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One must act on what has not happened yet.

Lao Zi



Preface to the Third Edition

The present third edition of The Statistical Mechanics of Financial Markets
is published only four years after the first edition. The success of the book
highlights the interest in a summary of the broad research activities on the
application of statistical physics to financial markets. I am very grateful to
readers and reviewers for their positive reception and comments. Why then
prepare a new edition instead of only reprinting and correcting the second
edition?

The new edition has been significantly expanded, giving it a more prac-
tical twist towards banking. The most important extensions are due to my
practical experience as a risk manager in the German Savings Banks’ Asso-
ciation (DSGV): Two new chapters on risk management and on the closely
related topic of economic and regulatory capital for financial institutions, re-
spectively, have been added. The chapter on risk management contains both
the basics as well as advanced topics, e.g. coherent risk measures, which have
not yet reached the statistical physics community interested in financial mar-
kets. Similarly, it is surprising how little research by academic physicists has
appeared on topics relating to Basel II. Basel II is the new capital adequacy
framework which will set the standards in risk management in many coun-
tries for the years to come. Basel II is responsible for many job openings in
banks for which physicists are extemely well qualified. For these reasons, an
outline of Basel II takes a major part of the chapter on capital.

Feedback from readers, in particular Guido Montagna and Glenn May,
has led to new sections on American-style options and the application of
path-integral methods for their pricing and hedging, and on volatility indices,
respectively. To make them consistent, sections on sensitivities of options to
changes in model parameters and variables (“the Greeks”) and on the syn-
thetic replication of options have been added, too. Chin-Kun Hu and Bernd
Kälber have stimulated extensions of the discussion of cross-correlations in
financial markets. Finally, new research results on the description and pre-
diction of financial crashes have been incorporated.

Some layout and data processing work was done in the Institute of Math-
ematical Physics at the University of Ulm. I am very grateful to Wolfgang
Wonneberger and Ferdinand Gleisberg for their kind hospitality and generous
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support there. The University of Ulm and Academia Sinica, Taipei, provided
opportunities for testing some of the material in courses.

My wife, Jinping Shen, and my daughter, Jiayi Sun, encouraged and sup-
ported me whenever I was in doubt about this project, and I would like to
thank them very much.

Finally, I wish You, Dear Reader, a good time with and inspiration from
this book.

Berlin, July 2005 Johannes Voit



Preface to the First Edition

This book grew out of a course entitled “Physikalische Modelle in der Fi-
nanzwirtschaft” which I have taught at the University of Freiburg during
the winter term 1998/1999, building on a similar course a year before at the
University of Bayreuth. It was an experiment.

My interest in the statistical mechanics of capital markets goes back to a
public lecture on self-organized criticality, given at the University of Bayreuth
in early 1994. Bak, Tang, and Wiesenfeld, in the first longer paper on their
theory of self-organized criticality [Phys. Rev. A 38, 364 (1988)] mention
Mandelbrot’s 1963 paper [J. Business 36, 394 (1963)] on power-law scaling
in commodity markets, and speculate on economic systems being described
by their theory. Starting from about 1995, papers appeared with increasing
frequency on the Los Alamos preprint server, and in the physics literature,
showing that physicists found the idea of applying methods of statistical
physics to problems of economy exciting and that they produced interesting
results. I also was tempted to start work in this new field.

However, there was one major problem: my traditional field of research is
the theory of strongly correlated quasi-one-dimensional electrons, conducting
polymers, quantum wires and organic superconductors, and I had no prior
education in the advanced methods of either stochastics and quantitative
finance. This is how the idea of proposing a course to our students was born:
learn by teaching! Very recently, we have also started research on financial
markets and economic systems, but these results have not yet made it into
this book (the latest research papers can be downloaded from my homepage
http://www.phy.uni-bayreuth.de/̃btp314/).

This book, and the underlying course, deliberately concentrate on the
main facts and ideas in those physical models and methods which have appli-
cations in finance, and the most important background information on the rel-
evant areas of finance. They lie at the interface between physics and finance,
not in one field alone. The presentation often just scratches the surface of a
topic, avoids details, and certainly does not give complete information. How-
ever, based on this book, readers who wish to go deeper into some subjects
should have no trouble in going to the more specialized original references
cited in the bibliography.
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Despite these shortcomings, I hope that the reader will share the fun I
had in getting involved with this exciting topic, and in preparing and, most
of all, actually teaching the course and writing the book.

Such a project cannot be realized without the support of many people and
institutions. They are too many to name individually. A few persons and insti-
tutions, however, stand out and I wish to use this opportunity to express my
deep gratitude to them: Mr. Ralf-Dieter Brunowski (editor in chief, Capital –
Das Wirtschaftsmagazin), Ms. Margit Reif (Consors Discount Broker AG),
and Dr. Christof Kreuter (Deutsche Bank Research), who provided impor-
tant information; L. A. N. Amaral, M. Ausloos, W. Breymann, H. Büttner,
R. Cont, S. Dresel, H. Eißfeller, R. Friedrich, S. Ghashghaie, S. Hügle, Ch.
Jelitto, Th. Lux, D. Obert, J. Peinke, D. Sornette, H. E. Stanley, D. Stauf-
fer, and N. Vandewalle provided material and challenged me in stimulating
discussions. Specifically, D. Stauffer’s pertinent criticism and many sugges-
tions signficantly improved this work. S. Hügle designed part of the graphics.
The University of Freiburg gave me the opportunity to elaborate this course
during a visiting professorship. My students there contributed much crit-
ical feedback. Apart from the year in Freiburg, I am a Heisenberg fellow
of Deutsche Forschungsgemeinschaft and based at Bayreuth University. The
final correction were done during a sabbatical at Science & Finance, the re-
search division of Capital Fund Management, Levallois (France), and I would
like to thank the company for its hospitality. I also would like to thank the
staff of Springer-Verlag for all the work they invested on the way from my
typo-congested LATEX files to this first edition of the book.

However, without the continuous support, understanding, and encourage-
ment of my wife Jinping Shen and our daughter Jiayi, this work would not
have got its present shape. I thank them all.

Bayreuth,
August 2000 Johannes Voit
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1. Introduction

1.1 Motivation

The public interest in traded securities has continuously grown over the past
few years, with an especially strong growth in Germany and other European
countries at the end of the 1990s. Consequently, events influencing stock
prices, opinions and speculations on such events and their consequences, and
even the daily stock quotes, receive much attention and media coverage. A
few reasons for this interest are clearly visible in Fig. 1.1 which shows the
evolution of the German stock index DAX [1] over the two years from October
1996 to October 1998. Other major stock indices, such as the US Dow Jones
Industrial Average, the S&P500, or the French CAC40, etc., behaved in a
similar manner in that interval of time. We notice three important features: (i)
the continuous rise of the index over the first almost one and a half years which
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Fig. 1.1. Evolution of the DAX German stock index from October 14, 1996 to
October 13, 1998. Data provided by Deutsche Bank Research
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was interrupted only for very short periods; (ii) the crash on the “second
black Monday”, October 27, 1997 (the “Asian crisis”, the reaction of stock
markets to the collapse of a bank in Japan, preceded by rumors about huge
amounts of foul credits and derivative exposures of Japanese banks, and a
period of devaluation of Asian currencies). (iii) the very strong drawdown of
quotes between July and October 1998 (the “Russian debt crisis”, following
the announcement by Russia of a moratorium on its debt reimbursements,
and a devaluation of the Russian rouble), and the collapse of the Long Term
Capital Management hedge fund.

While the long-term rise of the index until 2000 seemed to offer investors
attractive, high-return opportunities for making money, enormous fortunes
of billions or trillions of dollars were annihilated in very short times, perhaps
less than a day, in crashes or periods of extended drawdowns. Such events –
the catastrophic crashes perhaps more than the long-term rise – exercise a
strong fascination.

To place these events in a broader context, Fig. 1.2 shows the evolution
of the DAX index from 1975 to 2005. Several different regimes can be dis-
tinguished. In the initial period 1975–1983, the returns on stock investments
were extremely low, about 2.6% per year. Returns of 200 DAX points, or
12%, per year were generated in the second period 1983–1996. After 1996,
we see a marked acceleration with growth rates of 1200 DAX points, or 33%,
per year. We also notice that, during the growth periods of the stock mar-
ket, the losses incurred in a sudden crash usually persist only over a short
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Fig. 1.2. Long-term evolution of the DAX German stock index from January 1,
1975 to January 1, 2005. Data provided by Deutsche Bank Research supplemented
by data downloaded from Yahoo, http://de.finance.yahoo.com
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time, e.g. a few days after the Asian crash [(ii) above], or about a year after
the Russian debt crisis [(iii) above]. The long term growth came to an end,
around April 2000 when markets started sliding down. The fourth period in
Fig. 1.2 from April 2000 to the end of the time series on March 12, 2003, is
characterized by a long-term downward trend with losses of approximately
1400 DAX points, or 20% per year. The DAX even fell through its long-term
upward trend established since 1983. Despite the overall downward trend of
the market in this period, it recovered as quickly from the crash on Septem-
ber 11, 2001, as it did after crashes during upward trending periods. Finally,
the index more or less steadily rose from its low at 2203 points on March 12,
2003 to about 4250 points at the end of 2004. Only the future will show if a
new growth period has been kicked off.

This immediately leads us to a few questions:

• Is it possible to earn money not only during the long-term upward moves
(that appears rather trivial but in fact is not) but also during the drawdown
periods? These are questions for investors or speculators.

• What are the factors responsible for long- and short-term price changes of
financial assets? How do these factors depend on the type of asset, on the
investment horizon, on policy, etc.?

• How do the three growth periods of the DAX index, discussed in the pre-
ceding paragraph, correlate with economic factors? These are questions for
economists, analysts, advisors to politicians, and the research departments
of investment banks.

• What statistical laws do the price changes obey? How smooth are the
changes? How frequent are jumps? These problems are treated by mathe-
maticians, econometrists, but more recently also by physicists. The answer
to this seemingly technical problem is of great relevance, however, also to
investors and portfolio managers, as the efficiency of stop-loss or stop-buy
orders [2] directly depends on it.

• How big is the risk associated with an investment? Can this be measured,
controlled, limited or even eliminated? At what cost? Are reliable strategies
available for that purpose? How big is any residual risk? This is of interest
to banks, investors, insurance companies, firms, etc.

• How much fortune is at risk with what probability in an investment into a
specific security at a given time?

• What price changes does the evolution of a stock price, resp. an index,
imply for “financial instruments” (derivatives, to be explained below, cf.
Sect. 2.3)? This is important both for investors but also for the writing
bank, and for companies using such derivatives either for increasing their
returns or for hedging (insurance) purposes.

• Can price changes be predicted? Can crashes be predicted?
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1.2 Why Physicists? Why Models of Physics?

This book is about financial markets from a physicist’s point of view. Sta-
tistical physics describes the complex behavior observed in many physical
systems in terms of their simple basic constituents and simple interaction
laws. Complexity arises from interaction and disorder, from the cooperation
and competition of the basic units. Financial markets certainly are complex
systems, judged both by their output (cf., e.g., Fig. 1.1) and their struc-
ture. Millions of investors frequent the many different markets organized by
exchanges for stocks, bonds, commodities, etc. Investment decisions change
the prices of the traded assets, and these price changes influence decisions in
turn, while almost every trade is recorded.

When attempting to draw parallels between statistical physics and finan-
cial markets, an important source of concern is the complexity of human
behavior which is at the origin of the individual trades. Notice, however, that
nowadays a significant fraction of the trading on many markets is performed
by computer programs, and no longer by human operators. Furthermore, if
we make abstraction of the trading volume, an operator only has the possi-
bility to buy or to sell, or to stay out of the market. Parallels to the Ising or
Potts models of Statistical Physics resurface!

More specifically, take the example of Fig. 1.1. If we subtract out long-
term trends, we are left essentially with some kind of random walk. In other
words, the evolution of the DAX index looks like a random walk to which
is superposed a slow drift. This idea is also illustrated in the following story
taken from the popular book “A Random Walk down Wall Street” by B. G.
Malkiel [3], a professor of economics at Princeton. He asked his students to
derive a chart from coin tossing.

“For each successive trading day, the closing price would be determined
by the flip of a fair coin. If the toss was a head, the students assumed the
stock closed 1/2 point higher than the preceding close. If the flip was a
tail, the price was assumed to be down 1/2. ... The chart derived from the
random coin tossing looks remarkably like a normal stock price chart and
even appears to display cycles. Of course, the pronounced ‘cycles’ that we
seem to observe in coin tossings do not occur at regular intervals as true
cycles do, but neither do the ups and downs in the stock market. In other
simulated stock charts derived through student coin tossings, there were
head-and-shoulders formations, triple tops and bottoms, and other more
esoteric chart patterns. One of the charts showed a beautiful upward
breakout from an inverted head and shoulders (a very bullish formation).
I showed it to a chartist friend of mine who practically jumped out of
his skin. “What is this company?” he exclaimed. “We’ve got to buy
immediately. This pattern’s a classic. There’s no question the stock will
be up 15 points next week.” He did not respond kindly to me when I told
him the chart had been produced by flipping a coin.” Reprinted from B.
G. Malkiel: A Random Walk down Wall Street, c©1999 W. W. Norton
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Fig. 1.3. Computer simulation of a stock price chart as a random walk

The result of a computer simulation performed according to this recipe,
is shown in Fig. 1.3, and the reader may compare it to the DAX evolution
shown in Fig. 1.1. “THE random walk”, usually describing Brownian motion,
but more generally any kind of stochastic process, is well known in physics;
so well known in fact that most people believe that its first mathematical
description was achieved in physics, by A. Einstein [4].

It is therefore legitimate to ask if the description of stock prices and other
economic time series, and our ideas about the underlying mechanisms, can
be improved by

• the understanding of parallels to phenomena in nature, such as, e.g.,
– diffusion
– driven systems
– nonlinear dynamics, chaos
– formation of avalanches
– earthquakes
– phase transitions
– turbulent flows
– stochastic systems
– highly excited nuclei
– electronic glasses, etc.;

• the associated mathematical methods developed for these problems;
• the modeling of phenomena which is a distinguished quality of physics.

This is characterized by
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– identification of important factors of causality, important parameters,
and estimation of orders of magnitude;

– simplicity of a first qualitative model instead of absolute fidelity to real-
ity;

– study of causal relations between input parameters and variables of a
model, and its output, i.e. solutions;

– empirical check using available data;
– progressive approach to reality by successive incorporation of new ele-

ments.

These qualities of physicists, in particular theoretical physicists, are being
increasingly valued in economics. As a consequence, many physicists with an
interest in economic or financial themes have secured interesting, challenging,
and well-paid jobs in banks, consulting companies, insurance companies, risk-
control divisions of major firms, etc.

Rather naturally, there has been an important movement in physics to
apply methods and ideas from statistical physics to research on financial data
and markets. Many results of this endeavor are discussed in this book. Notice,
however, that there are excellent specialists in all disciplines concerned with
economic or financial data, who master the important methods and tools
better than a physicist newcomer does. There are examples where physicists
have simply rediscovered what has been known in finance for a long time.
I will mention those which I am aware of, in the appropriate context. As
an example, even computer simulations of “microscopic” interacting-agent
models of financial markets have been performed by economists as early as
1964 [5]. There may be many others, however, which are not known to me.
I therefore call for modesty (the author included) when physicists enter into
new domains of research outside the traditional realm of their discipline. This
being said, there is a long line of interaction and cross-fertilization between
physics and economy and finance.

1.3 Physics and Finance – Historical

The contact of physicists with finance is as old as both fields. Isaac Newton
lost much of his fortune in the bursting of the speculative bubble of the South
Sea boom in London, and complained that while he could precisely compute
the path of celestial bodies to the minute and the centimeter, he was unable
to predict how high or low a crazy crowd could drive the stock quotations.

Carl Friedrich Gauss (1777–1855), who is honored on the German 10
DM bill (Fig. 1.4), has been very successful in financial operations. This
is evidenced by his leaving a fortune of 170,000 Taler (contemporary, local
currency unit) on his death while his basic salary was 1000 Taler. According
to rumors, he derived the normal (Gaussian) distribution of probabilities in
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Fig. 1.4. Carl Friedrich Gauss on the German 10 DM bill (detail), courtesy of
Deutsche Bundesbank

estimating the default risk when giving credits to his neighbors. However, I
have failed to find written documentation of this fact.

His calculation of the pensions for widows of the professors of the Univer-
sity of Göttingen (1845–1851) is a seminal application of probability theory
to the related field of insurance. The University of Göttingen, where Gauss
was professor, had a fund for the widows of the professors. Its administrators
felt threatened by ruin as both the number of widows, as well as the pensions
paid, increased during those years. Gauss was asked to evaluate the state of
the fund, and to recommend actions to save it. After six years of analysis
of mortality tables, historical data, and elaborate calculations, he concluded
that the fund was in excellent financial health, that a further increase of the
pensions was possible, but that the membership should be restricted. Quite
contrary to the present public discussion!

The most important date in the perspective of this book is March 29, 1900
when the French mathematician Louis Bachelier defended his thesis entitled
“Théorie de la Spéculation” at the Sorbonne, University of Paris [6]. In his
thesis, he developed, essentially correctly and comprehensively, the theory of
the random walk – and that five years before Einstein. He constructed a model
for exchange quotes, specifically for French government bonds, and estimated
the chances of success in speculation with derivatives that are somewhat in
between futures and options, on those bonds. He also performed empirical
studies to check the validity of his theory. His contribution had been forgotten
for at least 60 years, and was rediscovered independently in the financial
community in the late 1950s [7, 8]. Physics is becoming aware of Bachelier’s
important work only now through the interface of statistical physics and
quantitative finance.
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More modern examples of physicists venturing into finance include
M. F. M. Osborne who rediscovered the Brownian motion of stock markets in
1959 [7, 8], and Fisher Black who, together with Myron Scholes, reduced an
option pricing problem to a diffusion equation. Osborne’s seminal work was
first presented in the Solid State Physics seminar of the US Naval Research
Laboratory before its publication. Black’s work will be discussed in detail in
Chap. 4.

1.4 Aims of this Book

This book is based on courses on models of physics for financial markets
(“Physikalische Modelle in der Finanzwirtschaft”) which I have given at the
Universities of Bayreuth, Freiburg, and Ulm, and at Academia Sinica, Taipei.
It largely keeps the structure of the course, and the subject choice reflects
both my taste and that of my students.

I will discuss models of physics which have become established in fi-
nance, or which have been developed there even before (!) being introduced
in physics, cf. Chap. 3. In doing so, I will present both the physical phe-
nomena and problems, as well as the financial issues. As the majority of
attendees of the courses were physicists, the emphasis will be more on the
second, the financial aspects. Here, I will present with approximately equal
weight established theories as well as new, speculative ideas. The latter often
have not received critical evaluation yet, in some cases are not even officially
published and are taken from preprint servers [9]. Readers should be aware
of the speculative character of such papers.

Models for financial markets often employ strong simplifications, i.e. treat
idealized markets. This is what makes the models possible, in the first in-
stance. On the other hand, there is no simple way to achieve above-average
profits in such idealized markets (“there is no free lunch”). The aim of the
course therefore is NOT to give recipes for quick or easy profits in financial
markets. On the same token, we do not discuss investment strategies, if such
should exist. Keeping in line with the course, I will attempt an overview
only of the most basic aspects of financial markets and financial instruments.
There is excellent literature in finance going much further, though away from
statistical physics [10]–[16]. Hopefully, I can stimulate the reader’s interest in
some of these questions, and in further study of these books.

The following is a list of important issues which I will discuss in the book:

• Statistical properties of financial data. Distribution functions for fluctua-
tions of stock quotes, etc. (stocks, bonds, currencies, derivatives).

• Correlations in financial data.
• Pricing of derivatives (options, futures, forwards).
• Risk evaluation for market positions, risk control using derivatives

(hedging).
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• Hedging strategies.
• Can financial data be used to obtain information on the markets?
• Is it possible to predict (perhaps in probabilistic terms) the future market

evolution? Can we formulate equations of motion?
• Description of stock exchange crashes. Are predictions possible? Are there

typical precursor signals?
• Is the origin of the price fluctuations exogenous or endogenous (i.e. reaction

to external events or caused by the trading activity itself)?
• Is it possible to perform “controlled experiments” through computer sim-

ulation of microscopic market models?
• To what extent do operators in financial markets behave rationally?
• Can game-theoretic approaches contribute to the understanding of market

mechanisms?
• Do speculative bubbles (uncontrolled deviations of prices away from “fun-

damental data”, ending typically in a collapse) exist?
• The definition and measurment of risk.
• Basic considerations and tools in risk management.
• Economic capital requirements for banks, and the capital determination

framework applied by banking supervisors.

The organization of this book is as follows. The next chapter introduces
basic terminology for the novice, defines and describes the three simplest
and most important derivatives (forwards, futures, options) to be discussed in
more detail throughout this book. It also introduces the three types of market
actors (speculators, hedgers, arbritrageurs), and explains the mechanisms of
price formation at an organized exchange.

Chapter 3 discusses in some detail Bachelier’s derivation of the random
walk from a financial perspective. Though no longer state of the art, many
aspects of Bachelier’s work are still at the basis of the theories of financial
markets, and they will be introduced here. We contrast Bachelier’s work with
Einstein’s theory of Brownian motion, and give some empirical evidence for
Brownian motion in stock markets and in nature.

Chapter 4 discusses the pricing of derivatives. We determine prices of
forward and futures contracts and limits on the prices of simple call and put
options. More accurate option prices require a model for the price variations of
the underlying stock. The standard model is provided by geometric Brownian
motion where the logarithm of a stock price executes a random walk. Within
this model, we derive the seminal option pricing formula of Black, Merton,
and Scholes which has been instrumental for the explosive growth of organized
option trading. We also measures of the sensitivity of option prices with
respect to the basic variables of the model (“The Greeks”), options with
early-exercise features, and volatility indices for financial markets.

Chapter 5 discusses the empirical evidence for or against the assumptions
of geometric Brownian motion: price changes of financial assets are uncor-
related in time and are drawn from a normal distribution. While the first
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assumption is rather well satisfied, deviations from a normal distribution will
lead us to consider in more depth another class of stochastic process, stable
Lévy processes, and variants thereof, whose probability distribution functions
possess fat tails and which describe financial data much better than a nor-
mal distribution. Here, we also discuss the implications of these fat-tailed
distributions both for our understanding of capital markets, and for practical
investments and risk management. Correlations are shown to be an important
feature of financial markets. We describe temporal correlations of financial
time series, asset–asset correlations in financial markets, and simple models
for markets with correlated assets.

An interesting analogy has been drawn recently between hydrodynamic
turbulence and the dynamics of foreign exchange markets. This will be dis-
cussed in more depth in Chap. 6. We give a very elementary introduction
to turbulence, and then work out the parallels to financial time series. This
line of work is still controversial today. Multifractal random walks provide a
closely related framework, and are discussed.

Once the significant differences between the standard model – geometric
Brownian motion – and real financial time series have been described, we can
carry on to develop improved methods for pricing and hedging derivatives.
This is described in Chap. refchap:risk. An important step is the passage
from the differential Black–Scholes world to an integral representation of the
life scenarios of an option. Consequently, aside numerical procedures, path
integrals which are well-known in physics, are shown to be important tools
for option valuation in more realistic situations.

Chapter 8 gives a brief overview of computer simulations of microscopic
models for organized markets and exchanges. Such models are of particu-
lar importance because, unlike physics, controlled experiments establishing
cause–effect relationships are not possible on financial markets. On the other
hand, there is evidence that the basic hypotheses underlying standard finan-
cial theory may be questionable. One way to check such hypotheses is to
formulate a model of interacting agents, operating on a given market under a
given set of rules. The model is then “solved” by computer simulations. A cri-
terion for a “good” model is the overlap of the results, e.g., on price changes,
correlations, etc., with the equivalent data of real markets. Changing the
rules, or some other parameters, allows one to correlate the results with the
input and may result in an improved understanding of the real market action.

In Chap. 9 we review work on the description of stock market crashes. We
emphasize parallels with natural phenomena such as earthquakes, material
failure, or phase transitions, and discuss evidence for and against the hyp-
tothesis that such crashes are outliers from the statistics of “normal” price
fluctuations in the stock market. If true, it is worth searching for character-
istic patterns preceding market crashes. Such patterns have apparently been
found in historical crashes and, most remarkably, have allowed the predicition
of the Asian crisis crash of October 27, 1997, but also of milder events such
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as a reversal of the downward trend of the Japanese Nikkei stock index, in
early 1999. On the other hand, bearish trend reversals predicted in many ma-
jor stock indices for the year 2004 have failed to materialize. We discuss the
controversial status of crash predictions but also the improved understanding
of what may happen before and after major financial crashes.

Chapters 10 and 11 leave the focus of statistical physics and turn towards
banking practice. This appears important because many job opportunities
requiring strong quantitative qualifications have been (and continue to be)
created in banks. On the other hand, both the basic practices and the hot
topics of banking, regrettably, are left out of most presentation for physics
audiences. Chapter 10 is concerned with risk management. We define risk
and discuss various measures of risk. We classify various types of risk and
discuss the basic tools of risk management.

Chapter 11 finally discusses capital requirements for banks. Capital is
taken as a cushion against losses which a bank may suffer in the markets,
and therefore is an important quantity to manage risk and performance. The
first part of the chapter discusses economic capital, i.e. what a bank has
to do under purely economic considerations. Regulatory authorities apply a
different framework to the banks they supervise. This is explained in the
second part of Chap. 11. The new Basel Capital Accord (Basel II) takes a
significant fraction of space. On the one hand, it will set the regulatory capital
and risk management standards for the decades to come, in many countries
of the world. On the other hand, it is responsible for many of the employment
opportunities which may be open to the readers.

There are excellent introductions to this field with somewhat different
or more specialized emphasis. Bouchaud and Potters have published a book
which emphasizes derivative pricing [17]. The book by Mantegna and Stan-
ley describes the scaling properties of and correlations in financial data [18].
Roehner has written a book with emphasis on empirical investigations which
include financial markets but cover a significantly vaster field of economics
[19]. Another book presents computer simulation of “microscopic” market
models [20]. The analysis of financial crashes has been reviewed in a book
by one of its main protagonists [21]. Mandelbrot also published a volume
summarizing his contributions to fractal and scaling behavior in financial
time series [22]. The important work of Olsen & Associates, a Zurich-based
company working on trading models and prediction of financial time series,
is summarized in High Frequency Finance [23]. The application of stochastic
processes and path integrals, respectively, to problems of finance is briefly
discussed in two physics books [24, 25] whose emphasis, though, is on phyis-
cal methods and applications. Finally, there has been a series of conferences
and workshops whose proceedings give an overview of the state of this rapidly
evolving field of research at the time of the event [26]. More sources of infor-
mation are listed in the Appendix.
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2.1 Risk

Risk and profit are the important drivers of financial markets. Briefly, risk is
defined as deviation of the actual outcome of an investment from its expected
outcome when this deviation is negative. An alternative definition would view
risk as the negative changes of a future position with respect to the present
position. The difference does not matter much until we define quantitative
risk measures in Chap. 10.3. Taking risk, reducing risk, and managing risk
are important motivations for many operations in financial markets.

An investor taking risk will expect a certain return as compensation, the
more so the higher the risk. Risky assets therefore also possess, at least on the
average, high expected growth rates. Investments in risky stocks should be
rewarded by a high rate of growth of their price. Investments in risky bonds
should be rewarded by a high interest coupon.

Almost all investments are risky. There are very few instances which, to a
good approximation, can be considered riskless. An investment in US treasury
notes and bonds is considered a riskless investement because there is no doubt
that the US treasury will honor its payment obligation. The same applies to
bonds emitted by a number of other states and a few corporations (the so-
called “AAA-rated” states and corporations). The interest rate paid on these
bonds is called the riskless interest rate r, and will play an important role
in many theoretical arguments in our later discussion. Interest rates change
with time, though, both nominally and effectively. The rate r paid on two
otherwise identical bonds emitted at different dates may be different. And the
effective return of a traded bond bought or sold at times between emission
and maturity fluctuates as a result of trading. In line with neglecting this
interest rate risk, we will assume the risk-free interest rate r to be constant
over the time scale considered.

2.2 Assets

What are the objects we are concerned with in this book? Let us start by
looking into the portfolio of assets of a bank, or into the financial pages of a



14 2. Basic Information on Capital Markets

major newspaper. The bank portfolio may contain stocks, bonds, currencies,
commodities, (private) equity, real estate, loans, mutual funds, hedge funds,
etc., and derivatives, such as futures, options, or warrants.

The financial pages of the major newspapers contain the quotations of
the most important traded assets of this portfolio. In addition, they contain
quotations of market indices. Indices measure the composite performance of
national markets, industries, or market segments. Examples include (i) for
stock markets the Dow Jones Industrial Average, S&P500, DAX, DAX 100,
CAC 40, etc., for blue chip stocks in the US, Germany, and France, respec-
tively, (ii) the NASDAQ or TECDAX indices measuring the US and German
high-technology markets, (iii) the Dow Jones Stoxx 50 index measuring the
performance of European blue chip stocks irrespective of countries, or their
participation in the European currency system. (iv) Indices are also used for
bond markets, e.g., the REX index in Germany, but bond markets are also
characterized by the prices and returns of certain benchmark products [11].

