitrage-free in
an economy with cash. This model is useful to have because of its analytical tractabil-
ity, and because the volatility smiles generated by this model are sometimes a good local
approximation to the volatility surface observed in the market.

7.3.4.1 Discrete-Time Version of HJM

While the HJM framework is very general and encompasses many different models as
special cases, most classes of HJM models are non-Markovian. This implies that one cannot
apply PDE-based techniques associated with the Feynman–Kac formula for pricing deriva-
tives securities. This is a significant drawback and it means that much more computationally
expensive Monte Carlo simulation techniques must be used to value derivatives under this
model.

In order to simulate f(t, s) for s > t it is necessary to discretize both time, t, and
maturity, s. There are many ways to do this, with perhaps the most obvious method being
to simulate the continuous-time model using an Euler scheme on 0 = t0 < t1 < · · · <
tm = T . Since we need to discretize both time and maturity, however, it would be very
computationally expensive to simulate the Euler scheme for small values of the time step
h where h = ti+1 − ti. Instead we might choose to simulate the Euler scheme for larger
values of h. However, the quality of the approximation then deteriorates and so it might
be preferable to directly develop discrete-time (but still continuous-state) arbitrage-free
HJM models instead. This approach is used commonly in practice and we will describe one
approach.

We will assume that the same partition, 0 = t0 < t1 < · · · < tm = T , is used to discretize
both time, t, and maturity, s, for 0 < t < s < T . Let f̂(ti, tj) denote the forward rate at
time ti for borrowing or lending between tj and tj+1. Then we can write the ti zero-coupon
bond price for maturity tj as

P (ti, tj) = exp

(
−

j−1∑

k=i

f̂(ti, tk)hk

)

In the multi-factor case we assume a model of the form

f̂(ti, tj) = f̂(ti−1, tj) + µ(ti−1, tj)hi−1 +
d∑

l=1

σ̂l(ti−1, tj)
√

hi−1Zi,l, j = i, . . . ,m

where Zi = (Zi,1, . . . , Zi,d) for i = 1, . . . ,m are independent N (0, I) random vectors.
Applying the martingale condition to compute the form of the drift function for this dis-

crete version, we can show that multi-factor HJM models have the following drift restriction
in discrete time:

µ(ti−1, tj)hj =
d∑

l=1

⎡

⎣1

2

(
j∑

k=i

σ̂l(ti−1, tk)hk

)2

− 1

2

(
j−1∑

k=i

σ̂l(ti−1, tk)hk

)2
⎤

⎦

The proof of it is left as an exercise for the reader. From equations (7.9), (7.10), and (7.11)
we have

σ̂l(ti, tk) = g(f(ti, tj))V (ti, tj)ρ(tj − ti)

where g depends on the model used (e.g., for the square root model g(x) =
√
x). We can also

compute the form of the drift function for use with various different numeraires. Now that
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we have written HJM in discrete time, pricing derivative securities via simulation under this
model becomes straightforward once we specify the discrete time volatility matrix V (ti, tj)
and the discrete time factor structure ρ(tj − ti). This is the daunting task of calibration of
HJM.

7.3.4.2 Factor Structure Selection

There are a number of issues which must be taken into account when selecting the factor
structure ρ and a number of factors which are used to model the interest rates. To begin
with, analysis of historical interest rate data shows that correlations between interest rates
are reasonably stable over time (as compared to, say, interest rate levels or volatilities).
This leads to the choice of the factors as time homogeneous functions, e.g., functions of
relative forward time, s > t. Given this assumption, there are some obvious methods to
apply, namely, principal component analysis and explicit specification of the factors via a
set of basis functions.

Principal component analysis of swap rates for the major currencies has shown that
roughly 95% of the variance of the changes to the curve can be explained using few factors
(roughly three factors). These factors are interpreted as an overall level of interest rates, a
curve steepening, and a curve bowing. It is unclear, however, that the above analysis can be
extended to forward rates, since the forward rates themselves are generally not observable
in the market and must be derived from some sort of model (e.g., a yield curve spline).
Indeed, it has been argued that because par rates are essentially integrals of forward rates,
one cannot tell how many factors are driving the forward curve by only observing the curve
because much of the high frequency behavior is integrated out. Therefore, we can also choose
the number of factors driving the forward curve based on other criteria. For example, if we
wish to accurately reproduce a prespecified matrix of correlations between N forward rates,
a priori we would expect to have to use roughly N2 factors. For large N , of course, this
introduces far too many sources of uncertainty. A reasonable compromise is thus made by
determining the smallest number of factors needed to reproduce correlations to within some
desired accuracy.

The implementation also allows one to use a set of prespecified basis functions and
weights for the factors. These functions and weights are chosen to reproduce the correlations
of various spot and forward rates to a value and an admissible tolerance.

7.3.5 LIBOR Market Models

The HJM framework and subsequent models represented a significant breakthrough in
the modeling of the term structure of interest rates. They describe the dynamics of the entire
term structure of interest rates, along with their arbitrage constraints, and thus from this
framework we are able to construct a finite dimensional model with as many free parameters
as are necessary for calibration. However, this comes at a price as calibration of the volatility
structure remains very difficult in practice.

In addition, neither short rate or HJM models can reproduce the pricing formulas com-
monly used in the most liquid interest rate derivative markets, that of caps and swaptions.
Just as the market prices of most non-interest rate options are quoted in implied volatili-
ties, where the assumed model is the Black–Scholes model, prices for caps and swaptions
are quoted in implied volatilities where the assumed model is Black’s model. Black’s model
in these cases assumes that either the LIBOR forward rate or swap rate is log normal with
zero drift.

The LIBOR market models developed by Brace, Gatarek and Musiela[38] were the first
to be able to reproduce Black’s model in a more rigorous framework, with the LIBOR
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forward model pricing caps using the market standard Black’s formula for caps and the
swap market model pricing swaptions using the standard Black’s formula for swaptions.
While these two models are mutually incompatible, the ability to price options in one major
market analytically is a large advantage. In addition, accurate analytical approximations
exist for pricing swaptions in the LIBOR market model.

In addition, the HJM framework still models the evolution of instantaneous rates, which
are unobservable in the market. As such, determining the initial instantaneous forward rate
curve f(0, t) can be very difficult and error prone, especially given the fact that is the deriva-
tive of observed quantities. The term structure market models were developed as a response
to this problem. Instead of modeling the evolution of the instantaneous forward rates,
LIBOR market models directly model the evolution of market quoted non-instantaneous
LIBOR forward or swap rates. This makes calibration to current market prices extremely
straightforward since those rates are in fact directly observable in the market.

In the LIBOR market models, a set of n LIBOR rates is modeled as a diffusion process
Li(t) for i = 1, . . . , n as

dLi(t) = µi(t)Li(t)dt+ Li(t)σi(t)
⊤dWt

Under this model we can analytically price caps/floors, and using a lognormal approximation
we can price swaption [52]. The calibration problem is to find a symmetric semi-definite
matrix σ such that the model prices closely match market prices. This problem can be
recast as a semi-definite programming problem [88].

7.4 Credit Derivative Models

In this book, we do not cover credit derivative models and pricing. Credit derivative is a
vast topic and entire books have been written about it. The intention in this short section is
merely to state similar techniques and processes covered in this book are applied and used
in pricing credit derivatives. Our citations by no means cover what is in the literature as it
is an immense field.

For instance, similar formulas as shown in Equation (7.3) can be obtained in credit
derivative pricing models, for inverting portfolio default rates from collateralized debt obli-
gation (CDO) tranche spreads [75] and pure jump models with a state-dependent jump
intensity local Lévy model [55]. The work in [75] presents a method that recovers the de-
fault intensity of a portfolio from CDO spreads. The proposed method consists of two parts:
a non-parametric method to recover expected tranche notional from CDO spreads, and an
inversion formula to compute the local intensity functions from the expected tranche no-
tional. The authors in [7] present a generic one-factor Lévy model for pricing synthetic
CDOs. Laurent and Gregory [169] discuss new approaches to the pricing of basket credit
derivatives and CDOs. They show that loss distribution, required in the valuation of CDOs,
can be obtained by fast Fourier transform which is semi-analytical.
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7.5 Model Risk

In the preceding sections we have discussed how to formulate model calibration problems
which allow us to calibrate models such that they replicate market price as closely as
possible. We have discussed a number of different models and how they perform differently
in a realistic setting. However, the very need for a calibration step and the need to recalibrate
our models to market prices proves implicitly that our models are just that, models of
the real world, an attempt to explain enormously complex economic processes with simple
stochastic evolution of a few market variables. Inevitably, we will not be able to fully capture
the true complexity of the processes which drive the formation of market prices, and so there
will always remain some amount of model risk associated with our attempts.

What is model risk? Here we examine the notion of model risk by reviewing academic
literature on model risk and its assessment..

Emanuel Derman in his work [93] gives an overview of model risk. He defines seven types
of model risk which we quote here:

1. Inapplicability of modeling. As defined in [93], this is the most fundamental of risk,
the risk that modeling is just not applicable. The true underlying dynamics of the
problem may be so complex that a simplified model may not be appropriate.

2. Incorrect model. Ultimately all models are incorrect on some level since they repre-
sent an attempt to simplify a complex problem into its most important features and
mathematically model those features. However, the model chosen must be able to
reproduce the critical features of the underlying problem at least approximately in
order to be applicable to a given domain and in doing so help us better understand
the dynamics of the system under consideration. If the model fails to do so, then we
most likely have chosen the wrong model for the problem.

3. Correct model, incorrect solution. Even if modeling is appropriate, as we have seen
in the preceding chapters and sections, computing solutions for these models can be
very difficult and calibrating them to market prices even harder. Thus there is always
the risk that even the right model can be solved in such a way as to yield an incorrect
solution.

4. Correct model, inappropriate use. If we assume that we have chosen a correct model
and computed a correct solution under that model, there is still the risk that the
model results will be used inappropriately. This has often been a problem in the
modern history of mathematical finance where those who utilize models and their
results fail to understand their assumptions and limitations.

5. Badly approximate solution. Even if our choice of model is correct and we can compute
a solution, the accuracy of the solution may not be appropriate for the use to which
it is applied. Most of the pricing algorithms we have presented in this book have a
tradeoff between the accuracy of the solution computed and the computation time
of the algorithm in question and when using models we must be sure that they are
computed with an accuracy that is acceptable. This may vary widely by use case;
pricing performed for portfolio risk management purposes may require considerably
less accuracy than hedge ratios computed and used on a highly leveraged trading book.
Thus it is important to ensure the right level of accuracy dictated by the intended
use.
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6. Incorrect implementation. Assuming all of the other modeling choices have been cor-
rect, simple programming errors can cause costly and embarrassing errors in the
routines which actually do the modeling in a practical setting. One must strive to
thoroughly test the actual implementation of models in a real world setting.

7. Unstable data, non-stationary solutions. The ability to acquire and process accurate
market data, though it is rarely discussed in the literature, is one of the most critical
steps in the practical implementation of any model. Without accurate data no cali-
bration can take place and any modeling attempts would be fruitless. Thus we must
be able to obtain stable and reliable market data. If accurate market data is itself
highly unstable, then this may indicate that modeling itself may be inappropriate.

The paper provides some guidelines on how to avoid model risk. The author suggests that
models be regarded as interdisciplinary endeavors, that complex models be tested on simple
cases first to verify that even with the added complexity, basic results can be reproduced,
that models should be tested at their boundary conditions to determine under what con-
ditions a model will fail, and that small discrepancies should not be ignored as they may
indicate more serious problems.

One of the most important uses of pricing models is the ability not only to calibrate
the model to liquid markets for derivatives, but extrapolate the prices for exotic derivatives
under these models. In this function, model risk becomes very important in that many
models may have sufficient parametrization to reproduce the prices for regularly quoted
derivatives; however, they may differ significantly in their extrapolated prices for exotics.
In [137], Hirsa, Courtadon, and Madan assess the effect of model risk on the valuation of
barrier options. They calibrate four different models: (a) the local volatility model, (b) the
constant elasticity of volatility model , (c) variance gamma model, and (d) variance gamma
with stochastic arrival model to the European option market and then use the calibrated
models to price path-dependent options. They conclude that even though those calibrated
models can reproduce European option prices very closely, for barrier option prices could
behave very differently.

The work in [197] is a similar to [137] with some vigorous analysis on the conclusion
in [137]. Kyprianou, Schoutens, and Wilmott in [197] show that several advanced equity
option models incorporating stochastic volatility can be calibrated very nicely to a realistic
implied volatility surface. Specifically, they focus on the Heston stochastic volatility model
(with and without jumps in the stock price process), the Barndorf-Nielsen–Shephard model,
and Lévy models with stochastic time.

All these models are capable of accurately describing the marginal distribution of stock
prices or indices and hence lead to almost identical European vanilla option prices when
calibrated as shown in [137]. As such, we can hardly discriminate between the different pro-
cesses on the basis of their smile-conform pricing characteristics. Therefore we are tempted
to apply them to a range of exotics. However, due to the different structure in path behav-
ior between these models, they find that the resulting exotics prices can vary significantly.
This is particularly true for derivatives that depend on the realized moments of (daily) log
returns. An already traded example of these derivatives is the variance swap. A comparison
of these moment derivatives premiums demonstrates an even bigger discrepancy between
the aforementioned models.

Note that an almost identical calibration means that at the time points of the maturities
of the calibration data set the marginal distribution is fitted accurately to the risk-neutral
distribution implied by the market. If we have different models leading to such almost
perfect calibrations, all models have at most the same marginal distributions. It should be
clear that even if at all time points 0 < t < T marginal distributions among different models
coincide, this does not imply that exotic prices should also be the same.
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The authors of [197] show surprisingly large differences between prices for exotics among
these models even when calibrated to the same underlying option prices consistent with
the conclusion in [137]. They demonstrate price differences for one-touch barriers of over
200 percent. For lookback call options a price range of more than 15 percent among the
models was observed. A similar conclusion was valid for digital barrier premiums. Even
for cliquet options, which only depend on the stock realizations over a limited amount of
time points, prices vary substantially among the models. Moment derivatives, like variance
swaps, amplified the pricing disparities. These results demonstrate a very material amount
of model risk involved when using calibrated models to extrapolate the pricing and hedging
parameters of exotic derivatives.

In [162] the authors take a different view of model risk. They analyze model risk sepa-
rately for pricing models and risk measurement models. They define model risk in pricing
models to be the risk arising from the use of a model which cannot accurately evaluate
market prices or which is not a mainstream model in the market. Alternatively, they define
model risk in risk measurement as the risk of not accurately estimating the probability of
future losses.

Expanding on these definitions, they define the sources of model risk in pricing models
to be:

1. Use of wrong assumptions

2. Errors in estimations of parameters

3. Errors resulting from discretization

4. Errors in market data

There are some overlaps with the work in [93]. They define the sources of model risk in risk
measurement models to be:

1. The difference between assumed and actual distributions

2. Errors in the logical framework of the model

The authors in [162] suggest a number of practical steps to control model risks from a
quantitative perspective. In the case of pricing models, they suggest the use of multiple
alternative models to determine the pricing and hedge ratios of the various assets which
utilize the models in question and the establishment of capital reserves to allow for the
difference in estimations, as well as position limits which take into account the differences
in model estimates. In the case of risk measurement models they again suggest the use of
different models, but they also suggest scenario analysis be undertaken for various different
extreme historical or imagined stressful scenarios. In addition, they suggest position limits
can be established based on information obtained from scenario analysis. From a quali-
tative perspective, improvement of risk management systems is suggested, including their
organization, authorization, and lines of reporting, as well as human resources. Further,
examination of models, periodic review of models, and maintenance of proper communica-
tions with end users of models are considered practical steps which can improve model risk
management from a qualitative perspective.

Not only do the authors [162] provide suggestions of how to improve model risk manage-
ment, but they also present various cases in which actual model risks have been realized and
use market data to empirically analyze the problems of the models. Specifically, they use
examples of index swaps, mark cap, and the experiences of Long-Term Capital Management
to develop a general description of how model risks arise in real world situations. They also
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proceed to analyze long-term foreign exchange options, barrier options on stock prices, and
a strangle short strategy to identify some salient features of model risk.

Rama Cont discusses model risk in [73] by introducing two methods: one based on a
coherent risk measure comparable to market price, another is based on a convex risk mea-
sure. The coherent risk measure is a risk measure that has the properties of monotonicity,
sub-additivity, homogeneity, and translational invariance. The convex risk measure is a risk
measure that has the property of convexity.

7.6 Optimization and Optimization Methodology

In the preceding sections we have discussed a number of different models used in a variety
of markets, their pros and cons as well as their empirical performance in practical calibration
problems. However, these models only help us define the objective function of the calibration
routine which allows us to match model and market prices. In all of these discussions we
have left out one critical step in the calibration process, the actual optimization routine
used to solve the calibration problem and generate our calibrated model parameter set.

Because of the complexity of these pricing functions and the multivariate nature of the
parameter sets, the optimization problem presented in the majority of calibrations tends to
be a multivariate nonlinear optimization problem, one of the harder optimization problems
to solve. Many books have been written solely covering the different methods which can be
utilized to solve these types of optimization problems and so a comprehensive treatment
of the subject is well beyond the scope of this text. However, we will provide a basic
description of some of the most common optimization methodologies which can be used
to solve calibration problems and provide additional references for those readers who are
interested in a complete treatment.

There are some important attributes of the optimization problem we are trying to solve
which will guide our choice of optimization technique. One important attribute is the com-
putational complexity of the pricing algorithm and thus the objective function. A very
computationally intensive pricing function will likely result in one favoring algorithms which
perform fewer evaluations of the object function, for instance opting for solution techniques
which search only for a local optimum solution instead of a global one which will generally
require many more evaluations.

Another critically important attribute is the availability and computational complexity
of calculating gradients and Hessians for the pricing method and thus the objective function.
For many pricing algorithms analytically calculable gradients and Hessians do not exist
and must be numerically approximated. This can be an extremely time intensive process,
especially given the fact that if our parameter set consists of n scalar variables we typically
must evaluate the pricing function O(n) times to derive the gradient numerically and O(n2)
times to derive the Hessian numerically, instead of just evaluating the pricing function
once to get the value of the objective function at a single point. For this reason, with
computationally intensive pricing functions we may prefer to use gradient free methods.

Finally, another critical decision is whether or not we want to attempt to find the global
optimal solution in our parameter space or whether we will be satisfied with a local optimum.
Many of the commonly used optimization techniques are designed solely to find a locally
optimal solution by searching locally for improvements over the current solution. However,
there are a number of augmentations which can be used to improve the chances that a global
optimum is found, such as multi-start optimization or simulated annealing. These techniques
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do come at a significant cost in terms of the number of objective function evaluations, so
for very complex pricing functions we may prefer a local optimum. Additionally, some
techniques are not based on local searches of the parameter space and thus are more suited
to finding globally optimal solutions, for instance genetic algorithms, but this often comes at
the cost of a slower convergence rate. Before going over various optimization methodologies
it is important to mention the following points:

The likelihood may very well be non-differentiable; therefore we should use a search
algorithm that is not based on gradient calculation.

From the point of view, the direction set (e.g., Powell algorithm) is a good choice.

(c) As the number of parameters increases, convergence of the optimization process be-
comes more difficult as the likelihood function gets pretty flat.

What are advantages and disadvantages of this algorithm.

7.6.1 Grid Search

Grid search or brute-force search is a straightforward method for searching for the op-
timal solution (global minima) which is easy to implement but computationally very costly
to run to completion. This method does not require derivatives of the objective function.
We typically start with a very coarse grid and narrow it down to a finer grid until the global
minima is reached.

Assume the dimension of the parameter set is n. On each direction/axis we choose a range
by choosing a minimum and a maximum for the parameter at that direction and divide the
range into mi−1 equidistant subintervals. These points define our grid in the i-th direction.
With mi points for each axis, we create

∏n
i=1 mi vectors. For high dimensional search space,

this scheme would result in a very large number of vectors (assuming n = 10 and mi = 7
implies 710 = 282, 475, 249 function evaluations). Having those points, we perform a simple
search loop to find a vector from the set of

∏n
i=1 mi vectors that minimizes the objective

function. We could then form a finer mesh around that point to find yet a better point.

1. Draw axis — draw mi points starting from x(i)
min, that is, x

(i)
ji

= x(i)
min + (j − 1)λi for

i = 1, . . . , n and ji = 1, . . . ,mi, where λi is the step size in direction i. This algorithm
might need to be adjusted due to the constraints.

2. For vector x, that is, ⎛

⎜⎜⎜⎜⎝

x(1)
j1

x(2)
j2
...

x(n)
jn

⎞

⎟⎟⎟⎟⎠

evaluate the objective function for each x over the loop ji = 1, . . . ,mi for all i and
find x that minimizes f and call it x⋆.

3. Relocate and contract. In the new iteration, we would reduce λi and perhaps reduce
mi to get a smaller searching space around x⋆ to get a yet better x. This is repeated
until a certain criterion is met.

In general, in optimization the starting point (vector) could be very crucial. An arbitrary
starting point could cause a very slow convergence and in most cases we find a local minima
as opposed to a global minima. This is even more pronounced for higher dimensional cases.
The grid search typically used to find a good starting point and the parameter set found in
this routine are passed as a starting point to yet another optimizer.
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7.6.2 Nelder–Mead Simplex Method

The Nelder–Mead simplex method is a non-linear optimization method which is derived
from previous simplex methods used to solve linear optimization methods. A simplex is a
polytype which has N+1 vertices in N dimensions, meaning a line in one dimension, a
triangle in two, a tetrahedron in three, and so on. The original method capitalizes on the
insight that the inequality in a linear problem forms a polytype and one can walk along the
edges of this polytype to find a solution to the linear programming problem.

However, the constraints in a non-linear problem do not necessarily form a simplex.
Instead the Nelder–Mead method starts with an initial simplex in the parameter space.
The least optimal vertex on the simplex is calculated and replaced with a new vertex,
which can be derived in a number of ways. One common implementation is to reflect across
the centroid of the simplex to get the new point, and if this represents an improvement,
expand the simplex in this direction further. If this is not an improvement, then we have
crossed a local minimum and shrink the simplex around it. This method is usually used for
unconstrained problems, but with some tweaks and twists that will be discussed shortly, it
can be used to solve constrained problems as well.