There are several ways to classify these assets. Usually, the assets held by
a bank are organized in different groups, called “books”. A “trading book”
contains the assets held for trading purposes, normally for a rather short time.
A simple trading book may contain stocks, bonds, currencies, commodities,
and derivatives. The “banking book” contains assets held for longer periods
of time, and mostly for business motivations. Assets of the banking book
often are loans, mortgage backed loans, real estate, private equity, stocks,
etc.

Some assets are securities. Securities are normally traded on organized
markets (in some cases over the counter, OTC, i.e. directly between a bank
and its client) and include stock, bonds, currencies, and derivatives. Their
prices are fixed by demand and supply in the trading process. The following
assets in the bank portfolio are not securities: commodities, equity unless it is
in stocks, real estate, loans. Prices of traded securities usually are available as
time series with a reasonably high frequency. Market indices are not securities
although investments products replicating market indices are securities, often
with a hidden derivative element. On the statistical side, very good time series
are available for market indices, as illustrated by Figs. 1.1 and 1.2, and many
to follow. Good price histories are available, too, for commodities.

Mutual funds, hedge funds, etc., are portfolios of securities. A portfolio in
an ensemble of securities held by an investor. Their price is fixed by trading
their individual components. We shall explicitly consider portfolios of secu-
rities in Chap. 10 where we show that the return of such a portfolio can be
maximized at given risk by buying the securities is specific quantities which
can be calculated.

A special class of securities merits a general name and discussion of its
own. A derivative (also derivative security, contingent claim) is a financial
instrument whose value depends on other, more basic underlying variables
[10, 12, 13]. Very often, these variables are the prices of other securities (such
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as stocks, bonds, currencies, which are then called “underlying securities”
or, for short, just “the underlying”) with, of course, a series of additional
parameters involved in determining the precise dependence. There are also
derivatives on commodities (oil, wheat, sugar, pork bellies [!], gold, etc.), on
market indices (cf. above), on the volatility of markets and also on phenomena
apparently exterior to markets such as weather. As indicated by the exam-
ples of commodities and market indices, the emission of a derivative on these
assets produces an “artificial” security. Especially in the case of commodi-
ties and markets indicies, the existence of derivatives considerably facilitates
investment in these assets. Recently, the related transformation of portfo-
lios of loans into tradable securities, known as securitization, has become an
important practice in banking.

Derivatives are traded either on organized exchanges, such as Deutsche
Terminbörse, DTB, which has evolved into EUREX by fusion with its Swiss
counterpart, the Chicago Board of Trade (CBOT), the Chicago Board Op-
tions Exchange (CBOE), the Chicago Mercantile Exchange (CME), etc., or
over the counter (OTC). Derivatives traded on exchanges are standardized
products, while over the counter trading is done directly between a financial
institution and a customer, often a corporate client or another financial insti-
tution, and therefore allows the tailoring of products to the individual needs
of the clients.

Here, we mostly focus on stocks, market indices, and currencies, and their
respective derivatives. We do this for two main reasons: (i) much of the re-
search, especially by physicists, has concentrated on these assets; (ii) they
are conceptually simpler than, e.g., bonds and therefore more suited to ex-
plain the basic mechanisms. Bond prices are influenced by interest rates. The
interest rates, however, depend on the maturity of the bond, and the time to
maturity therefore introduces an additional variable into the problem. Notice,
however, that bond markets typically are much bigger than stock markets.
Institutional investors such as insurance companies invest large volumes of
money on the bond market because there they face less risk than with in-
vestments in, e.g., stocks.

2.3 Three Important Derivatives

Here, we briefly discuss the three simplest derivatives on the market: for-
ward and futures contracts, and call and put options. They are sufficient to
illustrate the basic principles of operation, pricing, and hedging. Many more
instruments have been and continue to be created. Pricing such instruments,
and using them for speculative or hedging purposes may present formidable
technical challenges. They rely, however, on the same fundamental principles
which we discuss in the remainder of this book where we refer to the three
basic derivatives described below. Readers interested in those more complex
instruments, are referred to the financial literature [10]–[15].
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2.3.1 Forward Contracts

A forward contract (or just: forward for short) is a contract between two
parties (usually two financial institutions or a financial institution and a
corporate client) on the delivery of an asset at a certain time in the future,
the maturity of the contract, at a certain price. This delivery price is fixed
at the time the contract is entered.

Forward contracts are not usually traded on exchanges but rather over the
counter (OTC), i.e. between a financial institution and its counterparty. For
both parties, there is an obligation to honor the contract, i.e., to deliver/pay
the asset at maturity.

As an example, consider a US company who must pay a bill of 1 million
pound sterling three months from now. The amount of dollars the company
has to pay obviously depends on the dollar/sterling exchange rate, and its evo-
lution over the next three months therefore presents a risk for the company.
The company can now enter a forward over 1 million pounds with maturity
three months from now, with its bank. This will fix the exchange rate for
the company as soon as the forward contract is entered. This rate may differ
from the spot rate (i.e., the present day rate for immediate delivery), and
include the opinion of the bank and/or market on its future evolution (e.g.,
spot 1.6080, 30-day forward 1.6076, 90-day forward 1.6056, 180-day forward
1.6018, quoted from Hull [10] as of May 8, 1995) but will effectively fix the
rate for the company three months from now to 1.6056 US$/£.

2.3.2 Futures Contract

A futures contract (futures) is rather similar to a forward, involving the de-
livery of an asset at a fixed time in the future (maturity) at a fixed price.
However, it is standardized and traded on exchanges. There are also differ-
ences relating to details of the trading procedures which we shall not explore
here [10]. For the purpose of our discussion, we shall not distinguish between
forward and futures contracts.

The above example, involving popular currencies in standard quantities,
is such that it could as well apply to a futures contract. The differences are
perhaps more transparent with a hypothetical example of buying a car. If a
customer would like to order a BMW car in yellow with pink spots, there
might be 6 months delivery time, and the contract will be established in a
way that assures delivery and payment of the product at the time of maturity.
Normally, there will be no way out if, during the six months, the customer
changes his preferences for the car of another company. This corresponds to
the forward situation. If instead one orders a black BMW, and changes opin-
ion before delivery, for a Mercedes-Benz, one can try to resell the contract on
the market (car dealers might even assist with the sale) because the product
is sufficiently standardized so that other people are also interested in, and
might enter the contract.
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2.3.3 Options

Options may be written on any kind of underlying assets, such as stocks,
bonds, commodities, futures, many indices measuring entire markets, etc.
Unlike forwards or futures which carry an obligation for both parties, options
give their holder the right to buy or sell an underlying assets in the future at
a fixed price. However, they imply an obligation for the writer of the option
to deliver or buy the underlying asset.

There are two basic types of options: call options (calls) which give the
holder the right to buy, and put options (puts) which give their holder the
right to sell the underlying asset in the future at a specified price, the strike
price of the option. Conversely, the writer has the obligation to sell (call) or
buy (put) the asset. Options are distinguished as being of European type if
the right to buy or sell can only be exercised at their date of maturity, or of
American type if they can be exercised at any time from now until their date
of maturity. Options are traded regularly on exchanges.

Notice that, for the holder, there is no obligation to exercise the options
while the writer has an obligation. As a consequence of this asymmetry,
there is an intrinsic cost (similar to an insurance premium) associated with
the option which the holder has to pay to the writer. This is different from
forwards and futures which carry an obligation for both parties, and where
there is no intrinsic cost associated with these contracts.

Options can therefore be considered as insurance contracts. Just consider
your car insurance. With some caveats concerning details, your insurance
contract can be reinterpreted as a put option you bought from the insurance
company. In the case of an accident, you may sell your car to the insurance
company at a predetermined price, resp. a price calculated according to a
predetermined formula. The actual value of your car after the accident is
significantly lower than its value before, and you will address the insurance
for compensation. Your contract protects your investment in your car against
unexpected losses. Precisely the same is achieved by a put option on a capital
market. Reciprocally, a call option protects its owner against unexpected rises
of prices. As in our example, with real options on exercise, one often does not
deliver the product (which is possible in simple cases but impossible, e.g., in
the case of index options), but rather settles the difference in cash.

As another example, consider buying 100 European call options on a stock
with a strike price (for exercise) of X = DM 100 when the spot price for the
stock is St = DM 98. Suppose the time to maturity to be T − t = 2m.

• If at maturity T , the spot price ST < DM 100, the options expire worthless
(it makes no sense to buy the stock more expensively through the options
than on the spot market).

• If, however, ST > DM 100, the option should be exercised. Assume ST =
DM 115. The price gain per stock is then DM 15, i.e., DM 1500 for the
entire investment. However, the net profit will be diminished by the price
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of the call option C. With a price of C = DM 5, the total profit will be
DM 1000.

• The option should be exercised also for DM 100 < ST < DM 105. While
there is a net loss from the operation, it will be inferior to the one incurred
(− 100 C) if the options had expired.

The profile of profit, for the holder, versus stock price at maturity is given
in Fig. 2.1. The solid line corresponds to the call option just discussed, while
the dashed line shows the equivalent profile for a put.

When buying a call, one speculates on rising stock prices, resp. insures
against rising prices (e.g., when considering future investments), while the
holder of a put option speculates on, resp. insures, against falling prices.

For the holder, there is the possibility of unlimited gain, but losses are
strictly limited to the price of the option. This asymmetry is the reason for
the intrinsic price of the options. Notice, however, that in terms of practical,
speculative investments, the limitation of losses to the option price still im-
plies a total loss of the invested capital. It only excludes losses higher than
the amount of money invested!

There are many more types of options on the markets. Focusing on the
most elementary concepts, we will not discuss them here, and instead re-
fer the readers to the financial literature [10]–[15]. However, it appears that
much applied research in finance is concerned with the valuation of, and risk
management involving, exotic options.

profit/option

callput

STx-c x+c
x

-c

0

Fig. 2.1. Profit profile of call (solid line) and put (dashed line) options. ST is the
price of the underlying stock at maturity, X the strike price of the option, and C
the price of the call or put
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2.4 Derivative Positions

In every contract involving a derivative, one of the parties assumes the long
position, and agrees to buy the underlying asset at maturity in case of a
forward or futures contract, or, as the holder of a call/put option, has the
right to buy/sell the underlying asset if the option is exercised. His partner
assumes the short position, i.e., agrees to deliver the asset at maturity in a
forward or futures or if a call option is exercised, resp. agrees to buy the
underlying asset if a put option is exercised.

In the example on currency exchange rates in Sect. 2.3.1, the company
took the long position in a forward contract on 1 million pounds sterling,
while its bank went short. If the acquisition of a new car was considered as a
forward or futures contract, the future buyer took the long position and the
manufacturer took the short position.

With options, of course, one can go long or short in a call option, and in
put options. The discussion of options in Sect. 2.3.3 above always assumed
the long position. Observe that the profit profile for the writer of an option,
i.e., the partner going short, is the inverse of Fig. 2.1 and is shown in Fig. 2.2.
The possibilities for gains are limited while there is an unlimited potential
for losses. This means that more money than invested may be lost due to the
liabilities accepted on writing the contract.

Short selling designates the sale of assets which are not owned. Often
there is no clear distinction from “going short”. In practice, short selling is
possible quite generally for institutional investors but only in very limited
circumstances for individuals. The securities or derivatives sold short are

profit/option

callput

ST
x-c x+c

x

c

0

Fig. 2.2. Profit profile of call (solid line) and put (dashed line) options for the
writer of the option (short position)
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taken “on credit” from a broker. The hope is, of course, that their quotes will
rise in the near future by an appreciable amount. We shall use short selling
mainly for theoretical arguments.

Closing out an open position is done by entering a contract with a third
party that exactly cancels the effect of the first contract. In the case of pub-
licly traded securities, it can also mean selling (buying) a derivative or secu-
rity one previously owned (sold short).

2.5 Market Actors

We distinguish three basic types of actors on financial markets.

• Speculators take risks to make money. Basically, they bet that markets
will make certain moves. Derivatives can give extra leverage to speculation
with respect to an investment in the underlying security. Reconsider the
example of Sect. 2.3.3, involving 100 call options with X = DM 100 and
St = DM 98. If indeed, after two months, ST = DM 115, the profit of DM
1000 was realized with an investment of 100×C = DM 500, i.e., amounts to
a return of 200% in two months. Working with the underlying security, one
would realize a profit of 100×(ST −St) = DM 1700 but on an investment of
DM 9,800, i.e., achieve a return of “only” 17.34%. On the other hand, the
risk of losses on derivatives is considerably higher than on stocks or bonds
(imagine the stock price to stay at ST = DM 98 at maturity). Moreover,
even with simple derivatives, a speculator places a bet not only on the
direction of a market move, but also that this move will occur before the
maturity of the instruments he used for his investment.

• Hedgers, on the other hand, invest into derivatives in order to eliminate
risk. This is basically what the company in the example of Sect. 2.3.1 did
when entering a forward over 1 million pounds sterling. By this action,
all risk associated with changes of the dollar/sterling exchange rate was
eliminated. Using a forward contract, on the other hand, the company
also eliminated all opportunities of profit from a favorable evolution of the
exchange rate during three months to maturity of the forward. As an alter-
native, it could have considered using options to satisfy its hedging needs.
This would have allowed it to profit from a rising dollar but, at the same
time, would have required to pay upfront the price of the options. Notice
that hedging does not usually increase profits in financial transactions but
rather makes them more controllable, i.e., eliminates risk.

• Arbitrageurs attempt to make riskless profits by performing simultaneous
transactions on two or more markets. This is possible when prices on two
different markets become inconsistent. As an example, consider a stock
which is quoted on Wall Street at $172, while the London quote is £100.
Assume that the exchange rate is 1.75 $/£. One can therefore make a
riskless profit by simultaneously buying N stocks in New York and selling
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the same amount, or go short in N stocks, in London. The profit is $3N .
Such arbitrage opportunities cannot last for long. The very action of this
arbitrageur will make the price move up in New York and down in Lon-
don, so that the profit from a subsequent transaction will be significantly
lower. With today’s computerized trading, arbitrage opportunities of this
kind only last very briefly, while triangular arbitrage, involving, e.g., the
European, American, and Asian markets, may be possible on time scales
of 15 minutes, or so.
Arbitrage is also possible on two national markets, involving, e.g., a futures
market and the stock market, or options and stocks. Arbitrage therefore
makes different markets mutually consistent. It ensures “market efficiency”,
which means that all available information is accounted for in the current
price of a security, up to inconsistencies smaller than applicable transaction
costs.
The absence of arbitrage opportunities is also an important theoretical
tool which we will use repeatedly in subsequent chapters. It will allow a
consistent calculation of prices of derivatives based on the prices of the
underlying securities. Notice, however, that while satisfied in practice on
liquid markets in standard circumstances, it is, in the first place, an as-
sumption which should be checked when modeling, e.g., illiquid markets or
exceptional situations such as crashes.

2.6 Price Formation at Organized Exchanges

Prices at an exchange are determined by supply and demand. The procedures
differ slightly according to whether we consider an auction or continuous
trading, and whether we consider a computerized exchange, or traders in a
pit.

Throughout this book, we assume a single price for assets, except when
stated otherwise explicitly. This is a simplification. For assets traded at an
exchange, prices are quoted as bid and ask prices. The bid price is the price
at which a trader is willing to buy; the ask price in turn is the price at which
he is willing to sell. Depending on the liquidity of the market, the bid–ask
spread may be negligible or sizable.

2.6.1 Order Types

Besides the volume of a specific stock, buy and sell orders may contain addi-
tional restrictions, the most basic of which we now explain. They allow the
investor to specify the particular circumstances under which his or her order
must be executed.

A market order does not carry additional specifications. The asset is
bought or sold at the market price, and is executed once a matching order
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arrives. However, market prices may move in the time between the decision
of the investor and the order execution at the exchange. A market order does
not contain any protection against price movements, and therefore is also
called an unlimited order.

Limit orders are executed only when the market price is above or below
a certain threshold set by the investor. For a buy (sell) order to limit SL,
the order is executed only when the market price is such that the order can
be excecuted at S ≤ SL (S ≥ SL). Otherwise, the order is kept in the order
book of the exchange until such an opportunity arises, or until expiry. A sell
order with limit SL guarantees the investor a minimum price SL in the sale
of his assets. A limited buy order, vice versa, guarantees a maximal price for
the purchase of the assets.

Stop orders are unlimited orders triggered by the market price reaching a
predetermined threshold. A stop-loss (stop-buy) order issues an unlimited sell
(buy) order to the exchange once the asset price falls below SL. Stop orders
are used as a protection against unwanted losses (when owning a stock, say),
or against unexpected rises (when planning to buy stock). Notice, however,
that there is no guarantee that the price at which the order is executed is
close to the limit SL set, a fact to be considered when seeking protection
against crashes, cf. Chap. 5.

2.6.2 Price Formation by Auction

In an auction, every trader gives buy and sell orders with a specific volume
and limit (market orders are taken to have limit zero for sell and infinity for
buy orders). The orders are now ordered in descending (ascending) order of
the limits for the buy (sell) orders, i.e., SL,1 > SL,2 > . . . > SL,m for buy
orders, and SL,1 < SL,2 < . . . < SL,n for the sell orders. Let Vb(Si) and
Vs(Si) be the volumes of the buy and sell orders, respectively, at limit Si. We
now form the cumulative demand and offer functions D(Sk) and O(Sk) as

D(Sk) =
k∑

i=1

Vb(Si) , k = 1, . . . , m (2.1)

O(Sk) =
k∑

i=1

Vs(Si) , k = 1, . . . , n . (2.2)

The market price of the asset determined in the auction then is that price
which allows one to execute a maximal volume of orders with a minimal
residual of unexecuted order volume, consistent with the order limits. If the
order volumes do not match precisely, orders may be partly executed.

We illustrate this by an example. Table 2.1 gives part of a hypotheti-
cal order book at a stock exchange. One starts executing orders from top
to bottom on both sides, until prices or cumulative order volumes become
inconsistent. In the first two lines, the buy limit is above the sell limit so
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Table 2.1. Order book at a stock exchange containing limit orders only. Orders
with volume in boldface are executed at a price of 162. With a total transaction
volume of 900, the buy order of 300 shares at 162 is executed only partly

Buy Sell

Volume Limit Cumulative Volume Limit Cumulative

200 164 200 400 160 400

500 163 700 400 161 800

300 162 1000 100 162 900

200 161 1200 300 163 1200

300 160 1500 300 164 1500

Vb(Si) Si D(Si) Vs(Si) Si O(Si)

that the orders can be executed at any price 163 ≥ S ≥ 161. In the third
line, only 900 (cumulated) shares are available up to 162 compared to a cu-
mulative demand of 1000. A transaction is possible at 162, and 162 is fixed
as the transaction price for the stock because it generates the maximal vol-
ume of executed orders. However, while the sell order of 100 stocks at 162
is executed completely, the buy order of 300 stocks is exectued only partly
(volume 200). Depending on possible additional instructions, the remainder
of the order (100 stocks) is either cancelled or kept in the order book.

The problem can also be solved graphically. The cumulative offer and
demand functions are plotted against the order limits in Fig. 2.3. The solid
line is the demand, and the dash-dotted line is the offer function. They in-
tersect at a price of 162.20. The auction price is fixed as that neighboring
allowed price (we restricted ourselves to integers) where the order volume on
the lower of both curves is maximal. This happens at 162 with a cumulative
volume of 900 (compare to a volume of 750 at 163).

The dotted line in Fig. 2.3 shows the cumulative buy functions if an
additional market order for 300 stocks is entered into the order book. The
demand function of the previous example is shifted upward by 300 stocks, and
the new price is 163. All buy orders with limit 163 and above are executed
completely, including the market order (total volume 1000). Sell orders with
limit below 163 are executed completely (total volume 900), and the order
with limit 163 can sell only 100 shares, instead of 300. The corresponding
order book is shown in Table 2.2.

2.6.3 Continuous Trading:
The XETRA Computer Trading System

Elaborate rules for price formation and priority of orders are necessary in the
computerized trading systems such as the XETRA (EXchange Electronic
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161 162 163 164
price

250

500

750

1000

1250

1500

1750

cumulative order volumes

Fig. 2.3. Offer and demand functions in an auction at a stock exchange. The solid
line is the demand function with limit orders only, and the dotted line includes a
market order of 300 shares. The dash-dotted line is the offer function

Table 2.2. Order book including a market buy order. Orders with volume in
boldface are executed at a price of 163. With a total transaction volume of 1000,
the sell order of 300 shares at 163 is executed only partly

Buy Sell

Volume Limit Cumulative Volume Limit Cumulative

300 market 300 400 160 400

200 164 500 400 161 800

500 163 1000 100 162 900

300 162 1300 300 163 1200

200 161 1500 300 164 1500

300 160 1800

Vb(Si) Si D(Si) Vs(Si) Si O(Si)

Trading) system introduced by the German Stock Exchange in late 1997
[27]. Here, we just describe the basic principles.

Trading takes place in three main phases. In the pretrading phase, the
operators can enter, change, or delete orders in the order book. The traders
cannot access any information on the order book.

The matching (i.e., continuous trading) phase starts with an opening auc-
tion. The purpose is to avoid a crossed order book (e.g., sell orders with lim-
its significantly below those of buy orders). Here, the order book is partly
closed, but indicative auction prices or best limits entered, are displayed
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continuously. Stocks are called to auction randomly with all orders left over
from the preceding day, entered in the pretrading phase, or entered during
the auction until it is stopped randomly. The price is determined according
to the rules of the preceding section. It is clear, especially from Fig. 2.3, that
in this way a crossed order book is avoided.

In the matching phase, the order book is open and displays both the
limits and the cumulative order volumes. Any newly incoming market or limit
order is checked immediately against the opposite side of the order book, for
execution. This is done according to a set of at least 21 rules. More complete
information is available in the documentation provided by, e.g., Deutsche
Börse AG [27]. Here, we just mention a few of them, for illustration. (i) If a
market or a limit order comes in and faces a set of limit orders in the order
book, the price will be the highest limit for a sell order, resp. the lowest limit
for a buy order. (ii) If a market buy order meets a market sell order, the
order with the smaller volume is executed completely, while the one with the
larger volume is executed partly, at the reference price. The reference price
remains unchanged. (iii) If a limit sell order meets a market buy order, and
the currently quoted price is higher than the lowest sell limit, the trade is
concluded at the currently quoted price. If, on the other hand, the quoted
price is below the lowest sell limit, the trade is done at the lowest sell limit.
(iv) If trades are possible at several different limits with maximal trading
volume and minimal residual, other rules will determine the limit depending
on the side of the order book, on which the residuals are located.

If the volatility becomes too high, i.e., stock prices leave a predetermined
price corridor, matching is interrupted. At a later time, another auction is
held, and continuous trading may resume. Finally, the matching phase is
terminated by a closing auction, followed by a post-trading period. As in
pretrading, the order book is closed but operators can modify their own
orders to prepare next day’s trading.

On a trading floor where human traders operate, such complicated rules
are not necessary. Orders are announced with price and volume. If no match-
ing order is manifested, traders can change the price until they can conclude
a trade, or until their limit is reached.



3. Random Walks in Finance and Physics

The Introduction, Chap. 1, suggested that there is a resemblance of financial
price histories to a random walk. It is therefore more than a simple curiosity
that the first successful theory of the random walk was motivated by the
description of financial time series. The present chapter will therefore describe
the random walk hypothesis [28], as formulated by Bachelier for financial
time series, in Sect. 3.2 and the physics of random walks [29], in Sect. 3.3.
The mathematical description of random walks can be found in many books
[30]. A classical account of the random walk hypothesis in finance has been
published by Cootner [7].

3.1 Important Questions

We will discuss many questions of basic importance, for finance and for
physics, in this chapter. Not all of them will be answered, some only ten-
tatively. These problems will be taken up again in later chapters, with more
elaborate methods and more complete data, in order to provide more definite
answers. Here is a list:

• How can we describe the dynamics of the prices of financial assets?
• Can we formulate a model of an “ideal market” which is helpful to predict

price movements? What hypotheses are necessary to obtain a tractable
theoretical model?

• Can the analysis of historical data improve the prediction, even if only in
statistical terms, of future developments?

• How must the long-term drifts be treated in the statistical analysis?
• How was the random walk introduced in physics?
• Are there qualitative differences between solutions and suspensions? Is

there osmotic pressure in both?
• Have random walks been observed in physics? Can one observe the one-

dimensional random walk?
• Is a random walk assumption for stock prices consistent with data of real

markets?
• Are the assumptions used in the formulation of the theory realistic? To

what extent are they satisfied by real markets?
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• Can one make predictions for price movements of securities and derivatives?
• How do derivative prices relate to those of the underlying securities?

The correct understanding of the relation of real capital markets to the
ideal markets assumed in theoretical models is a prerequisite for successful
trading and/or risk control. Theorists therefore have a skeptical attitude to-
wards real markets and therein differ from practitioners. In ideal markets,
there is generally no easy, or riskless, profit (“no free lunch”) while in real
markets, there may be such occasions, in principle. Currently, there is still
controversy about whether such profitable occasions exist [3, 31].

We now attempt a preliminary answer at those questions above touching
financial markets, by reviewing Bachelier’s work on the properties of financial
time series.

3.2 Bachelier’s “Théorie de la Spéculation”

Bachelier’s 1900 thesis entitled “Théorie de la Spéculation” contains both
theoretical work on stochastic processes, in particular the first formulation of
a theory of random walks, and empirical analysis of actual market data. Due
to its importance for finance, for physics, and for the statistical mechanics
of capital markets, and due to its difficult accessibility, we will describe this
work in some detail.

Bachelier’s aim was to derive an expression for the probability of a market
or price fluctuation of a financial instrument, some time in the future, given
its current spot price. In particular, he was interested in deriving these prob-
abilities for instruments close to present day futures and options, cf. Sect. 2.3,
with a FF 100 French government bond as the underlying security. He also
tested his expressions for the probability distributions on the daily quotes for
these bonds.

3.2.1 Preliminaries

This section will explain the principal assumptions made in Bachelier’s work.

Bachelier’s Futures

Bachelier considers a variety of financial instruments: futures, standard (plain
vanilla) options, exotic options, and combinations of options. However, his
basic ideas are formulated on a futures-like instrument which we first char-
acterize.

• The underlying security is a French government bond with a nominal value
of FF 100, and 3% interest rate. A coupon worth Z = 75c is detached every
three months (at the times ti below).
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• Unlike modern bond futures, Bachelier’s futures do not include an obliga-
tion of delivery of the bond at maturity. Only the price difference of the
underlying bond is settled in cash, as would be done today with, e.g., index
futures. The advantage of buying the future, compared to an investment
into the bond, then is that only price changes must be settled. The impor-
tant investment in the bond upfront can thus be avoided, and the leverage
of the returns is much higher.

• The expiry date is the last trading day of the month. The price of the fu-
tures is fixed on entering the contract, cf. Sect. 2.3.2, and the long position
acquires all rights deriving from the underlying bond, including interest.

• The long position receives the interest payments (coupons) from the fu-
tures.

• Bachelier’s futures can be extended beyond their maturity (expiry) date,
to the end of the following month, by paying a prolongation fee K. This
is not possible on present day futures. It conveys some option character to
Bachelier’s futures because its holder can decide to honor the contract at
a later stage where the market may be more favorable to him.

Market Hypotheses

Bachelier makes a series of assumptions on his markets which have become
standard in the theory of financial markets. He postulates that, at any given
instant of time, the market (i.e., the ensemble of traders) is neither bullish nor
bearish, i.e., does not believe either in rising or in falling prices, a hausse or
baisse of the market. (Notice that the individual traders may well have their
opinion on the direction of a market movement.) This is, in essence, what has
become the hypothesis of “efficient and complete” markets. In particular:

• Successive price movements are statistically independent.
• In a perfect market, all information available from the past to the present

time, is completely accounted for by the present price.
• In an efficient market, the same hypothesis is made, but small irregularities

are allowed, so long as they are smaller than applicable transaction costs.
• In a complete market, there are both buyers and sellers at any quoted price.

They necessarily have opposite opinions about future price movements, and
therefore on the average, the market does not believe in a net movement.

The Regular Part of the Price of Bachelier’s Futures

Let us assume that there are no fluctuations in the market. The price of the
futures F is then completely governed by the price movements of the underly-
ing security S which is shown in Fig. 3.1. Due to the accumulation of interest,
the value, and therefore the price, of the bond increases linearly in time by
Z = 75c over three months. When the coupon is detached from the bond at
times ti (ti+1 − ti = 3m), the value of the bond decreases instantaneously
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Fig. 3.1. Deterministic part of the spot price evolution of the underlying French
government bond. ti denotes the time where a 75c coupon is detached from the
bond

by Z. The movement of the futures price is more dramatic, reflecting only
price changes, but reproduces the basic pattern of Fig. 3.1. In the absence
of prolongation fees (K = 0), immediately after the payment of interest at
some ti, the value of the futures contract is zero. Due to the accumulation of
interest on the underlying bond, the futures price then increases linearly in
time to 75c, immediately before ti+1

F (t) = S(t) − S(ti) =
(

Z

ti+1 − ti

)
(t − ti) for ti ≤ t ≤ ti+1 . (3.1)

This is because at maturity, the price difference accumulated on the underly-
ing bond is settled between the long and short positions. Immediately after
the maturity date, the value of the futures falls to zero again as shown as
the solid line in Fig. 3.2. The holder of the futures receives the interest pay-
ment of the underlying bond. Notice the leverage on the price variations of
the futures. The bond price varies by 0.75% each time a coupon is detached
while the futures varies by 100% because the interest payment is 0.75% of
the bond value, but makes up the entire value of the futures. With a finite
prolongation fee K, price movement will be less pronounced. In the extreme
case where K = Z/3, the value of the futures contract at maturity, after
one month, will be equal to the initial investment for carrying it on, i.e., K.
It will then jump up by K due to the cost of prolongation, etc. This is the
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Fig. 3.2. Deterministic part of the evolution of the futures price F for three different
prolongation fees: K = 0 (solid line), K = Z (dotted line), and 0 < K < Z (dashed
line)

dotted line in Fig. 3.2. For intermediate Z > K > 0, the futures price will
vary as represented by the dashed lines in Fig. 3.2: the value is K < Z/3
immediately after interest payment, from where it increases linearly to Z/3
at the first maturity date, jumps by another K and increases to 2Z/3 at the
second maturity date, etc., to ti+1 where interest is paid, and the value falls
back to K.

The important observation of Bachelier now is that all prices on any
given line F(t) [or S(t)] are equivalent. As long as the price evolution is
deterministic, the return an investor gets from buying the futures (or bond)
at any given time is the same, provided the price is on the applicable curve
F (t) [or S(t)]. The returns are the same because the slope is independent
of time. For a given K, all prices on one given curve represent the true, or
fundamental (in modern terms), value of the asset. For a given prolongation
cost K the drift of the true futures price is

dF (t)
dt

=
dS(t)

dt
− 3K

(ti+1 − ti)
, (3.2)

between two maturity dates.
If now fluctuations are added, and the current spot price of the futures is

F (t), the true, or fundamental value of the futures a time t + T from now, is

F̃ (t + T ) = F (t) +
dF

dt
T , (3.3)
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provided no maturity date occurs during t. The effect of a maturity date can
be included as described above, and a similar relation holds for the funda-
mental price of the bond. Of course, there is no guarantee that the quoted
price at t + T will be equal to F̃ (t + T ).

3.2.2 Probabilities in Stock Market Operations

Bachelier distinguishes two kinds of probabilities, a “mathematical” and a
“speculative” probability. The mathematical probability can be calculated
and refers to a game of chance, like throwing dice. The speculative prob-
ability may not be appropriately termed “probability”, but perhaps better
“expectation”, because it depends on future events. It is a subjective opinion,
and the two partners in a financial transaction necessarily have opposite ex-
pectations (in a complete market: necessarily always exactly opposite) about
those future events which can influence the value of the asset transacted.

The probabilities discussed here, of course, refer to the mathematical
probabilities. Notice, however, that the (grand-) public opinion about stock
markets, where the idea of a random walk does not seem to be deeply rooted,
sticks more to the speculative probability. Also for speculators and active
traders, the future expectations may be more important than the mathemat-
ical probability of a certain price movement happening. The mathematical
probabilities refer to idealized markets where no easy profit is possible. On the
other hand, fortunes are made and lost on the correctness of the speculative
expectations. It is important to keep these distinctions in mind.

Martingales

In Sect. 3.2.1, we considered the deterministic part of the price movements
both of the French government bond, and of its futures. There is a net return
from these assets because the bond generates interest. Between the cash flow
dates, there is a constant drift in the (regular part of) the asset prices and
most likely, there will also be a finite drift if fluctuations are included. Such
drifts are present in most real markets, cf. Figs. 1.1 and 1.2. Consequently,
Bachelier’s basic hypothesis on complete markets, viz. that on the average,
the agents in a complete market are neither bullish nor bearish, i.e., neither
believe in rising nor in falling prices, Sect. 3.2.1, must be modified to account
for these drifts which, of course, generate net positive expectations for the
future movements.

The modified statement then is that, up to the drift dF/dt, resp. dS/dt,
the market does not expect a net change of the true, or fundamental, prices.
(Bachelier takes the artificial case K = Z/3, i.e., the dotted lines in Fig. 3.2,
to formalize this idea.) However, deviations of a certain amplitude y, where
y = S(t) − S(0) or F (t) − F (0), occur with probabilities p(y), which satisfy∫ ∞

−∞
p(y)dy = 1 (3.4)
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for all t. The expected profit from an investment is then

E(y) ≡ 〈y〉 =
∫ ∞

−∞
y p(y)dy > 0 so long as

⎧⎨
⎩

dS
dt , dF

dt > 0

Z > 3K .
(3.5)

[The notation E(y) for an expectation value is more common in mathematics
and econometrics, while physicists often prefer 〈y〉.] Such an investment is
not a fair game of chance because it has a positive expectation. However, for
a

fair game of chance : E(y) = 0 . (3.6)

This condition, the vanishing of the expected profit of a speculator, is fulfilled
in Bachelier’s problem only if Z = 3K, or if dS/dt or dF/dt is either zero or
subtracted out. Then a modified price law between the maturity dates

x(t) = y(t) − dS

dt
t or x(t) = y(t) − dF

dt
t , (3.7)

where t is set to zero at the maturity times (nti for the bond and nti/3 for
the futures), must be used. This law fulfills the fair game condition

E(x) ≡ 〈x〉 = 0 . (3.8)

With these prices corrected for the deterministic changes in fundamental
value, the expected excess profit of a speculator now vanishes. A clear sepa-
ration of the regular, or deterministic price movement, contained in the drift
term, and of the fluctuations, has been achieved. Equation (3.8) emphasizes
that there is no easy profit possible due to the fair game condition (3.6). Now
it is possible to attempt a statistical description of the fluctuation process.

x(t) describes a drift-free time series. This is what is called, in the modern
theory of stochastic processes [32], a martingale, or a martingale stochastic
process, i.e., E(x) = 0, or more precisely (in discrete time)

E(xt+1 − xt|xt, xt−1, xt−2, . . . , x0) = 0 , (3.9)

where E(xt+1−xt|xt, . . .) is the expectation value formed with the conditional
probability p(xt+1 − xt|xt, . . .) of xt+1 − xt, conditioned on the observations
xt, xt−1, xt−2, . . . , x0. One may also say that y(t), the stochastic process (time
series) followed by the bond price or any other financial data, is an equivalent
martingale process. An equivalent martingale process is a stochastic process
which is obtained from a martingale stochastic process by a simple change of
the drift term, cf. (3.7).

The equivalent martingale hypothesis is equivalent to that of a perfect
and complete market, and approximately equivalent to that of an efficient
and complete market.
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Distribution of Probabilities of Prices

What can we say about the probability density p(x, t) of a price change of a
certain amplitude x, at some time t in the future? In attempting to answer
this question, Bachelier gave a rather complete, though sometimes slightly
inaccurate, formulation of a theory of the random walk, five years before
Einstein’s seminal paper [4].

From now on, we will assume that the price S(t) itself follows a martingale
process, or that all effects of nonzero drifts have been incorporated correctly.
The general shape of the probability distribution at some time t in the future
is shown in Fig. 3.3. Here, p(x1, t)dx1 is the probability of a price change
x1 ≤ x ≤ x1 + dx1 at time t. In a first appoximation, the complete market
hypothesis requires the distribution to be symmetric with respect to x = 0,
and the fair game condition, i.e., the assumption of a martingale process,
requires the maximum to be at x = 0 at any t, and to have a quadratic
variation for sufficiently small x. Also, it must decrease sufficiently quickly
for x → ±∞ to make p(x, t) normalizable. Strictly speaking, since the price
of a bond cannot become negative, p(x, t) = 0 for x < −S(0), but this effect
is negligible in practice so long as fluctuations are small compared to the
bond price.

The Chapman–Kolmogorov–Smoluchowski Equation Bachelier then
tries to derive p(x, t) from the law of multiplication of probabilities. If
p(x1, t1)dx1 is the probability of a price change x1 ≤ x ≤ x1 + dx1 at time
t1, and p(x2 − x1, t2)dx2 is the probability of a change x2 − x1 in t2, the
joint probability for having a change to x1 at t1 and to x2 at t1 + t2 is
p(x1, t1)p(x2−x1, t2)dx1dx2. These paths are shown as solid lines in Fig. 3.4.
Then, the probability to have a change of x2 at t1 + t2, independent of the
intermediate values, is

p(x2, t1 + t2)dx2 =
[∫ +∞

−∞
p(x1, t1)p(x2 − x1, t2)dx1

]
dx2 . (3.10)

x1 +dx1x1
x

p(x)

Fig. 3.3. General shape of the probability density function p(x, t) of a price change
x at some time t in the future
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Fig. 3.4. Multiplication of probabilities in the (x, t)-plane. Strictly speaking, only
the probabilities at t1, t2, and t1+t2 are used. For clarity, they have been connected
by straight “paths”. To derive the Chapman–Kolmogorov–Smoluchowski equation,
one must integrate over all values of x at t1. A few such paths a shown as dashed
lines

This equation is known in physics and mathematics as the Chapman–
Kolmogorov–Smoluchowski (CKS) equation, and was rederived there some
decades after Bachelier. It is a convolution equation for the probabilities
of statistically independent random processes (resp. Markov processes more
generally).

Bachelier solves this equation by the Gaussian normal distribution

p(x, t) = p0(t) exp
[−πp2

0(t)x
2
]

. (3.11)

Inserting this into CKS (3.10) gives the condition

p2
0(t1 + t2) =

p2
0(t1)p

2
0(t2)

p2
0(t1) + p2

0(t2)
(3.12)

which in turn determines the time evolution of p(t) as

p0(t) = H/
√

t (3.13)

with a constant H. The substitution σ2 = t/2πH2 then gives the normal
form of the Gaussian

p(x, t) =
1√

2πσ(t)
exp

(
− x2

2σ2(t)

)
. (3.14)
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Fig. 3.5. The Gaussian distribution for three different values of the standard de-
viation σ, i.e., three different times t ∝ σ2

Its shape, for three different values of σ, i.e., time, is shown in Fig. 3.5. The
following facts are important [set x0 = 0 in Fig. 3.5 if you are interested in
changes or x0 = S(0) if you are interested in absolute prices]: (i) for t = 0, we
have σ = 0, and this corresponds to p(x) = δ(x), i.e., certain knowledge of
the price at present (not shown in Fig. 3.5); (ii) the peak of the distribution,
and its mean do not change with time, reflecting the martingale property;
(iii) the distribution function broadens slowly, only with σ ∝ √

t. This fact
(and eventual deviations thereof, of real markets) is of practical importance
since it excludes big price movements over moderately long time intervals.

An important problem is, however, that Bachelier did not recognize that
his “solution” to (3.10) is not the only solution, and in fact a rather special
one. Fortunately enough, Bachelier approached his problem along several
different routes. He obtained the same solution (3.14) for two more special
problems, where it was both correct and unique. One was the solution of the
random walk, the other the formulation of a “diffusion law” for price changes.

The Random Walk A discrete model for asset price changes would consider
two mutually exclusive events A (happening with a probability p), and B
(with a probability q = 1 − p). These events can be thought to represent
price changes by ±x0, in one time step. Then the probability of observing,
in m events, α realizations of A and m − α realizations of B is given by the
binomial distribution
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pA,B(α,m − α) =
m!

α!(m − α)!
pα(1 − p)m−α . (3.15)

One may now ask:

1. Which α maximizes p(α,m−α) at fixed m and p? The answer is α = mp,
and thus m − α = mq. In a financial interpretation, this gives the most
likely price change after m time steps, e.g., trading days xmax = m(p −
q)x0. A finite difference p − q would represent a drift in the market (in
this argument, one is not restricted to martingale processes).

2. What is the distribution function of price changes? The complete expres-
sion for general α, p,m has been derived by Bachelier [6]. It simplifies,
however, in the limit m → ∞, α → ∞ with h = α − mp finite, to

p(h) =
1√

2πmpq
exp

(
− h2

2mpq

)
. (3.16)

3. For p = q = 1/2, finally, and setting h → x, m = t/∆t with ∆t the unit
time step, and H =

√
2∆t/π, the Gaussian distribution

p(x) =
H√

t
exp

(
−πH2x2

t

)
(3.17)

of (3.11)–(3.14) is recovered. In this limit of large m, one has passed from
discrete time and discrete price movements to continuous variables.

This is the first formulation of the random walk, or equivalently of the theory
of Brownian motion, or of the “Einstein–Wiener stochastic process”.

Other quantities of interest, such as the probability for a price change
contained in a window, P (0 ≤ x(t) ≤ X), the expected width X of the
distribution of price changes, P (−X ≤ x(t) ≤ X) = 1/2, or of the expected
profit associated with a financial instrument whose payoff is x if x > 0, and
zero if x < 0 (i.e., an investment in options), have been derived by simple
integration [6].

The Diffusion Law Yet another derivation can be done via the diffusion
equation. For this purpose, assume that prices are discretized . . . , Sn−2, Sn−1,
Sn, Sn+1, Sn+2, . . ., and that at some time t in the future, these prices are
realized with probabilities . . . , pn−2, pn−1, pn, pn+1, pn+2, . . .. Then, one may
ask for the evolution of these probabilities with time. Specifically, what is the
probability p′n of having Sn at a time step ∆t after t? If we assume that a price
change Sn → Sn±1 must take place during ∆t, we find p′n = (pn−1 + pn+1)/2
because the price Sn can either be reached by a downward move from Sn+1,
occurring with a probability pn+1/2, or by an upward move from Sn−1 with
a probability pn−1/2. The change in probability of a price Sn during the time
step ∆t is then

∆pn = p′n − pn =
pn+1 − 2pn + pn−1

2
→ 1

2
∂2p(S, t)

∂S2
(∆S)2 (3.18)
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if the limit of continuous prices and time is taken. On the other hand,

∆pn → ∂p(S, t)
∂t

∆t (3.19)

in the same limit, and therefore

D
∂2p

∂S2
− ∂p

∂t
= 0 . (3.20)

p(S, t) therefore satisfies a diffusion equation, and the Gaussian distribution is
obtained for special initial conditions. These conditions p(S, 0) = δ[S−S(0)],
i.e., knowledge of the price at time t = 0, apply here.

Bachelier realized that (3.20) is Fourier’s equation, and that consequently,
one may think of a diffusion process, or of radiation of probability through a
price level.

These considerations are equally valid for Bachelier’s bonds and for his
futures. As has been discussed above, both prices differ by their drift coeffi-
cients, and by an offset corresponding to the nominal value of the bond, but
not in their fluctuations. Therefore, the equivalent martingale processes for
both assets are the same, and the description of their fluctuations achieved
here is valid for both of them. We will see later that the same model, with
only minor modifications, became the standard model for financial markets.

Bachelier solved many other important problems in the theory of random
walks, always motivated by financial questions. He calculated prices for simple
and exotic options, and solved the first passage problem (the probability that
a certain price S, or price change x, is reached for the first time at time t
in the future). He also solved the problem of diffusion with an absorbing
barrier – this corresponds to hedging of options with futures, and vice versa,
and the corresponding probability distribution is shown in Fig. 3.6. Here, one
requires that losses larger than a threshold, −x0, have zero probability. In

x

p(x)

-x0

Fig. 3.6. Probability distribution for hedging of options with futures, equivalent
to diffusion with an absorbing barrier
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modern terms, when one is long in a futures, this hedge can be achieved by
going long in a put with a strike price X = S(0) − x0, up to the price of the
put.

Bachelier’s idea to consider discrete prices at discrete times, and to as-
sociate a certain probability with the transition from one price St at time t
to another price St+1 at the next time is also important in option pricing.
When starting from a given price S0 at the present time t = 0, a “binomial
tree” for future asset prices is generated by allowing, at each time t, either
an upward or a downward move of the asset price with probabilities pt(up)
and pt(down) = 1 − pt(up). Cox, Ross, and Rubinstein show how one can
calculate option prices backwards, starting at the maturity date of an option.
From there, one iteratively works back to the present date. This method will
not be discussed in this book, and the reader is referred to the literature for
further details [10].

3.2.3 Empirical Data on Successful Operations in Stock Markets

Bachelier performed a variety of empirical tests of this theory by evaluat-
ing five years of quotes (1894-1898) of the French government bond and its
associated futures.

The two parameters of the theory, which must be determined from em-
pirical data, are the drift and the volatility (standard deviation). From his
empirical data, Bachelier obtains for the drifts of the bond and the futures

dS

dt
= 0.83

centimes
day

and
dF

dt
= 0.264

centimes
day

(3.21)

and for the volatility coefficient

1
2πH

= lim
t→0

σ√
2πt

= 5
centimes√

day
(3.22)

He later corrects these numbers for the difference between calendar days and
trading days.

The interval where price changes are contained with 50% probability (50%
confidence interval) ∫ αt

−αt

p(x, t)dx =
1
2

(3.23)

is then α1 = 9c for t = 1d, and α30 = 46c for t = 30d. For t = 30d, there
are 60 data points available, with 33 changes smaller than α30, and 27 larger.
For t = 1d, Bachelier has 1452 data points, with 815 changes smaller than
α1 and 637 larger than α1.

One should become suspicious here because the number of changes larger
than α1 deviates from the expected value (776) by more than 38 =

√
1452.

This may be due, at least in part, to the drift of the prices. Including the
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drift terms, Bachelier finds that the 50% interval for price changes for t = 30d
is −38c ≤ x ≤ +54c, but does not give the corresponding numbers for the
1-day intervals where the disagreement is most serious, nor does he indicate
how well the observed price changes fall into this modified interval. In fact,
he does not comment even on the unexpectedly small number of large price
changes in his observations, compared with his theory. Modern empirical
studies find a mean-reversion in the stochastic processes followed by interest
rates and bond prices [15], i.e., extreme price changes are less likely than
in Bachelier’s random walk. This trend appartently is present in Bachelier’s
price history already. Stock, currency or commodity markets, on the other
hand, have significantly more big price changes than predicted by a simple
random-walk hypothesis.

By integration of the probability distributions, one can calculate the prob-
ability of getting a profit from an investment into a bond or a futures. For
the bond, the probability for profit after a month, P (1m) = 0.64, and after
a year, P (1y) = 0.89. For the futures, on the other hand, P (1m) = 0.55, and
P (1y) = 0.65. The difference is due to the different drift rates: that of the
futures is lower because there is a finite prolongation fee K, for carrying it
on to the next maturity date. (On the other hand, the return on the invested
capital is expected to be bigger for the futures.) In Bachelier’s times, options
were labeled by the premium one had to pay for the right to buy or sell (call
or put) the underlying at maturity. Bachelier calculated the 50% intervals for
the price variations of a variety of such options, with different maturities and
premiums, and found rather good agreement with the intervals he derived
from his observations. (Needless to say the payoff profiles for calls and puts
shown in Figs. 2.1 and 2.2 can already be found in Bachelier’s thesis, as well
as those of combinations thereof.)

3.2.4 Biographical Information on Louis Bachelier (1870–1946)

Apparently, not much biographical information on Louis Bachelier is avail-
able. My source of information is essentially Mandelbrot’s book on fractals
[33]. Bachelier defended his thesis “Théorie de la spéculation” on March 29,
1900, at the Ecole Normale Supérieure in Paris. Apparently, the examining
committee was not overly impressed because they attributed the rating “hon-
orable” where the standard apparently was (and still is in France today) “très
honorable”. On the other hand, his thesis was translated and annotated into
English in 1964 [7], a rather rare event.

Bachelier’s work had no influence on any of his contemporaries, but he re-
mained active throughout his scientific life, and published in the best journals.
Only very late, did he become a professor of mathematics at the University
of Besançon. There is a sharp contrast between the difficulties he experienced
in his scientific career, and the posthumous fame he earned for his thesis.

There may be two main reasons for this. One is related to an error in
taking limits of a function describing a stochastic process in a publication,
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which was uncovered by the selection committee of a university where he had
applied for a position, and confirmed by the famous French mathematician
Paul Lévy. However, it was also Lévy who later realized that Bachelier had de-
rived, long before Einstein and Wiener, the main properties of the stochastic
“Einstein–Wiener” process, and of the diffusion equation. The second reason
certainly is related to the subject of his dissertation: speculation on financial
markets was not considered to be a subject for “pure science” (and perhaps
still is not universally recognized so today, as witnessed by a few comments
of colleagues on the course underlying this book). There was no community
in economics which could have taken up his ideas and achievements: discrete
and continuous stochastic processes, martingales, efficient markets and fair
games, random walks, etc., and, for mathematicians, he was linked to the
error mentioned above. The final part in his tragedy was played by Poincaré
who wrote the official report on Bachelier’s thesis. While he complained that
the subject was rather far from what the other students used to treat, he
also realized how far Bachelier had advanced in the theory of diffusion, and
of stochastic processes. However, Poincaré also suffered from lapses of mem-
ory. A few years later, when he took an active part in discussions on Brownian
motion, he had completely forgotten Bachelier’s seminal work.

3.3 Einstein’s Theory of Brownian Motion

The starting point of Einstein’s work on Brownian motion is rather surprising
from a present day perspective: the implication of classical thermodynamics
that there would not be an osmotic pressure in suspensions [4]. The aim
of Einstein’s work was not to explain Brownian motion (the small irregular
motions of particles resulting from the decay of plant pollen in an aqueous
solution which the Scottish botanist R. Brown had observed under the mi-
croscope – Einstein did not have accurate information on this phenomenon)
but to show that the statistical theory of heat required the motion of par-
ticles in suspensions, and thereby both diffusion and an osmotic pressure.
Such a phenomenon would not be allowed by classical thermodynamics. For
the physics concepts discussed here, we refer to any textbook on statistical
mechanics or thermodynamics [29].

3.3.1 Osmotic Pressure and Diffusion in Suspensions

The phenomenon of osmotic pressure is commonly discussed for solutions
[29]. One considers a solution where the solute is dissolved, in a concentration
c, in the solvent in a volume V � enclosed by a membrane. This membrane
is assumed to be permeable only to the solvent, and not to the solute, and
immersed in a surrounding volume of solvent. The solvent therefore can freely
flow in and out. One then finds that the solute exercises a pressure p on the
membrane
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pV � = cRT , (3.24)

the osmotic pressure. Here R is the gas constant, and T the temperature.
The idea behind (3.24) is that the solute acts as an ideal gas enclosed in
the volume V � while the solvent does not sense the membrane and can be
ignored, an interpretation that goes back to van’t Hoff. In a solution, the
solute is of microscopic, i.e., atomic or molecular size, the same situation as
for a true ideal gas.

In a suspension, on the other hand, the particles immersed in a fluid are
macroscopic, though small. (There is some confusion about the notion of
“microscopic size” in Einstein’s paper which should be interpreted as a “size
visible under the microscope”.) One may now consider a setup similar to the
preceding paragraph, i.e., enclose the suspension in a semipermeable mem-
brane, surrounded by a volume of “solvent” fluid. The statement of classical
thermodynamics, according to Einstein, is that there is no osmotic pressure
in such a suspension psusp ≡ 0.

I have not seen this statement documented in any textbook on thermody-
namics that I have consulted, and an informal poll among colleagues demon-
strated that this fact is not appreciated today (a consequence of the influence
of Einstein’s work). One explanation goes as follows: When macroscopic par-
ticles are suspended in a liquid, the chemical potential of the liquid is not
changed according to thermodynamics. The chemical potentials of both con-
stituents are different but cannot change because there is no exchange of
particles, by definition of the suspension. The suspension is a heterogeneous
phase whereas the analogous situation for a solution is considered to be homo-
geneous, though with a different chemical potential. This chemical potential
difference is at the origin of the osmotic pressure. It is finite for a solution
enclosed by a semipermeable membrane, and zero for a heterogeneous phase
of a solvent plus suspended particles in contact with a pure solvent phase.
Another argmument is that, in equilibrium, the free energy does not depend
on the positions of the suspended particles, assumed to be at rest, and that
of the membrane, and therefore P = −(∂F/∂V )T = 0. As a corollary, there
would be no diffusion of particles in a suspension.

Contrary to thermodynamics which works only with macroscopic state
variables, the statistical theory of heat developed by Einstein and others,
inquires on the origin of heat, and the connection to the microscopic con-
stituents of matter. The question is what microscopic changes are originated
by addition or removal of heat. Heat is related to an irregular state of mo-
tion of the microscopic building blocks of matter, such as atoms, molecules
or electrons: the addition (removal) of heat simply increases (decreases) this
motion. As a consequence, both microscopically small particles (the solute)
and macroscopic particles (in the suspension) must follow the same laws of
motion, and of statistical mechanics. From this, Einstein finds that osmotic
pressure is built up both in solutions and suspensions enclosed in a semi-
permeable membrane, and that there is a unique expression for the diffusion
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constant of particles in a liquid

D =
RT

N

1
6πκr

, (3.25)

where κ is the viscosity coefficient of the liquid and r is the radius of the parti-
cles assumed to be spherical. Due to the different size of particles in solutions
and suspensions, there is a quantitative difference in the diffusion constant,
but there is no qualitative difference between solutions and suspensions in
statistical mechanics.

3.3.2 Brownian Motion

The idea which Einstein puts forward is that the particles of the solvent will
hit the suspended particles in shocks of random strength and direction, and
thereby impart momentum to them. He assumes that

1. the motion of the individual suspended particles is independent of each
other;

2. the motion is completely randomized by the shocks;
3. a one-dimensional approximation is sufficient;
4. within a time interval τ , particle j moves from xj → xi + ∆j with some

random ∆j .

The ∆j are taken from a probability distribution p(∆) such that

dn

n
= p(∆)d∆ (3.26)

is the fraction of particles which are shifted by distances between ∆ and
∆ + d∆ in one time step. p is normalized and symmetric∫ ∞

−∞
p(∆)d∆ = 1 , p(∆) = p(−∆) . (3.27)

The shape of p(∆) can now be found by an argument quite similar to Bache-
lier’s third derivation of the Gaussian distribution.

Consider a long, narrow (ideally 1D) cylinder oriented along the x-axis,
and let f(x, t)dx be the number of particles contained between x and x + dx
at time t. A time step τ later, this number is

f(x, t + τ)dx = dx

∫ ∞

−∞
d∆ p(∆)f(x − ∆, t) (3.28)

which contains nothing more than the statement that all particles at (x, t+τ)
must have been somewhere at the previous time step. Expanding in τ on the
left and in ∆ on the right-hand side gives
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f(x, t) + τ
∂f(x, t)

∂t
+ · · · (3.29)

=
∫ ∞

−∞
d∆p(∆)

[
f(x, t) − ∆

∂f(x, t)
∂x

+
∆2

2
∂2f(x, t)

∂x2
+ · · ·

]
.

Using (3.27), this reduces to the diffusion equation

∂f(x, t)
∂t

= D
∂2f(x, t)

∂x2
with D =

1
2τ

∫ ∞

−∞
d∆ ∆2p(∆) . (3.30)

For the initial condition f(x, t = 0) = δ(x), this is solved by the Gaussian
distribution

f(x, t) =
n√

4πDt
exp

(
− x2

4Dt

)
, (3.31)

where n = cN is the number of suspended particles.

3.4 Experimental Situation

We now discuss the first empirical evidence for random walks in finance and in
physics. We will be quite superficial here. An in-depth discussion of the statis-
tical properties of financial time series is the subject of Chap. 5. For physics,
we briefly discuss Jean Perrin’s seminal observation of Brownian motion un-
der the microscope, which refers to two- or three-dimensional Brownian mo-
tion. Truly one-dimensional Brownian motion is rather difficult to observe,
and I will discuss the only example I am aware of: the diffusion of electronic
spins in the organic conductor TTF-TCNQ.

3.4.1 Financial Data

Figure 1.3 showed a price chart generated from random numbers. The sim-
ilarity to the behavior of the DAX, Fig. 1.1, is striking! To expand on this
similarity, Fig. 3.7 shows another simulation of a random walk (upper panel),
and compares it to the DAX quotes from January 1975 to May 1977 (lower
panel), i.e., the left end of Fig. 1.2. In the perspective of an (informed) in-
vestor, the central problem therefore is to distinguish pure randomness from
correlations, or even components of deterministic evolution! In passing, our
simulations also contain a warning: we know that even the best random num-
ber generators never produce completely random numbers. This is known and
under control to a large extent. What is often forgotten is that many prac-
tical random number generators are substandard, and sometimes even have
drifts! Using them in a computer simulation may produce completely spurious
results!
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Fig. 3.7. Computer simulation of price charts as a random walk (upper panel) and
comparison to the evolution of the DAX share index from January 1975 to May
1977 (lower panel). DAX data provided by Deutsche Bank Research
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One of the first comparisons of a computer simulation to stock index
quotes in economics was performed by Roberts [34]. He demonstrated a sur-
prising similarity between the weekly closes of the Dow Jones Industrial Av-
erage in 1956, and an artificial index which was generated from 52 random
numbers, representing the change of weekly closing prices over one year.

3.4.2 Perrin’s Observations of Brownian Motion

The first systematic observations of Brownian motion were made by the
French physicist Jean Perrin in 1909 and are described later in his book
Les Atomes [35]. He charted on paper the motion of colloidal particles of
radius 0.53 µm suspended in a liquid, by recording the positions every 30–50
seconds. One of his original traces is reproduced in Fig. 3.8. The straight
lines between the turning points, of course, are interpolations. Perrin noted
that the paths were not straight at all but that, when the observation time
scale was shortened, they became more ragged on even smaller scales. These
were the first experimental confirmations of Einstein’s theory on Brownian
motion, and on diffusion in suspensions. Recall that no such motion was al-
lowed within classical thermodynamics, and that these observations thereby
also confirmed the statistical theory of heat.