The Nelder–Mead algorithm can be laid out as follows:

1. Sort vertex values f(x)

f(x1) ≤ f(x2) ≤ f(x3) ≤ · · · ≤ f(xn+1)

2. Calculate the centroid x of the n best points

x =
n∑

1

wixi

where wi are the weights and a common choice is wi =
1
n

3. Reflect – the worst vertex

xr = x+ α(x− xn+1)

If f(x1) ≤ f(xr) < f(xn), replace xn+1 with xr, return to step 1.

4. Expand — if f(xr) < f(x1), we have found a new most optimal point

xe = x+ γ(x− xn+1)

Replace xn+1 with the better one between xe and xr, return to step 1.

5. Contract — if f(xr) ≥ f(xn),

xc = x+ ρ(x − xn+1)

If f(xc) ≤ f(xn+1), replace xn+1 with the xc, go to step 6.

6. Shrink — set xi = x1 + σ(xi − x1) for i = 2, . . . , n+1, return to step 1.

α, γ, ρ and σ are positive scalars, generally set to be 0.5.
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7.6.3 Genetic Algorithm

A radically different approach to the optimization problem is genetic algorithms (GA),
which are optimization methods that use the concept of gene evolutionary biology. In other
words, the object value (gene) evolves to a better value (evolved gene) through inheritance,
crossover, selection, and mutation processes. Here we introduce one algorithm for function
maximization.

• Initialize

with n starting vectors x1, x2, . . . , xn, evaluate function f at xi for i = 1, . . . , n
and call them

fi = f(xi)

• Inheritance

set f̂i = (fi −min(f1, . . . , fn))(1+log(iter)/100) for i = 1, . . . , n

calculate p̂i =
∑i

k=1 f̂k∑n
k=1 f̂k

for i = 1, . . . , n

calculate Ni =
∑n

k=1 I(rk>pi) + 1 for i = 1, . . . , n

where rk ∈ N (0, 1) for k = 1, . . . , n; then reproduce new xi as xi = xNi

• Crossover

M is the number of unique x

ψ =
M

n
η = max(0.2,min([1η − ψ + ψ0]))

ψ0 = ψ

Generate n
2 random variable ri ∈ N (0, 1) for i = 1, . . . , n2

Nu =

n/2∑

k=1

I(rk<η)

If N > 0 choose crossover point

ri ∈ N (0, 1), i = 1, 2, . . . , Nu (7.12)

ui = floor(ri(K − 1)) + 1 (7.13)

where K is the parameter space dimension for i = 1, . . . , Nu; cross part of the
parameter vectors

xi(ui + 1 : K)
switch←→ xi+Nu/2(ui + 1 : K) (7.14)

• Mutation

Draw mutated parameter set

ri ∈ N (0, 1), i = 1, . . . , N (7.15)

If ri < γ, mutation happened

xi = (1 + ri)x0 (7.16)

where γ is the mutation rate and x0 is the starting parameter value.
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Both the simplex method and genetic algorithms do not need derivative or gradient infor-
mation. They are basically intelligent search algorithms which can minimize non-smooth
functions. This is a large advantage for optimization functions whose evaluation is very
computationally intensive, typically when the pricing function for some derivative is very
difficult to evaluate. Genetic algorithms can even minimize discontinuous functions too, but
the conceptual difference between simplex methods and genetic algorithms is that the latter
are designed to find the global optimal solution, while the former are designed to find only
locally optimal solutions.

7.6.4 Davidson, Fletcher, and Powell (DFP) Method

The procedure in the Davidson, Fletcher, and Powell (DFP) method is as follows:

1. Initialize — set a starting x0 and a real positive definite matrix D0. D0 can be an
approximation to the inverse Hessian matrixH−1(x0) whereH(x0) is positive definite.

2. Find α. Define

yk(α) = f(xk)− αDk∇f(xk), α > 0

then find α that minimizes yk by a search procedure.

3. Update

xk+1 = xk − αDk∇f(xk)

Dk+1 = Dk +
d⊤k dk
bkdk

− (Dkbk)⊤(Dkbk)

bkDkb⊤k

where

dk = xk+1 − xk

bk = ∇f(xk+1)−∇f(xk)

7.6.5 Powell Method

The Powell method, or the Powell conjugate gradient descent method, is an optimization
method that does not require the function to be differentiable or to know its derivatives.

If we assume the dimension of parameter space is n then we initialize this algorithm by
providing n linear independent vectors. The algorithm will search for the optimal solution
along each vector, in each direction, and then update the vectors by the combining the
initial vectors provided. The algorithm is relatively simple compared with other optimization
algorithms and also has the advantage of not requiring derivatives, which, as discussed
previously, may greatly reduce the computational complexity of the algorithm.

Below we provide a short summary of the steps in the algorithm:

1. Initialize — start with an n-dimensional search vector. Successively generate n − 1
new search vectors, ui, that are normal to each previously generated search vector.
Then generate a starting point x0.

2. Minimum of pi — for i = 1, . . . , n find λi that minimizes f(xi−1+λiui), the minimum
along search direction ui, then update the current point

xi = xi−1 + λiui



Model Calibration 317

3. Update search directions — for i = 1, . . . , n− 1

−ui = ui+1

un = xn − x0

4. Update the current point x0 — find the λ that minimizes the f(xn + λ(xn − x0)),
then let

x0 = x0 + λ(xn − x0)

7.6.6 Using Unconstrained Optimization for Linear Constrained Input

If we have an unconstrained optimization method available for a specific problem, and
this problem has only a simple range constraint, we can adjust most unconstrained opti-
mization algorithms to incorporate these constraints instead of changing to a more complex
constrained method. We can do this by simply mapping the unconstrained space to the
constrained space. In many cases unconstrained optimization algorithms are considerably
less computationally intensive than constrained ones, and so this may save a lot of time.

We can map an unconstrained parameter x to a new parameter y which is constrained
using the following algorithm:

for x being mapped to [c +∞) do

y = |x|+ c

for x being mapped to (−∞ d] do

y = −|x|+ d

for x being mapped to [c d] do

if c < x < d

set y = x

else

first calculate

range = d− c

n = floor((x − c)/range)

if n is even, set

y = x− n× range

else if n is odd, set

y = x+ (n+ 1)× range− (x− c)

This mapping is a periodic extension. By this mapping method, we transform the con-
strained problem to an unconstrained problem, where several unconstrained optimization
methods are available. This map is a linear map; one could use other maps that are non-
linear.
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7.6.7 Trust Region Methods for Constrained Problems

Trust region methods focus on the small region around the search point and use approx-
imations for the changes in function value in this small area, which simplifies the search
process. In this method, we trust the following quadratic model holds in a small region
around xk:

ψk(s) = g⊤k s+
1

2
s⊤Bks

where s = xk+1−xk, g(x) = ∇f(x), B is the approximation to the Hessian matrix ∇2f(xk).
Thus ψk(s) is an approximation of the function value at xk+1. Once we have this approxi-
mation we can solve a subproblem to minimize ψk(s) in the small region around the current
point and once a proper s is chosen, we move one step forward to xk+1.

Here we introduce a constrained optimization algorithm using the trust region method,
which was proposed by Coleman and Li [70]. Assume x is constrained as l ≤ x ≤ u and we
define vector v(x) that for each component 1 ≤ i ≤ m

• if gi < 0, ui < +∞, then vi = xi − ui

• if gi ≥ 0, li > −∞, then vi = xi − li

• if gi < 0, ui = +∞, then vi = −1

• if gi ≥ 0, li = −∞, then vi = 1

and we define a diagonal matrix

D(x) = diag(|v(x)|− 1
2 )

or equivalently

D(x)i,i = |v(x)i|−
1
2

D(x)i,j = 0 (i ̸= j)

for k = 0, 1, . . . , n

1. Compute

ψk(s) = g⊤k s+
1

2
s⊤(BK + Ck)s

where Bk is the approximation to the Hessian matrix ∇2f(xk), Ck = Dkdiag(gk)Jv
kDk

where Jv
k is the Jacobian matrix of |v(x)| when |v(x)| is differentiable and set Jv

ki
= 0

when gki = 0.

2. Compute the solution pk that minimize

ψ(s) = g⊤k s+
1

2
s⊤Bks : ∥Dks∥ ≤ ∆k

3. Compute ρk – first we define

α∗k[dk] = θkτ
∗
kdk
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then

sk = α∗k[pk] (7.17)

ρck =
ψk(sk)

ψ∗k[−D
−2
k gk]

(7.18)

ρfk =
f(xk + sk)− f(xk) + 1

2s
⊤
k Cksk

ψk(sk)
(7.19)

4. Update x — if ρfk > µ and ρck > β, then xk+1 = xk + sk, otherwise xk+1 = xk.

5. Update Dk and ∆k.

7.6.8 Expectation–Maximization (EM) Algorithm

The expectation–maximization (EM) algorithm is a method for finding maximum like-
lihood or maximum of posteriori estimates of parameters in statistical models, where the
model depends on unobserved latent variables. The EM algorithm is an iterative method
which alternates between performing an expectation step, which computes the expectation
of the log-likelihood evaluated using the current estimate for the latent variables, and a max-
imization step, which computes parameters maximizing the expected log-likelihood that was
found on the expectation step. These estimated parameters are then used to determine the
distribution of the latent variables in the next expectation step.

start from Θ
′
and a threshold level ε

set Θ∗0 = Θ
′

for i = 1, . . . , n

Θ∗n = maxE(logL(Θ | Θ∗n−1)) (E step)

if ∥Θ∗n −Θ∗n−1∥ < ε (M step)

break and end the main for loop

end

end

7.7 Construction of the Discount Curve

As mentioned in previous sections, many interest rate models assume knowledge of the
current yield curve or forward curve. While these models are complex in their own right,
cooking the current yield curve from market rate quotes is a fairly complex process in and
of itself. This section will briefly cover how the curve can be constructed from LIBOR
instruments using real historical market rates. In constructing the yield curve we iteratively
derive market implied LIBOR zero-coupon bond yields based on the no-arbitrage derived
analytical definitions of different market rates. However, there are a limited number of
LIBOR based instruments actively traded in the market, and certainly not enough with
maturity dates that cover every date in a date range of thirty years. This means that for
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most dates on which one would want to get a rate, there is no LIBOR yield instrument
that has a maturity corresponding to that date and hence no rate is available. To overcome
this problem, mathematical techniques have been developed to determine the approximate
LIBOR yield rate on any given date by applying interpolation or smoothing techniques to
currently available market data.

7.7.1 LIBOR Yield Instruments

In the LIBOR yield curve construction we use the following instruments: LIBOR rates,
Eurodollar futures, and swap rates. LIBOR rates cover maturities up to one year, Eurodollar
futures cover maturities from three months to five years,6 and swaps cover maturities from
two to thirty years.

In Tables 7.14, 7.15, and 7.16 we provide LIBOR rates, Eurodollar futures, and swap
rates, respectively, at market close on January 19, 2007.7 Just a minute point that LIBOR
rates are published at 11:00AM GMT and so the rates would not all be synced. LIBOR

TABLE 7.14: LIBOR rates at market close on January 19, 2007

LIBOR rates
Ticker Quote

US00O/N 5.28875
US0001W 5.30375
US0002W 5.31125
US0001M 5.32000
US0002M 5.34438
US0003M 5.36000
US0004M 5.37000
US0005M 5.38000
US0006M 5.39000
US0007M 5.39000
US0008M 5.39250
US0009M 5.39250
US0010M 5.39000
US0011M 5.38875
US0012M 5.38688

rates are quoted as simple interest rates. So one dollar held overnight will earn a cash
interest rate of 5.28875% (on an ACT/360 basis), that is,

1.0 + (5.28875/100.0)
1

360.0
(7.20)

LIBOR futures are quoted on a price basis (100-yield), but to convert this yield to a forward
yield, we need to apply a convexity adjustment to account for futures-forward bias caused
by the daily cash settlement of the futures. The first futures contract in Table 7.15 has
settlement of 3/21/2007 and final settlement of 06/20/2007 (approximately three months
out corresponding to the settlement date of the following Eurodollar contract). The conven-
tion for calculating the forward rate based on the contract quote and convexity adjustment

6The first two years are more liquid.
7In these tables we follow Bloomberg symbols.
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TABLE 7.15: Eurodollar futures at market close on January 19, 2007

Eurodollar Futures
Ticker Settlement Quote
EDH7 03/21/07 94.640
EDM7 06/20/07 94.675
EDU7 09/19/07 94.775
EDZ7 12/19/07 94.890
EDH8 03/19/08 94.965
EDM8 06/18/08 95.005
EDU8 09/17/08 95.030
EDZ8 12/17/08 95.040
EDH9 03/18/09 95.050
EDM9 06/17/09 95.035
EDU9 09/16/09 95.015
EDZ9 12/16/09 94.985
EDH0 03/17/10 94.970
EDM0 06/16/10 94.940
EDU0 09/15/10 94.915
EDZ0 12/15/10 94.875
EDH1 03/17/11 94.860
EDM1 06/16/11 94.840
EDU1 09/15/11 94.815
EDZ1 12/15/11 94.785

(which is assumed to be zero) is:

F (t, T1, T2) = 100.0− quote− convexity adjustment

= 100.0− 94.640− 0.0

= 5.32

where t = 01/19/2007, T1 = 3/21/2007 and T2 = 6/20/2007. Swap rates are quoted on a
spread to treasury basis. For example, 5-year swap is quoted as a par rate based on a spread
to on-the-run five year.

We notice that LIBOR rates are simple interest rates on a spot basis; the LIBOR futures
imply yields on a forward basis and the swaps imply yields on a par basis. Since each of these

TABLE 7.16: Swap rates at market close on January 19, 2007

Swap rates
Ticker Quote
USSW2 5.2671
USSW3 5.1993
USSW4 5.1830
USSW5 5.1834
USSW7 5.2094
USSW10 5.2640
USSW30 5.3856
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rates types are not the same they cannot be directly compared unless they are normalized.
The simplest way to do this is to convert all of the rates to discount factors. A discount
factor is a way of expressing interest at different maturities in terms of a discount to a dollar
and has the following meaning. If P (t, T ) is the discount factor from today t to time T then
its meaning is the price one would be willing to pay today to get a dollar back at time
T . Discount factors are easy to work with because their definition is simple, not involving
different payment frequencies, compounding types, or day counts, unlike rates or yields.
Note that in our definition discount factors are equivalent to zero-coupon bond prices.

Thus, in order to use LIBOR rates, Eurodollar futures implied forward rates, and swap
rates to construct the discount curve, we must first convert each of these corresponding
rates to discount factors, which we do in the following sections.

7.7.1.1 Simple Interest Rates to Discount Factors

The discount factor P (t, T ) for a cash instrument which matures at T and pays at the
simple interest rate (non-compounded) F (t, T ) on an ACT/360 basis is given by

P (t, T ) =
1

1 + F (t, T )× (T − t)/360

This is derived by simply reversing the simple interest accrual formula.

7.7.1.2 Forward Rates to Discount Factors

The discount factor at time S, P (t, S), can be expressed in terms of the forward rate
F (t;T, S) and the discount factor at time P (t, T ) (on an ACT/360 basis) using

P (t, S) =
P (t, T )

1 + F (t;T, S)× (S − T )/360

This expression is used for calculating the discount factor for Eurodollar futures. This
formula is derived from the no-arbitrage required equivalence of holding time deposit from
today to T which pays rate F (t, T ) and then rolling it into time deposit at time T which
pays rate F (t;T, S) and holding a time deposit until S, to which the discount factor of
P (t, S) is applied.

7.7.1.3 Swap Rates to Discount Factors

We know that the swap rate at time t from the swap term Tn is

Rswap(t) =
P (t, T0)− P (t, Tn)

∆
∑n

i=1 P (t, Ti)
(7.21)

where ∆ = 1
2 as mentioned earlier in the chapter. Solving for P (t, Tn) we get

P (t, Tn) =
P (t, T0)−∆Rswap(t)

∑n−1
i=1 P (t, Ti)

1 +∆Rswap(t)
(7.22)

Note that in case of par swap rate we have t = T0, which implies P (t, T0) = 1. It
is important to note that solving for a discount factor at time Tn requires that discount
factors for the previous payment intervals must be known. This is one of the complexities
introduced by par rates, in that solving for the discount factor at some maturity date Tn

depends on having the discount factors at all payments prior to Tn.
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7.7.2 Constructing the Yield Curve

Thus far we have covered how to convert market quotes for LIBOR rates, Eurodollar
futures, and swap rates into discount factors. Now we will provide an outline of the entire
construction process. The LIBOR yield curve construction process is broken down into two
distinct parts. The first part of the process involves constructing the short end of the curve
using cash instruments and Eurodollar futures. The short end has maturities going out for
a term of about two years. The second part of the process uses the results from the short
end plus the swap instruments to cook the remainder of the curve.

Note that for LIBOR rates we do not go beyond three months and switch to Eurodollar
futures for maturities out to two years. Beyond two years the market for Eurodollar futures
becomes illiquid and we switch to swaps. When the construction process is complete we
should be able to calculate a discount factor for every day, starting from the curve date and
ending at the maturity date of the longest swap instrument.

7.7.2.1 Construction of the Short End of the Curve

Using the conversion formulas described earlier, discount factors are calculated for using
cash LIBOR rates and Eurodollar futures prices. There are fifteen LIBOR rates and twenty
Eurodollar futures and they cover a maturity range from overnight to five years. In order
to capture the most liquidly traded rates and futures, we use LIBOR rates up to the three
month rate and Eurodollar futures with maturities of up to two years.

Looking at the provided sample data, we see that we will use six cash instruments
and eight Eurodollar futures. The curve date is January 19, 2007 and the last Eurodollar
futures (EDZ8) has as its last possible settlement date 3/18/2009. This means there are
790 days between the curve date and the date of the final settlement of the last Eurodollar
futures used. Since there are fourteen instruments used for the short end, when we apply
the conversion methods we will be able to calculate the discount factors for each of these
points, and since the discount factor for the curve date is 1.0, we now have calculated the
discount factor for fifteen out of a possible 790 points for the short end of the curve.

Consider the beginning sequence of LIBOR rates for 01/19/2007, as shown in Table
7.14. Let us calculate the discount factor for the first LIBOR rate (overnight). It matures
on 01/20/2007 and pays a simple interest rate of 5.28875% from the time interval 01/19/2007
to 01/20/2007. From the provided equation the discount factor at 01/20/2007 or P (t, t+1)
(1 day from the curve date) is calculated as

P (t, t+ 1) =
1

1 + (5.28875/100)× 1/360
= 0.999853111857074

In the same way we can calculate the discount factor for the second LIBOR rate in Table
7.14. The second rate matures on 01/26/2007 and pays a simple interest rate of 5.30375%
from the dates 01/19/2007 to 01/26/2007. On an ACT/360 basis there are 7 days between
01/19/2007 and 1/26/2007. So P (t, t+ 7) (7 days from the curve date) is calculated as

P (t, t+ 7) =
1

1 + (5.30375/100)× 7/360
= 0.998969777730265

We also calculate the discount factor for the fifth LIBOR rate. The fifth rate matures on
03/20/2007 and pays a simple interest rate of 5.34438% from the dates 01/19/2007 to
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03/20/2007. On an ACT/360 basis there are 60 days between 01/19/2007 and 3/20/2007.
So P (t, t+ 60) (60 days from the curve date) is calculated as

P (t, t+ 60) =
1

1 + (5.34438/100)× 60/360
= 0.991171339527427

Table 7.17 illustrates calculated discount factors using LIBOR rates.

TABLE 7.17: Discount factors for the first three months of the LIBOR yield curve

Discount factors
01/19/07 P (t, t) 1.00000000000
01/20/07 P (t, t+ 1) 0.99985311185
01/26/07 P (t, t+ 7) 0.99896977773
02/02/07 P (t, t+ 14) 0.99793877132
02/18/07 P (t, t+ 30) 0.99558623436
03/20/07 P (t, t+ 60) 0.99117133953
04/19/07 P (t, t+ 90) 0.98677718571

Now we are going to calculate the discount factor for the first Eurodollar futures contract.
The first Eurodollar futures listed (EDH7) has a first possible settlement date of 03/21/2007
and a last possible settlement date of 06/20/2007, which corresponds to the first possible
settlement date of the next contract. To calculate the discount factor at 06/20/2007 we
can use the expression in the preceding section for computing the discount factor given a
forward rate F (t, T, S) and a discount factor at S, P (t, S).

With our data: T = 03/21/2007, S = 06/20/2007, and P (t, T ) = 0.991024303826553
computed using a not-a-knot cubic spline interpolation.8 Thus we have S − T = 91. First
we calculate F (t, T, S). From the data

F (t, T, S) = 100.0− 94.64

= 5.360

Using the provided expression to derive a discount factor from a forward rate on an ACT/360
basis, we get

P (t, S) =
P (t, T )

1 + F (t, T, S)/100)× (S − T )/360

=
0.991024303826553

1 + (5.360/100)× 91/360
= 0.977776518420312

Table 7.18 shows the results of applying the same technique to the rest of the futures
contracts combined with earlier results from LIBOR rates. We have now calculated the
discount factors for the first two years at fifteen distinct points. To get discount factors for
remaining points on the short end of the curve we employ some interpolation or smoothing
methodology to calculate the discount factors in the gaps, for those days where there is no
instrument from which to derive a discount factor. This will be discussed in more detail in
Section 7.7.3.

8We will discuss different types of splines in Section 7.7.3.