Fig. 3.8. Traces of the motions of colloidal particles suspended in a liquid,
by J. Perrin. The grid size is 3.2 µm, and positions have been recorded every
30–50 seconds. Reprinted by permission from J. Perrin: Les Atomes, c©1948 Presses
Universitaires de France
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3.4.3 One-Dimensional Motion of Electronic Spins

Perrin’s observations concern three-dimensional random walks. The one-
dimensional random walk actually treated by Bachelier and Einstein is not
so “easy” to observe. One way to generate a one-dimensional random walk
is to simply project the trajectories of a higher-dimensional random walk
such as Perrin’s, on a line. The first actual measurement of one-dimensional
Brownian motion probably is the work of Kappler [36] in 1931, who set out
to determine Avogadro’s constant from the Brownian motion of a torsion
balance. He attached a tiny mirror to the quartz wire of a torsion balance.
The wire was a few centimeters long and a few tenths of a micron thick.
Molecules in the surrounding air, performing Brownian motion hit the mir-
ror with random velocities in random direction, and thereby impart random
momenta to the mirror. The mirror will then perform a one-dimensional ro-
tational Brownian motion in an external mean-reverting potential provided
by the restoring force of the quartz fiber, i.e., execute a stochastic Ornstein-
Uhlenbeck process [37]. The motion of the mirror is recorded by using it to
deflect a narrow light ray onto a photographic film.

A more recent example is provided by the one-dimensional trajectories
of a colloidal particle of 2.5 µm diameter, performing Brownian motion in a
suspension of deionized water. They have been measured in a study searching
for microscopic chaos [38]. However, the paper does not reveal if they have
been one-dimensionalized by projection or if the particle motion was one-
dimensional.

The main problem in the observation of truly one-dimensional Brown-
ian motion is to fabricate structures which are narrow enough so that the
microscopic diffusion process becomes one-dimensional, i.e., that are of the
size of the diffusing particles. Organic chemistry was the first to achieve this
goal. From the mid-1960s on, there has been a big interest in low-dimensional
materials conducting electric current because a theory predicted that super-
conductivity would be possible at room temperature (or above) in quasi-1D
structures [39]. This aim has not been achieved although superconductivity
has been found in organic materials at low temperatures. On the way, much
interesting physics has been discovered in the many families of 1D organic
conductors synthesized so far [40].

One important organic metal is tetrathiafulvalene-tetracyanoquinodime-
thane. The molecules constituting this material, and the basic crystal struc-
ture of TTF-TCNQ are shown in Fig. 3.9. The large planar molecules pref-
erentially stack on top of each other, and the one-dimensionality of the elec-
tronic band structure is enhanced by the directional nature of the highest
occupied molecular orbitals. Nuclear magnetic resonance now allows one to
monitor the diffusive motion of the electronic spin in these one-dimensional
bands [41].

In the absence of perturbations, one would observe a sharp δ-function
resonance line at the nuclear Larmor frequency h̄ωN = 2µNH0 where H0
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Fig. 3.9. Molecular constituents of TTF-TCNQ, and its schematic crystal struc-
ture. TTF = tetrathiafulvalene, TCNQ = tetracyanoquinodimethane

is the external magnetic field and µN the nuclear magneton. Perturbations,
however, generate random magnetic fields at the site of the nucleus, and
broaden the resonance line. Its width is usually measured by the relaxation
rate 1/T1 (in the case we shall discuss, the spin–lattice relaxation rate 1/T1

is appropriate). One prominent source of perturbation is the electronic spins
which couple to the nuclear spins through the hyperfine interaction. They
create a fluctuating magnetic field at the site of the nucleus which faithfully
reflects the dynamics of the electronic spin motion. The influence on the
width of the resonance line is given by Moriya’s formula (simplified here for
our purposes)

1
T1T

∝
∑

q

Imχ⊥(q, ω)
ω

∣∣∣∣
ω=ωN

, (3.32)

where T is the temperature and χ⊥ is the transverse spin susceptibility of
the electrons. Its microscopic definition is

Imχ⊥(q, ω) =
π

2
(gµB)2

∑
k

(f [Ek↓] − f [Ek+q↑]) δ(h̄ω − Ek+q↑ + Ek↓) .

(3.33)
g and µB are the electronic g-factor and Bohr magneton, respectively, and
f(E) is the Fermi–Dirac distribution function. Equation (3.33) states that
resonance absorption is possible when occupied and unoccupied states of dif-
ferent spin direction at the relative wavevector q probed by the measurement,
differ by precisely the energy of the external electromagnetic field. Now notice
that in the presence of a magnetic field H0, the electronic spins are shifted
from their zero-field dispersions Ek,s(H0) = Ek,s(0) + sh̄ωE/2 by the elec-
tronic Larmor frequency h̄ωE = 2µBH0. This implies that all freqencies in
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Fig. 3.10. Nuclear magnetic spin–lattice relaxation rate 1/T1 for the organic con-
ductor TTF-TCNQ, plotted versus 1/

√
H0. At ambient pressure, curve (a), there is

a wide range with 1/T1 ∝ 1/
√

H0 indicating 1D diffusion of electronic spins. Only
at small fields is a crossover to H0-independence typical for 3D diffusion observed.
Curves (b)–(e) are for higher pressures where the spin dynamics is less 1D. The
temperature was 296 K. By courtesy of D. Jérome. Reprinted by permission from
G. Soda, et al., J. Phys. (Paris) 38, 931 (1977) c©1977 EDP Sciences

the transverse susceptibility are shifted by ωE � ωN

1
T1T

→
∑

q

Imχ⊥(q, ωE)
ωN

. (3.34)

Let us now we assume that the electrons perform a random walk. Their
susceptibility, which is the spin–spin correlation function, is given as

χ(q, t) = χs exp(−Dq2|t|) , χ(q, ω) =
Dq2

Dq2 − iω
, (3.35)

where D is the diffusion constant. Then
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Imχ⊥(q, ωE)
ωN

=
Dq2

(Dq2)2 + ω2
E

ωE

ωN
. (3.36)

The ratio of both Larmor frequencies is independent of the magnetic field
(and equal to the ratio of the inverse electronic and nuclear masses), and
will not be considered further. The sum over q in the first fraction on the
right-hand side crucially depends on dimension: in 1D, one obtains ∼ ω

−1/2
E

and in 3D, an ωE-independent result for small ωE . Converting to magnetic
fields, one finds

1
T1T

∼
{

const. (3D)
1/
√

H0 (1D) .
(3.37)

The experimental results are shown in Fig. 3.10. For ambient pressure, curve
(a), they show a wide range of fields where the electronic spin diffusion
is indeed 1D. Only at small fields does one observe a crossover to a field-
independent relaxation rate typical for 3D diffusion, (3.37). The idea behind
this crossover is the following. Even in a rather 1D band structure, the elec-
trons will have a small but finite chance of tunneling to a neighboring chain.
They will thus have a finite lifetime τ⊥ on one chain. This lifetime will cut
off the influence of their diffusive motion on spin-relaxation because, due to
the locality of the hyperfine interaction, the nucleus will no longer see the
electronic spin. The 1D limit then corresponds to τ⊥ → ∞ while the 3D limit
is τ⊥ → 0. The lifetime of a spin on a chain is estimated to be τ⊥ ∼ 8×10−12s
at 300 K from this experiment [41].
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We now turn to the determination of the prices of derivative securities such as
forwards, futures, or options in the presence of fluctuations in the price of the
underlying. Such investments for speculative purposes are risky. Bachelier’s
work on futures already shows that for relative prices, even the deterministic
movements of the derivative are much stronger than those of the bond, and
it seems clear that an investment into a derivative is then associated with
a much higher risk (see also Bachelier’s evaluation of success rates) than in
the underlying security, although the opportunities for profit would also be
higher.

Derivative prices depend on certain properties of the stochastic process
followed by the price of the underlying security. Remember from Chap. 2
that options are some kind of insurance: the price of an insurance certainly
depends on the frequency of occurrence of the event to be insured. We there-
fore introduce the standard model of stock prices, as used in textbooks of
quantitative finance [10], [12]–[16] and place this model in a more general
context of stochastic processes.

4.1 Important Questions

Based on these models, we will discuss some of the important questions which
are listed below.

• What determines the price of a derivative security?
• What is the role of the return of the underlying security, i.e., the drift in

its price?
• What are the appropriate stochastic processes to model financial time se-

ries? Are they independent of the assets considered?
• How can we classify stochastic processes?
• How can we calculate with stochastic variables?
• What is geometric Brownian motion? Is it different from Bachelier’s model?
• What is the risk of an investment in a derivative?
• What is the price of risk?
• Can risk in financial markets be eliminated? At what cost?
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• Can option pricing be related to diffusion? What would be different from
standard diffusion problems?

• How can we calculate option prices in ideal markets? What is different in
real markets?

• What are “The Greeks”?
• How do traders represent the deviations of traded option prices from those

calculated in idealized models?
• How are derivative prices related to the expected payoff of the derivative?
• What is the difference in pricing European and American-style options?
• Can options be created synthetically?
• What is a volatility index, and how is it constructed?

The important achievement of Black and Scholes [42] and Merton [43]
was to answer almost all of these questions, at least for a certain idealized
market. While of course one can take a speculative position in a derivative
involving a big risk, Black, Merton, and Scholes show that the risk can be
eliminated in principle by a hedging strategy, i.e., by an investment in another
security correlated with the derivative, so as to offset all or part of the price
variations. For options, there is a dynamic hedging strategy by which the risk
can be eliminated completely. At the same time, the possibility of hedging the
risk allows to one fix a fair price of an option: it is determined by the expected
payoff for the holder and the cost of the hegde, and no additional risk premium
is necessary on options in idealized markets. Although their assumptions are
not necessarily realistic, this is a benchmark result which earned Merton and
Scholes the 1997 Nobel Prize in Economics, Black having died meanwhile.
For forwards and futures, a static hedge, implemented at the time of writing,
is sufficient.

Here, we only present the theoretical framework established in finance [10].
Of course, this heavily draws on the assumption of a random walk followed by
financial time series. While we have discussed random walks in finance and
physics in the previous chapter quite generally, we will specify in detail the
model used by economists. More advanced and more speculative proposals
for derivative pricing and hedging will be discussed later in Chap. 7. Also, we
will limit our discussion to the most basic derivatives (forwards, futures, and
European options): they are sufficient to illustrate the main principles. The
methods developed here can then be applied, with only minor extensions, to
more complicated instruments [10]. Hull’s book [10] also contains much more
information on practical aspects, and is highly recommended for reading.

4.2 Assumptions and Notation

4.2.1 Assumptions

Here, we summarize the main economic assumptions underlying the work of
Black, Merton, and Scholes, as well as much related work on derivative pricing
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and financial engineering. More specific assumptions on the stochastic process
followed by the underlying security will be developed in Sect. 4.4. We assume:

• a complete and efficient market;
• zero transaction costs;
• that all profits are taxed in a similar way, and that consequently, tax con-

siderations are irrelevant;
• that all market participants can lend and borrow money at the same risk-

free interest rate r;
• that all market participants use all arbitrage possibilities;
• continuous compounding of interest, i.e., an amount of cash y accumulates

interest as y(T ) = y(t) exp[r(T − t)];
• that short selling with full profits is allowed;
• that there are no payoffs such as dividends, from the underlying securities

(we shall make this assumption here to simplify matters; it is not realistic,
and payoffs can be incorporated into derivative pricing schemes [10]).

4.2.2 Notation

Here we list the most important symbols used in the following chapters:

• T ... time of maturity of a derivative
• t ... present time
• S ... price of the underlying security
• K ... delivery price in a forward or futures contract
• f ... value of a long position in a forward or futures contract
• F ... price of forward contract
• r ... risk-free interest rate
• C ... price of a call option
• P ... price of a put option
• X ... strike price of the option.

4.3 Prices for Derivatives

Some price considerations are independent of the fluctuations of the price
of the underlying securities. These are the forward prices and futures prices
because they are binding contracts to both parties, and can be perfectly, and
statically, hedged. (There are some restrictions to this statement for futures
because they can be traded on exchanges.) We shall treat them first. Also
some price limits for options can be derived without knowing the stochas-
tic process of the underlying securities. An accurate calculation, however,
requires this knowledge and will be deferred to Sect. 4.5.
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4.3.1 Forward Price

We claim that the price of a forward contract on an underlying without
payoff, such as dividends, is

F (t) = S(t) exp[r(T − t)] . (4.1)

Notice that this is the price today of the contract with maturity T . It is
just the spot price with accumulated risk-free interest, and is independent of
any historical or future drift in the price S of the underlying! We prove this
equation in two different ways, in order to illustrate the methods of proofs
often used in finance.

First Proof

We prove (4.1) by contradiction, relying on a “no arbitrage” argument. As-
sume first that F (t) > S(t) exp[r(T − t)]. Then, at time t, an investor can
borrow an amount of cash S and use it to buy the underlying at the spot price
S(t). At the same time, he goes short in the forward. This involves no cost
because the forward is just a contract carrying the obligation to deliver the
underlying at maturity. At maturity T , the credit must be reimbursed with
interest accrued, i.e., there is a cash flow −S(t) exp[r(T − t)]. The underlying
is now sold under the terms of the forward contract, which results in a cash
flow F (T ), the (yet) undetermined forward price. However, F (T ) = F (t),
because the price of the forward has been fixed at the time of writing of
the contract, and there are no trading opportunities. The total cash flow is
therefore F (t) − S(t) exp[r(T − t)] > 0, and a riskless profit can be made.
This is contrary to the assumption of no arbitrage opportunities.

For the opposite assumption, F (t) < S(t) exp[r(T − t)], an investor can
generate a riskless profit S(t) exp[r(T − t)] − F (t) by (i) taking the long
position in the forward at t, (ii) short-selling the underlying asset at t, giving
a cash flow +S(t), (iii) investinging this money at the risk-free rate r at t,
(iv) buying back the underlying asset at T under the terms of the forward
contract, resulting in a cash flow −F (T ) = −F (t), and (v) getting back
S(t) exp[r(T − t)] from his risk-free cash investment. Consequently, the only
price compatible with the absence of arbitrage possibilities is (4.1).

Second Proof

The idea here is to construct two portfolios out of the three assets: forward,
underlying and cash. These two portfolios carry the same risk, and their value
at some instant of time can be shown to be equal.

Portfolio A contains a long position in the forward with a value f(t),
and an amount of cash K exp[−r(T − t)]. At time T , this will be worth K.
Portfolio B contains one underlying asset. At maturity T , the long position
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of the forward is used to acquire the asset, and both portfolios are worth the
same because the delivery price K must be spent and both portfolios contain
one asset. Moreover, both portfolios carry the same risk for all times because
the long position in the forward necessarily receives the asset at maturity.
Hence both portfolios have the same value for all times, i.e.,

f(t) + K exp[−r(T − t)] = S(t) . (4.2)

Now, the forward price can be fixed to the delivery price F (t) = K by re-
quiring that the net value of the long position at the time of writing is zero,
i.e., that a fair contract for both parties is written. f(t) = 0 in (4.2) directly
leads back to (4.1).

While these results may look trivial, they are indeed noteworthy:

• The prices of forwards and (to some extent, to be specified below) futures
can be fixed at the time of writing the contract. They do not depend on the
future evolution of the price of the underlying, up to maturity. Of course, a
forward contract entered at a time t′ > t, when the price of the underlying
has changed to S(t′), will have a different price F (t′), determined again
by (4.1). As the second proof makes clear, the “forward price” F actually
is the delivery price of the underlying asset at maturity. It is not a price
reflecting the intrinsic value of the contract. Unlike for the options to be
discussed later, this intrinsic value is zero. The reason is that the outcome
is certain: the underlying asset is delivered at maturity.

• In the above proofs, this fact was used to calculate the forward price in
terms of the price of the underlying. A position in the forward, or in the
underlying asset, carries a risk, connected to the price variations of the
underlying asset. However, this risk can be hedged away statically (i.e.,
once and for all): for a long position in the forward, one can go short in
the underlying, and for a short position in the forward, a long position in
the underlying asset will eliminate the risk completely. This allows another
interpretation of the forward price (4.1): in such a portfolio with a perfect
hedge, there is no longer any risk. In the absence of arbitrage opportunities,
it only can earn the risk-free interest rate r. This is precisely what (4.1)
states.

4.3.2 Futures Price

Futures are distinguished from forwards mainly by being standardized, trad-
able instruments. If the interest rates do not vary during the period of the
contract, the futures price equals the forward price. The prices are different,
however, when interest rates vary. These differences are introduced by de-
tails of the trading procedures. For a forward, there is no cash flow for either
party until maturity, where it will be settled. For futures, margin accounts
(where a fixed fraction of the liabilities of a derivative portfolio is deposited
for security) must be opened with the broker, and balanced daily. The money
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flowing in and out of these margin accounts in the case of a futures contract
can then be invested, resp. must have been liquidated, at current market con-
ditions, i.e., based on interest rates that may be different from those at the
time the contract was entered. This gives different prices for forwards and
futures. Empirically, however, the differences seem to be rather small [10].

4.3.3 Limits on Option Prices

The forward and future prices for contracts written today are independent of
the details of the price history of the underlying, such as the drift or variance
of the price. This is not so for options, and for accurate price calculations
a knowledge of the important parameters of the price variations of the un-
derlying is necessary. This will be developed in Sect. 4.5.1 below. On the
other hand, it is fairly simple to obtain certain limits to be obeyed by option
prices without knowing the price fluctuations of the underlying. If not stated
otherwise, we will always consider European type options.

Upper Limits

A call option, by construction, can never be worth more than the underlying
security. Therefore

C(t) ≤ S(t) . (4.3)

The value of a put option can never exceed the strike price

P (t) ≤ X . (4.4)

If one of these inequalities is violated, an arbitrageur can make riskless profit
by buying the stock and selling the option (call), or simply selling the option
(put). For a European put, a more stringent condition can be given because
the strike price is also fixed in the future, and can be discounted from maturity
to the present date

P (t) ≤ X exp[−r(T − t)] . (4.5)

Lower Limits

To determine the lower limits of a call price, we construct two portfolios: A
contains one call at price C and X exp[−r(T − t)] in cash; B contains one
stock. At maturity, B is worth S(T ). If S(T ) > X, the call in A is exercised,
and A is worth S(T ) (X is used to buy the stock). If S(T ) < X, the call option
expires worthless, and portfolio A is worth X. The value of A is therefore
max[S(T ), X] ≥ S(T ), the value of B. This is valid for all times because the
value of both portfolios depends only on the same source of uncertainty, the
evolution of the stock price S. Consequently,

C(t) ≥ max{S(t) − X exp[−r(T − t)], 0} . (4.6)
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The equivalent relation for a put,

P (t) ≥ max{X exp[−r(T − t)] − S(t), 0} , (4.7)

can be derived in a similar way, using one portfolio (C) containing the put
option and the stock, and another (D) with X exp[−r(T − t)] in cash.

These limits, together with a sketch of the dependence of option prices
on those of the underlying, are shown in Figs. 4.1 (call) and 4.2 (put). The
arrows in Figs. 4.1 and 4.2 indicate how the curve is displaced, resp. distorted,

Xe-r(T-t) X
S

C

Fig. 4.1. Price limits for call options. The curved line sketches a realistic price
curve. The arrow marks the direction of displacement of the curve when r, T − t,
or the volatility (standard deviation) σ of the stock price increase

X

X
S

P

Fig. 4.2. Price limits for put options
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when the interest rate r, the time to maturity T − t, or the volatility of the
underlying stock (measured by the standard deviation σ of the stock price)
change. An empirical investigation on 58 US stocks from August 1976 to
June 1977, discussed by Hull [10], finds that the lower limits for calls, (4.6)
and Fig. 4.1, were violated in 1.3% of the quotations. Out of these, 29%
were corrected on the next quote while 71% were smaller than applicable
transaction costs. Therefore no arbitrage was possible despite these limit
violations.

Another important relation, put–call parity, can be derived by comparing
the portfolios A and C:

C(t) + X exp[−r(T − t)] = P (t) + S(t) . (4.8)

This equation does not rely on any specific assumption on the options or on
the prices of the underlying and therefore provides a rather stringent test on
the correct operation (complete and efficient) of the markets. The empirical
study cited by Hull [10] finds occasional violations of put–call parity on a
15-minute time scale.

Checking put–call parity simply from newspaper quotes may be more
involved, as shown by the following example with options traded in late 1998
on the EUREX exchange. At t = 1998/10/21, call and put options on the
Bayer stock with nominal maturity December 1998, i.e., T = 1998/12/18 and
a strike price of X = DM 65, were quoted C = DM 2.38 and P = DM 5.50.
Bayer was quoted S(1998/10/21) = DM 61.25. Assuming then r = 3% p.a.,
and T − t = (1/6)y, one has (in DM)

2.38 + 65 exp(−0.005) = 67.05 
= 66.75 = 5.50 + 61.25 . (4.9)

It is not clear, however, that this is an actual violation of put–call parity. In
particular, the assumption on r has been made ad hoc with rates relevant
for savings accounts of a private consumer, and may not correspond to the
market situation for institutional investors. Assuming put–call parity and
calculating backwards, would give r(T − t) = 0.01, i.e., twice as much as used
above, and then would certainly indicate an interest rate much higher than
3% p.a.

4.4 Modeling Fluctuations of Financial Assets

The question about the appropriate modeling of financial time series may well
be answered differently by academics and practitioners. The basic approach
taken by academics, and more generally all people with a skeptical attitude
towards the financial markets, goes back to Bachelier and assumes some kind
of random walk, or stochastic process. Essentially, this will be the attitude
adopted in this book. Some aspects of random walks have been discussed
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in Chap. 3. Others will be introduced below, together with a more general
summary of important facts on stochastic processes.

Among the practitioners, traders and analysts classified as “chartists”,
practicing “technical analysis”, would not share this opinion. This group of
operators attempts to distinguish recurrent patterns in financial time series
and tries to make profit out of their observation. The citation from Malkiel’s
book A Random Walk Down Wall Street reproduced in Chap. 1 testifies to
this, as well as numerous books on technical analysis at different levels. How-
ever, the issue of correlations in financial time series is nontrivial. We shall
discuss simple aspects in Sect. 5.3.2, but subtle aspects are still the subject
of ongoing research. It has to be taken seriously because technical analysis
is alive and well on the markets, and one therefore must conclude that some
money can be earned this way, and that certain correlations indeed exist
in financial data, perhaps even introduced by a sufficient number of traders
following technical analysis even on purely random samples. Systematic stud-
ies of the profitability of technical analysis reach controversial conclusions,
however [31].

4.4.1 Stochastic Processes

Classic references on stochastic processes are Cox and Miller, and Lévy [32].
There are two excellent books by J. Honerkamp, concerned with, or touch-
ing upon, stochastic processes [44], and presenting a more physics-oriented
perspective.

We say that a variable with an unpredictable time evolution follows a
stochastic process. The changes of this variable are drawn from a probability
distribution according to some specified rules. One distinction of stochas-
tic processes is made according to whether time is treated as a continuous
or a discrete variable, and whether the stochastic variable is continuous or
discrete. We will be rather sloppy on this distinction here.

Stochastic processes are described by the specification of their dynamics
and of the probability distribution functions from which the random variables
are taken. The dynamics is usually given by a stochastic difference equation
such as, e.g.,

x(t + 1) = x(t) + ε(t) (4.10)

where x is the stochastic variable and ε is a random variable whose probability
distribution must be specified, or by differential equations such as

ẋ(t) = ax(t) + bε(t) , (4.11)
ẋ(t) = ax(t) + bx(t)ε(t) . (4.12)

Equation (4.11) describes “additive noise” because the random variable is
added to the stochastic variable, and (4.12) describes “multiplicative noise”.
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Next, we must specify the probability distribution function of ε(t), e.g.,

p(ε, t) =
1√

2πσ2t
exp

(
− ε2

2σ2t

)
. (4.13)

Correlations in a stochastic process can be described either in its defining
equation, e.g., by a dependence on earlier times [cf., e.g., the various au-
toregressive processes (4.44), (4.46) and (4.48) below], or by the conditional
probability

p [x(t1) = x1|x(t0) = x0, x(t−1) = x−1, . . .] , (4.14)

which measures the probability that the variable x takes the value x1 at t1
provided that x0 has been observed at t0 and x−1 at t−1, etc. For a continuous
variable, the conditional probability density p[. . .]dx1 measures the probabil-
ity that at t1, x1 ≤ x ≤ x1 + dx1, provided x0 has been observed at t0, etc.
The unconditional probability (or marginal probability) of observing x1 at t1,
independently of earlier realizations of x, is then

p [x(t1) = x1]

=
∫

dx0dx−1 . . . p [x(t1) = x1, x(t0) = x0, x(t−1) = x−1, . . .] (4.15a)

=
∫

dx0dx−1 . . . p [x(t1) = x1|x(t0) = x0, x(t−1) = x−1, . . .]

× p(x0, t0)p(x−1, t−1) . . . (4.15b)

where p[. . .] on the right-hand side of (4.15a) is the joint probability which
measures the probability of observing x1 at t1 and x0 at t0, etc. It is related
to the conditional probability (4.14) by the second equality (4.15b).

A stochastic process is stationary if

p(x, t) = p(x) , (4.16)

and it is a martingale stochastic process if

E(x1|x0, x−1, . . .) =
∫

dx1x1p [x(t1) = x1|x(t0) = x0, x(t−1) = x−1, . . .] = x0 ,

(4.17)
where E is the expectation value conditioned on earlier observations x0, x−1,
etc.

We now discuss a few important stochastic processes.

Markov Processes

For a Markov process, the next realization only depends on the present value
of the random variable. There is no longer-time memory. For . . . t−2 ≤ t−1 ≤
t0 ≤ t1 ≤ . . ., a Markov process satisfies
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p [x(t1) = x1|x(t0) = x0, x(t−1) = x−1, . . .] = p [x(t1) = x1|x(t0) = x0] .
(4.18)

Markov processes obey the Chapman–Kolmogorov–Smoluchowski equation
(3.10), derived by Bachelier [6].

For Markov processes in continuous time, one can take a short-time limit
of the conditional probability distributions

p(x, t|x′, t′) → δ(x − x′) for t → t′ , (4.19)

and expand it around this limit in first order in t − t′:

p(x, t|x′, t′) ≈ [1 − a(x, t)(t − t′)] δ(x − x′) + (t − t′)w(x, x′, t) , (4.20)

where a(x, t) and w(x, x′, t) are expansion coefficients. a(x, t) is the reduction,
in first order in the time difference, of the initial “certainty”, i.e., the weight
of δ(x − x′) due to the widening of the conditional probability distribution,
and w(x, x′, t) quantifies precisely this effect in first order in t − t′. Insert-
ing this expansion into the Chapman–Kolmogorov–Smoluchowski equation
(3.10), one obtains the master equation

∂p(x, t)
∂t

=
∫

dx′w(x, x′, t)p(x′, t) −
∫

dx′w(x, x′, t)p(x, t) . (4.21)

The first term on the right-hand side describes transitions x′ → x at t, and
the second term transitions x → x′. We have made an integro-differential
equation from the original convolution equation. In special situations, the
master equation may reduce to a partial differential equation, the Fokker–
Planck equation [37], which will be discussed in later in Chap. 6.

In finance, Markov processes are consistent with an efficient market. If
this were not so, technical analysis would allow one to produce above-average
profits. Conversely, to the extent that technical analysis generates consistent
profits above the market return, the assumption of a Markov process for
financial time series must be questioned.

The Wiener Process

The Wiener process, often also called the Einstein–Wiener process, or Brown-
ian motion, is a particular Markov process with continuous variable and
continuous time. It was formulated for the first time by Bachelier [6], and
discussed on an elementary level in Sect. 3.2.2. If the stochastic variable is
called z, its two important properties are:

1. Consecutive ∆z are statistically independent.
2. ∆z is given, for a small but finite time interval ∆t, and for an infinitesimal

interval dt, by

∆z = ε
√

∆t (4.22)

dz = ε
√

dt . (4.23)
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ε is drawn from a normal distribution

p(ε) =
1√
2π

exp
(
−ε2

2

)
(4.24)

with zero mean and unit variance.

The passage from a Wiener process in discrete time to one in continuous time
is illustrated in Fig. 4.3.

The conditions for a Wiener process are stronger than for a general
Markov process, in that it uses independent, identically distributed (abbre-
viated: IID) random variables. Being independent, the correlations of the
random numbers ε are
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Fig. 4.3. Passage from discrete time to continuous time for a Wiener process.
The increments were drawn from a normal distribution with zero mean and unit
variance
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〈ε(t)ε(t′)〉 = σ2

{
δt,t′

δ(t − t′) (4.25)

where σ2 is the variance of the underlying normal distribution. Its noise
spectrum is

F (ω) =
∫ ∞

−∞
dτ〈ε(t)ε(t + τ)〉eiωτ = σ2 . (4.26)

It is independent of frequency, and therefore “white noise”. Often, this is also
written as

ε(t) ∈ WN(0, σ2) . (4.27)

W characterizes the random variables as “white noise”, N denotes “normally
distributed”, and the arguments are the mean and variance. A stochastic
process with an additive white noise term describes algebraic Brownian mo-
tion. Notice that some authors, e.g., Hull [10], prefer to take the standard
deviation instead of the variance, as the second argument of WN in (4.27).