Model Calibration 325

TABLE 7.18: Discount factors for the first two years of the LIBOR yield curve

Discount factors
01/19/07 P (t, t) 1.00000000000
01/20/07 P (t, t+ 1) 0.99985311185
01/26/07 P (t, t+ 7) 0.99896977773
02/02/07 P (t, t+ 14) 0.99793877132
02/18/07 P (t, t+ 30) 0.99558623436
03/20/07 P (t, t+ 60) 0.99117133953
04/19/07 P (t, t+ 90) 0.98677718571
06/20/07 P (t, t+ 152) 0.97777651842
09/19/07 P (t, t+ 243) 0.96479004245
12/19/07 P (t, t+ 334) 0.95221354974
03/19/08 P (t, t+ 425) 0.94007070863
06/18/08 P (t, t+ 516) 0.92825645354
09/17/08 P (t, t+ 607) 0.91668219497
12/17/08 P (t, t+ 698) 0.90530875084
03/18/09 P (t, t+ 789) 0.89409873953

7.7.2.2 Construction of the Long End of the Curve

To construct the long end of the yield curve we use the swap instruments and the results
for the short end of the curve derived in the last section. The first step is to formulate a
swap curve that has a swap rate on a semi-annual basis at each payment date for swap
instruments. However, swap rates are not quoted at this level of granularity, so we will have
to use smoothing techniques on the market swap data to derive implied swap rates for each
of these dates. Once we have a swap rate for each cashflow date for the swap instruments we
can then solve for the discount factors at each of these payment dates. After these discount
factors are solved for we can apply a smoothing method to get the discount factors for dates
which are not swap payment dates. Note that this cooking process allows swap cashflows
to occur on non-business days; however, a more precise construction will only allow swap
payments to be made on business days. At this step, we skip a single rate bootstrap; by
adding it this would be more clear.

Since swaps generally settle in two business days, the swap will start on 01/21/2007
and have its first coupon payment on 07/21/2007. Swap rates on or before 1/21/2009 were
solved using discount factors constructed for the short end of the curve. The results of this
step are listed in Table 7.19. Using interpolated swap rates in Table 7.19 and provided swap

TABLE 7.19: Swap curve from Eurodollar futures

date swap yield
7/21/2007 5.4830
1/21/2008 5.4382
7/21/2008 5.3401

rates in Table 7.16, a more complete swap curve is derived by using a not-a-knot spline
interpolator to get a swap yield on a semi-annual basis from 01/19/2007 to 01/21/2037.
This will result in a curve that has sixty points. The results of this step are shown in
Table 7.20. The swap curve formed by this process is then used to successively solve for
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TABLE 7.20: Interpolated swap curve

date swap yield date swap yield date swap yield
7/21/2007 5.4830 7/21/2017 5.2734 7/21/2027 5.4320
1/21/2008 5.4382 1/21/2018 5.2830 1/21/2028 5.4362
7/21/2008 5.3401 7/21/2018 5.2924 7/21/2028 5.4397
1/21/2009 5.2671 1/21/2019 5.3020 1/21/2029 5.4427
7/21/2009 5.2238 7/21/2019 5.3114 7/21/2029 5.4451
1/21/2010 5.1993 1/21/2020 5.3208 1/21/2030 5.4468
7/21/2010 5.1876 7/21/2020 5.3300 7/21/2030 5.4478
1/21/2011 5.1830 1/21/2021 5.3392 1/21/2031 5.4481
7/21/2011 5.1819 7/21/2021 5.3481 7/21/2031 5.4477
1/21/2012 5.1834 1/21/2022 5.3569 1/21/2032 5.4465
7/21/2012 5.1874 7/21/2022 5.3654 7/21/2032 5.4445
1/21/2013 5.1935 1/21/2023 5.3737 1/21/2033 5.4416
7/21/2013 5.2010 7/21/2023 5.3816 7/21/2033 5.4380
1/21/2014 5.2094 1/21/2024 5.3894 1/21/2034 5.4333
7/21/2014 5.2180 7/21/2024 5.3967 7/21/2034 5.4279
1/21/2015 5.2269 1/21/2025 5.4037 1/21/2035 5.4214
7/21/2015 5.2359 7/21/2025 5.4102 7/21/2035 5.4141
1/21/2016 5.2452 1/21/2026 5.4164 1/21/2036 5.4056
7/21/2016 5.2545 7/21/2026 5.4221 7/21/2036 5.3962
1/21/2017 5.2640 1/21/2027 5.4273 1/21/2037 5.3856

the discount factors starting at the first cashflow date beyond the last date derived for the
short end of the curve and ending at the maturity date of the longest swap. We leave this
step as an exercise at the end of the chapter. This yield curve is still relatively sparse when
compared to the thousands of days for which we might want to calculate a yield, and so we
must use some interpolation technique to solve for all the remaining discount factors.

7.7.3 Polynomial Splines for Constructing Discount Curves

Due to the lack of liquidly traded instruments, spline interpolation plays a crucial role
in deriving implied swap rates and implied discount rates for those maturities for which no
traded instruments exist.

The very first smoothing technique that usually comes to mind is linear interpolation. In
most realistic settings we will not use this approach because it will render very inaccurate
results; however, it is useful for illustrative purposes. To give a simple example of smoothing
using linear interpolation, we can apply it to the following example. Suppose we had rates
for two cash instruments. The first one matures 7 days from today and has a rate of 2%
and the other one matures in 28 days and has a rate of 2.05%. Suppose we want to get an
estimate of what a cash instrument rate would be that matures in 14 days. Using linear
interpolation the answer would be

2.0 +
2.05− 2.0

28− 7
(14− 7) = 2.0175%

The same type of principle is applied to the data we observe on a daily basis, except the
mathematics and finance behind it is more complicated. By definition, however, the results
of a linear interpolation have a discontinuous first derivative at the knots, and thus we do
not get a smooth curve.
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The second smoothing technique that comes to mind will be cubic splines. Cubic splines
can be used successfully to generate smooth curves, unlike linear interpolation, and ensure
a continuous first and second derivative for the spline function across all the knots which
make up our known swap rates or discount rates.

7.7.3.1 Hermite Spline

A cubic Hermite spline is a third-degree spline with each polynomial of the spline in
Hermite form. The Hermite form consists of two control points and two control tangents
for each polynomial. For interpolation on a grid with points xk for k = 1, . . . , n, interpo-
lation is performed on the subinterval (xk, xk+1) at a time (given that tangent values are
predetermined). Interpolating x in the interval of (xk, xk+1) can be done with the formula

p(t) = pkg0(t) +mkhg1(t) + pk+1g2(t) +mk+1hg3(t)

with h = xk+1 − xk, t =
x−xk

h and

g0(t) = 2t3 − 3t2 + 1

g1(t) = t3 − 2t2 + t

g2(t) = −2t3 + 3t2

g3(t) = t3 − t2

Here pk and mk are the value and tangent at xk respectively.
A Kochanek-Bartels (KB) spline [107] is a further generalization on how to choose

the tangents given the data points pk−1, pk, and pk+1 with three possible parameters:
tension, bias, and a continuity parameter. To interpolate a curve with n cubic Hermite
curve segments, for each curve we have a starting point pk and an ending point pk+1 with
starting tangent mk and ending tangent mk+1 defined by

mk =
(1− τ)(1 + b)(1 + c)

2
(pk − pk−1) +

(1− τ)(1 − b)(1− c)

2
(pk+1 − pk)

mk+1 =
(1− τ)(1 + b)(1− c)

2
(pk+1 − pk) +

(1− τ)(1 − b)(1 + c)

2
(pk+2 − pk+1)

where τ is the tension, b is the bias, and c is the continuity parameter. When all three
parameters are set to zero, the KB spline becomes the Catmull–Rom spline [64], in which
tangents are defined as

mk =
pk+1 − pk−1

2

mk+1 =
pk+2 − pk

2

Changing τ changes the length of the tangent at the control point, a smaller tangent leading
to a tightening and a larger tangent leading to slackening. When c is zero, the curve has a
continuous tangent vector at the control point. As |c| increases (up to 1), the resulting curve
would have a corner at the control point, the direction of which depends on the sign of c.
Finally, when b equals zero, the left and right one-sided tangents are equally weighted. For
b near −1, the outgoing tangent dominates the direction of the curve through the control
point (undershooting). For b near 1, the incoming tangent dominates (overshooting).
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7.7.3.2 Natural Cubic Spline

Consider a set of data points (tj , g(tj)), j = 1, . . . ,M . Here tj are called knots. Natural
cubic splines fit the solution to the following differential equation:

d4g

dt4
= 0

piecewise in the intervals between input points. The knots used in our spline are the discount
factors calculated for the instruments and discount factors at swap payment dates. By
necessity, a cubic spline interpolant is piecewise linear in its second derivative, i.e.,

g′′(t) =
tj+1 − t

hj
g′′(tj) +

t− tj
hj

g′′(tj+1), t ∈ [tj , tj+1]

where hj = tj+1− tj. The explicit equations for the interpolating cubic spline can classically
be recovered by integration of the ordinary differential equation above and subsequently
requiring the curve to pass through given data points as well as having continuous first
derivatives across knots. A classical boundary condition for uniquely specifying the cubic
spline is g′′(t1) = g′′(tM ) = 0, leading to the natural cubic spline. While popular, cubic
splines have known issues. The oscillatory nature of the basis function causes the spline to
oscillate, sometimes to a large degree, around the knot points.

7.7.3.3 Tension Spline

One setback of the natural cubic spline is that it has a built-in aversion to make tight
turns as they cause large values of g′′. This often leads to extraneous inflection points and
nonlocal behavior, in the sense that perturbation of a single g(tj) will affect the appearance
of the curve for t values far from tj . Another issue of the natural cubic spline is that the
monotonicity and convexity of the original data set will typically not be preserved [11].

An attractive alternative is tension spline to improve upon both linear interpolation and
cubic splines which allow for a parameterizations which will allow us to control the amount
of oscillation in the spline function between knot points. The tension spline applies a tensile
force to the end-points of the spline. The ordinary differential equation of the tension spline
is

d4g

dt4
+ σ2 d

2g

dt2
= 0

piecewise in the intervals between input points. The knots used in our spline will be the
discount factors calculated for the instruments and discount factors at swap payment dates.
σ is the tension parameter and if σ is zero the tension spline will produce a cubic spline,
but if σ is infinite it will produce linear interpolation. Thus σ lets us control the amount
of curvature in the resulting spline. The equation is solved with the following conditions: g,
dg
dt , and

d2g
dt2 are continuous at interval boundaries and d2g

dg2 is set to zero at the end points.
The tension spline smooths out ringing close to the knots, especially where the knots are
very close together.

g′′(t)− σ2g(t) =
tj+1 − t

hj
(g′′(tj)− σ2g(tj)) +

t− tj
hj

(g′′(tj+1)− σ2g(tj+1)), t ∈ [tj , tj+1]

where σ > 0 is a measure of the tension applied to the cubic spline. Instead of a piecewise
linear secondary derivative, we assume quantity g′′(t)−σ2g(t) is linear on each sub-interval
[tj , tj+1]. The solution to the ODE is

g(t) = Ae−σt +Beσt − 1

σ2
C
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where

A =
eσti+1g′′(tj)− eσtig′′(tj+1)

σ2(eσhi − e−σhi)

B =
e−σtig′′(tj+1)− e−σti+1g′′(tj)

σ2(eσhi − e−σhi)

C =
tj+1 − t

hj
(g′′(tj)− σ2g(tj)) +

t− tj
hj

(g′′(tj+1)− σ2g(tj+1))

Example 20 Construction of the discount curve using various splines

In this example, we use both tension spline and KB spline to construct the discount curve.
Datasets for this example are LIBOR rates, swap rates, and Eurodollar futures contracts
at market close on February 6, 2008 as shown in the tables below.

LIBOR rates
term (month) rate (%)

1 3.1925
2 3.1500
3 3.1275
6 3.0025
12 2.7338

Eurodollar futures
contract rate (%)

ED1 2.880
ED2 2.440
ED3 2.325
ED4 2.370
ED5 2.500
ED6 2.700
ED7 2.900
ED8 3.095
ED9 3.265
ED10 3.445
ED11 3.610
ED12 3.765
ED13 3.900

Swap rates
term (year) rate (%)

2 2.71626
3 2.96088
4 3.21801
5 3.45514
6 3.66813
7 3.85361
8 4.01160
9 4.14208
10 4.25507
12 4.43007
15 4.61523
20 4.76540
30 4.84073

In Figure 7.17(a), we display the constructed discount curves applying tension spline using
three different values for σ which are 0.1, 1, 5 in dashed line, dotted line, and dash-dot
line respectively. In Figures 7.17(b) and 7.17(c) we display the first five and ten years of
the curves in Figure 7.17(a) respectively. For comparison purposes, we also plot the curves
from calibration of Vasicek and CIR to these instruments which are displayed in solid line
and solid line with data points respectively. In Figure 7.17(d), we display the constructed
discount curves applying KB spline using three different sets for bias, tension, and continuity.
As in the previous case, we also plot the curves from calibration of Vasicek and CIR to these
instruments which are displayed in solid line and solid line with data points respectively. In
Figures 7.17(e) and 7.17(f) we illustrate the first five and ten years of the curves in Figure
7.17(d) respectively.

In our use of the KB Hermite spline in constructing the LIBOR discount curve, we
test the Catmull–Rom case where all three parameters are set to zero as a base case, and
compare the different effects when varying the three different parameters, respectively. Since
the algorithm requires us to access pk−1 and pk+1 at the boundary points when t = 0 and
t = n, which are not available, we set these two points to be equal to the most adjacent
points as an approximate estimation.
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FIGURE 7.17: Constructed discount curves
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7.8 Arbitrage Restrictions on Option Premiums

In this book we have presented a variety of different models and a number of different
methods for solving for option premiums under those models. In this chapter we have
expanded on this by presenting a number of different methods for calibrating those models
to option prices in different markets. However, there are a number of different restrictions on
options premia which can be derived from simple no-arbitrage arguments without the need
for any modeling whatsoever. These can be used as a sanity check for options pricing and
calibration procedures, as a violation of these rules would represent an immediate arbitrage
opportunity. Assume strikes indexes are in an increasing order so that Ki+1 > Ki for all i.
The rules which can be derived this way are as follows:

• Monotonicity

Calls

Cask(Ki) > Cbid(Ki+1) ∀i

Puts

Pbid(Ki) < Pask(Ki+1) ∀i

• Slope

Calls

Cbid(Ki)− Cask(Ki+1) < (Ki+1 −Ki)e
−rτ ∀i

Puts

Pbid(Ki+1)− Pask(Ki) < (Ki+1 −Ki)e
−rτ ∀i

• Convexity

Calls

Cbid(Ki+1) < λCask(Ki) + (1− λ)Cask(Ki+2) ∀i

Puts

Pbid(Ki+1) < λPask(Ki) + (1− λ)Pask(Ki+2) ∀i

where λ = Ki+2−Ki+1

Ki+1−Ki
.

7.9 Interest Rate Definitions

In this section we present derivations of some of the rates discussed in this chapter, both
simple and continuously compounded instantaneous rates.

A forward rate agreement (FRA) is a tradable contract that can be used to directly
trade simple forward rates. The contract involves three time instants: the current time t,
the expiry time T where T > t, and the maturity time S with S > T . The payoff of the
contract at time S is 1 + (S − T )F (t;T, S), which results in a forward investment of one
dollar at time T . However, we can replicate this investment using the following strategy.
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At t: sell one T-bond and buy P (t,T )
P (t,S) S-bonds = zero net investment.

At T : pay one dollar.

At S: obtain P (t,T )
P (t,S) dollars.

The net effect is a forward investment of one dollar at time T yielding P (t,T )
P (t,S) dollars at S

with certainty. Thus, by the no-arbitrage condition we are led to the following definitions:

The simple (simply compounded) forward rate for [T, S] prevailing at t is given by

1 + (S − T )F (t;T, S) =
P (t, T )

P (t, S)

F (t, T, S) =
1

S − T

(
P (t, S)

P (t, S)
− 1

)
(7.23)

The simple spot rate for [t, T ] is

F (t, T ) = F (t; t, T ) =
1

T − t

(
1

P (t, T )
− 1

)
(7.24)

The continuously compounded forward rate for [T, S] prevailing at t is given by

eR(t,T,S)(S−T ) =
P (t, T )

P (t, S)
(7.25)

R(t, T, S) = − logP (t, S)− logP (t, T )

S − T
(7.26)

The continuously compounded spot rate for [t, T ] is

R(t, T ) = R(t, t, T ) = − logP (t, T )

T − t
(7.27)

The instantaneous forward rate with maturity T prevailing at time t is defined by

f(t, T ) = lim
T↑t

R(t, T, S) = −∂ logP (t, T )

∂T
(7.28)

The function T → f(t, T ) is called the forward curve at time t.

The instantaneous short rate at time t is defined by

r(t) = f(t, t) = lim
T↑t

R(t, T ) (7.29)

Solving Equation (7.28) for the zero-coupon bond price, P (t, T ), we obtain

P (t, T ) = exp

(
−

∫ T

t
f(t, u)du

)
(7.30)

where P (T, T ) = 1.
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Problems

1. Assume we generated option premiums for various strikes and maturities according to
the geometric Brownian motion dSt = (r− q)Stdt+ σStdWt with σ = 40%. Calibrate

(a) Heston stochastic volatility

dSt = (r − q)Stdt+
√
vtStdW

1
t ,

dvt = κ(θ − vt)dt+ λ
√
vtdW

2
t

to these option premiums (used as calibration instruments) to obtain Θ =
{θ,κ,λ, v0, ρ}. What would you expect to get for the optimal parameter set Θ∗?
Justify your answer.

(b) CGMY to these option premiums (used as calibration instruments) to obtain
Θ = {σ, ν, θ, Y }. What would you expect to get for the optimal parameter set
Θ∗? Justify your answer.

(c) VGSA to these option premiums (used as calibration instruments) to obtain
Θ = {σ, ν, θ,κ, η,λ}. What would you expect to get for the optimal parameter
set Θ∗? Justify your answer.

2. Daily close for LIBOR rates, Eurodollar futures, and swap rates on January 19, 2007
are shown in Tables 7.14, 7.15, and 7.16 respectively (Bloomberg).

(a) Based on that data, we have cooked the short end of the zero-coupon bond
(discount factors) from 1/19/07 to 3/18/09 as displayed in Table 7.18. Having
estimated (cooked) short end of the zero-coupon bond curve, estimate the 2-year
swap rate and compare it with the true value given in Table 7.16 and assess your
estimation.

(b) Table 7.20 illustrates interpolated swap yields on a semi-annual basis from
01/19/2007 to 01/21/2037. Construct the discount curve from these swap rates
using Equations (7.21) and (7.22).

Case Studies

1. Repeat the calibration procedure that was done in Sections 7.3.1 and 7.3.2 using the
same optimizer for the following objective functions:

• sum of relative errors (SRE)

• sum of the absolute errors (SAE)

• sum of the squares of absolute errors (SSAE)

Compare the results, write down your findings and observations, and conclude on the
effect of the objective function on the results.

2. Redo the cooking process done in Example 20 to construct the discount curves.
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3. It is well known that calibrating different stochastic process models to the same vanilla
option surface yields different exotic option prices [137]. The goal of this case study
is to provide an analysis of the effect of this model risk by considering two different
models: local volatility and variance gamma with stochastic arrival (VGSA) [54]. To
focus our attention we consider only the pricing of up-and-out call (UOC) options.

Variance Gamma with Stochastic Arrival (VGSA) Process To obtain VGSA,
as explained in [54], we take the VG process which is a homogeneous Lévy process
and build in stochastic volatility by evaluating it at a continuous time change given
by the integral of a Cox, Ingersoll, and Ross [82] (CIR) process. The mean reversion
of the CIR process introduces the clustering phenomena often referred to as volatility
persistence. This enables us to calibrate to market price surfaces across both strike and
maturity simultaneously. The process has analytical expressions for its characteristic
function, which will allow us to use transform based pricing for a number of different
derivatives. Formally we define the CIR process y(t) as the solution to the stochastic
differential equation

dyt = κ(η − yt)dt+ λ
√
ytdWt

where W (t) is a Brownian motion, η is the long term rate of time change, κ is the
rate of mean reversion and λ is the volatility of the time change. The process y(t) is
the instantaneous rate of time change and so the time change is given by Y (t) where

Y (t) =

∫ t

0
y(u)du

The stochastic volatility Lévy process, termed the VGSA process, is defined by

ZV GSV (t) = XV G(Y (t);σ, ν, θ)

Thus σ, ν, θ, κ, η, and λ are the six parameters defining the process. We define the
stock process at time t by the random variable

S(t) = S(0)
e(r−q)t+Z(t)

E[eZ(t)]

With a closed form for the VGSA characteristic function for the log price, one can em-
ploy various techniques to price European options ([60], [66], and [111]). The resulting
model may be used to estimate parameter values consistent with market option prices
for vanilla options across the entire strike and maturity spectrum.

Local Volatility Model. Consider the stock price process as a solution to the
stochastic differential equation

dSt = (r − q)Stdt+ σ(St, t)dW (t)

where the function σ(S, t) is termed the asset’s local volatility function. Let C(K,T )
be the price of a European call option with strikeK and maturity T under this process.
It is shown in [136] that one can extend the Dupire [104] methodology to compute
the local volatility function, now written as σ(K,T ), from the option prices using the
following equation:

σ2(K,T ) = 2
∂C/∂T + q(T )C +K(r(T )− q(T ))∂C/∂K

K2∂2C/∂K2

Hence the local volatility approach to pricing exotic options is to first infer local
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volatility functions from market option prices using calendar spread approximations
for the first partial with respect to maturity and butterfly spread approximations
for the second partial with respect to strike, while call spreads approximate the first
partial with respect to strike. The next step is to price the exotic given the market
calibrated local volatility function σ(S, t) by either employing a finite difference so-
lution to the underlying partial differential equation in the price of the exotic or by
simulating the process. If we assume that we have a calibrated local volatility surface,
we can price up-and-out call options by solving the following backward PDE:

∂U c
o

∂t
+

σ(St, t)2S2

2

∂2U c
o

∂S2
+ (r(t) − q(t))S

∂U c
o

∂S
= r(t)U c

o (S, t)

with terminal condition

U c
o (S, T ) = (S −K)+ for S ∈ [0, H)

and boundary conditions

lim
S↓0

U c
o(S, t) = U c

oSS(S, t) = 0

lim
S↑H

U c
o(S, t) = 0

Note that in presence of rebate, the terminal condition would be

U c
o(S, T ) = (S −K)+ for S ∈ [0, H)

U c
o (H,T ) = rebate

and boundary conditions

lim
S↓0

U c
o (S, t) = U c

oSS(S, t) = 0

lim
S↑H

U c
o (S, t) = rebate× e−(T−t)

Equivalently we can also price up-and-out call options by solving the following forward
PDE (for more details, look at [56] and [57]):

σ2(K,T )

2
K2 ∂

2U c
o

∂K2
− [r(T )− q(T )]K

∂U c
o

∂K
− q(T )U c

o =

∂U c
o

∂T
+

[
σ2(H,T )

2
H2 ∂

3U c
o

∂K3
(H,T )

]
(K −H)

with initial condition

U c
o (K, 0) = (S0 −K)+, for K ∈ [0, H), and S0 < H.

Boundary conditions are

lim
K↓0

U c
oKK(K,T ) = 0, T ∈ [0, T̄ ]

lim
K↑H

U c
oKK(K,T ) = 0, T ∈ [0, T̄ ]

Local Volatility with VGSA Calibration. The general difficulty in implementing
the process of determining a local volatility surface is that prices available in the
market for a finite grid of strikes, maturities, and interpolation schemes must be
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invoked to infer prices for the intermediate strikes and maturities. The interpolations
used may or may not be consistent with the requirements of the absence of at least
static arbitrage across the strike-maturity spectrum. Even when this is accomplished,
the interpolation schemes can introduce non-differentiability at various levels, leading
to local volatility functions that are erratic and inspire little confidence. The task of
properly interpolating the surface of option prices consistent with observed market
prices is essentially the task of formulating and estimating a market consistent option
pricing model. The VGSA model presented previously is one such model and delivers
on such an objective. Thus our process for pricing exotic options will be to first infer
prices from the calibrated VGSA model for intermediate strikes and maturities, and
then derive implied local volatilities under the local volatility model using these prices.
We will then compare the prices of exotic options using the original VGSA dynamics
with those of the inferred local volatility model.

To complete our case study, we will do the following:

Sanity check the option quotes provided in Tables 7.21 and 7.22 by checking all
the model free arbitrage restrictions discussed in Section 7.8.

Make sure you can match European prices for VGSA via simulation with those
of fractional fast Fourier transform.

Obtain VGSA parameters via calibration to S&P 500 out-of-the-money options
(Tables 7.21 and 7.22) using the following parameters as the initial guess for the
VGSA parameter set: σ = 0.20, ν = 0.1, θ = −0.4, κ = 2.0, η = 4.5, λ = 1.0.

Using the calibrated VGSA model, generate a call option premium surface with
sufficient strike and maturity granularity that the calendar spread, butterfly, and
call spreads are sufficiently accurate.

Use this call option premium surface to construct a local volatility surface using
Equation (7.3).

Use this call option premium surface to construct an implied volatility surface.

Price an up-and-out call with a strike of $1425, an up-barrier of $1500, a maturity
of nine months, and a rebate of $10 paid at maturity using the calibrated VGSA
model via simulation (S&P 500 spot price on March 27, 2012 was $1412.52).

Price an up-and-out call with a strike of $1425, an up-barrier of $1500, a maturity
of nine months, and a rebate of $10 paid at maturity using the calibrated local
volatility model by solving the forward/backward PDE via finite difference.

Compare the price of each model with the exact replicated price and conclude.

Assume being short an up-and-out call option, consider various scenarios and
hedging strategies to see which model does better, do not re-calibrate.

4. For this case study, use the data provided in Tables 7.21 and 7.22.

Obtain Heston stochastic parameters via calibration to S&P 500 out-of-the-
money options.

Using the calibrated Heston model, generate a call option premium surface with
sufficient strike and maturity granularity that the calendar spread, butterfly, and
call spreads are sufficiently accurate.

Use this call option premium surface to construct a local volatility surface using
Equation (7.3). Compare this surface with the one obtained in Case Study 3.
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Use this call option premium surface to construct an implied volatility surface.
Compare this surface with the one obtained in Case Study 3.

Draw your conclusion on comparisons.
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TABLE 7.21: S&P 500 call option premiums on March 27, 2012

maturity strike bid ask r q forward price
(in days)

2 1405 11.4 12.3 0.2781066 0.5471396 1411.849976
1410 7.6 9 0.2781066 0.5471396 1411.75
1415 5 6 0.2781066 0.5471396 1411.449951
1420 3.2 4.1 0.2781066 0.5471396 1411.699951
1425 2.2 2.4 0.2781066 0.5471396 1411.699951

24 1405 21.7 23 0.232443 1.531465 1410.550903
1410 19.1 20 0.232443 1.531465 1410.800171
1415 15.9 17.1 0.232443 1.531465 1410.549316
1420 13.6 14.6 0.232443 1.531465 1410.698975
1425 11 12.2 0.232443 1.531465 1410.547729

52 1405 30.8 32.6 0.3240174 2.108761 1407.851318
1410 28.2 29.6 0.3240174 2.108761 1407.999023
1415 25.5 26.8 0.3240174 2.108761 1407.996704
1420 22.8 24.1 0.3240174 2.108761 1407.944336
1425 20.6 21.6 0.3240174 2.108761 1408.092163

80 1405 39.5 41.4 0.4331506 2.099028 1406.30127
1410 36.8 38.3 0.4331506 2.099028 1406.496582
1415 33.8 35.6 0.4331506 2.099028 1406.291626
1420 31.3 32.7 0.4331506 2.099028 1406.537109
1425 28.4 30.1 0.4331506 2.099028 1406.382202

93 1375 61.8 66.3 0.4826605 2.081997 1405.738037
1400 47 48.4 0.4826605 2.081997 1405.807251
1425 32.8 34.1 0.4826605 2.081997 1405.82605
1450 21.2 22.5 0.4826605 2.081997 1405.043945
1475 12.6 13.9 0.4826605 2.081997 1405.66394

115 1375 67.4 69.7 0.5572296 1.981643 1404.051392
1400 51.4 53.6 0.5572296 1.981643 1404.407959
1425 37.3 39.2 0.5572296 1.981643 1404.213379
1450 25.5 27.2 0.5572296 1.981643 1404.269043
1475 16.2 17.7 0.5572296 1.981643 1404.124756

178 1375 80.7 83.2 0.7316633 2.089964 1400.039673
1400 65.2 67.3 0.7316633 2.089964 1400.45166
1425 50.7 53.1 0.7316633 2.089964 1400.311279
1450 39 40.5 0.7316633 2.089964 1400.22168
1475 28 29.7 0.7316633 2.089964 1400.332397

184 1375 82.2 84.5 0.7436823 2.098077 1399.140991
1400 66.6 68.8 0.7436823 2.098077 1399.146729
1425 52.5 54.5 0.7436823 2.098077 1399.001953
1450 40.1 41.9 0.7436823 2.098077 1399.859985
1475 29.5 31 0.7436823 2.098077 1399.714966

269 1375 95.5 98.5 0.8831472 2.154654 1393.822876
1400 80.4 83.4 0.8831472 2.154654 1393.306274
1425 66.5 69.1 0.8831472 2.154654 1393.594482
1450 53.7 56.4 0.8831472 2.154654 1393.631104
1475 42.4 44.8 0.8831472 2.154654 1393.516724
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TABLE 7.22: S&P 500 put option premiums on March 27, 2012

maturity strike bid ask r q forward price
(in days)

2 1405 4.4 5.6 0.2781066 0.5471396 1411.850098
1410 6.1 7 0.2781066 0.5471396 1411.75
1415 8.3 9.8 0.2781066 0.5471396 1411.449951
1420 11.1 12.8 0.2781066 0.5471396 1411.699951
1425 14.5 16.7 0.2781066 0.5471396 1411.699951

24 1405 16.2 17.4 0.232443 1.531465 1410.550903
1410 18.1 19.4 0.232443 1.531465 1410.800171
1415 20.3 21.6 0.232443 1.531465 1410.549316
1420 22.7 24.1 0.232443 1.531465 1410.698486
1425 25.3 26.8 0.232443 1.531465 1410.547729

52 1405 27.9 29.8 0.3240174 2.108761 1407.851318
1410 29.9 31.9 0.3240174 2.108761 1407.999023
1415 32.1 34.2 0.3240174 2.108761 1407.996704
1420 34.4 36.6 0.3240174 2.108761 1407.944336
1425 36.9 39.1 0.3240174 2.108761 1408.092163

80 1405 38.1 40.2 0.4331506 2.099028 1406.30127
1410 40.2 41.9 0.4331506 2.099028 1406.496582
1415 42.3 44.5 0.4331506 2.099028 1406.291626
1420 44.6 46.3 0.4331506 2.099028 1406.537109
1425 47 48.7 0.4331506 2.099028 1406.382202

93 1375 32.6 34.1 0.4826605 2.081997 1405.738037
1400 41 42.8 0.4826605 2.081997 1405.807251
1425 51.6 53.6 0.4826605 2.081997 1405.82605
1450 64.8 68.7 0.4826605 2.081997 1405.043945
1475 80.1 84.9 0.4826605 2.081997 1405.66394

115 1375 38.5 40.6 0.5572296 1.981643 1404.052002
1400 47.2 49 0.5572296 1.981643 1404.407837
1425 57.8 60.2 0.5572296 1.981643 1404.213013
1450 70.6 73.4 0.5572296 1.981643 1404.269165
1475 86.2 89.2 0.5572296 1.981643 1404.124023

178 1375 55.7 58.3 0.7316633 2.089964 1400.039673
1400 64.8 66.8 0.7316633 2.089964 1400.45166
1425 75.4 77.6 0.7316633 2.089964 1400.311279
1450 87.7 91 0.7316633 2.089964 1400.22168
1475 102 104.5 0.7316633 2.089964 1400.332397

184 1375 57.9 60.7 0.7436823 2.098077 1399.140991
1400 67 70.1 0.7436823 2.098077 1399.146973
1425 77.7 81.1 0.7436823 2.098077 1399.001953
1450 88.5 93.4 0.7436823 2.098077 1399.859985
1475 102.3 108.2 0.7436823 2.098077 1399.714966

269 1375 77.1 79.5 0.8831472 2.154654 1393.822876
1400 86.8 90.3 0.8831472 2.154654 1393.306274
1425 97.6 100.4 0.8831472 2.154654 1393.594482
1450 109.5 112.6 0.8831472 2.154654 1393.631104
1475 122.9 126.2 0.8831472 2.154654 1393.516724





Chapter 8

Filtering and Parameter Estimation

In the calibration procedure, we mostly just utilize cross-section instruments (i.e., calibra-
tion instruments) and do not bring in any time series of data into the process. In parameter
estimation, however, we typically bring in a long history of prices in order to estimate the
model’s parameters.

In many applications, we need to generate sample paths under real world statistical
measures. This is achieved by employing some filtering technique or maximum likelihood.
Employing a filtering technique or maximum likelihood has many desirable properties. Max-
imum likelihood is consistent and guaranteed to converge as the length of the time series
is increased [199]. In the case of a single noise, such as generalized autoregressive condi-
tional heteroskedasticity (GARCH) [109],[33],[181], the likelihood function is known is an
integrated form. However, for processes that the likelihood function is not known in an in-
tegrated form we will need some filtering technique for the purpose of parameter estimation
and/or parameter learning.

A process that the probability density function of the process is available in an integrated
form is called a fully observed process. The estimation procedure for these processes is done
via maximum likelihood estimation [139]. Partially observed processes, on the other hand,
are processes where the density of the process is not available in an integrated form. In par-
tially observed processes, by conditioning on a parameter(s), conditional likelihood/density
can be obtained in an integrated form. That parameter, that we condition on, is called hid-
den state of the process. For partially observed processes, at each day in history, the aim is
to calculate the hidden state on that day to best fit that day’s observation. This procedure
is called filtering.

Assuming the model parameter set is given/known, by means of filtering we can find
the time series of the hidden state that gives the best fit over time. During filtering, the
parameter set is kept fixed over the entire time series of data. One can repeat this procedure
by using a different parameter set for each run and find the best fit for the corresponding
parameter set. The parameter set that maximizes the likelihood function or yields the
smallest mean square root error or the like is the optimal parameter set. This procedure of
finding the optimal parameter is called parameter estimation from historical time series of
data [139].

We start this chapter with a couple of examples on fully and partially observed processes.
We then cover various filtering techniques with depth analysis on their implementations with
some examples on filtering and parameter estimation.

Example 21 An example of a fully observed process

As previously explained, the variance gamma (VG) process X(t;σ, ν, θ) is obtained by eval-
uating Brownian motion with drift θ and volatility σ at a random time given by a gamma
process γ(t; 1, ν) with mean rate unity and variance rate ν as

X(t;σ, ν, θ) = θγ(t; 1, ν) + σW (γ(t; 1, ν))

Suppose the stock price process is given by the geometric VG law with parameters σ, ν, θ

341
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and the log price at time t is given by

lnSt = lnS0 + (r − q + ω)t+X(t;σ, ν, θ)

where

ω =
1

ν
ln(1 − θν − σ2ν/2)

is the usual Jensen’s inequality correction ensuring that the mean rate of return on the asset
is risk neutral (r − q). For variance gamma model, calling

xh = zk − (r − q)h− h

ν
ln(1− θν − σ2ν/2)

where

zk = ln(Sk/Sk−1)

h = tk − tk−1

provides the following integrated density (likelihood function) of stock return:

p(zk|z1:k−1) =
2eθxh/σ

2

ν
h
ν

√
2πσΓ(hν )

(
x2
h

2σ2/ν + θ2

) h
2ν−

1
4

K h
ν−

1
2

(
1

σ2

√
x2
h(2σ

2/ν + θ2)

)

where Kn(x) is the modified Bessel function of the second kind (see [175] for more details).
We see that the dependence on the gamma distribution is integrated out. Hence, there
would not be any need for filtering.

To estimate the parameter set for VG via maximum likelihood, we simulate the stock
price process assuming it follows VG geometric law. In our example, we assume the following
parameter set: S0 = 100, σ = 0.25, ν = 0.15, θ = −0.15, µ = 0.01, and ∆t = 1/12,
T = 40. Figure 8.1 displays the simulated path used in our estimation. Using starting
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FIGURE 8.1: VG simulated path used for parameter estimation of the VG model via
MLE

values Θ = {σ0, ν0, θ0, µ0} = {0.4, 0.05, 0.1, 0.1}, maximizing likelihood via the Nelder–
Mead simplex method, we obtain the following parameter set:

Θ = {σ̂, ν̂, θ̂, µ̂} = {0.2401, 0.1603,−0.1073, 0.0497}
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which is pretty close to the original parameter set used for simulating the path. It is im-
portant to mention that as ∆t approaches zero it becomes pretty difficult to estimate the
parameters due to the instability of the Bessel function. For the Bessel function K h

ν−
1
2
(x)

to be stable, we recommend choosing h such that h
ν −

1
2 > 0. In our example, we choose a

stable h = ∆t = 1/12 = 0.083, since h = 0.083 > ν
2 = 0.15

2 = 0.075.

Example 22 An example of a partially observed process

For VSGA, the stock process under the risk-neutral framework follows

d lnSt = (r − q + ω)dt+X(h(dt);σ, ν, θ)

and

X(h(dt);σ, ν, θ) = B(γ(h(dt), 1, ν); θ,σ)

and the gamma cumulative distribution function

Fν(h, x) =
1

Γ(hν )ν
h
ν

∫ x

0
e−

t
ν t

h
ν−1dt

and h(dt) = ytdt with

dyt = κ(η − yt)dt+ λ
√
ytdWt

For this process the likelihood function does not exist in an integrated form; however, by
conditioning on arrival rate we can find the conditional likelihood function. For a given
arrival rate dt∗ = ytdt we have a VG distribution and the corresponding integrated density
from Equation (8.1) would be

p(zk|h∗) =
2eθxh/σ

2

ν
h∗
ν

√
2πσΓ(h

∗

ν )

(
x2
h

2σ2/ν + θ2

)h∗
2ν −

1
4

K h∗
ν −

1
2

(
1

σ2

√
x2
h(2σ

2/ν + θ2)

)

where h∗ = yth and xh as in the previous example. Hence the arrival rate is the hidden
state in filtering. Later in this chapter, we provide an example on estimation of parameters
of the VGSA model.

8.1 Filtering

Before any formal definition or rigorous mathematical derivation, we start with a simple
example to give an intuition behind filtering. Assume the hidden state evolves according to
the following simple linear model:

xt+1 = axt + wt+1

where wt+1 ∼ N (0,λ2) for some λ. Also assume the parameter set, Θ, is known. Moreover,
we assume that factors at time t, namely, xt, are given. Now given an observation at time
t+1 we want to calculate the best estimate of xt+1, namely, x̂t+1, that is,

x̂t+1 = E (xt+1 | zt+1)
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where zt+1 is the observation at time t+ 1. Assume the model price is given by h(xt+1;Θ)
where as earlier stated Θ is the parameter set. The assumption in filtering is that the
market price (observation) at time t+1, zt+1, is linked to the model price via the following
relationship:

zt+1 = h(xt+1;Θ) + ut+1

where ut+1 ∼ N (0,σ2) for some σ. Both λ and σ are part of the parameter set Θ and
therefore are already estimated and known.

Knowing the evolution of xt+1 we first generate M samples for xt+1.

x(i)
t+1 = axt +N (0,λ2)

for i = 1, . . . ,M . Having M samples of x(i)
t+1 we can calculate M samples for the model

price, namely h(x(i)
t+1;Θ). Now we can generate M samples for ut+1, having observed the

market price at time t+1:

u(i)
t+1 = yt+1 − h(x(i)

t+1;Θ)

Define L(i) as the (conditional) likelihood function

L(i) ≡ Likelihood
(
u(i)
t+1 | x(i)

t+1

)

Hence L(i) simply is

L(i) =
e−

(u(i)
t+1)

2

2σ2

√
2πσ

and therefore

x̂t+1 = E (xt+1 | zt+1)

=

∑M
i=1 L(i) × x(i)

t+1∑M
i=1 L(i)

This is the best estimate of xt+1. For the next time step prediction what we just obtained
is used as the best estimate of the current step and proceed sequentially.

Mathematically the filtering problem is solved by computing the following posterior
probability p(xt|zt), that is, given the observation at time t, zt what is the probability
of the hidden state xt? A related problem is to track p(xt|zt) sequentially through time,
although this is more difficult due to its higher dimensionality. It is very important to stress
the sequential nature of the filtering problem, that is, the goal is to compute or approximate
p(xt|Θ, zt) as new data arrives; this is different from the general smoothing problem [154].

8.1.1 Construction of p(xk|z1:k)
Theoretically one can construct the posterior density, p(xk|z1:k), recursively in two

stages:

Time update (prediction): Chapman–Kolmogorov equation. Given the ob-
servation up to time tk−1, what is the best prediction for x at time tk, xk? That
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is,

p(xk|z1:k−1) =

∫
p(xk|xk−1, z1:k−1)p(xk−1|z1:k−1)dxk−1

=

∫
p(xk|xk−1)p(xk−1|z1:k−1)dxk−1

Here for the time update iteration we apply the Chapman–Kolmogorov equation by
using the Markov property.

Measurement update (filtering): Bayes’ rule. Now having an observation zk at
tk, what is the probability of xk? Here we can use Bayes’ rule

p(xk|z1:k) =
p(zk|xk)p(xk|z1:k−1)

p(zk|z1:k−1)

where the probability in the denominator p(zk|z1:k−1) can be written

p(zk|z1:k−1) =

∫
p(zk|xk)p(xk|z1:k−1)dxk

and it corresponds to the time tk likelihood function. Following the argument in [152]
we can write

p(xk|z1:k) =
p(z1:k|xk)p(xk)

p(z1:k)

=
p(zk, z1:k−1|xk)p(xk)

p(zk, z1:k−1)

=
p(zk|z1:k−1,xk)p(z1:k−1|xk)p(xk)

p(zk|z1:k−1)p(z1:k−1)

=
p(zk|z1:k−1,xk)p(xk|z1:k−1)p(z1:k−1)p(xk)

p(zk|z1:k−1)p(z1:k−1)p(xk)

=
p(zk|xk)p(xk|z1:k−1)

p(zk|z1:k−1)

It is obvious that it is assumed that at time step k, values of z1:k−1 are already known.

8.2 Likelihood Function

Having posterior density, p(xk|z1:k), at time tk we can write likelihood lk

lk = p(zk|z1:k−1) =

∫
p(zk|xk)p(xk|xk−1, z1:k−1)dxk (8.1)

and therefore the total likelihood is

ln(L1:N ) =
N∑

k=1

ln(lk)
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In practice, instead of trying to calculate the value of the expression in (8.1), one uses a proxy
for likelihood lk as will be discussed later. We assume the following generic models/equations
for state and observation:

xt+1 = f(xt,Θ, ut+1)

zt+1 = g(xt+1,Θ, vt+1)

namely, state equation and measurement equation, respectively. Alternatively

p(zt+1|xt+1,Θ) observation density

p(xt+1|xt,Θ) state transition

p(x0) initial distribution (prior)

In the case of a known parameter set we can write p(xt|zt) = p(xt|zt,Θ).
There are three general approaches: (a) approximates the model via either a linearization

or by approximate state variables with a continuous distribution by a discrete state Markov
chain; then apply a Kalman filter, (b) numerical integration routines to approximate the
integrals; this could run easily into curse of dimensionality, (c) Monte Carlo, which leads to
the particle filter.