Equation (4.23) may seem very surprising for those who are not famil-
iar with stochastic processes. It is to be interpreted in the sense of mean
square fluctuations, resp. expectation values. A more detailed argument goes
as follows. Let a stochastic process be defined by the differential equation

dz(t)
dt

= ε(t) (4.28)

where ε(t) is the random variable. Then, the change dz(t) of the random
variable z in an infinitesimal time interval dt is given by integration

dz(t) =
∫ t+dt

t

dt′ε(t′) . (4.29)

For a nonstochastic variable, this integral would be trivial and given by dz =
ε(t)dt. That this can’t hold for a stochastic variable is clear from taking the
expectation values of (4.29)

〈dz(t)〉 =
∫ t+dt

t

dt′〈ε(t′)〉 = 0 . (4.30)

On the other hand, the expectation value of (dz)2 becomes

〈dz(t)dz(t)〉 =
∫ t+dt

t

dt1dt2〈ε(t1)ε(t2)〉 = σ2

∫ t+dt

t

dt1 = σ2dt . (4.31)

For the second equality, we have used (4.25), and the third equality obtains
in the usual way because σ2 is a nonstochastic quantity. These expectation
values are consistent with dz = ε

√
dt, (4.23).

For a Wiener process, the expectation value of the stochastic variable in
a small time interval vanishes
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E(∆z) ≡ 〈∆z〉 =
∫ ∞

−∞
d(∆z) ∆z p(∆z) = 0 . (4.32)

Its variance is linear in ∆t,

var(∆z) =
∫ ∞

−∞
d(∆z)(∆z)2p(∆z) = ∆t , (4.33)

and its standard deviation behaves as√
var(∆z) =

√
∆t . (4.34)

Finite time intervals T may be considered as being composed of many small
intervals (T = N∆t fixed, as N → ∞ and ∆t → 0), each of which corresponds
to one time step of a Wiener process. For sums of normally distributed quan-
tities, the mean values and variances are additive:

〈z(T ) − z(0)〉 = 0 , (4.35)
var[z(T ) − z(0)] = T , (4.36)

and the standard deviation is
√

T .
The Wiener process may be generalized by superposing a drift a dt onto

the stochastic process dz

dx = a dt + b dz . (4.37)

For this generalized Wiener process, we have

〈x(T ) − x(0)〉 = aT , (4.38)
var[x(T ) − x(0)] = b2T . (4.39)

This generalized Wiener process is shown in Fig. 4.4.
A further generalization is the Itô process where the drift term and prefac-

tor of the stochastic component depend on the random variable [a → a(x, t),
b → b(x, t)], i.e.,

dx = a(x, t)dt + b(x, t)dz , (4.40)

and dz = ε
√

dt describes a Wiener process. The Itô process will play an
important role in the standard model for stock prices.

Other Important Processes

For completeness, we discuss some more important stochastic processes or
classification criteria.

1. Self-similar stochastic processes with index, or Hurst exponent, H
are defined by
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Fig. 4.4. The generalized Wiener process. The straight line shows the drift super-
posed on the data in the bottom panel of Fig. 4.3

p [x(at)] = p
[
aHx(t)

]
with a > 0 . (4.41)

A rescaling of time leads to a change in length scale, and there is no
intrinsic scale associated with this process. Such a process violates (4.16)
and therefore cannot be stationary. Brownian motion (cf. above) is self-
similar with H = 1/2. However, the converse is not true: There are non-
Gaussian stochastic processes with independent increments but H = /2
[45, 46].

2. In fractional Brownian motion, introduced by Mandelbrot [47], the
random variables are not uncorrelated, and therefore describe “colored
noise”. The construction is done starting from ordinary Brownian motion
dz ≡ dz(t), (4.23), and a parameter H satisfying 0 < H < 1. Then
fractional Brownian motion of exponent H is essentially a moving average
over dz(t) in which past increments of z(t) are weighted by a power-law
kernel (t−s)H−1/2. Mandelbrot and van Ness define fractional Brownian
motion of exponent H, BH(t), as [47]

BH(t) = BH(0) +
1

Γ (H + 1
2 )

{∫ 0

−∞

[
(t − s)H−1/2

− (−s)H−1/2
]
dz(s) +

∫ t

0

(t − s)H−1/2dz(s)
}

(4.42)

BH(0) is an arbitrary initial starting position. For H = 1/2, fractional
Brownian motion reduces to ordinary Brownian motion.
The ranges H < 1/2 and H > 1/2 are very different. For H < 1/2, the
paths look less ragged than ordinary Brownian motion, and the varia-
tions are “antipersistent” (positive variations preferentially followed by



66 4. Black–Scholes Theory of Option Prices

negative ones). H > 1/2 is the “persistent” regime, i.e., there are positive
correlations, and the paths are significantly rougher than Brownian mo-
tion. Notice that the paths of fractional Brownian motion are continuous
but not differentiable.

3. Lévy processes are treated in greater detail in Sect. 5.4. The IID ran-
dom variable ε(t) is drawn from a stable Lévy distribution. Unlike the
Gaussian distribution, Lévy distributions decay as power laws

Lµ(x) ∼ µAµ

|x|1+µ
, |x| → ∞ . (4.43)

They are stable, i.e., form-invariant under addition, when 0 < µ < 2.
Large events being more probably by orders of magnitude than under
a Gaussian, the corresponding stochastic process possesses frequent dis-
continuities.

4. Autoregressive processes are non-Markovian. The equation of motion
contains memory terms which depend on past values of variables. The
equation

x(t) =
p∑

k=1

αkx(t − k) + ε(t) +
q∑

k=1

βkε(t − k) (4.44)

describes an autoregressive, moving average, ARMA(p, q), process. It de-
pends on the past p realizations of the stochastic variable x, and on the
past q values of the random number ε. ARMA(p, q) processes can be
interpreted as stochastically driven oscillators and relaxators [44].
Variants thereof, the ARCH and GARCH processes, are important in
econometrics and finance [13]. The acronyms stand for autoregressive
[process with] conditional heteroscedasticity, and generalized autore-
gressive [process with] conditional heteroscedasticity. Heteroscedasticity
means that the variance of the process is not constant but depends on
random variables. To be specific, an ARCH(q) process [48] is defined by
(4.22) with

ε(t) ∈ WN
[
0, σ2(t)

]
(4.45)

σ2(t) = α0 +
q∑

i=1

αiε
2(t − i) , (4.46)

and a GARCH(p, q) process [49] by (4.22) with

ε(t) ∈ WN
[
0, σ2(t)

]
(4.47)

σ2(t) = α0 +
q∑

i=1

αiε
2(t − i) +

p∑
i=1

βiσ
2(t − i) . (4.48)

In both cases, the random variable is drawn from a normal distribution
with zero mean and a time-dependent variance σ2(t) which depends on
the last q realizations of the random variable ε and, for the GARCH(p, q)
process, in addition on the last p values of the variance σ2.
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4.4.2 The Standard Model of Stock Prices

Bachelier modeled stock or bond prices by a random walk superimposed on
a constant drift (with the exception of the liquidation days where coupons
were detached from the bonds, or the maturity dates of the futures where a
prolongation fee had to be paid eventually). The drift was further eliminated
from the problem by considering the equivalent martingale process as the
fundamental variable, i.e., a Wiener process with zero mean and a variance
increasing linearly in time.

There are two problems with this proposal:

1. The stock or bond prices in the model may become negative, in principle,
when the changes ∆S(T ) accumulated over a time interval T exceed the
starting price S(0). While this is not likely in practical situations, it
should be a point of concern, in principle.

2. In Bachelier’s model, the profit of an investment into a stock with price
S over a time interval T is

〈S(T ) − S(0)〉 =
dS

dt
T , (4.49)

where dS/dt is the drift which was assumed fixed and independent of S.
More important than the profit, for an investor, will be the return on his
capital invested. An investor will require that the return of an investment
will be independent of the price of the asset (in other words, if a return
of 15% p.a. is required when a stock is at $40, it will also be required at
$65). This can be written as

dS = µSdt , (4.50)

giving S(t) = S0eµt where µ is the return rate, and µ∆t the return over
a time interval ∆t. This has consequences for the risk of an investment,
measured by the standard deviation or – in financial contexts – volatility
of asset prices. (Being careful, one should distinguish between variances
accumulated over certain time intervals, or variance rates, entering the
stochastic differential equations, resp. the corresponding quantities for
the standard deviations.) A reasonable requirement is that the variance
of the returns µ = dS/dt should be independent of S, i.e., that the
uncertainty on reaching the 15% return discussed above, is the same
regardless of whether the stock price is at $40 or 80$. This implies that,
over a time interval ∆t

σ2∆t = var
(

∆S

S

)
(4.51)

is independent of the stock price, or that

var(S) = σ2S2∆t . (4.52)
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These requirements suggest that the asset price can be represented as an Itô
process

dS = µSdt + σSdz , resp.
dS

S
= µdt + σdz = µdt + σε

√
dt (4.53)

with instantaneous drift and standard deviation rates µ and σ. In other words,

dS

S
∈ WN(µdt, σ2dt) , (4.54)

i.e., dS/S is drawn from a normal distribution with mean µdt and standard
deviation σ

√
dt. Concerning (4.53) and (4.54), notice that

dS

S

= d lnS for stochastic variables. (4.55)

The process (4.53) is referred to as geometric Brownian motion. S follows a
stochastic process subject to multiplicative noise. It avoids the problem of
negative stock prices, and apparently is in better agreement with observa-
tions.

Notice that the model of stock prices following geometric Brownian mo-
tion (4.53) must be considered as a hypothesis which has to be checked crit-
ically, and not as an established and universal theory. A critical comparison
to empirical market data will be given in Chap. 5. For a superficial compar-
ison, Fig. 4.5 shows the chart of the Commerzbank through the year 1997.
This chart is not primarily shown for supportive purposes. More intended
to inspire caution, it demonstrates the enormous variety of behavior encoun-
tered even for a single blue chip stock, which contrasts with the simplicity of
the postulated standard model (4.53). While a priori the parameters µ and
σ of the standard model are taken as constants, Fig. 4.5 suggests that this
may be a valid approximation – if ever – only over limited time spans. The
annualized volatility is 33.66%, and the drift during this year is µ = 82%.
As is apparent from the figure, µ and σ in practice depend on time, and on
shorter time scales in the course of the year they may be rather far from the
values cited. Analyses taking µ and σ constant will only have a finite horizon
of application. This observation has been an important motivation for the
study of the ARCH and GARCH processes discussed in Sect. 4.4.1. Due to
its simplicity, and the fundamental insights it allows, we shall use the model
of geometric Brownian motion in the remainder of this chapter to develop a
theory of option pricing. To do so, we must know, however, some properties
of functions of stochastic variables.

4.4.3 The Itô Lemma

If we assume that the price process of a financial asset follows a stochastic
process, the process followed by a derivative security, such as an option, will
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Fig. 4.5. Chart of the Commerzbank share from 1/1/1997 to 31/12/1997. The
price has been converted to Euros. The volatility is σ = 33.66%

(i) again be stochastic, and (ii) be a function of the price of the underlying.
We therefore must know the properties of functions of stochastic variables.

An important result here, and the only one we need for future develop-
ment, is a lemma due to Itô. Let x(t) follow an Itô process, (4.40),

dx = a(x, t)dt + b(x, t)dz = a(x, t)dt + b(x, t)ε
√

dt . (4.56)

Then, a function G(x, t) of the stochastic variable x and time t also follows
an Itô process, given by

dG =
(

∂G

∂x
a +

∂G

∂t
+

1
2
b2 ∂2G

∂x2

)
dt + b

∂G

∂x
dz . (4.57)

The drift of the Itô process followed by G is given by the first term on the
right-hand side in parentheses, and the standard deviation rate is given by
the prefactor of dz in the second term.

There is a handwaving way to motivate the different terms in (4.57).
We attempt a Taylor expansion of G(x + dx, t + dt) about G(x, t) to first
order in dt. The first order expansion in dx produces the first and the last
terms on the right-hand side of (4.57), and the first order expansion in dt
produces the second term. Stopping the expansion at this stage would not be
consistent, however, because dx contains a terms proportional to

√
dt, shown

explicitly in (4.56). The second-order expansion in dx therefore produces
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another contribution of first order in dt, the third term on the right-hand
side of (4.57). That this term

1
2
b2 ∂2G

∂x2
ε2dt

is nonstochastic, and given correctly in (4.57), can be shown in a spirit similar
to the argument in Sect. 4.4.1. Take the expectation value of ε2dt

〈ε2dt〉 = 〈ε2〉dt = dt , (4.58)

where the last equality follows from ε ∈ WN(0, 1). On the other hand, its
variance,

var(ε2dt) = 〈ε4dt2〉 − 〈ε2dt〉2 =
(〈ε4〉 − 1

)
dt2 (4.59)

tends to zero more quickly than the mean, as dt → 0. Consequently, ε2dt
represents a sharp variable.

A full proof of this lemma is the subject of stochastic analysis and will
not be given here. Applications will be given in the following sections.

4.4.4 Log-normal Distributions for Stock Prices

We now derive the probability distribution for the stock prices, based on the
assumption of geometric Brownian motion. To do that, we start from the
stochastic differential equation (4.53) for the price changes

dS = µSdt + σSdz , (4.60)

and apply the Itô lemma with G(S, t) = lnS(t) [remember (4.55)!]

∂G

∂S
=

1
S

,
∂2G

∂S2
= − 1

S2
,

∂G

∂t
= 0 ⇒ (4.61)

dG =
(

µ − σ2

2

)
dt + σdz . (4.62)

With µ = const. and σ = const., lnS follows a generalized Wiener process
with an effective drift µ − σ2/2 and standard deviation rate σ. Notice that
both S and G are affected by the same source of uncertainty: the stochastic
process dz. This will become important in the next section, where S and
G will represent the prices of the underlying and the derivative securities,
respectively. [As is clear from (4.53), dS/S also follows, under the same as-
sumptions, a generalized Wiener process, however with an unrenormalized
drift µ. This illustrates (4.55). The consequences will be discussed below.]

If t denotes the present time, and T some future time, the probability
distribution of lnS will be a normal distribution with mean and variance

〈lnS〉 =
(

µ − σ2

2

)
(T − t) (4.63)

var(lnS) = σ2(T − t) , (4.64)
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i.e.,

p(ln ST /St) =
1√

2πσ2(T − t)
exp

⎛
⎜⎝−

[
ln
(

ST

St

)
−
(
µ − σ2

2

)
(T − t)

]2
2σ2(T − t)

⎞
⎟⎠ .

(4.65)
The stock price changes themselves are then distributed according to a log-
normal distribution [use p(lnST /St)d lnST /St = p̃(ST )dST ]

p̃ (ST ) =
1

ST
p

(
ln

ST

St

)

=
1√

2πσ2(T − t)
1

ST
exp

⎛
⎜⎝−

[
ln
(

ST

St

)
−
(
µ − σ2

2

)
(T − t)

]2
2σ2(T − t)

⎞
⎟⎠ .

(4.66)

This distribution is shown in Fig. 4.6.
Using this distribution and the substitution ST /St = exp(ω), we find that

the expectation value of ST evolves as

〈ST 〉 =
∫ ∞

0

dST ST p̃ (ST ) = St exp[µ(T − t)] , (4.67)

and its variance as

var(ST ) = S2
t exp[2µ(T − t)]{exp[σ2(T − t)] − 1} . (4.68)
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Observe that the expectation value of ST grows with a rate µ, ln〈ST 〉 ∝
µ(T − t), in line with the definition of µ as the expectation value of the rate
of return. Notice, however, that from (4.63), the expectation value of lnS
grows with a different rate µ − σ2/2. The two different results correspond
to two different situations where return rates are measured. Equation (4.53)
shows that µ is the average of the return rate over a short time interval. The
expectation value of the stock price grows with the average return rate over
short time intervals. On the other hand, if one takes an actual investment
with a specific return rate history with the same average, and calculates its,
say yearly, return, this will be less than the average of the yearly returns
determined on the way. For a specific example, assume an average growth
rate of 10% p.a. over four years. Then, the expected price of the stock after
four years is ST = St(1.1)4 = 1.464St. Now assume that the actual growth
rates in the four years are µ1 = 5%, µ2 = 12%, µ3 = 13%, µ4 = 10%. Then
ST = 1.05× 1.12× 1.13× 1.1St = 1.462St, and the actual rate of return over
the four years is only 9.5% p.a. If many such investments at a given average
return rate µ are considered and their returns are averaged over, the average
rate of return will converge to µ − σ2/2. Moreover, the binomial theorem
(1 + x)(1 − x) = 1 − x2 ≤ 1 shows that the average short-term growth
rate can only be reached in the absence of randomness (x = 0), and that
the general conclusion is independent of the particular realization assumed
in the example. Of course, this is common experience of any investor who
determines the return of his investments.

Another way of looking at the different return rates is to notice that,
due to the skewness of the log-normal distribution, the rather frequent small
prices from negative returns are less weighted in the expectation value than
the less frequent very high prices from positive returns. Few very high profits
count more in the expectation value than the same number of almost total
losses, while the opposite is true for an actual investment history with the
same short-time return rate.

4.5 Option Pricing

4.5.1 The Black–Scholes Differential Equation

We now turn to the pricing of options, and the hedging of positions involving
options. Investments in options are usually considered to be risky, signifi-
cantly more risky than investments into stocks or bonds. This is because of
the finite time to maturity, the high volatility of options (significantly higher
than the volatility of its underlying), and the possibility of a total loss of the
invested capital for the long position, and losses even potentially unlimited
for the short position, in the case of unfavorable market movements (cf. the
discussion in Sect. 2.4, and Figs. 2.1 and 2.2). With f the price of an option
(f = C,P , for call and put options, respectively), we have
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√
var (∆f) =

∂f

∂S

√
var (∆S) ,

√
var

(
∆f
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)
=

S

f

∂f

∂S

√
var

(
∆S

S

)
(4.69)

for the volatility of the option in terms of the volatility of the underlying.
Figs. (4.1) and (4.2) show that ∂f/∂S < 1 in general. While the volatility
of the option prices is smaller than that of the prices of the underlyings, the
volatility of the option returns described by the second equation in (4.69) is
much higher than that of the returns of their underlyings because the option
prices usually are much lower than the prices of the underlyings, S/f � 1.

Moreover, the writer of an option engages a liability when entering the
contract, while the holder has a freedom of action depending on market move-
ment, i.e., an insurance: buy or not buy (sell or not sell) the underlying at
a fixed price, in the case of a call (put) option. The question then is: What
is the risk premium for the writer of the option, associated with the liability
taken over? Or what is the price of the insurance, the additional freedom of
choice for the holder? What is the value of the asymmetry of the contract?

These questions were answered by Black and Scholes [42] and Merton
[43], and the answer they came up with, under the assumptions specified in
Sect. 4.2.1 and developed thereafter, i.e., geometric Brownian motion, is sur-
prising: There is no risk premium required for the option writer! The writer
can entirely eliminate his risk by a dynamic and self-financing hedging strat-
egy using the underlying security only. The price of the option contract, the
value for the long position, is then determined completely by some proper-
ties of the stock price movements (volatility) and the terms of the option
contract (time to maturity, strike price). For simplicity, and because we are
interested only in the important qualitative aspects, we shall limit our discus-
sion to European options, mostly calls, and ignore dividend payments and
other complications. For other derivatives or more complex situations, the
reader should refer to the literature [10, 12]–[15].

The main idea underlying the work of Black, Merton, and Scholes [42, 43]
is that it is possible to form a riskless portfolio composed of the option to be
priced and/or hedged, and the underlying security. Being riskless, it must earn
the risk-free interest rate r, in the absence of arbitrage opportunities. The
formation of such a riskless portfolio is possible because, and only because, at
any instant of time the option price f is correlated with that of the underlying
security. This is shown by the solid lines in Figs. 4.1 and 4.2, which sketch
the possible dependences of option prices on the prices of the underlying.
The dependence of the option price on that of the underlying is given by
∆ = ∂f/∂S which, of course, is a function of time. In other words, both the
stock and the option price depend on the same source of uncertainty, resp. the
same stochastic process: the one followed by the the stock price. Therefore
the stochastic process can be eliminated by a suitable linear combination of
both assets.

To make this more precise, we take the position of the writer of a European
call. We therefore form a portfolio composed of
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1. a short position in one call option,
2. a long position in ∆ = ∂f/∂S units of the underlying stock. Notice that

∆ fluctuates with the stock price, and a continuous adjustment of this
position is required.

The stochastic process followed by the stock is assumed to be geometric
Brownian motion, (4.53),

dS = µSdt + σSdz . (4.70)

A priori, we do not know the stochastic process followed by the option price.
We know, however, that it depends on the stock price, and therefore, we can
use Itô’s lemma, (4.57),

df =
(

∂f

∂S
µS +

∂f

∂t
+

1
2
σ2S2 ∂2f

∂S2

)
dt +

∂f

∂S
σSdz . (4.71)

The value of our portfolio is

Π = −f +
∂f

∂S
S , (4.72)

and it follows the stochastic process

dΠ = −df +
∂f

∂S
dS =

(
−∂f

∂t
− 1

2
σ2S2 ∂2f

∂S2

)
dt . (4.73)

Notice that the stochastic process dz, the source of uncertainty in the evo-
lution of both the stock and the option prices, no longer appears in (4.73).
Moreover, the drift µ of the stock price has disappeared, too. Eliminating the
risk from the portfolio also eliminates the possibilities for profit, i.e., the risk
premium µ > r associated with an investment into the underlying security
alone (an investor will accept putting his money in a risky asset only if the
return is higher than for a riskless asset). The portfolio being riskless, it must
earn the risk-free interest rate r,

dΠ = rΠdt = r

(
−f +

∂f

∂S
S

)
dt . (4.74)

Equating (4.73) and (4.74), we obtain

∂f

∂t
+ rS

∂f

∂S
+

1
2
σ2S2 ∂2f

∂S2
= rf , (4.75)

the Black–Scholes (differential) equation. This is a linear second-order partial
differential equation of parabolic type. Its operator structure is very similar
to the Fokker–Planck equation in physics or the Kolmogorov equation in
mathematics (two different names for the same equation) [37]. There are two
differences, however: (i) the sign of the term corresponding to the diffusion
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constant is negative, and (ii) this is a differential equation for a (at present
rather arbitrary) function f while the Fokker–Planck equation usually refers
to a differential equation for a normalized distribution function p(x, t) whose
norm is conserved in the time evolution. (For the use of Fokker–Planck equa-
tions in the statistical mechanics of capital markets, see Chap. 6).

For a complete solution to the Black–Scholes equation, we still have to
specify the boundary or initial conditions. Unlike physics, here we deal with
a final value problem. At maturity t = T , we know the prices of the call and
put options, (4.6) and (4.7),

Call : f = C = max(S − X, 0)
Put : f = P = max(X − S, 0)

}
t = T . (4.76)

The solution of this final value problem, (4.75) and (4.76) will be given in the
next section. Notice that for second-order partial differential equations, the
number and type of conditions (initial, final, boundary) required for a com-
plete specification of the solution depends on the type of problem considered.
For diffusion problems such as (3.20), (3.30), or (4.75), a single initial or final
condition is sufficient.

Stock prices change with time. Keeping the portfolio riskless in time there-
fore requires a continuous adjustment of the stock position ∆ = ∂f/∂S, as
it varies with the stock price. It is clear that this can only be done in the
idealized markets considered here, and subject to the assumptions specified
earlier. Transaction costs, e.g., would prevent a continuous adjustment of the
portfolio, and immediately make it risky. The same applies to credit costs
incurred by the adjustments. In practice, therefore, a riskless portfolio will
usually not exist, and there will be a finite risk premium on options (often
determined empirically by the writing institutions).

The important achievement of Black, Merton, and Scholes was to show
that, in idealized markets, the risk associated with an option can be hedged
away completely by an offsetting position in a suitable quantity ∆ of the
underlying security (this hedging strategy is therefore called ∆-hedging), and
that no risk premium need be asked by the writer of an option. The hedge
can be maintained dynamically, and is self-financing, i.e., does not generate
costs for the writer. Of course, this is an approximation in practice because
none of the assumptions on which the Black–Scholes equation is based, are
fulfilled. This will be discussed in Chap. 5. Despite this limitation, it allows
fundamental insights into the price processes for derivatives, and we now
proceed to solve the equation.

4.5.2 Solution of the Black–Scholes Equation

The following solution of (4.75) essentially follows the original Black–Scholes
article [42], and consists in a reduction to a 1D diffusion equation with special
boundary conditions. (This may not be too surprising: Fisher Black held a
degree in physics.)
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We substitute

f(S, t) = e−r(T−t)y(u, v) , (4.77)

u =
2ρ

σ2

(
ln

S

X
+ ρ[T − t]

)
,

v =
2
σ2

ρ2(T − t) , ρ = r − σ2

2
. (4.78)

Then, the derivatives ∂f/∂S, ∂2f/∂S2, and ∂f/∂t are expressed through
∂y/∂u, ∂y/∂v, etc., and y(u, v) satisfies the 1D diffusion equation

∂y(u, v)
∂v

=
∂2y(u, v)

∂u2
. (4.79)

The boundary conditions (4.76) for a call option translate into

y(u, 0) =

{
0 u < 0
X
(
euσ2/2ρ − 1

)
u ≥ 0 .

(4.80)

Diffusion equations are solved by Fourier transform in the spatial vari-
able(s)

y(u, v) =
∫ ∞

−∞
dqeiquy(q, v) , (4.81)

reducing (4.79) to an ordinary differential equation in v with the solution

y(q, v) = y(q, 0) exp
(−q2v

)
. (4.82)

y(q, 0), formally, is given by the Fourier transform of the boundary condi-
tions (4.80) which, however, should NOT be performed explicitly. The trick,
instead, is to transform the solution (4.82) back to u-variables, giving a con-
volution integral

y(u, v) =
1
2π

∫ ∞

−∞
dw y(w, 0)f(u − w) with f(x) =

√
π

v
exp

(
−x2

4v

)
.

(4.83)
Another substitution z = (w − u)/

√
2v almost gives the final result

y(u, v) =
X√
2π

∫ ∞

−u/
√

2v

dze−z2/2

[
exp

(
σ2

2ρ

{√
2vz + u

})
− 1

]
. (4.84)

The only task remaining is to complete the square in the exponent, and
insert all substituted quantities. This gives the Black–Scholes equation for a
European call option (remember that the boundary conditions for a call have
been used in the derivation)

C(S, t) ≡ f(S, t) = SN(d1) − Xe−r(T−t)N(d2) . (4.85)
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The equivalent solution for a European put option is

P (S, t) = Xe−r(T−t)N(−d2) − SN(−d1) . (4.86)

N(d) is the cumulative normal distribution

N(d) =
1√
2π

∫ ∞

−d

dxe−x2/2 , (4.87)

and its two arguments in (4.85) are given by

d1 =
ln S

X +
(
r + σ2

2

)
(T − t)

σ
√

T − t
, (4.88)

d2 =
ln S

X +
(
r − σ2

2

)
(T − t)

σ
√

T − t
. (4.89)

Clearly, S ≡ S(t). The behavior of C(S) is sketched in Fig. 4.1 as the solid
line, and the equivalent put price is sketched in Fig. 4.2. The time evolution
of a call price, as given by the Black–Scholes equation (4.85), is displayed in
Fig. 4.7. In that figure, all parameters have been kept fixed, and only time
elapses. We therefore monitor the time value of the options. The intrinsic
value is given by S(t) − X, i.e., the payoff if the option was exercised today.
While the intrinsic value fluctuates with the evolution of the stock price,
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Fig. 4.7. Time evolution of the price of a European call option as a function of time
before maturity in years. Fixed stock price S = 100, interest rate r = 6%/y, and
volatility σ = 30%/

√
y have been assumed. The curves represent different strike

prices X = 95, 98, 100, 105 from top to bottom, i.e., the options are in the money
(top two lines), at the money, and out of the money, respectively
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the time value always decreases. It measures the probability left at time t
for a favorable stock price movement to occur before maturity T . It varies
strongest for options at the money, and less for options far in or out of the
money.

There are a few interesting limiting cases of (4.85). If S � X, the option is
exercised almost certainly. In this case, it will become equivalent to a forward
contract with a delivery price X. If S � X, d1, d2 → ∞, and N(d1,2) → 1.
The Black–Scholes equation then reduces to

f(S, t) = S − Xe−r(T−t) . (4.90)

This was precisely the expression for the value of the long position in a
forward contract derived earlier, (4.2). In that problem, the delivery price
was to be fixed so that the value of the contracts for both parties came out
to f = 0. Here, the strike price of the option is fixed from the outset, and
f therefore represents the intrinsic value of the long position in the option,
which has become equivalent to a forward by the assumption S � X. Notice
that S must be exponentially large compared to X for our derivation to hold.

If σ → 0, the stock becomes almost riskless. In (4.85), two different cases
must be considered. If ln(S/X) + r(T − t) > 0, d1,2 → ∞, N(di) → 1, and
(4.90) continues to hold. If, on the other hand, ln(S/X) + r(T − t) < 0,
d1,2 → −∞, N(di) → 0, and f(S, t) → 0. Putting both cases together,

C(S, t) ≡ f(S, t) = max(S − Xe−r(T−t), 0) . (4.91)

If on the other hand, the stock is almost riskless, it will grow from S to
ST = Ser(T−t) in the time interval T − t almost deterministically. The value
of the option at maturity is max(ST −X, 0), and a factor exp[−r(T −t)] must
be applied to discount this value to the present day, showing that (4.91) gives
a consistent result also in this limit.

The different terms in (4.85) have an immediate interpretation if the term
exp[−r(T − t)] is factored out:

1. N(d2) is the probability for the exercise of the option, P (ST > X), in
a risk-neutral world (cf. below), i.e., where the actual drift of a financial
time series can be replaced by the risk-free rate r.