Example 23 Filtering and parameter estimation of the discrete-time double gamma
stochastic volatility model via likelihood

In this example, we go over filtering and parameter estimation for the discrete-time dou-
ble gamma stochastic volatility model proposed in [138]. We suppose the interest rate rt
prevailing over the next period of time rate is a linear function of the factors xt, specifically.

rt = ar + b⊤r xt

Assume the following discrete-time stochastic volatility model:

xt+1 = xt + (bγ −Bxt)∆t+ Σ
√
vt+1

√
∆tzt+1

vt+1 ∼ Gamma(λvt + x,
1

δ
)

x ∼ Gamma(γ,
1

η
)

where zt+1 ∼ N (0, I) and the probability density of Gamma(α, 1
β ) is

f(t) =
βe−βt(βt)α−1

Γ(α)

=
βαe−βttα−1

Γ(α)

In the filtering step, the assumption is that the parameter set,Θ = {σ, γ, η,λ, δ, ar, br, bγ , B,Σ},
is known. We also assume t-time factors namely, xt and vt, are given. Now given observations
at time t+ 1 we wish to calculate

(x̂t+1, v̂t+1) = E (xt+1, vt+1 | yt+1)

Assume that the model price is given by φ(xt+1, vt+1;Θ) where Θ is the parameter set.
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Moreover assume the market price (observation) at time t+ 1, yt+1, is linked to the model
price via the following relationship:

yt+1 = φ(xt+1, vt+1;Θ) + ut+1

where ut+1 ∼ N (0,σ2) for some σ (the assumption is σ is part of the parameter set Θ and
therefore already estimated and known).

Start by first generating M samples for xt+1 and vt+1 as follows:

x(i) ∼ Gamma(γ,
1

η
)

v(i)t+1 ∼ Gamma(λvt + x(i),
1

δ
)

x(i)
t+1 = N

(
xt + (bγ −Bxt)∆t,

(
Σ
√
v(i)t+1

√
∆t

)2
)

for i = 1, . . . ,M . Having M samples of x(i)
t+1 and v(i)t+1 we can calculate M samples for the

model price, namely, φ(x(i)
t+1, v

(i)
t+1;Θ). Now we can generate M samples for ut+1 having

observed the market price at time t+1:

u(i)
t+1 = yt+1 − φ(x(i)

t+1, v
(i)
t+1;Θ)

Define L(i) as a (conditional) likelihood function

L(i) ≡ Likelihood
(
u(i)
t+1 | x

(i)
t+1, v

(i)
t+1

)

Hence L(i) simply is

L(i) =
e−

(u(i)
t+1)

2

2σ2

√
2πσ

Therefore x̂t+1, v̂t+1 can be calculated as follows:

(x̂t+1, v̂t+1) = E (xt+1, vt+1 | yt+1)

=

∑M
i=1 L(i) × (x(i)

t+1, v
(i)
t+1)∑M

i=1 L(i)

that is weighted mean where weights are conditional likelihoods.
For parameter estimation, we start with some parameter set

Θ′ = {σ′, γ′, η′,λ′, δ′, b′γ , B′,Σ′, . . . }

as the prior and calculate the likelihood as follows:

for t = 0, . . . , T − 1

for i = 1, . . . ,M

x(i) ∼ Gamma(γ′,
1

η′
)

v(i)t+1 ∼ Gamma(λ′v(i)t + x(i),
1

δ′
)

x(i)
t+1 ∼ N

(
x(i)
t +

(
b′γ −B′x(i)

t

)
∆t,

(
Σ′

√
v(i)t+1

√
∆t

)2
)

u(i)
t+1 = yt+1 − φ(x(i)

t+1, v
(i)
t+1;Θ

′)
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L(yt+1, x
(i)
t+1, v

(i)
t+1) =

e−
(u

(i)
t+1)2

2σ2

√
2πσ

× ηγe−ηx(i)

(x(i))γ−1

Γ(γ)

×
δλv

(i)
t +x(i)

e−δv(i)
t+1(v(i)t+1)

λv(i)
t +x(i)−1

Γ(λv(i)t + x(i))

×

exp

⎛

⎝−
(
x
(i)
t+1−(x

(i)
t +(bγ−Bx

(i)
t )∆t)

)2

2

(
Σ
√

v(i)
t+1

√
∆t

)2

⎞

⎠

√
2πΣ

√
v(i)t+1

√
∆t

endfor

endfor

Having the log likelihood, we can employ either the Nelder–Mead simplex method or the
EM algorithm ([119], [96]) for estimating the parameter set. In the case of the EM algorithm
we minimize the following objective function starting from Θ∗0):

Θ∗n+1 = min
Θ
− 1

M

T−1∑

t=0

M∑

i=1

logL(yt+1, x
(i)
t+1, v

(i)
t+1,Θ|Θ∗n)

= min
Θ
−E(logL(Θ|Θ∗n))

That is the combined E and M steps. The optimal Θ∗ is found until ∥Θ∗n+1−Θ∗n∥ < ϵ where
ϵ is a threshold. In our example, we choose ϵ = 1.0e − 5. Datasets used for this example
are: (a) LIBOR rates with maturities of 1, 2, 3, 6 and 12 months and (b) swap rates at
maturities 2, 3, 5, 10, 12, 15, 20, and 30 years. The data are daily close from December 14,
1994 through May 26, 2005. Here are our results:

(a) Using the Nelder–Mead simplex method, we obtain the following parameter set:

ar = 0.0304

br = [0.0010, 0.0044, 0.1191]

bγ = [0.0031, 2.0519,−1.0177]

B =

⎛

⎝
0.0002
0.0531 0.1326
−0.0264 −0.0236 0.6950

⎞

⎠

Σ =

⎛

⎝
0.7044

1.2417
−0.1465

⎞

⎠

λ = 1.5265

δ = 2.3504

γ = 9.5712

η = 3.0376

In Figures 8.2(a) and 8.2(b) we show 1-month and 6-month LIBOR rates predictions versus
actual rates, respectively. Figures 8.3(a), 8.3(b), and 8.3(c) illustrate 5-year, 15-year, and 30-
year rate predictions versus actual rates, respectively. Finally we display the hidden states



Filtering and Parameter Estimation 349

12/31/1996 01/06/1999 01/09/2001 01/15/2003 01/25/2005

0.01

0.02

0.03

0.04

0.05

0.06

Time

Observation: actual vs. prediction

L
IB

O
R

 1
m

 

 
actual
prediction

(a)

12/31/1996 01/06/1999 01/09/2001 01/15/2003 01/26/2005
0.01

0.02

0.03

0.04

0.05

0.06

Time

L
IB

O
R

 6
m

Observation: actual vs. prediction

 

 
actual
prediction

(b)

FIGURE 8.2: (a) 1-month LIBOR rate, (b) 6-month LIBOR rate prediction versus actual,
in the discrete-time double gamma stochastic volatility example using the simplex method
for parameter estimation

xt and vt through time in Figure 8.4. All results are obtained using the simplex method for
parameter estimation.

(b) Using the EM algorithm, we obtain the following parameter set:

ar = 0.03852

br = [0.0000139, 0.0000150, 0.1402806]

bγ = [0.0029114,−1.5080950,−2.3860751]

B =

⎛

⎝
0.0001004
−0.0556363 0.0311322
−0.0835994 −0.1588748 2.7916005

⎞

⎠

Σ =

⎛

⎝
0.3801258

0.9065671
−0.0739867

⎞

⎠

λ = 2.7533120

δ = 4.1201996

γ = 6.7723249

η = 2.9314949

In Figures 8.5(a) and 8.5(b) we display 1-month and 6-month LIBOR rates predictions
versus actual rates, respectively. Figures 8.6(a), 8.6(b), and 8.6(c) display 5-year, 15-year,
and 30-year rates predictions versus actual rates, respectively. Figure 8.7 illustrates the
hidden states, xt and vt through time. All results are obtained using the EM algorithm for
parameter estimation.
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FIGURE 8.3: (a) 5-year swap rate, (b) 15-year swap rate, (c) 30-year swap rate prediction
versus actual in the discrete-time double gamma stochastic volatility example using the
simplex method for parameter estimation
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FIGURE 8.4: Discrete-time double gamma stochastic volatility example using the simplex
method for parameter estimation: states

8.3 Kalman Filter

The Kalman filter ([129],[130]) is an efficient recursive filter1 which estimates states
of a linear dynamic system from a time series of observations. Combined with the linear-
quadratic regulator the Kalman filter solves the linear-quadratic-Gaussian problem that is
one of the most fundamental optimal control problems.

8.3.1 Underlying Model

Kalman filters are based on linear dynamical systems discretized in the time domain.2

They are modeled on a Markov chain built on linear operators perturbed by a Gaussian
noise. The state of the system is an n×1 vector of real numbers where n is the dimension of
the system. At each time increment, a linear operator is applied to the state to generate the

1In a recursive filter only the estimated state from the previous time step and the current measurement
are being used to compute the estimate for the current state. Unlike batch estimation techniques, in the
Kalman filter we do not use any history of observations and/or estimates.

2Most filters (e.g., low-pass filters) are formulated in the frequency domain and then they are transformed
back to the time domain for implementation.
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FIGURE 8.5: (a) LIBOR 1-month prediction versus actual, (b) LIBOR 6-month prediction
versus actual, in the discrete-time double gamma stochastic volatility example using the EM
algorithm for parameter estimation

new state, with some added noise, and optionally some information from the system control
(if it is available and known). Then, another linear operator with more noise generates the
visible outputs from the hidden state.

In [120], the authors show that there is a duality between the equations of the Kalman
Filter and those of the hidden Markov model. The key difference is that the hidden state
variables take values in a continuous space as opposed to a discrete state space as in the
hidden Markov model. Also the hidden Markov model can represent an arbitrary distribu-
tion for the next value of the state variables, in contrast to the Gaussian noise model that
is used for the Kalman filter. In order to use the Kalman filter to estimate the internal
state of a process given only a sequence of noisy observations, one must model the process
in accordance with the framework of the Kalman filter. In the Kalman filter, the following
linear model is assumed for the evolution of the true state at time tk:

xk = Fkxk−1 +Bkuk + wk

where

xk is the (true) state at time tk

Fk is the state transition matrix

Bk is the control-input model applied to the control vector uk

wk is the process noise assumed to be a multivariate normal distribution with zero
mean and covariance Qk, i.e., wk ∼ N (0, Qk)

Here xk is an n×1 vector of real numbers and Fk is anm×nmatrix. At time k an observation
(measurement) zk of state xk is made and we assume the following measurement equation
for its evolution:

zk = Hkxk + vk
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FIGURE 8.6: (a) 5-year swap rate prediction versus actual, (b) 15-year swap rate predic-
tion versus actual, (c) 30-year swap rate prediction versus actual, in the discrete-time double
gamma stochastic volatility example using the EM algorithm for parameter estimation
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FIGURE 8.7: Hidden states of the discrete-time double gamma stochastic volatility model
using the EM algorithm for parameter estimation

where Hk is the observation matrix and vk is the observation noise assumed to be Gaussian
with zero mean and covariance Rk, that is,

vk ∼ N (0, Rk)

The initial state x0 and the state noise vectors w1, . . . , wk and measurement noise vectors
v1, . . . , vk are assumed to be mutually independent. There are rare cases in which a dy-
namical system follows the above framework. Nonetheless considering the Kalman filter is
designed to operate in the presence of noise makes it a useful filter and should be a good
start. We will later describe variations and extensions on the Kalman filter that would allow
more sophisticated models.

The state of the filter is represented by the following variables:

x̂k|k−1 the estimate of the state at time k given observations up to and including time
k − 1

x̂k|k the estimate of the state at time k given observations up to and including time k

Pk|k−1 the error covariance matrix (a measure of the estimated accuracy of the state
estimate) at time k given observations up to and including time k − 1

Pk|k the error covariance matrix at time k given observations up to and including time
k
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As mentioned earlier, filtering is done in two steps: (a) time update or prediction and (b)
measurement update or filtering. In the prediction phase, we use the state estimate from
the previous time step in order to produce an estimate of the state at the current time
step. In the filtering phase, we use the measurement at the current time step to refine this
prediction to obtain a new and (hopefully) a more accurate state estimate for the current
time step.
Time update

Predicted state estimate: x̂k|k−1 = Fkx̂k−1|k−1 +Bk−1uk−1

Predicted estimate covariance: Pk|k−1 = FkPk−1|k−1F
⊤
k +Qk−1

Measurement update

Measurement residual: δ̂k = zk −Hkx̂k|k−1

Residual covariance: Sk = HkPk|k−1H
⊤
k +Rk

Updated state estimate: x̂k|k = x̂k|k−1 +Kk δ̂k

Updated estimate covariance: Pk|k = (I −KkHk)Pk|k−1(I −KkHk)⊤ +KkRkK⊤
k

where Kk is the Kalman gain (we do not make any assumption yet on its optimality). Before
we derive the posterior estimate covariance matrix, we need to define some invariants. If
the model is accurate and the values for x̂0|0 and P0|0 accurately reflect the distribution of
the initial state values, then the following invariants are preserved: (a) all estimates have
mean error zero

E(xk − x̂k|k) = 0

E(xk − x̂k|k−1) = 0

E(δ̃k) = 0

and (b) covariance matrices accurately reflect the covariance of estimates

Pk|k = cov(xk − x̂k|k)

Pk|k−1 = cov(xk − x̂k|k−1)

Sk = cov(δ̂k)

Now, we start with the error covariance Pk|k; from our invariants we can write

Pk|k = cov(xk − x̂k|k)

= cov(xk − (x̂k|k−1 +Kkδ̂k))

= cov(xk − (x̂k|k−1 +Kk(zk −Hkx̂k|k−1)))

= cov(xk − (x̂k|k−1 +Kk(Hkxk + vk −Hkx̂k|k−1)))

= cov((I −KkHk)(xk − x̂k|k−1)−Kkvk)

The assumption is that measurement error vk is uncorrelated with other terms and therefore
we arrive at

Pk|k = cov((I −KkHk)(xk − x̂k|k−1)) + cov(Kkvk)

= (I −KkHk)cov(xk − x̂k|k−1)(I −KkHk)
⊤ +Kkcov(vk)K

⊤
k
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Now using the definition of Pk|k−1 and Rk it becomes

Pk|k = (I −KkHk)Pk|k−1(I −KkHk)
⊤ +KkRkK

⊤
k

and it holds for any arbitrary value for Kk. So far we have not made any assumption on
Kk. We can reduce this expression further for the optimal Kalman gain.

8.3.2 Posterior Estimate Covariance under Optimal Kalman Gain and
Interpretation of the Optimal Kalman Gain

The Kalman filter minimizes posterior state estimation which is equivalent to saying it
minimizes mean-square error estimator. The error in the posterior state estimation is

ϵk ≡ xk − x̂k|k

The goal is to minimize the expected value of the square of ϵk

E(|xk − x̂k|k|2)

which is the same as minimizing the trace of the posterior estimate covariance matrix Pk|k.
We get the following after expanding the terms in Pk|k:

Pk|k = Pk|k−1 −KkHkPk|k−1 − Pk|k−1H
⊤
k K⊤

k +Kk(HkPk|k−1H
⊤
k +Rk)K

⊤
k

= Pk|k−1 −KkHkPk|k−1 − Pk|k−1H
⊤
k K⊤

k +KkSkK
⊤
k

Now taking the first derivative of the trace of Pk|k with respect to Kk and setting it equal
to zero, we find the optimal kk:

∂tr(Pk|k)

∂Kk
= −2(HkPk|k−1)

⊤ + 2KkSk = 0

Solving it for Kk yields

KkSk = (HkPk|k−1)
⊤ = Pk|k−1H

⊤
k

or

Kk = Pk|k−1H
⊤
k S−1

k

This Kalman gain minimizes the mean-square error estimate and is the optimal Kalman
gain.

KkSkK
⊤
k = Pk|k−1H

⊤
k K⊤

k

Substituting back into Pk|k yields

Pk|k = Pk|k−1 −KkHkPk|k−1 − Pk|k−1H
⊤
k K⊤

k +KkSkK
⊤
k

Noticing that the last two terms cancel out give us

Pk|k = Pk|k−1 −KkHkPk|k−1

= (I −KkHk)Pk|k−1
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An interpretation of the Kalman filter could be based on linear regression. In the case of
having time series of {xk} and {zk} the linear regression yields

zk = α+ βxk + ϵk

with α the intercept, β the slope, and ϵk the residual. Under linear regression we have

β = Pk|k−1H
⊤
k S−1

k

which is the expression for the Kalman gain.
In the Kalman filter, the log likelihood for each time step is log p(zt|z1:t−1), which is

obtained by evaluating the log of the probability density function of a multivariate Gaussian
density with mean zero and covariance of Sk evaluated at the values in δ̂k, that is, the log
likelihood of innovation

log p(zt|z1:t−1) = log

(
1

(2π)d/2|Sk|1/2
exp

(
−1

2
(δ̂k − 0)⊤S−1

k (δ̂k − 0)

))

= −d

2
log(2π)− 1

2
log |Sk|−

1

2
(δ̂k − 0)⊤S−1

k (δ̂k − 0)

= −d

2
log(2π)− 1

2
log |Sk|−

1

2
(zk −Hkx̂k|k−1)

⊤S−1
k (zk −Hkx̂k|k−1).

Calling this log likelihood ln(lk), then the log likelihood for the entire time series is

ln(L1:T ) =
∑T

k=1 ln(lk). Having the log likelihood, we can either use an optimization rou-
tine (e.g., Nelder–Mead simplex) or employ the EM algorithm ([119], [96]) to minimize the
negative log likelihood for parameter estimation. It is worth mentioning that the Kalman
gain does not come into the parameter estimation; it only enters into the filtering step.

Example 24 Parameter estimation, filtering, and prediction via MLE and EM in the
Kalman Filter

Assuming

xt+1 = Fxt + wt where wt ∼ N (0, Q)

yt+1 = Hxt+1 + vt where vt ∼ N (0, R)

The parameter set for estimation is Θ = {F,H,Q,R, x0, v0}. In our simulation study we
assume the following parameters: F = 1, H = 2, Q = 0.1, R = 0.1, x0 = 9.9355, and
v0 = 0.01. Starting values for parameter estimation are

{F start, Hstart, Qstart, Rstart, xstart
0 , vstart0 } = [2, 1, 0.2, 0.2, 5, 0.05]

Implementation of the Nelder–Mead simplex method is as follows: parameter set Θ =
{F,H,Q,R, x0, v0} and the objective function to minimize

f(Θ) =
T∑

t=1

(
(yt+1 −Hxt+1|t)

⊤S−1
t+1(yt+1 −Hxt+1|t) + log |St+1|

)

where

xt+1|t = Fxt|t

Pt+1|t = FPt|tF
⊤ +Q

St+1 = HPt+1|tH
⊤ +R
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with x0|0 = x0 and P0|0 = v0. Using the Nelder–Mead simplex method to minimize the
objective function we obtain the subsequent parameter set

{F̂ , Ĥ, Q̂, R̂, x̂0, v̂0} = [0.9952, 1.7478, 0.1322, 0.0846, 11.7743, 0.0005]

Implementation of EM of the Kalman filter on a linear system [119] is as follows. In the
E-step, we calculate L = E(logP ({x}, {y})|{y})) with {x} = (x1, x2, . . . , xT ) and {y} =
(y1, y2, . . . , yT ) and

logP ({x}, {y}) = −
T∑

t=1

(
1

2
(yt −Hxt)

⊤R−1(yt −Hxt))−
T

2
log |R|

−
T∑

t=2

(
1

2
(xt − Fxt−1)

⊤Q−1(xt − Fxt−1))−
T − 1

2
log |Q|

− 1

2
(x1 − π1)

⊤V −1(xt − π1)−
1

2
log |V1|−

T (p+ k)

2
log 2π

where p is the dimension of state vector xt and k is the dimension of measurement vector
yt and

π1 = E(x1)

v1 = var(x1)

L depends on the following smoothing of states and covariance:

x̂t = E(xt|{y})
Pt = E(xtx

⊤
t |{y})

Pt,t−1 = E(xtx
⊤
t−1|{y})

Note that the state estimate, x̂t, depends on both past and future observations. In that
regard, it differs from the one computed in the Kalman filter. In the M-step, we update F ,
H , Q, and R as follows

∂L

∂F
= 0 ⇒ Fnew = (

T∑

t=2

Pt,t−1)(
T∑

t=2

Pt−1)
−1

∂L

∂H
= 0 ⇒ Hnew = (

T∑

t=1

ytx̂
⊤
t )(

T∑

t=1

Pt)
−1

∂L

∂Q
= 0 ⇒ Qnew =

1

T − 1
(

T∑

t=2

Pt − Fnew

T∑

t=2

Pt,t−1)

∂L

∂R
= 0 ⇒ Rnew =

1

T
(

T∑

t=1

(yty
⊤
t −Hnewx̂ty

⊤
t ))

∂L

∂π1
= 0 ⇒ πnew

1 = x̂1

∂L

∂V1
= 0 ⇒ V new

1 = P1 − x̂1x̂
⊤
1

EM maximum likelihood estimates are

{F̂ , Ĥ, Q̂, R̂, x̂1, v̂1} = [0.9953, 2.0064, 0.1009, 0.0831, 9.9548, 4.2093e− 005]
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FIGURE 8.8: Kalman filter example: (a) observation prediction, (b) state filtering

Our observation is the EM algorithm converges faster than the MLE simplex method.
In optimization methodology it is important to note that the likelihood function may

very well be non-differentiable; therefore it is wise to employ a search algorithm that does not
use the gradient. The direction-set algorithm is a good choice from this point of view. The
more number of parameters we have, the more difficult the convergence of the optimization
process; the likelihood function becomes flat.

8.4 Non-Linear Filters

The basic Kalman filter is limited to a linear assumption. However, most non-trivial
systems are non-linear. The non-linearity can be associated either with the process model
or with the observation model or with both [149]. For details on nonlinear filtering of
stochastic volatility models see [155].

8.5 Extended Kalman Filter

In the extended Kalman filter (EKF), the state transition and observation models need
not be linear functions of the state but may instead be differentiable functions.

xk = f(xk−1, uk)

zk = h(xk, vk)
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The function f can be used to compute the predicted state from the previous estimate
and similarly the function h can be used to compute the predicted measurement from the
predicted state. However, f and h cannot be applied to the covariance directly. Instead a
matrix of partial derivatives, the Jacobian, is computed. At each time step the Jacobian is
evaluated with current predicted states. These matrices can be used in the Kalman filter
equations. This process essentially linearizes the non-linear function around the current es-
timate. It uses a first-order linearization technique to allow its use with nonlinear processes.

Here the assumption as in the Kalman filter is that wk and vk are uncorrelated se-
quences of standard normal variables with mean zero and covariance matrices of Qk and
Rk, respectively.

As in the Kalman filter, we call predicted state or a priori process estimates x̂k|k−1 and
updated state estimate or a posterior estimate x̂k|k. Starting with our invariant on the error
covariance Pk|k as above

Pk|k−1 = cov(xk − x̂k|k−1)

Pk|k = cov(xk − x̂k|k)

Matrix of partial derivatives, the Jacobians, are formed as follows:

Fij =
∂fi
∂xj

(x̂k|k−1, 0)

Uij =
∂fi
∂uj

(x̂k|k−1, 0)

Hij =
∂hi

∂xj
(x̂k|k−1, 0)

Vij =
∂hi

∂vj
(x̂k|k−1, 0)

which are evaluated at x̂k|k−1 and zero noise. Having the Jacobians, we follow what was
done in the Kalman filter to write the time update equation. For the time update we have

x̂k|k−1 = f(x̂k−1|k−1, 0)

and its corresponding covariance matrix

P̂k|k−1 = FkP̂k−1|k−1F
⊤
k + UkQk−1U

⊤
k

The Kalman gain matrix, Kk is defined in the measurement equation as

x̂k|k = x̂k|k−1 +Kk(zk − h(x̂k|k−1, 0))

and corresponding covariance matrix

Pk|k = (I −KkHk)Pk|k−1

As in the Kalman filter, the optimal Kalman gain that minimizes the mean square error
over all linear estimators is given by

Kk = Pk|k−1H
⊤
k (HkPk|k−1H

⊤
k + VkRkV

⊤
k )−1

Example 25 Parameter estimation of the Heston stochastic volatility model via the ex-
tended Kalman filter
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In this example, we set up parameter estimation of the Heston stochastic volatility model via
the extended Kalman filter. In Heston stochastic volatility, the underlying process follows
the following SDE

dSt = µStdt+
√
vtStdW

1
t ,

dvt = κ(θ − vt)dt+ λ
√
vtdW

2
t ,

where the two Brownian components W 1
t and W 2

t are correlated with rate ρ under physical
measure. Define yt = ln(St) and using Itô’s lemma we can write it as

dyt = (µ− 1

2
vt)dt+

√
vtdW

1
t

dvt = κ(θ − vt)dt+ σ
√
vtdW

2
t

For Heston, the state equation is

xk = f(xk−1, uk) =

(
yt
vk

)

=

(
yt−1 + (µ− 1

2vk−1)∆t+
√
vk−1

√
∆tZ1

k−1

vk−1 + κ(θ − vk−1)∆t+ λ
√
vk−1

√
∆tZ2

k−1

)

with system noise

wk =

(
Z1
k

Z2
k

)

and the covariance matrix

Qk =

(
1 ρ
ρ 1

)

It is easy to see that in the extended Kalman filter, Fk and Uk for Heston stochastic volatility
are

Fk =

(
1 − 1

2∆t
0 1− κ∆t

)

and

Uk =

( √
vk−1

√
∆t 0

0 λ
√
vk−1

√
∆t

)

We assume measurement equation yk = ln(Sk), which implies Hk = (1 0). For a given
set of parameters Θ = {κ, θ,λ, ρ, v0}, we would minimize the following summation as our
objective function to obtain the optimal parameter set for the model

N∑

i=1

(
ln(Ak) +

e2k
Ak

)

where

ek = zk − h(x̂k|k−1, 0)

and

Ak = HkPk|k−1H
⊤
k + VkRkV

⊤
k

As mentioned earlier, minimization can be performed via the Nelder–Mead optimization
algorithm. We leave the estimation and filtering as an exercise at the end of the chapter.
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8.6 Unscented Kalman Filter

When the state transition and observation models, that is, the predict and update func-
tions f and h are highly non-linear, the extended Kalman filter can give particularly poor
performance. This is because only the mean is propagated through the non-linearity. The
unscented Kalman filter (UKF) ([216], [91]) uses a deterministic sampling technique known
as the unscented transform to pick a minimal set of sample points called sigma points around
the mean. These sigma points are then propagated through the non-linear functions, and
the covariance of the estimate is then recovered. The result is a filter which more accurately
captures the true mean and covariance. This can be verified using Monte Carlo sampling
or through a Taylor series expansion of the posterior statistics. In addition, this technique
removes the requirement to explicitly calculate Jacobians, which for complex functions can
be a difficult task in itself (i.e., requiring complicated derivatives if done analytically or
being computationally costly if done numerically).

8.6.1 Predict

As with the EKF, the UKF prediction can be used independently from the UKF update,
in combination with a linear (or indeed EKF) update, or vice versa. The estimated state
and covariance are augmented with the mean and covariance of the process noise.

xa
k−1|k−1 =

[
x̂⊤k−1|k−1

E[w⊤k ]

]

P a
k−1|k−1 =

[
Pk−1|k−1 0

0 Qk

]

A set of 2L+ 1 sigma points is derived from the augmented state and covariance where L
is the dimension of the augmented state.

χ0
k−1|k−1 = xa

k−1|k−1

χi
k−1|k−1 = xa

k−1|k−1 +
(√

(L+ λ)P a
k−1|k−1

)

i
i = 1, . . . , L

χi
k−1|k−1 = xa

k−1|k−1 −
(√

(L+ λ)P a
k−1|k−1

)

i−L
i = L+ 1, . . . , 2L

where
(√

(L+ λ)P a
k−1|k−1

)

i

is the i-th column of the matrix square root of

(L+ λ)P a
k−1|k−1

The matrix square root should be calculated using numerically efficient and stable methods
such as the Cholesky decomposition.

The sigma points are propagated through the transition function f .

χi
k|k−1 = f(χi

k−1|k−1) i = 0, . . . , 2L
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The weighted sigma points are recombined to produce the predicted state and covariance.

x̂k|k−1 =
2L∑

i=0

W (m)
i χi

k|k−1

Pk|k−1 =
2L∑

i=0

W (c)
i [χi

k|k−1 − x̂k|k−1][χ
i
k|k−1 − x̂k|k−1]

Weights for the state and covariance are given by

W (m)
0 =

λ

L+ λ

W (c)
0 =

λ

L+ λ
+ (1− α2 + β)

W (m)
i =

1

2(L+ λ)
i = 1, . . . , 2L

W (c)
i =

1

2(L+ λ)
i = 1, . . . , 2L

where

λ = α2(L+ κ)− L

8.6.2 Update

The predicted state and covariance are augmented as before, except now with the mean
and covariance of the measurement noise.

xa
k|k−1 =

[
x̂⊤k|k−1

E[v⊤k ]

]

P a
k|k−1 =

[
Pk|k−1 0

0 Rk

]

As before, a set of 2L+1 sigma points is derived from the augmented state and covariance
where L is the dimension of the augmented state.

χ0
k|k−1 = xa

k|k−1

χi
k|k−1 = xa

k|k−1 +
(√

(L + λ)P a
k|k−1

)

i
i = 1, . . . , L

χi
k|k−1 = xa

k|k−1 −
(√

(L + λ)P a
k|k−1

)

i−L
i = L+ 1, . . . , 2L

Alternatively, if the UKF prediction has been used, the sigma points themselves can be
augmented along the following lines:

χk|k−1 = [χ⊤k|k−1E[v⊤k ]⊤ ±
√
(L+ λ)Ra

k

where

Ra
k =

[
0 0
0 Rk

]
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The sigma points are projected through the observation function h.

γi
k = h(χi

k|k−1) i = 0, . . . , L

The weighted sigma points are recombined to produce the predicted measurement and
predicted measurement covariance.

ẑk =
2L∑

i=0

W (m)
i γi

k

Pzkzk =
2L∑

i=0

W (c)
i [γi

k − ẑk][γ
i
k − ẑk]

⊤

The state-measurement cross-covariance matrix

Pxkzk =
2L∑

i=0

W (c)
i [χi

k|k−1 − x̂k|k−1][γ
i
k − ẑk]

⊤

is used to compute the UKF Kalman gain.

Kk = PxkzkP
−1
zkzk

As with the Kalman filter, the updated state is the predicted state plus the innovation
weighted by the Kalman gain

x̂k|k = x̂k|k−1 +Kk(zk − ẑk)

And the updated covariance is the predicted covariance minus the predicted measurement
covariance, weighted by the Kalman gain.

Pk|k = Pk|k−1 −Kk(PzkzkK
⊤
k )

8.6.3 Implementation of Unscented Kalman Filter (UKF)

1. Initialize

x̂0 = E(x0)

P0 = E[(x0 − x̂0)(x0 − x̂0)
⊤]

2. Calculate sigma points

xk−1 =
[
x̂k−1 x̂k−1 + γ

√
Pk−1 x̂k−1 − γ

√
Pk−1

]
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3. Time update

x∗k|k−1 = F [xk−1, uk−1]

x̂−k =
2L∑

i=0

W (m)
i x∗i,k|k−1

P−k =
2L∑

i=0

W (c)
i [x∗i,k|k−1 − x̂−k ][x

∗
k|k−1 − x̂−k ]

⊤ +Q

xk|k−1 =

[
x̂−k x̂−k + γ

√
P−k x̂−k − γ

√
P−k

]

yk|k−1 = H [xk|k−1]

ŷ−k =
2L∑

i=0

W (m)
i yi,k|k−1

4. Measurement update equations

Pŷkŷk =
2L∑

i=0

W (c)
i [yi,k|k−1 − ŷ−k ][yi,k|k−1 − ŷ−k ]

⊤ +R

Pxkyk =
2L∑

i=0

W (c)
i [xi,k|k−1 − x̂−k ][yi,k|k−1 − ŷ−k ]

⊤

Kk = PxkykP
−1
ŷk ŷk

x̂k = x̂−k +Kk(yk − ŷ−k )

Pk = P−k −KkPŷkŷkK
⊤
k

where Q and R are the process noise covariance and measurement noise covariance
matrices, respectively. For discrete time and continuous time models, we can get the
analytical form of Rv, but we do not have the formula for R. We can get this matrix
through a parameter estimation process, or for simplicity we assume R = δI, where δ
is a small scaling value and I is the identity matrix.

Some comments:

(1) The square root of P is defined by SS⊤ = P , which requires a Cholesky factor-
ization.

(2) To get the square root of P , P must be positive semi-definite. In implementa-
tion, if P has a negative eigenvalue we modify it by adding a diagonal matrix
with very small entries on the diagonal, that is, P = P + δI. We keep doing it
until all eigenvalues of P become non-negative. Given a proper model parameter
set, the filter convergence would be fast, P stays positive semi-definite, and no
modification is needed.

(3) To calculate the Kalman gain, the inverse matrix of Pŷkŷk is needed. If Pŷkŷk is
likely singular, the inverse matrix would have extreme values, consequently the
new sigma points would be in an unreasonably large range. So adding a proper
Rn is a must.

(4) We use xk|k−1 = E(xk−1) to calculate the one step forward sigma points and
cov(xk−1) is the process noise covariance Q.
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Example 26 Parameter estimation of the Heston stochastic volatility model via unscented
Kalman filter

UKF implementation details for Heston model is as follow: starting from the SDE

dSt = µStdt+
√
υtStdw

1
t (8.2)

dvt = κ(θ − vt)dt+ λ
√
vtdw

2
t (8.3)

Define yt = logSt, and using Itô’s lemma we can rewrite (8.2) as follows:

dyt = (µ− 1

2
vt)dt+

√
vtdw

1
t (8.4)

Knowing the correlation between dw1
t and dw2

t is ρ we can write

dw2
t = ρdw1

t +
√
1− ρ2dzt (8.5)

and substituting it into (8.3) we get

dvt = κ(θ − vt)dt+ λ
√
vt(ρdw

1
t +

√
1− ρ2dzt) (8.6)

From (8.4) we can write

dw1
t =

dyt − (µ− 1
2vt)dt√

vt
(8.7)

By substituting (8.7) in (8.6) we obtain

dvt = κ(θ − vt)dt+ λ
√
vt(ρ

dyt − (µ− 1
2vt)dt√

vt
+

√
1− ρ2dzt)

= κ(θ − vt)dt+ λρ(dyt − (µ− 1

2
vt)dt) + λ

√
vt
√
1− ρ2dzt) (8.8)

Discretizing the state equation (8.8) we obtain

vt = vt−1 + κ(θ − vt−1)∆t+ λρ(yt − yt−1 − (µ− 1

2
vt−1)∆t) + λ

√
vt−1(1− ρ2)∆t z1 (8.9)

where z1 ∼ N (0, 1). We can write the state equation as follows: Define xk ! vk and zk ! yk

xk = Fkxk−1 + uk + wk (8.10)

wk =
√
Qk e1 (8.11)

where

Fk = 1− κ∆t+
1

2
ρλ∆t (8.12)

Uk = κθ∆t− λρµ∆t+ λρ(zt − zt−1) (8.13)

Qk = λ2(1− ρ2)xk−1∆t (8.14)

Here Ut plays the role of control input vector. For the measurement equation (8.4), we use
an explicit-implicit scheme to get

zk = zk−1 + (µ− 1

2
xk)∆t+

√
xk−1∆t z2 (8.15)
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TABLE 8.1: Heston stochastic volatility parameters via UKF for the S&P 500 and
USD/JPY

data set κ θ σ µ ρ υ0
S&P500 2.1924 0.0133 0.2940 0.2016 -0.6143 0.0233
JPY/USD 1.4785 0.0072 0.1000 0.0103 -0.5656 0.0121

where z2 ∼ N (0, 1) or equivalently

zk = Hkxk + Uk +
√
Rk z2 (8.16)

where

Hk = −1

2
∆t (8.17)

Uk = zk−1 + µ∆t (8.18)

Rk = xk−1∆t (8.19)

The rest are fully described in the UKF procedure for propagating state propagating, pre-
diction, and formulation of the log likelihood.

Datasets used for this example are: (a) daily close of S&P 500 from November 11,
2001 to November 11, 2011 (b) daily close of U.S. dollar vs. Japanese yen (USD/JPY)
exchange rate from November 11, 2001 to November 11, 2011. For each we use the
time series to estimate Heston stochastic volatility model parameters. The parame-
ter set for estimation is Θ = {κ, θ,σ, µ, ρ, υ0} and the hidden state for filtering is
{υt, 1 ≤ t ≤ T }. Table 8.1 displays Heston stochastic volatility parameters obtained
from estimation via UKF for S&P 500 and USD/JPY datasets. For parameter estima-
tion, the starting point for USD/JPY parameter sets Θ = [κ, θ,σ, µ, ρ, υ0] is given by
Θ0 = [2.3618, 0.0166, 0.3451,−0.0676,−0.0806, 0.0166], lower bound and upper bound for
Θ: lb = [0.3, 0.00025, 0.05,−0.5,−0.99, 0.00025], ub = [5, 0.64, 0.7, 0.5, 0.3, 0.64]. For param-
eter estimation, the starting point for the S&P 500 parameter set Θ = [κ, θ,σ, µ, ρ, υ0]
is given by Θ0 = [1.4440, 0.0184, 0.3353, 0.0125,−0.5267, 0.0225], lower bound and upper
bound for Θ: lb = [0.3, 0.00025, 0.05,−0.5,−0.99, 0.00025], ub = [5, 0.64, 0.7, 0.5, 0.3, 0.64].
The initial covariance matrix P0 = var(x0) = 0.00001. In Figures 8.9(a) and 8.10(a) we dis-
play time series versus its prediction for S&P 500 and USD/JPY respectively. Figures 8.9(b)
and 8.10(b) show the hidden underlying volatility for S&P 500 and USD/JPY, respectively.

Example 27 Parameter estimation of an affine term structure with constant volatility via
unscented Kalman filter

In this example we assume a three-factor affine dynamic term structure model with constant
volatility. This class belongs to the affine class of dynamics term structure models of [101],
[100] and studied in [24]. Assume the short rate is affine and follows

rt = ar + b⊤r xt

where we take the vector xt to follow the matrix OU equation, driven by Brownian noise
under physical measure P. Namely,

dxt = −Bxtdt+ dW P
t
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FIGURE 8.9: Heston stochastic volatility model UKF example for S&P 500. (a) Actual
versus prediction, (b) volatility actual versus prediction
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FIGURE 8.10: Heston stochastic volatility model UKF example for USD/JPY exchange
rate. (a) Actual versus prediction, (b) volatility actual versus prediction
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In general, matrix B may be full, with all eigenvalues having a positive real part. We assume
an affine market price of risk

γ(xt) = bγ +Bγxt

where bγ ∈ R3 and Bγ is a 3 × 3 matrix. With the market price of risk, the dynamic of
factors under a risk-neutral measure are

dxt = −bγdt−B∗xtdt+ ΣdWQ
t

where B∗ = B + bγ . Zero-coupon bond prices under this framework are exponential affine
in the state vector xt.

P (xt, τ) = exp(−a(τ) − b(τ)⊤xt)

where τ = T − t time to maturity and the loading factors a(τ) and b(τ) are determined by
the following Riccati equations:

a′(τ) = ar − b(τ)⊤bγ − b(τ)⊤b(τ)/2

b′(τ) = br − b(τ)⊤B∗

subject to the initial conditions a(0) = 0 and b(0) = 0. There might be analytical solutions
to this, but we solve it via a numerical procedure. The discrete version of the state equation
is

xt+1 = Φxt +
√
Qε

where Φ = exp(−B∆t) and ε ∼ N (0, 1) and the conditional variance

Q =

∫ ∆t

0
e−uBΣΣ⊤e−uB⊤du

=

∫ ∆t

0
Ue−uDU⊤ΣΣ⊤Ue−uD⊤U⊤du

= U
(
U⊤ΣΣ⊤U

)
(∫ ∆t

0
e−uDe−uD⊤du

)
U⊤

The conditional variance Q can be computed based on eigenvalues and eigenvectors of
matrix B as follows:

Q = U
(
U⊤ΣΣ⊤U⊤

)
D−1(I − e−D∆t)U⊤

where U and D are eigenvectors and eigenvalues of B + B⊤ respectively, and B + B⊤ =
UDU⊤. The observation is linked to the measurement equation as follows:

yt = h(xt;Θ) + et

=

[
LIBOR(xt, Ti)
swap(xt, Tj)

]
+ et

with cov(et) = R where et denotes the measurement error at time t. We assume that
measurement error is independent of the state vector and also mutually independent on
each series with a distinct variance σi. Therefore Rii = σ2

i for i = 1, . . . , N and Rij = 0
for i ̸= j. We use 15 years of LIBOR rates and swap rates to estimate model parameters.
Time series of the interest rate factors (hidden states) are the by-product of the estimation
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procedure. Data consists of 1) LIBOR rates with maturities of 1, 2, 3, and 6 months, 2)
swap rates at maturities 2, 3, 5, 10, 15, and 30 years. All interest rates are in U.S. dollars.
The data are daily closing mid-quotes from March 3, 1997 through October 20, 2011 (3,687
observations for each instrument). The likelihood function can be constructed based on
the conditional density of state variables and the pricing errors. In this example, the state
propagation equation is Gaussian linear but the measurement equations in terms of LIBOR
and swap rates are nonlinear in the state variables.

For the estimation, we assume that the measurement errors are independent with distinct
variance σ2. We also assume that B and B∗ are lower triangular matrices. Thus we have
the following parameter set: Θ = {B,B∗, ar, br, bγ ,σ}.

Denote the log-likelihood of each day’s observation on the forecasting errors of the
observed series

lk+1(Θ) = −1

2
log |Pŷk ŷk |−

1

2

(
(yk+1 − ŷ−k+1)

⊤P−1
ŷk+1ŷk+1

(yk+1 − ŷ−k+1)
)

We define the measurement equation using LIBOR rates and swap rates assuming additive
normal errors. The parameter set for estimation is Θ = {ar, br, bγ , B,B⋆}. The hidden state
for filtering is {xt, 1 ≤ t ≤ T }.

Obtained parameters are

ar = 0.0345

br = [0.000000614016347, 0.000000000001379, 0.004292529402460]

bγ = [0.0174,−0.0445, 0.3406]

B =

⎛

⎝
0.0052
−0.0668 0.4500
−0.0676 −0.3796 0.5134

⎞

⎠

B⋆ =

⎛

⎝
0.0000007
−0.1328506 1.1443663
−0.0547356 −0.0892296 0.9696811

⎞

⎠

Σ =

⎛

⎝
1.3769
1.5553 −2.0813
−0.0590 0.0759 0.3536

⎞

⎠

In Figures 8.11(a)–8.11(d) we display one-month LIBOR actual vs. fitted, one-month LI-
BOR actual vs. prediction, 6-month LIBOR actual, and 6-month LIBOR actual vs. predic-
tion respectively obtained for the affine term structure model with constant volatility using
unscented Kalman filter. In Figures 8.12(a)–8.12(d) we display five-year swap actual vs. fit-
ted, five-year swap actual vs. prediction, fifteen-year swap actual vs. fitted, and fifteen-year
swap actual vs. prediction respectively. In Figures 8.13(a) and 8.13(b) we display thirty-
year swap actual versus fitted and thirty-year swap actual versus prediction respectively. In
Figure 8.14 we display time series of the hidden state obtained through filtering.

Example 28 Parameter estimation of an affine term structure with stochastic volatility
via unscented Kalman filter

In this example, we assume a three-factor affine dynamic term structure model with stochas-
tic volatility [132]. This class belongs to the affine class of dynamics term structure models
of [101], [100]. Assume the short rate is affine and follows

rt = ar + b⊤r xt
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FIGURE 8.11: Affine term structure model with constant volatility UKF example: (a)
one-month LIBOR actual vs. fitted, (b) one-month LIBOR actual vs. prediction (c) 6-month
LIBOR actual vs. fitted (d) 6-month LIBOR actual vs. prediction
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FIGURE 8.12: Affine term structure model with constant volatility UKF example: (a)
5-year swap actual vs. fitted, (b) 5-year swap actual vs. prediction, (c) 15-year swap actual
vs. fitted, (d) 15-year swap actual vs. prediction
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FIGURE 8.13: Affine term structure model with constant volatility UKF example: (a)
30-year swap actual vs. fitted, (b) 30-year swap actual vs. prediction

where xt is an n× 1 state factor follows the following SDE:

dxt = (−bγ −Bxt)dt+ Σ
√
vtdWt

and vt follows
dvt = κ(θ − vt)dt+ λ

√
vtdZt

for Zt a univariate Brownian motion possibly correlated with Wt with vector correlation
ρ = d <W,Z> .