2. XN(d2) is then the strike price times the probability that it will be paid,
i.e., the expected amount of money to be paid under the option contract.

3. SN(d1) exp[r(T − t)] is the expectation value of ST Θ(ST −X) in a risk-
neutral world, i.e., the expected payoff under the option contract.

4. The difference of this term with XN(d2) then is the profit expected from
the option. The prefactor exp[−r(T − t)] factored out discounts that
profit, realized at maturity T , down to the present day t. The option
price is precisely this discounted difference.

This interpretation is consistent with the capital asset pricing model which
deals with the relation of risk and return in market equilibrium. It states
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that the expected return on an investment is the discounting rate which one
must apply to the profit expected at maturity, in order to obtain the present
price. In our interpretation of (4.85), one would just read this sentence from
the backwards.

For an option, no specific risk premium is necessary. The entire risk is
contained in the price of the underlying security, and can be hedged away.

Because of their importance, we reiterate some statements made in earlier
sections, or implicitly contained therein:

1. The construction of a risk-free portfolio is possible only for Itô–Wiener
processes.

2. Because of the nonlinearity of f(S), ∂f/∂S is time-dependent.
3. The portfolio is risk-free only instantaneously. In order to keep it risk-free

over finite times, a continuous adjustment is required.
4. Beware of calculating the option price by a näıve expectation value of

the profit, and discounting such as

e−r(T−t)

∫ ∞

0

phist(ST )(ST − X)Θ(ST − X)

= 〈max(ST − X, 0)〉hist 
= C(S, t) , (4.92)

using the historical (recorded) distribution of prices phist(S). This will
give the wrong result! Such a calculation will give too high a price for
the option because phist is based on a stochastic process with the historic
drift µ which ignores the possibility of hedging and overestimates the risk
involved in the option position. This will be discussed further in the next
section.

We have just discussed the simplest option contract possible, a European
call option. The equivalent pricing formulae for a put option can be derived
straightforwardly by the reader: they only differ in the boundary condition
(4.76) used in the solution of the Black–Scholes differential equation. Many
generalizations are possible, such as for options on dividend paying stocks,
currencies, interest rates, indices or futures, combi or exotic options, etc. The
interested reader is referred to the finance literature [10, 12]–[15] for discus-
sions using similar assumptions as made here (geometric Brownian motion,
etc.).

Also path integral methods familiar from physics may be useful [50]. In
fact, one can solve the Black–Scholes equation (4.75) by noting the simi-
larity to a time-dependent Schrödinger equation. Time, however, is imagi-
nary, τ = it, identifying the problem as one of quantum statistical mechanics
rather than one of zero-temperature quantum mechanics corresponding to
real times. The “Black–Scholes Hamiltonian” entering the Schrödinger equa-
tion then becomes

HBS = −σ2

2
∂2

∂x2
+
(

σ2

2
− r

)
∂

∂x
=

p2

2m
+

i
h̄

(
σ2

2
− r

)
p (4.93)



80 4. Black–Scholes Theory of Option Prices

with x = lnS , p = −ih̄
∂

∂x
, and m =

h̄2

σ2
.

The Black–Scholes equation (4.85) is then obtained by evaluating the path
integral using the appropriate boundary conditions (4.76). This method can
also be generalized to more complicated problems such as option pricing with
a stochastically varying volatility σ(t) [51]. That such a method works is
hardly surprising from the similarity between the Black–Scholes and Fokker–
Planck equations. For the latter, both path-integral solutions, and the re-
duction to quantum mechanics, are well established [37]. We will use the
path integral method in Chap. 7 to price and hedge options in market situ-
ations where some of the assumptions underlying the Black–Merton–Scholes
analysis are relaxed.

4.5.3 Risk-Neutral Valuation

As mentioned in Sect. 4.5.1, eliminating the stochastic process in the Black–
Scholes portfolio as a necessary consequence also eliminates the drift µ of the
underlying security. µ, however, is the only variable in the problem which
depends on the risk aversion of the investor. The other variables, S, T − t, σ
are independent of the investor’s choice. (Given values for these variables, an
operator will only invest his money, e.g., in the stock if the return µ satisfies
his requirements.) Consequently, the solution of the Black–Scholes differential
equation does not contain any variable depending on the investor’s attitude
towards risk such as µ, cf. (4.85).

One can therefore assume any risk preference of the agents, i.e., any µ. In
particular, the assumption of a risk-neutral (risk-free) world is both possible
and practical. In such a world, all assets earn the risk-free interest rate r.
The solution of the Black–Scholes found in a risk-neutral world is also valid
in a risky environment (our solution of the problem above takes the argument
in reverse). The reason is the following: in a risky world, the growth rate of
the stock price will be higher than the risk-free rate. On the other hand, the
discounting rate applied to all future payoffs of the derivative, to discount
them to the present day value, then changes in the same way. Both effects
offset each other.

Risk-neutral valuation is equivalent to assuming martingale stochastic
processes for the assets involved (up to the risk-free rate r). Equation (4.92)
shows that simple expectation value pricing of options, using the historical
probability densities for stock prices phist(S), does not give the correct option
price. In other words, if an option price was calculated according to (4.92),
arbitrage opportunities would arise. On the other hand, intuition would sug-
gest that some form of expectation value pricing of a derivative should be
possible: the present price of an asset should depend on the expected future
cash flow it generates.

Indeed, even in the absence of arbitrage, expectation value pricing is pos-
sible, but at a price: a price density q(S) different from the historical density
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phist(S) must be used [52]. This is the consequence of a theorem which states
that under certain conditions (which we assume to be fulfilled), for a stochas-
tic process with a probability density pt,T (ST ) for ST , and conditional den-
sities including the information available up to t, pt,T (ST |St, St−1, St−2, . . .),
there is an equivalent martingale stochastic process described by a differ-
ent probability qt,T (ST ), such that in the absence of arbitrage opportunities,
the price of an asset with a payoff function h(ST ) is given by a discounted
expectation value using qt,T

f(t) = e−r(T−t)

∫ ∞

−∞
dST h(ST )qt,T (ST ) . (4.94)

As an example, for a call option, the payoff function is h(ST ) = max(ST −
X, 0) and, with the correct probability density for the equivalent martingale
process, involving the risk-free rate r instead of the drift µ of the underlying,
the price

C(T ) = e−r(T−t)

∫ ∞

−∞
dST max(ST − X, 0)qt,T (ST ) (4.95)

will produce the Black–Scholes solution (4.85). Also, the discounted stock
price is an equivalent martingale

St = e−r(T−t)

∫ ∞

−∞
dST ST qt,T (ST ) . (4.96)

Using equivalent martingales, expectation value pricing for financial assets is
possible. Martingales are tied to the notion of risk-neutral valuation.

4.5.4 American Options

The valuation of American options employs the same general risk-neutral
framework as for European options. In principle, a riskless hedge of the option
position is possible by holding a suitable quantity of the underlying asset. A
short position in one American call option still is hedged by a long position
in ∆ shares of the underlying – the difference to European options is in the
numerical value of ∆. The valuation therefore can be based on equivalent
martingale processes, with the risk-free rate r as the drift. However, the
possibility of early exercise introduces significant complexity and prevents an
exact analytic solution.

The basic principle for the valuation of an American option can be il-
lustrated easily. Assume first that time is a discrete variable, ti = i∆t,
i = 0, . . . , N , ∆t = T/N , where T is the maturity of the option. An Ameri-
can option then can be exercised at any ti. For geometric Brownian motion,
the probability distributions (4.65) and (4.66) are obtained with the trivial
replacements t → ti and St → Si. The transition probability (conditional
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probability density) for an elementary time step of the equivalent martingale
process in the risk-neutral world, for geometric Brownian motion becomes

qti−1,ti
(Si) ≡ q(Si, ti | Si−1, ti−1)

=
1√

2πσ2∆t
exp

⎛
⎜⎝−

[
ln
(

Si

Si−1

)
−
(
r − σ2

2

)
∆t
]2

2σ2∆t

⎞
⎟⎠ .

(4.97)

One time step before expiry, at tN−1, it is advantageous to exercise the
option if its immediate payoff exceeds its value on the assumption of holding
it to maturity,

h (SN−1) > f(tN−1) , (4.98)

where h(Si) is the payoff function, and f(ti) is the value of the option, cf.
(4.94). To be specific, an American call with payoff h(Si) = max(Si − X, 0)
should be exercised at tN−1 when

SN−1 − X > C(tN−1) (4.99)

with C(tN−1) given by using the discretized version of (4.95). This argument
can be iterated backward in time because for an American option, no partic-
ular significance is attached to the time of maturity. Consequently, at time
ti−1, early exercise is advantageous when the payoff received immediately ex-
ceeds the value of the option derived from holding it until the next possibility
to exercise, i.e. ti. The early exercise condition is

h (Si−1) > e−r∆t

∫ ∞

−∞
dSi h(Si)qti−1,ti

(Si) . (4.100)

The right-hand side has been taken from (4.94) and rewritten for a single
time step. For an American call, we get

Si−1 − X > e−r∆t

∫ ∞

−∞
dSi max(Si − X, 0)qti−1,ti

(Si) , (4.101)

in analogy to (4.95). The option at t = t0 then is priced, and hedged, by
iterating the problem backward from maturity, tT , to t = t0, and taking the
continuum limit of time, ∆t → 0, N → ∞ with T = N∆t fixed. Of course, a
closed solution of this problem is impossible because for every possible price
Si, a decision on early exercise must be taken at each step i.

A variety of approximate solutions has been developed, all suffering from
drawbacks though. Monte Carlo simulations are an obvious choice. Random
price increments are drawn from a normal distribution (in the case of geo-
metric Brownian motion) to simulate the price history of the underlying, and
the average over many runs is taken when ensemble properties are required.



4.5 Option Pricing 83

While Monte Carlo simulations in principle give the desired answer, they
are computationally inefficient because the errors on averages over finitely
many realizations decrease rather slowly. For plain vanilla options, the use of
binomial trees provides an alternative. In a binomial tree, price increments
have fixed modulus ∆S, i.e. only ±∆S are allowed. This restriction gives
enough simplification to make calculations for plain vanilla options practical.
However, for exotic, path-dependent options, the discretization of the price
increments is an undesirable feature.

General arguments suggest that American call options should never be
exercised early in the absence of dividend payments. Dividend payments have
not been considered for European options, and will not be discussed here for
American options. The role of dividend payments in option pricing, hedging,
and exercise is discussed in the standard financial literature [10].

4.5.5 The Greeks

The derivatives of option prices with respect to the parameters and variables
upon which the option price depends, play important roles in trading and
hedging strategies. Most of them are labelled by greek letters. Collectively,
they are called “the Greeks”.

We already encountered one of the Greeks, Delta, and its application in
hedging, when setting up the riskless Black–Scholes portfolio in (4.72). There,
a short position in a call option was combined with a long position in

∆C =
∂C

∂S
(4.102)

units of the underlying resulting in a portfolio which was riskless agains infin-
itesimal variations of the price of the underlying, all other things remaining
constant. Similarly, the Delta for a put option is

∆P =
∂P

∂S
. (4.103)

The definition of Delta, as well as that of the other Greeks is valid for all op-
tions. For European options described by the Black–Scholes equations (4.85)
and (4.86), we can evaluate Delta explicitly as

∆C = N(d1) , ∆P = N(d1) − 1 , (4.104)

where N(d1) and d1 are defined in (4.87) and (4.88). Its dependence on the
price of the underlying, for different times to maturity, is shown in Fig. 4.8.

Delta describes the dollar variation of an option when the price of the
underlying changes by one dollar. More important to investors is the leverage
of an option, defined as the percentage variation of the option when the price
of the underlying varies by one percent. This quantity is given by
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Fig. 4.8. Delta of a European call option described by the Black–Scholes equation
as a function of the price of the underlying, for times to maturity of one, two, four
and twelve months, from bottom to top at the left margin. The other parameters
are r = 6%/y and σ = 30%/

√
y as in Fig. 4.7

80 100 120 140
S

5

10

15

20

25

30

Leverage

Fig. 4.9. Leverage of a European call option described by the Black–Scholes equa-
tion as a function of the price of the underlying, for times to maturity of one, two,
four and twelve months, from top to bottom. The other parameters are r = 6%/y
and σ = 30%/
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for call and put options, respectively. The dependence of the leverage on the
price of the underlying is displayed in Fig. 4.9 for a European call option.
Quite generally, out-of-the money options possess a higher leverage than in-
the-money options, and the leverage of a call option decreases when the price
of the underlying increases. The downside risk of an option therefore always
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is superior to its upside chances. Also, all other things remaining constant,
the leverage of an option increases when the time to maturity decreases. As a
consequence of these two observations, speculative investments in options are
advisable only when the investor holds a strong view on the price movement
of the underlying, and on the time scale over which this price movement is
realized.

The sensitivity of the option price with respect to time to maturity is
expressed by Theta,

ΘC =
∂C

∂t
, ΘP =

∂P

∂t
. (4.105)

For European call and put options described by the Black–Scholes equation,
we have

ΘC,P = − Sσ

2
√

2π(T − t)
e−d2

1/2 ∓ rXe−r(T−t)N(±d2) . (4.106)

The upper signs apply for a call option, the lower signs for a put. The de-
pendences of Theta on the price of the underlying and on time to maturity
is shown in Fig. 4.10. Theta diverges for an at-the-money option when the
time to expiration goes to zero. Theta tends towards a finite value when the
option is in the money, i.e., in such a case, the loss in value of the call is
linear in time shortly before expiration. Theta converges to zero for an out-
of-the money call, i.e., such an option has lost all of its value already some
time before expiration. Notice that, at least for the European call considered
here, the schematic figures in Hull’s book [10] seem to indicate an incorrect
behavior close to maturity.

Gamma captures the curvature in the derivative prices with respect to
the underlying and is defined as

ΓC =
∂2C

∂S2
, ΓP =

∂2P

∂S2
. (4.107)

In the Black–Scholes framework,

ΓC = ΓP ≡ Γ =
1

Sσ
√

2π(T − t)
e−d2

1/2 . (4.108)

The dependence on the price of the underlying has the same functional form
as the probability density function of a lognormal distribution. The depen-
dence on time to maturity is more interesting and shown in Fig. 4.11. When
an option expires at the money, Gamma diverges. Gamma tends towards zero,
on the other hand, both for options in and out of the money. This behavior
is easily understood by considering the payoff profiles of call and put options
shown in Fig. 2.1. At expiry, there is a discontinuity in slope in the option
payoff at S = X. In and out of the money, on the other hand, the payoffs are
linear in the price of the underlying.
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Fig. 4.10. Theta for European call options. The upper panel displays the depen-
dence on the price of the underlying (X = 100, r = 6%/y, σ = 30%/

√
y, T−t = 2m.

The lower panel shows the dependence on time to maturity for S = 100 and strike
prices X = 110 (top curve, out of the money), X = 90 (middle curve, in the money),
and X = 100 (bottom curve, at the money)

The sensitivity of the price of an option with respect to a variation in
volatility is important, too. This derivative is called Vega, and is defined as

VC =
∂C

∂σ
, VP =

∂P

∂σ
. (4.109)

Vega is the same for call and put options. When the Black–Scholes equation
applies, we have

V =
S
√

T − t√
2π

e−d2
1/2 . (4.110)

The variation of Vega with the price of the underlying is S2 times the lognor-
mal probability density function. For an option at the money, the dependence
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Fig. 4.11. Gamma European call options described by the Black–Scholes equation
as a function of time to expiration. The parameters are S = 100, r = 6%/y and
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on time to maturity is

V ∼ √
T − t as T − t → 0 (S = X) . (4.111)

For options in and out of the money,

V ∼ √
T − t e−1/(T−t) as T − t → 0 (S 
= X) . (4.112)

Except for a different power-law prefactor, this behavior is similar to that
shown for Gamma in Fig. 4.11.

Finally, a parameter Rho

RC =
∂C

∂r
, RP =

∂P

∂r
(4.113)

measures the sensitivity of the prices of call and put options against variations
of the risk-free interest rate r. In a Black–Scholes world,

R = ±X(T − t)e−r(T−t)N(±d2) , (4.114)

where the upper and lower signs apply to calls and puts, respectively.
We will come back to Vega later in Sect. 4.5.8 on volatility indices. The

use of the Greeks in hedging option positions is discussed in Chap. 10 on risk
management.

4.5.6 Synthetic Replication of Options

When the risk-free Black–Scholes portfolio was set up for a short position
in a European call option with price C in Sect. 4.5.1, a long position in
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∆C = ∂C/∂S units of the underlying S was added to form a riskless portfolio
Πr

Πr = −C + ∆CS . (4.115)

The portfolio consisting of the short option position and the long position in
the underlying is exactly equivalent to a long position in a riskless asset of
value Πr. We can transform (4.115) into

C = −Πr + ∆CS . (4.116)

A long call position is equivalent to a short position of value Πr in a riskless
asset and a long position in ∆C units of the underlying of the call, priced at
S.

For a short position in a European put option, the risk-free Black–Scholes
portfolio is

Πr = −P + ∆P S = −P − |∆P |S . (4.117)

The short put position is hedged by a short position in |∆P | units of the
underlying, as ∆P < 0. A long position in a put option then is equivalent to

P = −Πr − |∆P |S , (4.118)

i.e., to a short position of value Πr in a risk-free asset and another short
position in |∆P | units of the underlying.

These equivalences are general and do not assume the validity of the
Black–Scholes model. Only the numerical values of ∆C and ∆P depend on
the price dynamics of the underlying, and on the exercise features of the
options. Also, they are not limited to call and put options. The important
message is that any option can be created synthetically by a suitable combina-
tion of a position in a riskless asset and another position in the underlying.
This is a result of great practical importance. Whenever an investor wishes
to take a position in an option which is not available in the market, he
can synthetically replicate the option by taking positions in a risk-free asset
and in the underlying. Many portfolio managers and risk managers use this
technique to implement their trading and hedging strategies when standard
options are not available.

4.5.7 Implied Volatility

Writing the option price in (4.85) symbolically as CBS(S, t; r, σ;X,T ), most
parameters of the Black–Scholes equation can be observed directly either in
the market, or on the option contract under consideration. S and t are inde-
pendent variables, X and T contract parameters, and r and σ market resp.
asset parameters. The volatility σ stands out in that it cannot be observed
directly. At best, it can be estimated from historical data on the underlying
– a procedure which leaves many questions unanswered.
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For a variety of reasons which are the principal motivation of the re-
mainder of this book, the traded prices of options usually differ from their
Black–Scholes prices. This is shown in Fig. 4.12 for a series of European calls
on the DAX with a lifetime of one month to maturity. The horizontal axis
“moneyness”, m = X/S, represents the dimensionless ratio of strike price
over underlying. For comparison, the Black–Scholes solution is also displayed
as solid lines. The upper line uses a volatility of 35%y−1/2, while the lower
one takes 20%y−1/2. Under the assumptions of the Black–Scholes theory and
geometric Brownian motion, a single value of the volatility should be suffi-
cient to describe the entire series of call options, and the prices should fall on
one of the solid lines. Figure 4.12 rejects this hypothesis for real-world option
markets.

In the absence of an accurate ab initio estimation of the volatility, a rough
and pragmatic procedure consists in taking the traded prices for granted and
invert the Black–Scholes equation (4.85) for the implied volatility σimp [10]

Cmarket(S, t; r, σ;X,T ) ≡ CBS(S, t; r, σimp;X,T ) . (4.119)

The idea is to pack all factors leading to deviations from Black–Scholes theory,
independently of their origin, into the single parameter σimp. Volatility, any-
way, is difficult to estimate a priori. For the series of options used in Fig. 4.12,
the implied volatilites are shown in Fig. 4.13. Apparently, there are devia-
tions of traded option prices from a Black–Scholes equation which depend
on the contract to be priced. In this representation, they turn into an im-
plied volatility which explicitly depends on the moneyness of the options. In a
purist perspective, implied volatility adds nothing new to the theory of option
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Fig. 4.12. Prices of a series of European call options on the DAX index with
one month to maturity, given in units of the index value, against moneyness X/S
(dots). The two solid lines represent the dependence of the Black–Scholes solutions

on moneyness with two volatilities σ = 35%y−1/2 (top) and σ = 20%y−1/2 (bottom)
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Fig. 4.13. Implied volatilities of a series of European call options on the DAX index
with one month to maturity, against moneyness X/S (dots) in %y−1/2. Geometric
Brownian motion and the Black–Scholes theory take volatility independent of the
option contract to be priced. The two solid lines mark the contract-independent
volatilities used to generate the solid lines in Fig. 4.12

pricing, and might even lead to confusion. However, it is a simple transforma-
tion of option prices and therefore is an observable on equal footing with the
prices. This is similar to physics: When temperature is measured, the basic
observable most often is an electric current or voltage drop, or height of a
mercury column, etc., which then is transformed into a temperature reading
with a suitable calibration. Also, implied volatility is the standard language
of derivatives traders and analysts to describe option markets.

The generic shapes of implied volatilities against moneyness are shown in
Fig. 4.14. Apparently, a pure smile was characteristic of the US option mar-
kets before the 1987 october crash [53]. Ever since, it has become a rather
smirky structure. The aim of market models more sophisticated than geomet-
ric Brownian motion and of option pricing theories beyond Black–Merton–
Scholes, can be restated as to correctly describe implied volatility smiles.

When a series of options with the same strike price but different maturities
is analyzed, a term structure (maturity dependence) of the implied volatility
is obtained in complete analogy to its moneyness dependence. The volatility
smile turns into a two-dimensional implied volatility surface. Figure 4.15
shows a series of cuts through an implied volatility surface of European call
options. Unlike Fig. 4.13, these curves do not represent market observations
but are the results of a model calculation. Superficially, the one-month curve
is not dissimilar to the empirical data, suggesting that theoretical models
indeed may be capable of correctly describing option markets. Attempts to fit
volatility smiles for a fixed time to maturity usally employ quadratic functions
with different parameters for in- and out-of-the-money options, to account
for the systematic asymmetry [53].
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Fig. 4.14. Sketches of implied volatilities against moneyness. Three generic shapes
can be observed: a smile (top left), a frown (top right) and a smirk resp. skewed
smile (bottom). In equity markets, the smirk is observed most frequently. Often,
the term “volatility smile” includes all three shapes

0.7 0.8 0.9 1.0 1.1 1.2
moneyness

0.6

0.4

0.5

0.3

0.2

im
pl

ie
d 

vo
la

til
ity

1 month
3 months
6 months
1 year
2 years

Time to maturity

Fig. 4.15. Term structure and moneyness dependence of the implied volatility of
a series of European call options based on a model calculation

With reference to the subsequent chapters where we will develop an in-
depth description of financial markets, the main handles on the volatility
smiles and term structures are:

• The ordinate scale is determined by the average volatility of the mar-
ket/model.
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• Smiles or frowns are the consequence deviations of the actual return distri-
butions, especially in their wings, from the Gaussian assumed in geometric
Brownian motion.

• The skew in the implied volatility is the consequence either of a skewness
(asymmetry) of the return distribution of the underlying or of return–
volatility correlations.

• The term structure of the volatility smiles is determined by the time scales
(or time-scale-free behavior) of the important variables in the problem.

Figures 4.12 and 4.13 show the option prices and implied volatilites of
DAX options on one particular trading day. Both quantities show an inter-
esting dynamics when studied with time resolution. The price of a specific
option, of course, possesses a dynamics because of the variation in the price of
the underlying. When the prices of a series of options are represented in terms
of moneyness, however, these variations are along the price curve C(X/S)
once the effects of changing time to maturity are eliminated, and should not
lead to dynamical variations of the price curve itself. Additional dynamics
may come, e.g., from the increasing autonomy of option markets which are in-
creasingly driven by demand and supply, in addition to the price movements
of the underlying [54]. One can analyze this dynamics of σimp(m) almost at
the money, m ≈ 1. When, e.g., the time series of σimp(1 − δ) − σimp(1) and
σimp(1) − σimp(1 + δ) are plotted against time, there are long periods where
both stochastic time series are strongly correlated, and other shorter periods
where their correlation is weak [53]. The former correspond to almost rigid
shifts of the smile patterns while the latter appear in periods where the smile
predominantly changes shape. Both time series can be modeled as AR(1)
processes which describes an implied volatility with a mean-reversion time of
about 30 days, comparable to the time to maturity of liquid options.

This line of research can be carried much further by studying the dynami-
cal properties of a two-dimensional implied volatility surface with coordinates
moneyness (m) and time to maturity (T − t) [54]. Implied volatilities are
strongly correlated across moneyness and time to maturity, cf. above, which
suggests a description in terms of surface dynamics. A practical aspect are
trading rules for volatility prediction based on implied volatility. The “sticky
moneyness” rule predicts that the implied volatility surface tomorrow is the
same as that today at constant moneyness and time to maturity. The “sticky
strike” rule stipulates that the implied volatility tomorrow is the same as
today at constant strike and constant maturity (i.e. absolute quantities).

Volatility surfaces can be generated for various series of liquid options
such as calls and puts on the S&P500, the FTSE, or the DAX. With a
generalization of principal component analysis – a technique widely used in
image processing – the implied volatility surfaces can be described as fluc-
tuating random surfaces driven by a small number of dominant eigenmodes.
These eigenmodes parameterize the shape fluctuations of the surface. Their
fluctuating prefactors describe the amplitude of surface variations. The first
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eigenmode which accounts for about 80% of the daily variance of the implied
volatility surface is a flat sheet in σimp −m− (T − t) space, almost indepen-
dent of T − t and with a small positive slope in m. This mode essentially
has the same properties as the time series discussed in the second preceding
paragraph. It is also negatively correlated with the price of the underlyings,
i.e. contributes to a “leverage effect” to be discussed in Sect. 5.6.3. The sec-
ond eigenmode changes sign at the money and is positive for m > 1 and
negative for m < 1. A positive variation of this mode increases the volatili-
ties of out-of-the money calls and descreases it for out-of-the-money puts. It
contributes to the skewness of the risk-neutral distributions (when thinking
backwards from implied volatility to risk-neutral measures) and, due to its
slope in T − t, to the term structure. It also possesses the dynamics of a
mean-reverting AR(1)-process. The third mode is a butterfly modes which
changes the convexity of the implied volatility surface. It leads to a fattening
of the tails of the risk-neutral distributions, cf. the mechanistic rules listed
above [54].

This dynamics can be cast in a low-dimensional factor model

X(t;m,T − t) ≡ lnσimp(t;m,T − t) = X(0;m,T − t)+
d∑

k=1

xk(t)fk(m,T − t) .

(4.120)
fk is one of the d dominant eigenfunctions of the principal component decom-
position. They are time-independent and describe the spatial variation of the
fluctuations. The dynamics comes from the randomly fluctuating prefactors
xk(t) which, according to the findings above, can be modeled as Ornstein-
Uhlenbeck processes

dxk(t) = −λk [xk(t) − x̄k] dt + γkdzk . (4.121)

λk is the rate of mean reversion and x̄k is the average of the kth eigenmode.
The stochastic increments dzk are uncorrelated and may be drawn from a
Gaussian (consistent with the lognormal distribution of implied volatilites, cf.
below) or a more general distribution. The ranks of the fluctuating expansion
coefficients xk(t) in (4.120) are ordered according to their variances γ2

k which
measures the amplitude of the fluctuations they impart on σimp(t;m,T −
t). The dynamics of the implied volatility surfaces analyzed above can be
faithfully represented by three factors x1(t) . . . x3(t) [54].

4.5.8 Volatility Indices

Volatility is the most important and least accessible quantity in option the-
ory. Volatility can be inferred either from historical time series [estimate
σ in (4.53)] or from implied volatility of options by inverting the Black–
Scholes equation as in (4.119). For derivative markets, the second method
is preferrable because the information is derived directly from derivative
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instruments, and implied volatility is more forward-looking than historical
volatility.

Derivative trading requires high-frequency information on volatility, resp.
implied volatility. The question arises if information on implied volatility can
be provided in a standardized manner to assist traders in their decisions.
Volatility indices have been constructed by various option exchanges to fill
this gap. As volatility often signifies financial turmoil, volatility indices play
the role of “investor fear gauges”. In the following, we discuss two two indices
using different construction principles.

VDAX Index

The VDAX index is provided by Deutsche Börse AG, and measures the im-
plied volatility of at-the-money options on the DAX with 45 days to maturity
[55]. Options on the DAX are among the most liquid instruments in the Eu-
ropean derivatives markets. Although it is not directly relevant for other
options, the knowledge of the VDAX value gives a good indication of the
volatilities traded in the broader derivatives market.

Conceptually, the VDAX is based on implied volatilities, i.e. the Black–
Scholes equation (4.85), resp. (4.86), is inverted numerically as formally done
in (4.119). The practical calculation is more difficult, though, most impor-
tantly because, except for accidental circumstances, no option at the money
with 45 days to maturity is traded in the markets.

Moreover, in practice, the traded futures price on the DAX are used for
the VDAX calculation instead of the DAX itself. For options on futures, the
Black–Scholes equation can be rewritten most easily by equating forward and
futures prices F and using (4.1) in (4.85) and (4.86) to obtain

CF = e−r(T−t) [FN(d1F ) − XN(d2F )] (4.122)
PF = e−r(T−t) [XN(−d2F ) − FN(−d1F )] (4.123)

for the prices of call and put options on futures, respectively. d1F and d2F

differ from (4.88) and (4.89) and are given by

d1F =
ln F

X +
(

σ2

2

)
(T − t)

σ
√

T − t
, (4.124)

d2F =
ln F

X −
(

σ2

2

)
(T − t)

σ
√

T − t
. (4.125)

The risk-free interest rate no longer appears explicitly in (4.124) and (4.125)
and is implicitly accounted for by the use of the futures price F , cf. (4.1).
The Black–Scholes problem for options on futures can also be solved ab initio
following the lines of Sects. 4.5.1 and 4.5.2, with (4.122) and (4.123) as the
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solutions of the modified differential equations [10, 56]. This solution is known
as Black’s 1976 model.