In this affine term structure framework with stochastic volatility, the bond pricing and
the characteristic function of the log swap rate under the swap measure are derived as shown
in [132]. Having the bond prices, one can calculate LIBOR rates and swap rates; having the
characteristic function, we can employ any transform technique to price swaptions. Using
LIBOR rate, swap rates, and swaption premiums, model parameters can be estimated using
the unscented Kalman filter.

To utilize UKF for parameter and state estimation of this three factor affine model, we
set up a state formula for this continuous-time model. For one step forward we have

xk+1 = F (xk) = E(xk+1|xk)

= xk + (−bγ −Bxk)∆t

vk+1 = F (vk) = E(vk+1|vk)
= vk + κ(θ − vk)∆t

and

Pxx = var(xt+1) = ΣΣ⊤vt∆t

Pyy = var(vt+1) = λ2vt∆t

Pxy = cov(xt+1, vt+1) = λvtρΣdt

Rv(vt) =

[
Pxx Pxy

P⊤xy Pyy

]
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FIGURE 8.14: Affine term structure model with constant volatility UKF example: hidden
state

We assume

E(F (x0)) = x0 (8.20)

E(F (u0)) = v0 (8.21)

Therefore

x0 = −B−1bγ (8.22)

v0 = θ (8.23)

and

yt =

⎡

⎣
LIBOR(xt, Ti)
swap(xt, Tj)

swaption(xt, Ti, Tj)

⎤

⎦+ et

Data used for parameter estimation consists of 1) LIBOR rates with maturities of one,
two, three, six and twelve months, 2) swap rates at maturities two, three, five, ten, fifteen
and thirty years and 3) at-the-money swaption premiums with maturities of one, two, five
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FIGURE 8.15: Affine term structure stochastic volatility UKF example: (a) 1-month
LIBOR actual versus prediction, (b) 3-month LIBOR actual versus prediction

and ten years. At each option maturity, we have three contracts with different underly-
ing swap maturities: two, five, and ten years. All interest rates and interest rate options
are on U.S. dollars. The data are daily closing mid-quotes from March 3, 1997 through
October 20, 2011 (3,687 observations for each instrument). Parameter set for estimation
Θ = {ar, br, bγ , B,B⋆,Σ,κ, θ,λ}. Hidden State for Filtering is {υt, 1 ≤ t ≤ T }. We obtain
the following parameters from the estimation procedure.

ar = 0.1098

br = [0.0008, 0.0009, 0.0836]

bγ = [0.3588,−0.1526,−0.3297]

B =

⎛

⎝
0.3703
−0.0582 0.2857
−0.2002 0.0074 1.3889

⎞

⎠

B⋆ =

⎛

⎝
0.0043
−0.1403 0.0043
−0.8564 −0.0269 0.8514

⎞

⎠

Σ =

⎛

⎝
2.4496 0.0313 0.0074
0.1854 2.3478 −0.1181
0.0127 0.4236 0.4310

⎞

⎠

κ = 0.9997

θ = 1.0014

λ = 1.1628

In Figures 8.15(a) and 8.15(b) we display one-month LIBOR actual versus prediction and
three-month LIBOR actual versus prediction respectively obtained for the affine term struc-
ture model with stochastic volatility using unscented Kalman filter. In Figures 8.16(a)–
8.16(d) we display five-year swap rate, ten-year swap rate, fifteen-year swap rate, and thirty-
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year swap rate actual versus prediction respectively. In Figure 8.17 we display states of the
affine term structure with stochastic volatility obtained via unscented Kalman filter.

In [132] the authors look more closely at the relationship between model premiums
and interest rate factors, as well as market premiums and interest factors to conclude that
long-dated swaptions are highly correlated to the slope of the yield curve.

8.7 Square Root Unscented Kalman Filter (SR UKF)

Implementation of Cholesky factorization in UKF requires O(L3/6) computations where
L is the state dimension, a square root unscented Kalman filter [92] can reduce it to O(L2);
and speed up the filtering process especially for the system that has a large state dimension.
Here are the implementation steps.

1. Initialize

x̂0 = E(x0)

S0 = chol
(
E[(x0 − x̂0)(x0 − x̂0)

⊤]
)

xt0 = −B−1bγ

vt0 = θ

x̂0 =

[
xt0

vt0

]

and S0 = chol(Rv) or identity matrix for simplicity.

2. Calculate sigma points

xk−1 = [x̂k−1 x̂k−1 + γSk x̂k−1 − γSk]

3. Time update

x∗k|k−1 = F [xk−1, uk−1]

x̂−k =
2L∑

i=0

W (m)
i x∗i,k|k−1

S−k = qr{[
√
W (c)

1 [x∗1:2L,k|k−1 − x̂−k ]
√
Rv]}

S−k = cholupdate{S−k ,x
∗
0,k − x̂−k ,W

(c)
0 }

xk|k−1 =
[
x̂−k x̂−k + γS−k x̂−k − γS−k

]

yk|k−1 = H [xk|k−1]

ŷ−k =
2L∑

i=0

W (m)
i yi,k|k−1
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FIGURE 8.16: Affine term structure stochastic volatility UKF example: actual versus
prediction for (a) 5-year swap rate, (b) 10-year swap rate, (c) 15-year swap rate, (d) 30-year
swap rate
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FIGURE 8.17: Affine term structure stochastic volatility UKF example: states

4. Measurement update equations

Sŷk = qr{[
√
W (c)

1 [y1:2L,k − ŷk]
√
Rn

k ]}

Sŷk = cholupdate{Sŷk,y0,k − ŷk,W
(c)
0 }

Pxkyk =
2L∑

i=0

W (c)
i [xi,k|k−1 − x̂−k ][yi,k|k−1 − ŷ−k ]

⊤

Kk =
(
Pxkyk/S

⊤
ŷk

)
/Sŷk

x̂k = x̂−k +Kk(yk − ŷ−k )

U = KkSyk

Sk = cholupdate{S−k , U,−1}
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The variables used are defined as

Wm
0 = λ/(L+ λ)

W (c)
0 = λ/(L+ λ) + (1− α2 + β)

W (m)
i = W (c)

i = 1/{2(L+ λ), i = 1, . . . , 2L}
λ = α2(L+ κ)− L

γ =
√
(L + λ)

We recommend the following for α, β, and κ:

α = 1.0

β = 1.0

κ = 0.0

The definitions of Rv and Rn are the same as in the unscented Kalman filter.

Some comments:

(1) QR decomposition — we define A⊤ = QR, where A ∈ RL×N , and N ≥ L. The
Q is an orthogonal matrix, R is an upper triangular matrix, and the qr{.} in the
algorithm denotes the upper triangular part of R.

(2) Cholesky factor updating — cholupdate(S, u,±v) where S = chol(A) is the orig-
inal Cholesky factorization of A, returns the upper triangular Cholesky factor of
A ±

√
vuu⊤, where u is a column vector of appropriate length. If u is a matrix

not a vector, then the result is M consecutive updates of the Cholesky factor use
the M column of u. This algorithm is O(L2) per update.

(3) Given the same initial value and model parameters, the filtering result of UKF
and SR-UKF should be the same. One exception is when P is not positive semi-
definite during UKF, and has been added an I.

In the case of using discrete time stochastic model introduced in [138] and discussed
earlier, the state formula and one step forward are

xk+1 = F (xk) = E(xk+1|xk)

= xk + (bγ −Bxk)∆t

vk+1 = F (vk) = E(vk+1|vk)

=
λ

δ
vk +

γ

δη

and

Pxx = var(xt+1) =
1

δ
ΣΣ⊤∆tλvt +

1

δη
ΣΣ⊤∆tγ

Pyy = var(vt+1) =
1

δ2
λvt +

γ

δ2η

Pxy = cov(xt+1, vt+1) = 0

Rv(vt) =

[
Pxx Pxy

P⊤xy Pyy

]

We assume

E(F (x0)) = x0

E(F (u0)) = v0
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Therefore it is easy to see that

x0 = B−1bγ (8.24)

v0 =
γ

(δ − λ)η
(8.25)

8.8 Particle Filter

A more recent alternative for filtering nonlinear processes is provided by a collection of
techniques known as particle filtering [18]. Particle filters, also known as sequential Monte
Carlo, approximate the continuous density function p(xt|yt) by a discrete density function,
effectively a histogram via simulation. The idea, based on importance sampling, is to use
Monte Carlo simulation to replace the Gaussian approximation for p(xt|yt) that was used
in the Kalman filter or the extended Kalman filter [18]. Thus a better estimate of the
parameters from fundamentally nonlinear processes might be obtained. Like all sampling
based approaches we generate a set of samples that approximate the distribution function

p(xt|yt). For N sample points we have {x(i)
t , w(i)

t }Ni=1 where x(i)
t are support points to the

discrete distribution called particles and w(i)
t is weight associated to support point x(i)

t

and obviously sum of the weights are one. The expectation with respect to the filtering is
approximated by

E(f(xt)) =

∫
f(xt)p(xt|yt)dxt ≈

N∑

i=1

w(i)
t f(x(i)

t ) (8.26)

Like other filtering techniques, the first step in the particle filtering algorithm is initializa-
tion. The choice of a proper initial state value plays a more crucial role in particle filtering
than in the unscented Kalman filter. A bad initial value could make the sigma points (the
particles) far from the actual value, and the probability of a particle to the actual state
can be very small; therefore the converge process could take a long time. One solution of
finding a proper initial state value is using UKF for the prior state value. The UKF method
converges quickly to the true state value; then one would switch to a particle filter for more
accurate estimation.

For a finite set of particles, the algorithm performance depends on the choice of the
proposal distribution, π(xk|x0:k−1, y0:k). The optimal proposal distribution is given by the
target distribution

π(xk|x0:k−1, y0:k) = p(xk|xk−1, yk)

However, the transition prior is often used as the importance function, since it is easier to
draw particles and perform subsequent importance weight calculations as

π(xk|x0:k−1, y0:k) = p(xk|xk−1)

As will be discussed later, resampling is used to avoid the problem of degeneracy of the
algorithm, that is, avoiding the situation where all but one of the importance weights are
close to zero. The performance of the algorithm can also be affected by the proper choice
of resampling method. The stratified sampling proposed by [165] is optimal in terms of
variance.

The probability function p(yk|xk) that is used for weight calculation is critical to the
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filtering. In the case of no analytical form for this probability for the model under con-
sideration we can alternatively assume that the measures or signal’s noise has a normal
distribution and associate it with Rv. Therefore

p(yj,k|xk) =
1√

2πRv,j,j
e
−

(yj,k−Fj(xk))2

2Rv,j,j (8.27)

At step k, the proxy for likelihood that is its Monte Carlo approximation is

lk =
Nsim∑

i=1

p(yk|xi,k)p(xi,k|xi,k−1)

π(xi,k|xi,k−1, yk)
(8.28)

Therefore to estimate the parameters we maximize the logarithmic of likelihood (or minimize
its negative):

−
N∑

i=1

log lk (8.29)

Note that the equivalent formulation is

lk =
Nsim∑

i=1

w(i)
k (8.30)

with the interpretation of the likelihood as the total weight.

8.8.1 Sequential Importance Sampling (SIS) Particle Filtering

The sequential importance sampling (SIS) algorithm is as follows:

1. Simulate the state from the prior (or another proposal distribution) that is drawing
N samples according to the model

x(i)
k = f(x(i)

k−1, u
(i)
k−1), i = 1, 2, . . . , N (8.31)

2. Associate to each simulated point a weight. That is done by updating the importance
weights

w(i)
k = w(i)

k−1

p(zk|x(i)
k )p(x(i)

k |x(i)
k−1)

π(x(i)
k |x(i)

k−1, zk)

where p(zk|x(i)
k ) is probability, p(x(i)

k |x(i)
k−1) is transition probability, and π(x(i)

k |x(i)
k−1, zk)

is the proposal distribution. If we assume π(x(i)
k |x(i)

k−1, zk) = p(x(i)
k |x(i)

k−1), the expres-
sion can be simplified as

w(i)
k = w(i)

k−1p(zk|x
(i)
k )

3. Normalize the weights w̃k(x
(i)
k ) =

w
(i)
k∑

i w
(i)
k

Then the best approximation of xk is its conditional expectation given z1:k , that is,

E(xk|z1:k) ≈
Nsims∑

i=1

w̃k(x
(i)
k )x(i)

k
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8.8.2 Sampling Importance Resampling (SIR) Particle Filtering

The variance of the weights increases over time in SIS, so the algorithm will diverge [18].
This is known as the degeneracy problem in sampling importance sampling. A solution is
proposed in [18] by Arulampalam et al. that has to do with resampling. That is, regenerate
particles with higher weight and eliminate those with lower weight. The resampling algo-
rithm is done as follows: compare the cumulative distribution function (CDF) created from
the normalized weights with a CDF constructed from a uniformly simulated number U [0, 1].
At time step k and for j = 1, . . . , Nsims, if

1

Nsims
(U [0, 1] + j − 1) ≥

i∑

l=1

w̃k(x
(l)
k )

then increment and skip i, otherwise take x(i)
k and set its weight to 1

Nsims
. Here is the

pseudo-code for the resampling algorithm:

for j = 1, . . . , Nsims

c(j) =
∑j

l=1 w̃k(x
(l)
k )

end for

i = 1;

for j = 1, . . . , Nsims

u(j) = 1
Nsims

(U [0, 1] + j − 1)

while (u(j) > c(i))

i = i+ 1;

end while

x̃(j)
k = x(i)

k

w̃j
k = 1

Nsims

end for

The sampling importance resampling (SIR) algorithm is as follows:

1. Simulate the state from the prior (or another proposal distribution)

2. Associate to each simulated point a weight equal to the conditional likelihood density

w(i)
k = w(i)

k−1p(zk|x
(i)
k )

3. Normalize the weights w̃k(x
(i)
k ) =

w(i)
k∑

i w
(i)
k

4. Resample according the pseudo-code explained earlier

An alternative to that is to compute an estimate of the effective number of particles as

N̂eff =
1

∑N
j=1(w̃

j
k)

2
(8.32)
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TABLE 8.2: Heston stochastic volatility parameters via particle filter for the S&P 500 and
USD/JPY

dataset κ θ σ µ ρ υ0
S&P 500 4.3758 0.1505 0.3473 0.0984 -0.2541 0.0989
JPY/USD 2.3618 0.0166 0.3451 -0.0676 -0.0806 0.0166

Resample if N̂eff < Nτ , where Nτ is a given threshold, and draw N particles from the
current particle set with probabilities proportional to their weights. Replace the current
particle set with this new one. Reset weights as wi,k = 1/N .

Compared with the unscented Kalman filter (UKF), the advantage of the particle filter
(PF) is that, with sufficient samples, it approaches the Bayesian optimal estimate, so it
is more accurate. However, a larger number of samples requires heavier computation for
the simulation, and in many scenarios, it would be huge, while UKF only requires 2L + 1
samples where L is the state dimension.

We apply the particle filtering algorithm to Heston stochastic volatility, VGSA, and
NIGSA models and estimate the optimal parameter sets for a time series via the maximiza-
tion of the likelihood under the physical measure framework.We then compare these optimal
parameters with those obtained from a cross-sectional fitting using options of different strike
prices (under risk-neutral framework).

Example 29 Particle filter for Heston stochastic volatility model

We use two different datasets for estimation of the Heston stochastic volatility model: (a)
daily close of S&P 500 from November 11, 2001 to November 11, 2011 (b) daily close of the
USD/JPY exchange rate from November 11, 2001 to November 11, 2011. The parameter set
for estimation is Θ = {κ, θ,σ, µ, ρ, υ0} and the hidden state for filtering is {υt, 1 ≤ t ≤ T }.

For parameter estimation, the starting point for USD/JPY parameter sets Θ =
[κ, θ,σ, µ, ρ, υ0] is given by Θ0 = [1.2, 0.0898, 0.3995,−0.0552,−0.0064, 0.0800], lower bound
and upper bound for Θ: lb = [1, 0.01, 0.1,−0.1,−0.9, 0.01], ub = [8, 0.09, 0.4, 0.2, 0.2, 0.09].
For parameter estimation, the starting point for S&P 500 parameter sets Θ =
[κ, θ,σ, µ, ρ, υ0] is given by Θ0 = [5, 0.09, 0.3, 0.02,−0.4, 0.09], lower bound and upper bound
for Θ: lb = [1, 0.00025, 0.1,−0.2,−0.9, 0.00025], ub = [8, 0.49, 0.6, 0.2, 0.1, 0.49]. The initial
particles are set to be all equal to υ0.

For the Heston stochastic volatility model we use the following densities [5]:

π(x(i)
k |x(i)

k−1, yk) = n

(
x(i)
k , x(i)

k−1,
√
P (i)
k

)

p(yk|x(i)
k ) = n

(
yk, yk−1+(µ− 1

2
x(i)
k )∆t,

√
x(i)
k ∆t

)

p(x(i)
k |x(i)

k−1) = n

(
x(i)
k , x(i)

k−1+δ∆t+ρλ(yk−1−yk−2), λ
√

1−ρ2
√
x(i)
k−1∆t

)

where

δ = κθ−ρλµ−(κ− 1

2
ρλ)x(i)

k−1

n(x,m, s) =
1√
2πs

exp(− (x−m)2

2s2
)
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We use two different approaches for the Heston stochastic volatility model. One approach is
for parameter estimation and the other one is for prediction. In the first approach we follow
the work done by Aihara et al. [5] for filtering and prediction and in the second approach we
follow the work done by Mimouni [180] for parameter estimation. Implementation details of
the first approach for the Heston stochastic volatility model (Heston Model-1) is as follows:
start from the Heston SDE

dSt = µStdt+
√
υtStdw

1
t (8.33)

dvt = κ(θ − vt)dt+ λ
√
vtdw

2
t (8.34)

Define yt = logSt using Itô’s lemma we can rewrite (8.33) as follows:

dyt = (µ− 1

2
vt)dt+

√
vtdw

1
t (8.35)

Knowing the correlation between dw1
t and dw2

t is ρ, <dZt, dBt>= ρdt, we can write

dw2
t = ρdw1

t +
√
1− ρ2dzt (8.36)

and substituting it into (8.34) we get

dvt = κ(θ − vt)dt+ λ
√
vt(ρdw

1
t +

√
1− ρ2dzt) (8.37)

From (8.35) we can write

dw1
t =

dyt − (µ− 1
2vt)dt√

vt
(8.38)

By substituting (8.38) in (8.37) we obtain

dvt = κ(θ − vt)dt+ λ
√
vt(ρ

dyt − (µ− 1
2vt)dt√

vt
+

√
1− ρ2dzt)

= κ(θ − vt)dt+ λρ(dyt − (µ− 1

2
vt)dt) + λ

√
vt
√
1− ρ2dzt) (8.39)

Rewriting the discrete version of the state equation (8.39)

vt = vt−1 + κ(θ − vt−1)∆t+ λρ(yt − yt−1 − (µ− 1

2
vt−1)∆t) + λ

√
vt−1(1− ρ2)∆t z1(8.40)

where z1 ∼ N (0, 1). Now we use explicit-implicit discretization to discretize 8.35 as follows:

yt = yt−1 + (µ− 1

2
vt)∆t+

√
vt−1

√
∆t z2 (8.41)

and plug (8.41) into (8.40) to get

vt = vt−1 + κ(θ − vt−1)∆t+ λρ((µ− 1

2
vt)∆t− (µ− 1

2
vt−1)∆t)

+ λ
√

vt−1(1 − ρ2)∆z2 + λρ
√
vt−1

√
∆tz1 (8.42)

Notice that if we did not use explicit-implicit discretization the terms in (8.42) would have
canceled each other. By doing this we make the scheme stable. From (8.40) we can construct
the optimal proposal (importance) function, π(vt|vt−1, yt), that is,

π(vt|vt−1, yt) = n(vt,mI ,σI) (8.43)
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where

mI = vt−1 + κ(θ − vt−1)∆t+ λρ(yt − yt−1 − (µ− 1

2
vt−1)∆t)

σI = λ
√

vt−1(1 − ρ2)∆t

n(x,m, s) =
1√
2πs

exp(− (x−m)2

2s2
)

From (8.41), we have the likelihood function p(yt|vt, vt−1, yt−1)

p(yt|vt, vt−1, yt−1) = n(yt,mL,σL)

where

mL = yt−1 + (µ− 1

2
vt)∆t

σL =
√
vt−1∆t

From (8.42) we have the transition density p(vt|vt−1)

p(vt|vt−1) = n(vt,mT ,σT ) (8.44)

where

mT = (1 +
1

2
λρ∆t)−1(vt−1 + κ(θ − vt−1)∆t+

1

2
λρvt−1∆t)

σT = (1 +
1

2
λρ∆t)−1λ

√
vt−1∆t

Then weights are updated as follows: initial weights are all equal to 1
N , then

wi
t = wi

t−1
p(yt|vt, vt−1, yt−1)p(vt|vt−1)

π(vt|vt−1, yt)

Then the likelihood is approximated by
T∑

t=1
(log

N∑
i=1

wi
t) where T is number of days and N is

number of particles used.
Implementation of the prediction step

p(yt|y1:t−1) =

∫
p(yt, xt−1|y1:t−1)dxt−1

=

∫
p(yt|xt−1)p(xt−1|y1:t−1)dxt−1

=

∫ ∫
p(yt, xt|xt−1)p(xt−1|y1:t−1)dxtdxt−1

=

∫ ∫
p(yt|xt)p(xt|xt−1)p(xt−1|yt−1)dxtdxt−1

The above equation suggests the following approximation for predictive density p(yt|y1:t−1).

Suppose x(i)
t−1 is the i-th sample from p(xt−1|y1:t−1) and xi,j

t−1 is the j-th sample from

p(xt|x(i)
t−1), then we can estimate each p(yt|y1:t−1) via

p(yt|y1:t−1) =
1

N ×M

N∑

i=1

M∑

j=1

p(yt|xi,j
t )
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We implement the prediction as follows: given time t − 1 (today), particles v(i)t−1 is as ap-
proximation for posterior samples p(vt−1|y1:t−1), doing one step propagation of the state
equation to generate vit via the following equation

v(i)t = v(i)t−1 + κ(θ − v(i)t−1)∆t

Given v(i)t , we predict yit using the following equation:

yit = yt−1 + (µ− 1

2
vit)∆t+

√
vit−1∆w1(t)

Then given ykt , k = 1, . . . , N , we calculate the predictive density of ykt by

p(ykt |y1:t−1) =
1

NM

N∑

i=1

M∑

j=1

p(ykt |x
i,j
t )

Simplify it by using M = 1, then p(ykt |y1:t−1) =
1
N

N∑
i=1

p(ykt |xi
t), then the prediction of log

stock price at time t is given by

ypredt =
N∑

k=1

p(ykt |y1:t−1)y
k
t

Parameter estimation
The simulation study indicates that the above formulation of likelihood has difficulty in

identifying κ and ρ. We observe that in estimation, we constantly hit the boundary of κ
or ρ. Instead we switch to another discretization. The Heston model second approach has
to do with parameter estimation, which is more stable than the Heston Model-1 described
earlier. In this approach, we follow the work done by Mimouni [180]. The second approach
is as follows (Heston Model-2):

dSt = µStdt+
√
υtStdw

1
t (8.45)

dvt = κ(θ − vt)dt+ λ
√
vtdw

2
t (8.46)

Define yt = logSt and by means of Itô’s lemma we obtain the following for (8.45):

dyt = (µ− 1

2
vt)dt+

√
vtdw

1(t) (8.47)

and as previously mentioned, knowing the correlation, we can write

dw2
t = ρdw1

t +
√
1− ρ2dzt (8.48)

Substituting (8.48) into (8.46) and using (8.47) and then discretizing it using Euler’s scheme
to get

vt = vt−1 + κ(θ − vt−1)∆t+ λρ(yt − yt−1 − (µ− 1

2
vt−1)∆t)

+ λ
√

vt−1(1 − ρ2)
√
∆tz1 (8.49)

where z1 ∼ N (0, 1). Also, discretization of (8.47) yields

yt = yt−1 + (µ− 1

2
vt−1)∆t+

√
vt−1∆tz2
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where z2 ∼ N (0, 1). Following the argument in [180], we use Equation (8.49) to propagate
the state from t− 1 to t:

v(i)t = v(i)t−1 + κ(θ − v(i)t−1)∆t+ λρ(yt − yt−1 − (µ− 1

2
v(i)t−1)∆t)

+ λ
√
v(i)t−1(1− ρ2)∆tz1 (8.50)

and use v(i)t obtained from Equation (8.50) to predict y at t + 1 and compute yt+1 to
calculate likelihood and update the weights. Initial weights are all equal to 1

N .

w(i)
t = w(i)

t−1L(t)

L(t) = n(v(i)t , µL,σL)

where

µL = yt+1 − yt + (µ− 1

2
v(i)t )∆t

σL =

√
v(i)t ∆t

The rationale for the second approach working for estimation is the fact that we use future
data yt+1 to smooth vt, that is, vt|y1:t+1 since we discretize

yt+1 = yt + (µ− 1

2
vt)∆t+

√
vt∆w1

t

while in the first approach we only estimate posterior vt|y1:t. Also in this approach proposal
distribution and transition distribution are the same. We plot results of Heston stochas-
tic volatility particle filter example in Figures 8.18(a)–8.18(d). In Figures 8.18(a)–8.18(d)
we illustrate filtered volatility of USD/JPY, USD/JPY actual versus prediction, filtered
volatility of S&P 500, and S&P 500 actual versus prediction respectively.

Example 30 Parameter estimation of variance gamma with stochastic arrival (VGSA) via
particle filtering

Under the VGSA model, the stock price process (in the risk-neutral framework) follows

d lnSt = (r − q + ω)dt+X(h(dt);σ, ν, θ)

with ω = 1
ν ln(1− θν − σ2ν/2) and

X(h(dt);σ, ν, θ) = B(γ(h(dt), 1, ν), θ,σ)

and the gamma cumulative distribution function

Fν(h, x) =
1

Γ(hν )ν
h
ν

∫ ∞

0
e−

t
ν t

h
ν−1dt

and h(dt) = ytdt with

dyt = κ(η − yt)dt+ λ
√
ytdWt

The Euler discretized VGSA process could be written via the auxiliary variable

yk = yk−1 + κ(η − yk−1)∆t+ λ
√
yk−1

√
∆tZk−1
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FIGURE 8.18: Heston stochastic volatility particle filtering example: (a) filtered volatility
of USD/JPY, (b) actual versus prediction USD/JPY, (c) filtered volatility of S&P 500 and
(d) actual versus prediction S&P 500
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and the state

xk = F−1
ν (yk∆t,U [0, 1])

as well as the observation zk = lnSk

zk = zk−1 + (rk−1 − qk−1 + ω)∆t+ θxk + σ
√
xkBk

with ω = 1
ν ln(1− θν − σ2ν/2) and Wk−1 and Bk are N (0, 1).

The particle filter algorithm could therefore be written as follows (the first approach):

• initialize the arrival rate y(j)0 , the state x(i)
0 , and the weight w(i)

0 for j between 1 and
Msims, and i between 1 and Nsims

• while 1 ≤ k ≤ Nsims

– simulate the arrival-rate yk for j between 1 and Msims

y(j)k = y(j)k−1 + κ(η − y(j)k−1)∆t+ λ
√

y(j)k−1

√
∆tN−1

(
U (j)[0, 1]

)

– simulate the state xk for each y(j)k and for i between 1 and Nsims

x̃(i|j)
k = F−1

ν

(
y(j)k ∆t,U (j)[0, 1]

)

– compute the unconditional state

x̃(i)
k =

∫
x̃(i)
k (yk)p(yk|yk−1dyk ∼

1

Msims

Msims∑

j=1

x̃(i|j)
k

– calculate the associated weights for each i

w(i)
k = w(i)

k−1p(zk|x̃
(i)
k )

with

p(zk|x̃(i)
k ) = n(zk,m, s)

is the normal density with mean of m = zk−1 + (rk − qk + ω)∆t + θx̃(i)
k and

standard deviation of s = σ
√
x̃(i)
k

– normalize the weights

w̃(i)
k =

w(i)
k∑Nsims

j=1 w(i)
k

– resample the points x̃(i)
k and get x(i)

k and reset w(i)
k = w̃(i)

k = 1
Nsims

• end of while loop
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We can also take advantage of the fact that VG provides an integrated density of stock
return. Calling z = ln(Sk/Sk−1) and h = tk − tk−1 and posing xh = z − (r− q)h− h

ν ln(1−
θν − 2σ2ν/2) we have

p(z|h) = 2 exp(θxh/σ2)

ν
h
ν

√
2πσΓ(hν )

(
x2
h

2σ2/ν + θ2

) h
2ν−

1
4

K h
ν−

1
2

(
1

σ2

√
x2
h(2σ

2/ν + θ2
)

As we can see, the dependence on the gamma distribution is integrated out in the above.
For the VGSA for a given arrival rate dt∗ = ytdt we have a VG distribution and

d lnSt = (r − q + ω)dt+B(γ(dt∗, 1, ν); θ,σ)

and the corresponding integrated density becomes

p(z|h, h∗) = 2 exp(θxh/σ2)

ν
h∗
ν

√
2πσΓ(h

∗

ν )

(
x2
h

2σ2/ν + θ2

)h∗
2ν −

1
4

K h∗
ν −

1
2

(
1

σ2

√
x2
h(2σ

2/ν + θ2
)

(8.51)

Hence the idea of using the arrival rate as the state and use the following alternative
algorithm (the second approach) for particle filtering:

• initialize the state x(i)
0 and the weight w(i)

0 for i between 1 and Nsims

• while 1 ≤ k ≤ N

– simulate the state xk for i between 1 and Nsims

y(i)k = x(i)
k−1 + κ(η − x(i)

k−1)∆t+ λ
√
x(i)
k−1

√
∆tN−1

(
U (i)[0, 1]

)

– calculate the associated weights for each i

w(i)
k = w(i)

k−1p(zk|y
(i)
k )

with p(zk|y(i)k ) as defined in (8.51) where h will be set to ∆t and h∗ to the

simulated state x̃(i)
k times ∆t

– normalize the weights

w̃(i)
k =

w(i)
k∑Nsims

j=1 w(j)
k

– resample the points x̃(i)
k and get x(i)

k and reset w(i)
k = w̃(i)

k = 1
Nsims

.

• end of while loop

The advantage of this method is that there is one simulation process instead of two and we
skip the gamma distribution altogether. However, the dependence of the observation zk on
xk is highly nonlinear, which makes the convergence more difficult. The log-Likelihood for
particle filtering (PF) algorithm ought to be maximized is

ln(L1:N ) =
N∑

k=1

ln

(
Nsims∑

i=1

w(i)
k

)
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TABLE 8.3: VGSA parameters via particle filter for USD/JPY and S&P 500

USD/JPY USD/JPY S&P500
σ 0.1308 0.1578 0.3573
ν 0.0726 0.1053 0.3288
θ -0.1762 -0.2718 -0.0735
κ 3.8542 3.8283 2.2940
η 6.3822 4.3537 4.0748
λ 8.5093 8.2152 0.1205
µ -0.0451 -0.0394 -0.0078
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FIGURE 8.19: VGSA particle filtering example arrival rate: (a) USD/JPY, (b) S&P 500

We use two different data sets for this example: (a) USD/JPY from November 8, 2001 to
November 8, 2011 daily close, (b) S&P 500 from November 11, 2001 to November 11, 2011
daily close. The parameter set for estimation is Θ = {σ, ν, θ,κ, η,λ, µ}. The hidden state
for filtering is {y(t), 1 ≤ t ≤ T }. The idea is to find the optimal parameter set via the
maximization of likelihood. The maximization takes place over the parameter set Θ. Using
the second approach, the parameter set obtained for each data set is tabulated in Table 8.3.
In Figures 8.19(a) and 8.19(b), we illustrate the hidden state, arrival rate for USD/JPY
exchange rate and S&P 500.

Example 31 Comparison of VGSA parameters obtained from option premiums versus
stock prices

In this example [139], we use five years of daily close prices for the S&P 500 Index from
January 2, 1998 to January 2, 2003 to estimate the VGSA model parameter set following
the same approach as in Example 30. This will provide us with the sequences for the spot
price St for t = 1, . . . , T and the dates t = 1, . . . , T . We can also obtain the corresponding
overnight LIBOR rates using Bloomberg which gives the drift rate rt for t = 1, . . . T . As for
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TABLE 8.4: S&P empirical results, VGSA statistical parameters estimated for the period
January 2, 1998 to January 2, 2003 via the particle filter (SIR) versus the risk-neutral
parameters

Physical measure Risk-neutral measure
σ 0.087 0.2063
θ -0.025 -0.4160
ν 0.002 0.0635
κ 5.1319 2.17711
η 6.4996 5.71047
λ 4.36 5.67908
µ -0.009 0.0538

the dividend yields qt for t = 1, . . . , T , we can write for any date t and option maturity T

qt = rt −
1

T − t
ln

(
Ft

St

)

where

Ft = K + ert(T−t) (Ct(St,K)− Pt(St,K))

where Ct and Pt are the S&P 500 call and put close prices at time t and K could be a
near-the-money strike price for liquidity considerations. Given that the number of option
maturities are limited we need to choose an interpolation scheme. Then the question begs,
what can we learn by comparing the two parameter sets? How can we take advantage of
having both P and Q? The research in [59] is an example of optimal positioning in derivative
pricing. In [6], the authors compare the risk-neutral density estimated in complete markets
from the cross-section of S&P 500 option prices to the risk-neutral density inferred from
the time series density of the S&P 500 index. If investors are risk-averse, the latter densities
are different from the actual density that could be inferred from the time series of S&P
500 returns. Naturally, the observed asset returns do not follow the risk-neutral dynamics,
which are therefore not directly observable. In contrast to the existing literature, they avoid
making any assumptions on investors’ preferences, by comparing two risk-adjusted densities,
rather than a risk-adjusted density from option prices to an unadjusted density from index
returns. Our only maintained hypothesis is a one-factor structure for the S&P 500 returns.

Example 32 Normal inverse Gaussian with stochastic arrival (NIGSA)

It is the same process as VGSA except we replace γ(h(dt)) with φ(h(dt)) with φ the inverse
Gaussian distribution with the cumulative distribution function

Fν(h, x) = N
(
νx− h√

x

)
+ e2hνN

(
−νx+ h√

x

)

It is same exact algorithm except we change the definition of F−1
ν (h, x, ν), as previously

stated.

8.8.3 Problem of Resampling in Particle Filter and Possible Panaceas

The problem of resampling when doing SIR is as follows:
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Sample impoverishment, high weight particles get selected several times, which lead to
particle become the same after some time step. The bad consequence is that particles
are no longer independent and identically distributed, so that the law of large numbers
is vanished and the approximation of posteriors no longer justified.

During the resampling step, empirical CDF of weights are used to eliminate the low
weights. However, the empirical CDF of the weights is the step function and is not
smooth. The consequences of a non-smooth CDF will lead to discontinuity of the

likelihood function, which is
T∑

t=1
(log

N∑
i=1

w(i)
t ).

The remedy for these two issues we use for implementation: we use effective sample size
to prevent over resampling which will lead to more and more repeated particles. However,
sample impoverishment is not a major issue in our implementation.

The major issue is non-smoothness of the likelihood function when resampling which
makes the optimizer either not converge [159], [117] or converge very slowly. We use the
common random number technique to tackle this issue, as suggested in [170] and [188].
The common random number technique suggests that for different parameter sets Θ1 and
Θ2, the particles share the same common random number. As an example for the Heston
stochastic volatility model the way we apply the common random number is as follows:

v(i)t = v(i)t−1 + κ(θ − v(i)t−1)∆t+ λρ(yt − yt−1 − (µ− 1

2
v(i)t−1)∆t) + λ

√
vit−1(1 − ρ2)∆t z

Here we need N × T standard normal samples as the common random number for each
complete procedure of SIR particle filtering for a given parameter set Θ and these N × T
random numbers should be kept the same even when using another parameter set Θ

′
for

optimization. Here T is number of data points and N is the number of observation days.
When doing resampling, u(i) = U + (i − 1)/N , i = 1, . . . , N , where U ∼ U(0, 1) and as in
the common random number case, we need U as another common random number for each
complete procedure of SIR particle filtering for a given parameter set Θ and these uniform
random numbers should be kept the same even when the optimizer begins using another
parameter set Θ

′
for optimization. The justification for using the common random number

is given in [170]. For example, Michael K. Pitt [188] uses piecewise linear CDF to replace
empirical CDF. However, as Flury and Shephard [115] point out all these smoothing tech-
niques are essentially jittering or perturbation of the particles after the original resampling
step. They constructed an optimal way to jitter the particles to improve the SIR algorithm.

8.9 Markov Chain Monte Carlo (MCMC)

The Bayesian solution to any inference problem is the following simple rule: compute
the conditional distribution of the unobserved variable given the observed data. Charac-
terizing the posterior distribution; however, is often difficult. In most settings p(Θ, x|y)
is complicated and high dimensional, implying that standard sampling methods either do
not apply or are prohibitively expensive in terms of computing time. Markov chain Monte
Carlo (MCMC) provides a simulation based method for sampling from these high dimen-
sional distributions and is particularly useful for analyzing financial time series models that
commonly incorporate latent variables. For more detail on Markov chain Monte Carlo, we
refer readers to [121], [156], and [157].
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Problems

1. In Example 25 in this chapter, we lay out the procedure for parameter estima-
tion of the Heston stochastic volatility model. Parameter set for estimation is Θ =
{κ, θ,σ, µ, ρ, υ0}. Assume that S&P 500 Index and USD/JPY spot currency follow
Heston stochastic volatility, use ten years of data to estimate the parameter set for
each time series using the extended Kalman filter. Datasets used for this problem: (a)
daily close of S&P 500 from November 11, 2001 to November 11, 2011 (b) daily close
of the USD/JPY exchange rate from November 11, 2001 to November 11, 2011.

2. In Example 26 in this chapter, parameters of Heston stochastic volatility were esti-
mated via unscented Kalman filter. Use the same time series, estimate the Heston
stochastic volatility model via square root unscented Kalman filter.

3. In Example 27 in this chapter, parameters of affine term structure model with con-
stant volatility were estimated via unscented Kalman filter. Use the same time series,
estimate the Heston stochastic volatility model via square root unscented Kalman
filter.

4. In Example 28 in this chapter, parameters of affine term structure model with con-
stant volatility were estimated via unscented Kalman filter. Use the same time series,
estimate the Heston stochastic volatility model via square root unscented Kalman
filter.

5. In Example 32 in this chapter, we lay out the procedure for parameter estimation of
normal inverse Gaussian with stochastic arrival (NIGSA). Use the same dataset used
in Example 30 to estimate the parameter set for NIGSA.
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[85] S. Crépey. Calibration of the local volatility in a trinomial tree using Tikhonov
regularization. Institute Of Physics Publishing, (19):91–127, December 2002.

[86] Alan C. Curtis and M. R. Osborne. The construction of minimax rational approxi-
mations to functions. The Computer Journal, 9:286–293, 1966.

[87] Zhi Da and Ernst Schaumburg. The price of volatility risk across asset classes. Novem-
ber 2011.

[88] A. d’Aspremont. Risk-mangement methods for the LIBOR market model using
semidefinite programming. Journal Of Computational Finance, 8(4):77–99, 2005.

[89] Dmitry Davydov and Vadim Linestsky. Pricing options on scalar diffusions: An eigen-
function expansion approach. October 2000.

[90] Dmitry Davydov and Vadim Linestsky. The valuation and hedging of barrier and
lookback options for alternative stochastic processes. August 2000.

[91] R. Van der Merwe, A. Doucet, N. de Freitas, and E. Wan. The unscented particle
filter. Oregon Graduate Institute, 2000.

[92] R. Van der Merwe and E. A. Wan. The square-root unscented Kalman filter for state
and parameter estimation. IEEE International Conference on Acoustics, Speech, and
Signal Processing, 6:3461–3464, 2001.

[93] Emanuel Derman. Model risk. Quantitative Strategies Research Notes, Goldman
Sachs, April 1996.

[94] Emanuel Derman. Laughter in the dark — The problem of the volatility smile, May
2003.

[95] Emanuel Derman and Iraj Kani. The volatility smile and its implied tree. Risk,
7(2):32–39, February 1994.

[96] V. Digalakis, J. R. Rohlicek, and M. Ostendorf. Maximum likelihood estimation
of a stochastic linear system with the EM algorithm and its application to speech
recognition. Speech and Audio Processing, IEEE Transactions on, 1(4):431–432, 1993.

[97] J. Douglas and Jr. H. H. Rachford. On the numerical solution of the heat conduction
problem in two and three space variables. Transactions of the American Mathematical
Society, 82:421–439, 1956.

[98] Jefferson Duarte and Christopher S. Jones. The price of market volatility risk. October
2007.

[99] D. Duffie. Dynamic Asset Pricing Theory. Princeton University Press, Princeton, NJ,
second edition, 1996.



References 401

[100] Darrell Duffie and Rui Kan. A yield-factor model of interest rates. Mathematical
Finance, 6:379–406, 1996.

[101] Darrell Duffie, Jun Pan, and Kenneth Singleton. Transform analysis and asset pricing
for affine jump diffusions. Econometrica, 68:1343–1376, 2000.

[102] Daniel J. Duffy. Finite Difference Methods in Financial Engineering: A Partial Dif-
ferential Equation Approach. John Wiley and Sons Ltd, Southern Gate, Chichester,
West Sussex, England, 2006.

[103] B. Dumas, J. Fleming, and R. Whaley. Implied volatilities: Empirical tests. Journal
of Finance, (53):2059–2106, 1998.

[104] Bruno Dupire. Pricing with a smile. Risk, 7(1):18–20, January 1994.

[105] E. Eberlein, U. Keller, and K. Prause. New insights into smile, mispricing, and value
at risk: The hyperbolic model. Journal of Business, 71:371–406, 1998.

[106] David Eberly. Derivative Approximation by Finite Differences. Magic Software, Inc,
January 2003.

[107] David Eberly. Kochanek–Bartels cubic splines (TCB splines). Magic Software, Inc,
March 2003.

[108] Herbert Egger and Heinz W. Engl. Tikhonov regularization applied to the inverse
problem of option pricing: Convergence analysis and rates. Johann Radon Institute
for Computational and Applied Mathematics and Johannes Kepler University Linz,
Altenbergerstr. 69, A-4040 Linz, Austria, 2008.

[109] Robert E. Engle. Autoregressive conditional heteroskedasticity with estimates of the
variance of U.K. inflation. Econometrica, 50:987–1008, 1982.

[110] A. Esser and C. Schlag. A note on forward and backward partial differential equations
for derivative contracts with forwards as underlyings in foreign exchange risk. In
Jurgen Hakala and Uwe Wystup, editors, Foreign Exchange Risk: Models, Instruments
and Strategies, chapter 12. Risk Books, 2002.

[111] Fang Fang and Cornelis W. Oosterlee. A novel pricing method for European options
based on Fourier-cosine series expansions. SIAM Journal on Scientific Computing,
8(2):1–18, Winter 2004.

[112] Fang Fang and Cornelis W. Oosterlee. Pricing early-exercise and discrete barrier
options by Fourier-cosine series expansions. University of Netherlands, June 2009.

[113] K.-T. Fang and Y. Wang. Number Theoretic Methods in Statistics. Chapman & Hall,
New York, USA, 1994.
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