The VDAX is based on a set of eight subindices calculated for DAX op-
tions with maturities of up to two years. Each subindex is based on four
at-the-money options for the given maturity. After data filtering, the best
bid and ask prices of each call and put option and of the DAX futures are
averaged. Next, the risk-free interest rate is not a universal constant but de-
pends on the maturity of the bonds it is taken from. Under normal conditions,
r is lower for short-maturity bonds than for long maturities (“normal interest
rate curve”). Only under exceptional circumstances is the interest rate curve
inverted, i.e. the long maturities bring less interest than the short maturities.
In general, risk-free interest rates are not available for the maturities of the
options considered. In practice, they are generated by linear interpolation
from two values bracketing the option contract maturity.

When the maturity of futures contracts differs from that of options, put-
call parity is used to generate an effective forward price from the option
prices. Using (4.1), (4.8) for put-call parity can be rewritten in terms of the
forward price as

F (t) = [C(t) − P (t)] er(T−t) + X . (4.126)

This equation is used for up to eight pairs of options for four strike prices
above and below the “at-the-money point”, and averaged at the end. Once
the forward price is available, (4.122) and (4.123) are inverted for the implied
volatility σimp.

The implied volatility constituting a volatility subindex for a specific ma-
turity Ti is calculated as a weighted average of the implied volatilities a pair
of put and call options with strike prices bracketing the futures price

σimp(Ti) =
[Xh − F (Ti)]

[
σcall

imp,l + σput
imp,l

]
+ [F (Ti) − Xl]

[
σcall

imp,h + σput
imp,h

]
2(Xh − Xl)

.

(4.127)
The subscripts h and l label the options with maturity Ti above and below
the futures price. The eight volatility subindices are published by Deutsche
Börse AG as additional information.

The VDAX then is the implied volatility generated from the two subindices
with maturity closest to 45 days, by interpolation of the variances

σVDAX
imp =

√
Ti+1 − T

Ti+1 − Ti
σ2

imp(Ti) +
T − Ti

Ti+1 − Ti
σ2

imp(Ti+1) , (4.128)

where the maturities satisfy

Ti ≤ T = 45d < Ti+1 . (4.129)
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The VDAX is the implied volatility of a hypothetical at-the-money option
with a 45-day maturity. At the time of writing, the VDAX is quoted every
minute from 9 a.m. to 5:30 p.m.

There have been attempts to create derivatives on the VDAX. It is re-
ported that the pricing and hedging of these products encountered many
difficulties. Most likely, it was done in a way similar to that described in the
subsequent text, supplemented by rules of thumb for the inevitable differences
between the VDAX and the quantity effectively priced and hedged.

VIX

The VIX is the volatility index of the Chicago Board Options Exchange
(CBOE) [57]. It measures the volatility of options on the S&P500 index with
30 days to expiration.

Since its introduction in 1993 until 2003, it was based on the implied
volatility of at-the-money options on the S&P100 index, and calculated in
a manner similar to the VDAX described above. In 2003, the method of
calculation was changed, and the index now refers to the S&P500 index. The
change was made in response to advances in quantitative finance which were
driven by the desire to trade volatility derivatives deriving their measure of
volatility directly from a series of option prices [57, 58]. Here, we continue to
call this volatility measure “implied volatility” although this formally is not
justified by (4.119) which we used to define implied volatility. The labeling is
justified, however, (i) when implied volatility is understood as the market’s
expectation of future realized volatility, and (ii) by the strong similarity of the
old VIX based on implied volatility, and the new VIX extended backwards
in time to cover the period of the old VIX [57].

To understand the general problem behind the creation of volatility deriv-
atives, notice that the hedging of a derivative, say on option, based on σimp

as obtained by (4.119), is a highly nontrivial task. When volatility can be
represented, e.g., as a linear combination of traded instruments, hedging is
much easier.

How can one create an instrument that allows pure trading of volatility?
With a position in an option, an investor is exposed both to the directional
movements of the underlying and to its volatility. Can one eliminate the
exposure to directional moves?

The simplest derivative instrument on volatility is a volatility, or variance
swap. A swap is a contract which exchanges (“swaps”) two cash flows. Swaps
are most common in the fixed income sector (bonds and credits), and often
the parties exchange the cash flows from fixed interest rate payments against
variable interest rate payments. The payoff of a variance swap at expiration
is

VS(T ) = (σ2
R − Kvar)N , (4.130)

where σ2
R is the variance of the underlying realized over the lifetime of the

swap, Kvar is variance delivery price and N is the notional of the contract. The
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holder of the swap receives N dollars for every point by which the variance
σ2

R exceeds the delivery price Kvar [58]. Alternatively, the variance swap may
be understood as a forward contract.

To understand the construction of such a swap, go back to the definition
of the Vega of an option. Vega, as defined in (4.109) measures the sensitivity
to changes in volatility. The variance exposure of a call option is measured
by the “Variance Vega”

Vvar =
∂C

∂σ2
=

S
√

T − t

2
√

2πσ
exp

(
−d2

1

2

)
, (4.131)

where the second equality is valid only for Black–Scholes option prices, and
d1 was given in (4.88). Variance Vega is peaked at S = X with a peak height
proportional to X due to the explicit prefactor S. When many options with
slightly different strikes are superposed with equal weight in a portfolio, the
variance exposure of this portfolio is given by the superposition of the Vari-
ance Vegas. This leads to a triangular shape (in S) with Gaussian roundings
at the edge. When the portfolio weighs the options with a weight factor X−2,
on the other hand, the dependence on S drops out, and the portfolio has an
exposure to variance only (provided the price of the underlying remains in
the range covered by the option strikes). This result becomes exact when
the strike price X is treated as a continuous variable, and the portfolio is
expressed as an integral over X with a weight factor X−2 [58]. In practice,
out-of-the-money options are more liquid. For this reason, both out-of-the-
money call and put options are used in setting up the portfolio

Πσ(t) =
∫ S�

0

dX

X2
P (X, t) +

∫ ∞

S�

dX

X2
C(X, t) . (4.132)

S� is an arbitrary reference price close to the at-the-money point. This port-
folio’s Delta and Variance Vega are [58]

∆ =
∂Πσ(t)

∂S
≡ 0 , Vvar =

∂Πσ(t)
∂σ2

=
T − t

2
. (4.133)

At expiration, the value of the portfolio Πσ(T ) is

Πσ(T ) =
∫ S�

0

dX

X2
max [X − S(T ), 0] +

∫ ∞

S�

dX

X2
max [S(T ) − X, 0]

=
S(T ) − S�

S�
− ln

[
S(T )
S�

]
. (4.134)

The first term in the second equation essentially is an ordinary forward con-
tract with a payoff linear in the deviation from the reference price S�. The
second term is a log-contract whose payoff equals the logarithm of the price
ratio.
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As with any other derivative, the fair delivery price of variance Kvar is
fixed by the requirement that the expected present value of the future payoff
in a risk-neutral world is zero. The variance realized over the lifetime of the
swap is

σ2
R =

1
T

∫ T

0

dt σ2(t) , (4.135)

where σ – unlike geometric Brownian motion – may be a time-dependent,
perhaps even stochastic quantity. The criterion of zero expected value of the
payoff then translates in

F (t) = e−r(T−t)〈σ2
R − Kvar〉 = 0 . (4.136)

When S(t) follows an Itô process (4.40) even with a time-dependent
volatility σ(t), we can combine (4.53) and (4.62) to obtain

dS(t)
S(t)

− d [lnS(t)] =
1
2
σ2dt . (4.137)

Insert this into (4.135) and solve the second equality in (4.136)

Kvar =
2
T

〈∫ T

0

dS(t)
S(t)

− ln
[
S(T )
S(0)

]〉
. (4.138)

For an Itô process in a risk-neutral world,〈∫ T

0

dS(t)
S(t)

〉
=

〈∫ T

0

rdt + σ(t)dz

〉
= rT . (4.139)

The last term in (4.138) is related to the log-contract in our portfolio of
options with a continuous strike distribution. Combining everything gives
the fair delivery price of the variance swap [58]

Kvar =
2
T

[
erT

∫ S�

0

dX

X2
P (X, t) + erT

∫ ∞

S�

dX

X2
C(X, t)

+ rT −
(

S(0)erT

S�
− 1

)
− ln

(
S�

S(0)

)]
. (4.140)

This derivation does not require geometric Brownian motion, or the validity
of the Black–Scholes assumptions. An instrument trading volatility alone thus
can be constructed based on a weighted portfolio of options with a continuous
strike distribution and weights inversely proportional to X2.

Clearly, the value of such an instrument is a measure of the market’s
expected volatility over the lifetime of the contract, and therefore constitutes
a valid volatility index. This is precisely what the CBOE’s VIX does. As with
the instruments acutally traded in the markets, the ideal continuous strike
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portfolio is approximated by a set of options with a discrete distribution of
strikes. The VIX is [57]

VIX = 100

√√√√2erT

T

∑
i

∆Xi

X2
i

f(Xi) − 1
T

[
F

X0
− 1

]2

. (4.141)

∆Xi is the interval between the strike prices, F = S(0)erT is the forward
price, X0 is the first strike price below the forward level and plays the role of
the reference price S� in (4.140). f(Xi) = P (Xi) is the price of the put option
with strike Xi for Xi < X0 and f(Xi) = C(Xi) is the call price for Xi > X0.
Of course, option and forward prices are averages of the bid and ask prices
quoted in the market, and interpolation procedures similar to those described
for the VDAX are necessary to roll along the fixed time to maturity of 30
days.

Both volatility indices, VDAX and VIX, can be used as underlyings for
derivative instruments. In particular, a VIX futures has been traded on CBOE
since shortly after the reformulation of the VIX based on volatility swap
pricing, and options on the VIX are being introduced. In April 2005, Deutsche
Börse AG announced that, in order to facilitate the creation of derivatives
on the VDAX, it would change the calculation of the VDAX during the year
2005. While the new method has not been disclosed yet, in can be inferred
from details of the press release that it will be similar to the method used by
CBOE for the VIX.
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The Black–Scholes equation for option prices is based on a number of hy-
potheses and assumptions. Subsequent price changes were assumed to be
statistically independent, and their probability distribution was assumed to
be the normal distribution. Moreover, the risk-free interest rate r and the
volatility σ were assumed constant (in the simplest version of the theory).
In this chapter, we will examine financial data in the light of these assump-
tions, develop more general stochastic processes, and emphasize the parallels
between financial data and physics beyond the realm of Brownian motion.

5.1 Important Questions

We will be interested, among others, in answering the following important
questions:

• How well does geometric Brownian motion describe financial data? Can
the apparent similarities between financial time series and random walks
emphasized in Sect. 3.4.1 be supported quantitatively?

• What are the empirical statistics of price changes?
• Are there stochastic processes which do not lead to Gaussian or log-normal

probability distributions under aggregation?
• Is there universality in financial time series, i.e., do prices of different assets

have the same statistical properties?
• Are financial markets stationary?
• Are real markets complete and efficient, as assumed by Bachelier?
• Why is the Gaussian distribution so frequent in physics?
• What are Lévy flights? Are they observable in nature?
• Are there correlations in financial data?
• How can we quantify temporal correlations in a financial time series?
• How can we quantify cross-correlations between various asset price histo-

ries?

Before discussing in detail the stochastic processes underlying real financial
time series, we address the stationarity of financial markets.
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5.2 Stationarity of Financial Markets

Geometric Brownian motion underlying the Black–Scholes theory of option
pricing works with constant parameters: the drift µ and volatility σ of the
return process, and the risk-free interest rate r are assumed independent of
time. Is this justified? And is the dynamics of a market the same irrespective
of time? That is, are the rules of the stochastic process underlying the return
process time-independent?

For a practical option- pricing problem with a rather short maturity, say
a few months, the estimation of the Black–Scholes parameters should pose no
problem. For an answer to the questions posed above, on longer time scales,
we will investigate various time series of returns. The following quantities will
be of interest:

• The time series of (logarithmic) returns of an asset priced at S(t) over a
time scale τ

δSτ (t) = ln
(

S(t)
S(t − τ)

)
≈ S(t) − S(t − τ)

S(t − τ)
. (5.1)

• The time series of returns normalized to zero mean and unit variance

δsτ (t) =
δSτ (t) − 〈δSτ (t)〉√〈[δSτ (t)]2〉 − 〈δSτ (t)〉2 , (5.2)

where the expectation values are taken over the entire time series under
consideration.

We first examine the time series of DAX daily closes from 1975 to 2005 shown
in Fig. 1.2. The daily returns δS1d(t) derived from the data up to 5/2000 are
shown in Fig. 5.1. At first sight, the return process looks stochastic with zero
mean. The impressive long-term growth of the DAX up to 2000 and sharp
decline thereafter, emphasized in Fig. 1.2, here show up in a small, almost in-
visible positive resp. negative mean of the return, of much smaller amplitude,
however, than the typical daily returns. We also clearly distinguish periods
with moderate (positive and negative) returns, i.e., low volatility (more fre-
quent in the first half of the time series) from periods with high (positive
and negative) returns, i.e., high volatility (more frequent in the second half
of the time series). The main question is if data like Fig. 5.1 are consistent
with a description, and to what accuracy, in terms of a simple stochastic
process with constant drift and constant volatility. Or, to the contrary, do we
have to take these parameters as time dependent, such as in the ARCH(p)
or GARCH(p,q) models of Sect. 4.4.1? Or, worse even, do the constitutive
functional relations of the stochastic process change with time?

As a first, admittedly superficial test of stationarity, we now divide the
DAX time series into seven periods of approximately equal length, and eval-
uate the average return and volatility in each period. The result of this eval-
uation is shown in Table 5.1. The central column shows the increase resp.
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Fig. 5.1. Time series of daily returns of the DAX German blue chip index from 1975
to 2000. Analysis courtesy of Stephan Dresel based on data provided by Deutsche
Bank Research

Table 5.1. Average return 〈δS1d(t)〉 and volatility σ of the DAX index in
seven approximately equally long periods from January 2, 1975, to Decem-
ber 31, 2004. Analysis courtesy of Stephan Dresel based on data provided
by Deutsche Bank Research supplemented by data downloaded from Yahoo,
http://de.finance.yahoo.com

Period Return [d−1] Volatility [d−1/2]

02.01.1975–15.03.1979 0.00028 0.0071

16.03.1979–10.06.1983 0.00021 0.0078

13.06.1983–03.09.1987 0.00072 0.0104

04.09.1987–02.12.1991 0.00002 0.0155

03.12.1991–14.02.1996 0.00042 0.0091

16.02.1996–05.05.2000 0.00106 0.0149

08.05.2000–31.12.2004 −0.00049 0.0184

decrease of the average returns with time, which is responsible for the in-
creasing slope of the DAX index in Fig. 1.2. The average return increases by
a factor of three to four from 1975 to 2000, and decreases to even become
negative in the drawdown period from 2000 to 2005. The rather low value
in the fourth period is due to the October crash in 1987 right after the be-
ginning of our period, and another crash in 1991. The last column shows the
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volatilities which also increase with time. The volatility is particularly big
after 2000.

In the six periods up to May 5, 2000, we now subtract the average return
from the daily returns and then divide by the standard deviation, in order
to obtain a process with mean zero and standard deviation unity. Figure 5.2
shows the probability distributions of the returns normalized in this way, in
the six periods. Except for a few points in the wings, the six distributions do
not deviate strongly from each other. One therefore would conclude that the
rules of the stochastic process underlying financial time series do not change
with time significantly, and that most of the long-term evolution of markets
can be summarized in the time dependence of its parameters.

Notice, however, that, strictly speaking, this finding invalidates geometric
Brownian motion as a model for financial time series because µ and σ were
assumed constant there. On the other hand, if such time dependences of pa-
rameters only are important on sufficiently long time scales (which we have
not checked for the DAX data), one might take a more generous attitude,
and consider geometric Brownian motion as a candidate for the description
of the DAX on time scales which are short compared to the time scale of vari-
ations of the average returns or volatilities. Physicists take a similar attitude,
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Fig. 5.2. Probability distributions of normalized daily returns of the DAX German
blue chip index in the six equally long periods from 1975 to 2000. The normalization
procedure is explained in the text and the parameters are summarized in Table 5.1.
Solid line: period 1, dotted line: period 2, dashed line: period 3, long-dashed line:
period 4, dot-dashed line: period 5, circles: period 6. Analysis courtesy of Stephan
Dresel based on data provided by Deutsche Bank Research
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e.g., with temperature, in systems slightly perturbed away from equilibrium.
While being an equilibrium property in the strict sense, one may introduce
local temperatures in an inhomogeneous system on scales that are small with
respect to those over which the temperature gradients vary appreciably.

Returning to the probability distributions of the DAX returns, Fig. 5.3
shows the probability distributions of three periods (1, 4, and 6) displaced for
clarity. Period 1 is not clearly Gaussian although its tails are not very fat, a
fact that we qualitatively reproduce in periods 2 and 3. The distributions of
periods 4, 5 (not shown), and 6 do possess rather fat tails whose importance,
however, changes with time. In the DAX sample, period 4 including the
October crash in 1987, and some more turmoil in 1990 and 1991, clearly
has the fattest tails. One therefore should be extremely careful in analyzing
market data from very long periods. Markets certainly change with time, and
there may be more time dependence in financial time series than just a slow
variation of average returns and volatilities. As Fig. 5.3 suggests, even the
shape of the probability distribution might change with time.

These complications have not been studied systematically, and are ignored
in the following discussion. Depending on the underlying time scales, they
may or may not affect the conclusions of the various studies we review. We
first proceed to a critical examination of geometric Brownian motion.
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Fig. 5.3. Probability distributions (vertically displaced for clarity) of normalized
daily returns of the DAX German blue chip index in the periods 1 (open circles), 4
(filled triangles), and 6 (stars) specified in Table 5.1. Analysis courtesy of Stephan
Dresel based on data provided by Deutsche Bank Research
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5.3 Geometric Brownian Motion

Geometric Brownian motion makes two fundamental hypotheses on a sto-
chastic process:

1. Successive realizations of the stochastic variable are statistically indepen-
dent.

2. Returns of financial markets, or relative changes of the stochastic vari-
able, are drawn from a normally distributed probability density func-
tion, i.e., the probability density function of the stochastic variable, resp.
prices, is log-normal.

Here, we examine these properties for financial time series.

5.3.1 Price Histories

Figure 5.4 shows three financial time series which we shall use to discuss
correlations: the S&P500 index (top), the DEM/US$ exchange rate (center),
and the BUND future (bottom) [17]. The BUND future is a futures contract
on long-term German government bonds, and thereby a measure of long-term
interest-rate expectations. The data range from November 1991 to February
1995.

Figure 5.5 gives a chart of high-frequency data of the DAX taken on a
15-second time interval. The history is a combination of data collected in a
purpose-built database of German stock index data [59, 60] at the Depart-
ment of Physics, Bayreuth University, and data provided by an economics
database at Karlsruhe University [61].

5.3.2 Statistical Independence of Price Fluctuations

A superficial indication of statistical independence of subsequent price fluc-
tuations was given by the comparison of our numerical simulations based on
an IID random variable to the DAX time series, shown in Figs. 1.3 and 3.7.
The overall similarity between the simulation of a random walk and the daily
closing prices of the DAX would support such a hypothesis. Notice, however,
that the DAX is an index composed of 30 stocks, and correlations in the time
series of individual stocks may be lost due to averaging. Also, correlations
may well persist on time scales smaller than one day.

The question of correlations has a different emphasis for the statistician
or econometrician, and for a practitioner. Academics ask for any kind of de-
pendence in time series. Practitioners will more frequently inquire if possible
dependences can be used for generating above-average profits, and if success-
ful trading rules can be built on such correlations. Despite what has been
said in the preceding paragraph, the apparent importance of technical analy-
sis suggests that there may indeed be tradable though subtle correlations.
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Fig. 5.4. Three financial time series from November 1991 to February 1995: the
S&P500 index (top), the DEM/US$ exchange rate (center), and the BUND futures
(bottom). From J.-P. Bouchaud and M. Potters: Théorie des Risques Financiers,
by courtesy of J.-P. Bouchaud. c©1997 Diffusion Eyrolles (Aléa-Saclay)

Correlation Functions

We now analyze correlation functions of returns on a fixed time scale τ ,
δSτ (t), (5.1). The autocorrelation function of this quantity is

Cτ (t − t′) =
1

Dτ
〈[δSτ (t) − 〈δSτ (t)〉] [δSτ (t′) − 〈δSτ (t′)〉]〉 , (5.3)

where
Dτ = var [δSτ (t)] , (5.4)
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Fig. 5.5. Chart of the DAX German blue chip index during 1999 and 2000. Data are
taken on a 15-second time scale. From S. Dresel: Modellierung von Aktienmärkten
durch stochastische Prozesse, Diplomarbeit, Universität Bayreuth, 2001, by cour-
tesy of S. Dresel

to emphasize the similarity to diffusion. Using (5.2), we also have

Cτ (t − t′) = 〈δsτ (t)δsτ (t′)〉 . (5.5)

For statistically independent data, we have Cτ (t − t′) = 0 for t 
= t′ (at least
in the limit of very large samples).

Figure 5.6 shows the autocorrelation functions of the three assets repre-
sented in Fig. 5.4 with price changes evaluated on a τ = 5-minute scale [17].
For time lags below 30 minutes, there are weak correlations above the 3σ
level. Above 30-minute time lags, correlations are not significant.

When errors are random and normally distributed (a standard assump-
tion), the standard deviation determines the confidence levels as

σ : 32%
2σ : 5%
3σ : 0.2%

10σ : 2 × 10−23

⎫⎪⎪⎬
⎪⎪⎭ = 2

∫ ∞

Λ

P (S)dS . (5.6)

Under a null hypothesis of vanishing correlations, 32% of the data may ran-
domly lie outside a 1σ corridor, or 0.2% of the data may be outside a 3σ
corridor.



5.3 Geometric Brownian Motion 109

0 15 30 45 60 75 90
-0.05

0.00

0.05

Bund

0 15 30 45 60 75 90
-0.05

0.00

0.05

DEM/$

0 15 30 45 60 75 90
-0.05

0.00

0.05

0.10
S&P 500

Fig. 5.6. Autocorrelation functions of the S&P500 index (top), the DEM/US$
exchange rate (center), and the BUND future (bottom), over a time scale τ = 5
minutes. The horizontal scale is the time separation t−t′ in minutes. The horizontal
dotted lines are the 3σ confidence levels. From J.-P. Bouchaud and M. Potters:
Théorie des Risques Financiers, by courtesy of J.-P. Bouchaud. c©1997 Diffusion
Eyrolles (Aléa-Saclay)

In Fig. 5.6 for time lags above 30 minutes, the (null) hypothesis of statis-
tically independent price changes therefore cannot be rejected for the three
assets studied. The non-random deviations out of the 3σ corridor for smaller
time lags, on the other hand, indicate non-vanishing correlations in this range.
Consistent with this is the finding that no correlations significant on the 3σ
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level can be found for the same assets when the time scale for price changes
is increased to τ = 1 day [17].

More precise autocorrelation functions can be obtained from the DAX
high-frequency data [59, 60]. Figure 5.7 shows the autocorrelation function
C15′′(t − t′) of this sample together with 3σ error bars. Correlations are
positive with a short 53-second correlation time and negative (overshooting)
with a longer 9.4-minute correlation time. The remarkable feature of Fig. 5.7
is, however, the small weight of these correlations! The solid line represents
a fit of the data to a function

Cfit
15′′(t − t′) = 0.89δt,t′ + 0.12e−|t−t′|/53′′ − 0.01e−|t−t′|/9.4′

, (5.7)

implying that the data are uncorrelated to almost 90%, even at a 15-second
time scale. Bachelier’s postulate is satisfied remarkably well.

The delta-function contribution at zero time lag is also present, although
with a smaller prefactor, in a study based on 1-minute returns in the S&P500
index [62], although only positive correlations with a correlation time of
4 minutes and no overshooting to negative correlations at longer times
are found there. A strong zero-time-lag peak and overshooting to negative
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Fig. 5.7. Linear autocorrelation function C15′′(t − t′) for 15-second DAX returns
(dots) with 3σ error bars. The solid line is a fit to (5.7) and demonstrates that
the data are almost uncorrelated. From S. Dresel: Modellierung von Aktienmärkten
durch stochastische Prozesse, Diplomarbeit, Universität Bayreuth, 2001, by cour-
tesy of S. Dresel
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correlations at about 15 minutes are also visible in 1-minute data from the
Hong Kong Hang Seng stock index [63].

That subsequent price changes are essentially statistically independent is
not a new finding. It was established, based on time-series analysis, back in
1965 by Fama [64] (and before, perhaps, by others). In the next section, we
shall discuss another interesting aspect of Fama’s work.

Filters

Fama’s work was motivated by Mandelbrot’s objections (to be discussed be-
low in Sect. 5.3.3) to the standard geometrical Brownian motion model of
price changes of financial assets, Sect. 4.4.2. In the course of his criticism,
Mandelbrot also pointed to the “fallacies of filter trading” [33]. Filters were
invented by Alexander [65] and were trading rules purported to generate
above-average profits in stock market trading.

An x%-filter works like this: if the relative daily price change of an as-
set ∆S/S > x% after a local minimum, then buy the stock and hold until
∆S/S < −x% after a local maximum. At this point, sell the stock and si-
multaneously go short until ∆S/S > x% after another local minimum. Close
out the short position and go long at the same time, etc. If filters are suc-
cessful, more successful than, e.g., a näıve buy-and-hold strategy, there must
be non-trivial correlations in the stock market.

Fama conducted a systematic investigation of such filters on all Dow Jones
stocks from late 1957 to September 1962 [64]. Important results of his study
are summarized in Table 5.2. The comparison with simple buy-and-hold is
rather negative. Even ignoring transaction costs, only 7 out of the 30 Dow
Jones stocks generated higher profits by filter trading than by buy-and-hold.
Filter trading, however, involves frequent transactions, and when transaction
costs are included, buy-and-hold was the better strategy for all 30 stocks,
leading Fama to the conclusion: “From the trader’s point of view, the inde-
pendence assumption of the random-walk model is an adequate description
of reality” [64].

Notice that Fama’s investigation addresses correlations in the time series
of individual stocks, as well as the practical aspects. We now turn to the
statistics of price changes.

5.3.3 Statistics of Price Changes of Financial Assets

Early “tests” of the statistics of price changes did not reveal obvious contra-
dictions to a (geometrical) Brownian motion model. Bachelier himself had
conducted empirical tests of certain of his calculations, and of the underlying
theory of Brownian motion [6]. Within the uncertainties due to the finite
(small) sample size, there seemed to be at least consistency between the data
and his theory. The problem we remarked on in Sect. 3.2.3, that price changes
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Table 5.2. Comparison of profits of filter trading and buy-and-hold on the Dow
Jones stocks from late 1957 to September 1962. Transaction costs have been ignored
in the first column and have been included in the second column. From J. Business
38, 34 (1965) courtesy of E. F. Fama. c©The University of Chicago Press 1965

too often fell outside the bounds predicted by Bachelier, was not noticed in
his thesis.

A similar rough test is provided by the apparent similarity of the random-
walk simulations by Roberts [34] and the variations of the Dow Jones index.
One may remark that the actual financial data possess more big changes than
his simulation. However, this was not tested for in a systematic manner.

In summary, the model of geometric Brownian motion was pretty well
established in the finance community in the early 1960s. It therefore came as
a surprise when Mandelbrot postulated in 1963 that the stochastic process
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describing financial time series would deviate fundamentally and dramatically
from geometric Brownian motion [66].

Mandelbrot’s Criticism of Geometric Brownian Motion

Mandelbrot examined the prices of a commodity – cotton – on various ex-
changes in the United States [66]. He used various time series of daily and
mid-month closing prices. From them, he calculated the logarithmic price
changes, (5.1), for τ = 1d, 1m. Logarithmic price changes are postulated to
be normally distributed by the geometric Brownian-motion model, (4.65).
Mandelbrot’s results are shown in Fig. 5.8 in a log–log scale where δSτ is
denoted u. In such a scale, a log-normal distribution function would be rep-
resented by an inverted parabola

ln plog−nor(δSτ ) ∝ −
[
ln

S(t)
S(t − τ)

]2

= −[δSτ (t)]2 . (5.8)

The disagreement between the data and the prediction, (5.8), of the geometric
Brownian motion model is striking! The data rather behave approximately as

Fig. 5.8. Frequency of positive (lower left part, label 1) and negative (upper right
part, label 2) logarithmic price changes of cotton on various US exchanges. a, b, c
represent different time series. u in the legend is δSτ in the text. Notice the double-
logarithmic scale! The solid line is the cumulated density distribution function of a
stable Lévy distribution with an index µ ≈ 1.7. From J. Business 36, 394 (1963)
and Fractals and Scaling in Finance (Springer-Verlag, New York 1997) courtesy of
B. B. Mandelbrot. c©The University of Chicago Press 1963
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straight lines for large |δSτ |, i.e., are consistent with the asymptotic behavior
of a stable Lévy distribution (4.43). A value of µ ≈ 1.7 describes the data
rather well. Fama, later on, also studied price variations on stock markets,
and found evidence further supporting Mandelbrot’s claim for Lévy behavior
[64].

We shall discuss Lévy distributions is more detail in Sect. 5.4.3. Here,
it is sufficient to mention that Lévy distributions asymptotically decay with
power laws of their variables, (5.44), and are stable, i.e., form-invariant, under
addition if the index µ ≤ 2. The Gaussian distribution is a special case of
stable Lévy distributions with µ = 2 (cf. below).

It is obvious that, for price changes drawn from Lévy distributions, ex-
treme events are much more frequent than for a Gaussian, i.e., the distrib-
ution is “fat-tailed”, or “leptokurtic”. An immediate consequence of (5.44)
is that the variance of the distribution is infinite for µ < 2. Moreover, the
underlying stochastic process must be dramatically different from geometric
Brownian motion.

One may wonder if Mandelbrot’s observation only applies to cotton prices,
or perhaps commodities in general, or if stock quotes, exchange rates, or stock
indices possess similar price densities. And to what extent does it pass tests
with the very large data samples characteristic of trading in the computer
age? Commodity markets are much less liquid than stock or bond markets,
not to mention currency markets, and liquidity may be an important factor.

With the high-frequency data available today, one can easily reject a null
hypothesis of normally distributed returns just by visual inspection of the
return history. The normalized returns δs15′′(t), (5.2), of the DAX history
1999–2000 at 15-second tick frequency shown in Fig. 5.5 yields the return
history shown in Fig. 5.9 [59, 60]. Extreme events occur much too frequently!
Signals of the order 30σ . . . 60σ are rather frequent, and there are even signals
up to 160σ. Under the null hypothesis of normally distributed returns, the
probability of a 40-σ event is 1.5× 10−348 and that of a 160-σ event is 4.3×
10−5560. This conclusion, of course, is rather qualitative, and we now turn to
the study of the distribution functions of financial asset returns.

Supporting evidence specifically for stable Lévy behavior came from an
early study of the distribution of the daily changes of the MIB index at the Mi-
lan Stock Exchange [67]. The data deviate significantly from a Gaussian dis-
tribution. In particular, in the tails, corresponding to large variations, there
is an order of magnitude disagreement with the predictions from geometric
Brownian motion. In line with Mandelbrot’s conjecture, they are rather well
described by a stable Lévy distribution. The tail exponent µ = 1.16, however,
is rather lower than the values found by Mandelbrot.

While this work represents the first determination of the scaling behavior
of a stock market index published in a physics journal, ample evidence in favor
of stable Lévy scaling behavior had been gathered before in the economics
literature. Fama performed an extensive study of the statistical properties
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Fig. 5.9. Return history of the DAX German blue chip index during 1999 and 2000,
normalized to the sample standard deviation. Data are taken on a 15-second time
scale. Notice the event at 160σ and numerous events in the range 30σ . . . 60σ. From
S. Dresel: Modellierung von Aktienmärkten durch stochastische Prozesse, Diplomar-
beit, Universität Bayreuth, 2001, by courtesy of S. Dresel

of US companies listed in the Dow Jones Industrial Average in the 1960s
[64]. As suggested in the preceding section, he found that the assumption
of statistical independence of subsequent price changes was satisfied to a
good approximation. Concerning the statistics of price changes, he found
that “Mandelbrot’s hypothesis does seem to be supported by the data. This
conclusion was reached only after extensive testing had been carried out”
[64]. Stable Lévy scaling was also found by economists in other studies of
stock returns, foreign exchange markets, and futures markets [68].

Mantegna and Stanley performed a systematic investigation of the scal-
ing behavior of the American S&P500 index [69]. Index changes Z ≡ δSτ (t)
have been determined over different time scales τ (denoted ∆t in the figures)
ranging from 1 to 1000 minutes (≈ 16 hours). If these data are drawn from
a stable Lévy distribution, they should show a characteristic scaling behav-
ior, i.e., one must be able, by a suitable change of scale, to collapse them
onto a single master curve. Rescale the variable and probability distribution
according to

Zs =
Z

τ1/µ
and Lµ(Zs, 1) =

Lµ(Z, τ)
τ−1/µ

. (5.9)
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Here, Lµ(Z, τ) denotes the probability distribution function of the variable
Z at time scale τ , and the notation Lµ is chosen to make it consistent with
the one used in Sect. 5.4.3. The data indeed approximately collapse onto a
single distribution with an index µ = 1.4. This is shown in the top panel
of Fig. 5.10. Notice that the index of the distribution and the one used for
rescaling must be the same, putting stringent limits on the procedure. Scaling,
the collapse of all curves onto a single master curve, strongly suggests that
the same mechanisms operate at all time scales, and that there is a single
universal distribution function characterizing it.

The bottom panel compares the data for τ = 1 minute with both the
Gaussian and the stable Lévy distributions. It is clear that the Gaussian pro-
vides a bad description of the data. The Lévy distribution is much better,
especially in the central parts of the distribution. For very large index fluc-
tuations Z ≥ 8σ, the Lévy distribution seems to somewhat overestimate the
frequency of such extremal events.

Comparable results have been produced for other markets. For the Norwe-
gian stock market, for example, R/S analysis gives an estimate of the Hurst
exponent H ≈ 0.614 [46]. The tail index µ of a Lévy distribution is related to
H by µ = 1/H ≈ 1.63, in rather good agreement with the S&P500 analysis
above. The tail index can also be estimated independently, giving similar val-
ues. Using these values, the probability distributions p(δSτ ) for different time
scales τ can be collapsed onto a single master curve, as for the S&P500 in
Fig. 5.10. Although the data extend out to 15 standard deviations, the trun-
cation for extreme returns is much less pronounced than for the US stock
market [46].

Closely related to the stable Lévy distributions are hyperbolic distribu-
tions. They also produce very good fits of stock market data [70].

Some kind of truncation is apparently present in the data of Fig. 5.10,
and a “truncated Lévy distribution” (to be discussed below) has been in-
vented for the purpose of describing them [71]. Figure 5.11, which displays
the probability that a price change δS15min > δx

P>(δx) =
∫ ∞

δx

d (δS15min) p (δS15min) (5.10)

rather than the probability density function itself, shows that this distribution
indeed fits very well the observed variations of the S&P500 index on a 15-
minute scale [17]. Similarly good fits are obtained for different time scales,
and for different assets, e.g., the BUND future or the DEM/$ exchange rate
[17].

Practical Consequences, Interpretation

From the preceding section, it is clear that a Gaussian distribution does not fit
the probability distribution of financial time series. Although Mandelbrot’s
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Fig. 5.10. Probability distribution of changes of the S&P500 index. Top panel :
changes of the S&P500 index rescaled as explained in the text. If the data are
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stable Lévy paradigm may not be the last word and although the actual
data may decay more quickly than a stable Lévy distribution for very large
values of the variables, one certainly should take it seriously (i) as a first
approximation for fat-tailed distributions, (ii) as an extreme limit, and (iii)
as a worst-case scenario. Here, we summarize important findings, interpret
them, and point to some consequences.

1. All empirical data have fat-tailed (leptokurtic) probability distributions.
2. To the extent that they are described by a stable Lévy distribution with

index 1 ≤ µ ≤ 2, the variance of an infinite data sample will be infinite.
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For finite data samples, the variance of course is finite, but it will not
converge smoothly to a limit when the sample size is increased.

3. Quantities derived from the probability distribution, such as the mean,
variance, or other moments, will be extremely sample-dependent.

4. Statistical methods based on Gaussian distributions will become ques-
tionable.

5. What is wrong the central limit theorem? It apparently predicts a con-
vergence to a Gaussian, which does not take place here.

6. Apparently, special time scales are eliminated by arbitrage.
7. The actual stock price is much less continuous than a random walk.
8. In a Gaussian market, big price changes are very likely the consequence of

many small changes. In real markets, they are very likely the consequence
of very few big price changes.

9. The trading activity is very non-stationary. There are quiescent periods
changing with hectic activity, and sometimes trading is stopped alto-
gether.

10. According to economic wisdom, stock prices reflect both the present sit-
uation as well as future expectations. While the actual situation most
likely evolves continuously, future expectations may suffer discontinuous
changes because they depend on factors such as information flow and
human psychology.

11. One consequence, namely that filters cannot work, has been discussed
in Sect. 5.3.2. A necessary condition is that the stock price follows a
continuous stochastic process. On the contrary, the processes giving rise
to Lévy distributions must be rather discontinuous.

12. The assumption of a complete market is not always realistic. With dis-
continuous price changes, there will be no buyer or no seller at certain
prices.

13. Stop-loss orders are not suitable as a protection against big losses. They
require a continuous stochastic process to be efficient. Despite this, stop-
loss orders may be useful, even necessary, in practice. The point here is
that, given the discontinuities in financial time series, the actual price
realized in a transaction triggered by a stop loss (or stop buy) order may
be quite far from the one targeted when giving the order. Is there an
alternative to stop-loss and stop-buy orders in a Lévy-type market?

14. The risk associated with an investment is strongly underestimated by
Gaussian distributions or geometric Brownian motion.

15. The standard arguments for risk control by diversification (cf. below)
may no longer work (cf. Sect. 10.5.5).

16. The Black–Scholes analysis of option pricing becomes problematic. Geo-
metric Brownian motion is a necessary condition. Risk-free portfolios can
no longer be constructed in theory – not to mention the problems encoun-
tered in Black and Scholes’ continuous adjustment of positions when the
stochastic process followed by the underlying security is discontinuous.
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Fig. 5.12. Variation of the DAX German blue chip index during September 11,
2001. Notice the alternation of discontinuous with more continuous index changes.
On September 11, 2001, terrorists flew two planes into the World Trade Center in
New York

We illustrate these points in the following two figures. Figure 5.12 shows
the DAX history (15-second frequency) for the most disastrous day for capital
markets during the recent years, September 11, 2001. The first terrorist plane
hit the north tower of the World Trade Center in New York at about 14:30 h
local time in Germany. The south tower was hit about half an hour later. The
reaction of the markets was dramatic. There is a series of crashes followed by
strong rebounds, alternating with periods of more continuous price histories.
The two biggest losses, 2% and 8% over just a few minutes time scale, clearly
stand out. Figure 5.13 shows two hours of DAX history on September 30,
2002. We also see a discontinuous price variation around 16:00 h amidst
more continuous changes of the index before and after that time. However,
unlike September 11, 2001, no particular catastrophes happened that day –
not even exceptionally bad economic news was diffused. Still, the DAX lost
about 1% in a 15-second interval, and 3% over a couple of minutes.

5.4 Pareto Laws and Lévy Flights

We now want to discuss various distribution functions which may be appro-
priate for the description of the statistical properties of economic time series.
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Fig. 5.13. Variation of the DAX German blue chip index during two hours of
September 30, 2002. Unlike September 11, 2001, on September 30, 2002, no partic-
ular events were reported. Still, a 3% loss over a time scale of about one minute is
reported around 16:00 h local time in Germany

Many key words have been mentioned already in the previous section, and
are given a precise meaning here.

5.4.1 Definitions

Let p(x) be a normalized probability distribution, resp. density,∫ ∞

−∞
dx p(x) = 1 . (5.11)

Then we have the following definitions:

expectation value E(x) ≡ 〈x〉 =
∫ ∞

−∞
dx x p(x) , (5.12)

mean absolute deviation Eabs(x) =
∫ ∞

−∞
dx |x − 〈x〉| p(x) , (5.13)

variance σ2 =
∫ ∞

−∞
dx(x − 〈x〉)2p(x) , (5.14)

nth moment mn =
∫ ∞

−∞
dx xnp(x) , (5.15)
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characteristic function p̂(z) =
∫ ∞

−∞
dx eizxp(x) , (5.16)

nth cumulant cn = (−i)n dn

dzn
ln p̂(z)

∣∣∣∣
z=0

, (5.17)

kurtosis κ =
c4

σ4
=

〈(x − 〈x〉)4〉
σ4

− 3 . (5.18)

Being related to the fourth moment, the kurtosis is a measure of the fatness
of the tails of the distribution. As we shall see, for a Gaussian distribution,
κ = 0. Distributions with κ > 0 are called leptokurtic and have tails fatter
than a Gaussian. Notice that

σ2 = m2 − m2
1 = c2 (5.19)

and

mn = (−i)n dn

dzn
p̂(z)

∣∣∣∣
z=0

. (5.20)

What is the distribution function obtained by adding two independent
random variables x = x1 + x2 with distributions p1(x1) and p2(x2) (notice
that p1 and p2 may be different)? The joint probability of two independent
variables is obtained by multiplying the individual probabilities, and we ob-
tain

p(x, 2) =
∫ ∞

−∞
dx1 p1(x1)p2(x − x1) , i.e., p̂(z, 2) = p̂1(z)p̂2(z) . (5.21)

The probability distribution p(x, 2) (where the second argument indicates
that x is the sum of two independent random variables) is a convolution
of the probability distributions, while the characteristic function p̂(z, 2) is
simply the product of the characteristic functions of the two variables.

This can be generalized immediately to a sum of N independent random
variables, x =

∑N
i=1 xi. The probability density is an N -fold convolution

p(x,N) =
∫ ∞

−∞
dx1 . . . dxN−1 p1(x1) . . . pN−1(xN−1) pN

(
x −

N−1∑
i=1

xi

)
.

(5.22)
The characteristic function is an N -fold product,

p̂(z,N) =
N∏

i=1

p̂i(z) , ln p̂(z,N) =
N∑

i=1

ln p̂i(z) , (5.23)

and the cumulants are therefore additive,

cn(N) =
N∑

i=1

c(i)
n . (5.24)
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For independent, identically distributed (IID) variables, these relations sim-
plify to

p̂(z,N) = [p̂(z)]N , cn(N) = Ncn . (5.25)

In general, the probability density for a sum of N IID random variables,
p(x,N), can be very different from the density of a single variable, pi(xi). A
probability distribution is called stable if

p(x,N)dx = pi(xi)dxi with x = aNxi + bN , (5.26)

that is, if it is form-invariant up to a rescaling of the variable by a dilation
(aN 
= 1) and a translation bN 
= 0. There is only a small number of stable
distributions, among them the Gaussian and the stable Lévy distributions.
More precisely, we have a

stable distribution ⇔ p̂(z) = exp (−a|z|µ) , 0 < µ ≤ 2 . (5.27)

[This statement is slightly oversimplified in that it only covers distribu-
tions symmetric around zero. The exact expression is given in (5.41)]. The
Gaussian distribution corresponds to µ = 2, and the stable Lévy distributions
to µ < 2.

5.4.2 The Gaussian Distribution and the Central Limit Theorem

The Gaussian distribution with variance σ2 and mean m1,

pG(x) =
1√
2πσ

exp
(
− (x − m1)2

2σ2

)
, (5.28)

has the characteristic function

p̂G(z) = exp
(
−σ2z2

2
+ im1z

)
, (5.29)

that is, a Gaussian again. It satisfies (5.27) and is therefore a stable dis-
tribution, as can be checked explicitly by using the convolution or product
formulae (5.22) resp. (5.23). Under addition of N random variables drawn
from Gaussians,

m =
N∑

i=1

m1,(i) , and σ2 =
N∑

i=1

σ2
i . (5.30)

ln p̂G(z) is a second-order polynomial in z which implies

cn = 0 for n > 2 , specifically κ = 0 . (5.31)

Any cumulant beyond the second can therefore be taken as a rough measure
for the deviation of a distribution from a Gaussian, in particular in the tails.
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Among them, the kurtosis κ is most practical because (i) in general, it is
finite even for symmetric distributions and (ii) it gives less weight to the
tails of the distribution, where the statistics may be bad, than even higher
cumulants would. Distributions with κ > 0 are called leptokurtic.

Gaussian distributions are ubiquitous in nature, and arise in diffusion
problems, the tossing of a coin, and many more situations. However, there
are exceptions: turbulence, earthquakes, the rhythm of the heart, drops from
a leaking faucet, and also the statistical properties of financial time series,
are not described by Gaussian distributions.

Central Limit Theorem

The ubiquity of the Gaussian distribution in nature is linked to the central
limit theorem, and to the maximization of entropy in thermal equilibrium.
At the same time, it is a consequence of fundamental principles both in
mathematics and in physics (statistical mechanics).

Roughly speaking, the central limit theorem states that any random phe-
nomenon, being a consequence of a large number of small, independent causes,
is described by a Gaussian distribution. At the same handwaving level, we can
see the emergence of a Gaussian by assuming N IID variables (for simplicity –
the assumption can be relaxed somewhat)

p(x,N) = [p(x)]N = exp[N ln p(x)] . (5.32)

Any normalizable distribution p(x) being peaked at some x0, p(x,N) will
have a very sharp peak at x0 for large N . We can then expand p(x,N) to
second order about x0,

p(x,N) ≈ exp
(
− (x − Nx0)2

2σ2

)
for N � 1 , (5.33)

and obtain a Gaussian. Its variance will scale with N as σ2 ∝ N .
More precisely, the central limit theorem states that, for N IID variables

with mean m1 and finite variance σ, and two finite numbers u1, u2,

lim
N→∞

P

(
u1 ≤ x − m1N

σ
√

N
≤ u2

)
=
∫ u2

u1

du√
2π

exp
(
−u2

2

)
. (5.34)

Notice that the theorem only makes a statement on the limit N → ∞, and
not on the finite-N case. For finite N , the Gaussian obtains only in the center
of the distribution |x−m1N | ≤ σ

√
N , but the form of the tails may deviate

strongly from the tails of a Gaussian. The weight of the tails, however, is
progressively reduced as more and more random variables are added up, and
the Gaussian then emerges in the limit N → ∞. The Gaussian distribution is
a fixed point, or an attractor, for sums of random variables with distributions
of finite variance.
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The condition N → ∞, of course, is satisfied in many physical applica-
tions. It may not be satisfied, however, in financial markets. Moreover, the
central limit theorem requires σ2 to be finite. This, again, may pose problems
for financial time series, as we have seen in Sect. 5.3.3. While, in mathemat-
ics, σ2 finite is just a formal requirement, there is a deep physical reason for
finite variance in nature.

Gaussian Distribution and Entropy

Thermodynamics and statistical mechanics tell us that a closed system ap-
proaches a state of maximal entropy. For a state characterized by a probability
distribution p(x) of some variable x, the probability W of this state will be

W [p(x)] ∝ exp
(

S[p(x)]
kB

)
(5.35)

with kB Boltzmann’s constant, and the entropy

S[p(x)] = −kB

∫ ∞

−∞
dx p(x) ln[σp(x)] . (5.36)

Here, σ is a positive constant with the same dimension as x, i.e., a charac-
teristic length scale in the problem.

Our aim now is to maximize the entropy subject to two constraints∫ ∞

−∞
dx p(x) = 1 ,

∫ ∞

−∞
dx x2p(x) = σ2 . (5.37)

This can be done by functional derivation and the method of Lagrange mul-
tipliers

δ

δp(x)

{
S[p(x)] − µ1

∫ ∞

−∞
dx′x′2p(x′) − µ2

∫ ∞

−∞
dx′p(x′)

}
= 0 . (5.38)

This is solved by

p(x) =
e−x2/2σ2

Z
with Z =

∫ ∞

−∞
dx e−x2/2σ2

=
√

2πσ2 . (5.39)

The identification with temperature

2σ2 = kBT (5.40)

is then found by bringing two systems, either with σ = σ′ or σ 
= σ′, into
contact and into thermal equilibrium. One will see that σ2 behaves exactly
as we expect from temperature, allowing the identification.
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5.4.3 Lévy Distributions

There is a variety of terms related to Lévy distributions. Lévy distributions
designate a family of probability distributions studied by P. Lévy [32]. The
term Pareto laws, or Pareto tails, is often used synonymously with Lévy
distributions. In fact, one of the first occurrences of power-law distributions
such as (5.44) is in the work of the Italian economist Vilfredo Pareto [72].
He found that, in certain societies, the number of individuals with an income
larger than some value x0 scaled as x−µ

0 , consistent with (5.44). Finally, Lévy
walk, or better Lévy flight, refers to the stochastic processes giving rise to
Lévy distributions.

A stable Lévy distribution is defined by its characteristic function

L̂a,β,m,µ(z) = exp
{
−a|z|µ

[
1 + iβsign(t) tan

(πµ

2

)]
+ imz

}
. (5.41)

β is a skewness parameter which characterizes the asymmetry of the distrib-
ution. β = 0 gives a symmetric distribution. µ is the index of the distribution
which gives the exponent of the asymptotic power-law tail in (5.44). a is a
scale factor characterizing the width of the distribution, and m gives the peak
position. For µ = 1, the tan function is replaced by (2/π) ln |z|.

For our purposes, symmetric distributions (β = 0) are sufficient. We fur-
ther assume a maximum at x = 0, leading to m = 0, and drop the scale
factor a from the list of indices. The characteristic function then becomes

L̂µ(z) = exp (−a|z|µ) . (5.42)

In general, there is no analytic representation of the distributions Lµ(x). The
special case µ = 2 gives the Gaussian distribution and has been discussed
above. µ = 1 produces

L1(x) =
1
π

a

a2 + x2
, (5.43)

the Lorentz–Cauchy distribution. Asymptotically, the Lévy distributions be-
have as (µ 
= 2)

Lµ(x) ∼ µAµ

|x|1+µ
, |x| → ∞ (5.44)

with Aµ ∝ a. These power-law tails have been shown in Figs. 5.8 and 5.10.
For µ < 2, the variance is infinite but the mean absolute value is finite so

long as µ > 1

var(x) → ∞ , Eabs(x) < ∞ for 1 < µ < 2 . (5.45)

All higher moments, including the kurtosis, diverge for stable Lévy distribu-
tions.

What happens when we use an index µ > 2 in (5.41)? Do we generate a
distribution which would decay with higher power laws and possess a finite
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second moment? The answer is no. Fourier transforming (5.41) with µ > 2,
we find a function which is no longer positive semidefinite and which therefore
is not suitable as a probability density function of random variables [17, 59].

Lévy distributions with µ ≤ 2 are stable. The distribution governing the
sum of N IID variables x =

∑N
i=1 xi has the characteristic function [cf. (5.25)]

L̂µ(z,N) =
[
L̂µ(z)

]N

= [exp (−a|z|µ)]N = exp (−aN |z|µ) , (5.46)

and the probability distribution is its Fourier transform

Lµ(x,N) =
∫ ∞

−∞
dz e−izxe−aN |z|µ . (5.47)

Now rescale the variables as

z′ = zN1/µ , x′ = xN−1/µ (5.48)

and insert into (5.47):

Lµ(x,N) = N−1/µ

∫ ∞

−∞
dz′ e−iz′x′

e−a|z′|µ = N−1/µLµ(x′) , (5.49)

that is, the distribution of the sum of N random variables has the same
form as the distribution of one variable, up to rescaling. In other words, the
distribution is self-similar. The property (5.49) is at the origin of the rescaling
(5.9) used by Mantegna and Stanley in Fig. 5.10. The amplitudes of the tails
of the distribution add when variables are added:

(Aµ)(N) = NAµ . (5.50)

This relation replaces the additivity of the variances in the Gaussian case. If
the Lévy distributions have finite averages, they are additive, too:

〈x〉 =
N∑

i=1

〈xi〉 . (5.51)

There is a generalized central limit theorem for Lévy distributions, due
to Gnedenko and Kolmogorov [73]. Roughly, it states that, if many inde-
pendent random variables are added whose probability distributions have
power-law tails pi(xi) ∼ |xi|−(1+µ), with an index 0 < µ < 2, their sum will
be distributed according to a stable Lévy distribution Lµ(x). More details
and more precise formulations are available in the literature [73]. The stable
Lévy distributions Lµ(x) are fixed points for the addition of random variables
with infinite variance, or attractors, in much the same way as the Gaussian
distribution is, for the addition of random variables of finite variance.

Earlier, it was mentioned that the stochastic process underlying a Lévy
distribution is much more discontinuous than Brownian motion. This is shown
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Fig. 5.14. Lévy flight obtained by summing random numbers drawn from a Lévy
distribution with µ = 3/2 (upper panel). The lower panel is a 10-fold zoom on the
range (350, 400) and emphasizes the self-similarity of the flight. Notice the frequent
discontinuities on all scales

in Fig. 5.14, which has been generated by adding random numbers drawn from
a Lévy distribution with µ = 3/2. When compared to a random walk such
as Fig. 1.3 or 3.7, the frequent and sizable discontinuities are particularly
striking. They directly reflect the fat tails and the infinite variance of the
Lévy distribution. When compared to stock quotes such as Fig. 1.1 or 4.5,
they may appear a bit extreme, but they certainly are closer to financial
reality than Brownian motion.
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5.4.4 Non-stable Distributions with Power Laws

Figures 5.10 and 5.11 suggested that the extreme tails of the distributions of
asset returns in financial markets decay faster than a stable Lévy distribution
would suggest. Here, we discuss two classes of distributions which possess this
property: the truncated Lévy distribution where a stable Lévy distribution
is modified beyond a fixed cutoff scale, and the Student-t distributions which
are examples of probability density functions whose tails decay as power laws
with exponents which may lie outside the stable Lévy range µ < 2.

Truncated Lévy Distributions

The idea of truncating Lévy distributions at some typical scale 1/α was
mainly born in the analysis of financial data [71]. While large fluctuations
are much more frequent in financial time series than those allowed by the
Gaussian distribution, they are apparently overestimated by the stable Lévy
distributions. Evidence for this phenomenon is provided by the S&P500 data
in Fig. 5.10 where, especially in the bottom panel, a clear departure from
Lévy behavior is visible at a specific scale, 7 . . . 8σ, and by the very good fit
of the S&P500 variations to a truncated Lévy distribution in Fig. 5.11 (the
size of α ∼ 1/2 is difficult to interpret, however, due to the lack of units in
that figure [17]).

A truncated Lévy distribution can be defined by its characteristic function
[71, 74]

T̂µ(z) = exp

⎧⎨
⎩−a

(
α2 + z2

)µ/2 cos
(
µ arctan |z|

α

)
− αµ

cos
(

πµ
2

)
⎫⎬
⎭ . (5.52)

This distribution reduces to a Lévy distribution for α → 0 and to a Gaussian
for µ = 2,

T̂µ(z) →
{

exp (−a|z|µ) for α → 0 ,
exp

(−a|z|2) for µ = 2 .
(5.53)

Its second cumulant, the variance, is [cf. (5.17)]

c2 = σ2 =
µ(µ − 1)a
| cos(πµ/2)

αµ−2 →
{∞ for α → 0

2a for µ = 2 .
(5.54)

The kurtosis is [cf. (5.18)]

κ =
(3 − µ)(2 − µ)| cos(πµ/2)|

µ(µ − 1)aαµ
→
{

0 for µ = 2 ,
∞ for α → 0 .

(5.55)

For finite α, the variance and all moments are finite, and therefore the cen-
tral limit theorem guarantees that the truncated Lévy distribution converges
towards a Gaussian under addition of many random variables.
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The convergence towards a Gaussian can also be studied from the char-
acteristic function (5.52). One can expand its logarithm to second order
in z,

ln T̂µ(z) ∼ −a

2
αµ

cos(πµ/2)
(µ − µ2)

z2

α2
+ . . . . (5.56)

Fourier transformation implies that the Gaussian behavior of the charac-
teristic function for small z translates into Gaussian large-|x| tails in the
probability distribution. On the other hand,

ln T̂µ(z) ∼ −a|z|µ for|z| → ∞ , (5.57)

which implies Lévy behavior for small |x|. One would therefore conclude that
the convergence towards a Gaussian, for the distribution of a sum of many
variables, should predominantly take place from the tails. Also, depending
on the cutoff variable and due to the stability of the Lévy distributions, the
convergence can be extremely slow. As shown in Fig. 5.11, such a distribution
describes financial data extremely well.

Notice that one could also use a hard-cutoff truncation scheme, such as
[71, 74]

Tµ(x) = Lµ(x)Θ(α−1 − |x|) . (5.58)

While it has the advantage of being defined directly in variable space and
avoiding complicated Fourier transforms, the hard cutoff produces smooth
distributions only after the addition of many random variables.

Student-t Distribution

A (symmetric) Student-t distribution is defined in variable space by

Stµ(x) =
Γ [(1 + µ)/2]√

πΓ (µ/2)
Aµ

(A2 + x2)(1+µ)/2
. (5.59)

A is a scale parameter, Γ (x) is the Gamma function, and the definition of
the index µ is consistent with Sect. 5.4.3. A priori, there is no restriction on
the value of µ > 0. For large arguments, the distribution decays with a power
law

Stµ(x) ∼ Aµ

|x|1+µ
for |x| � A , (5.60)

that is, formally in the same way as would do a Lévy distribution. Its char-
acteristic function is

Ŝtµ(z) =
21−µ/2

Γ (µ/2)
(Az)µ/2

Kµ/2(Az) , (5.61)

≈
√

π

Γ (µ/2)

(
Az

2

)(µ−1)/2

e−Az for z → ∞ , (5.62)

≈ 1 +
1

1 − µ
2

(
Az

2

)2

− Γ (1 + µ
2 )

Γ (1 − µ
2 )

(
Az

2

)µ

for z → 0 . (5.63)
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Interestingly, for µ > 2, the dominant term in the expansion of the charac-
teristic function for small z is identical in form to that of a similar expansion
of a Gaussian distribution while, for µ < 2, it is identical in form to that of
a small-z expansion of a stable Lévy distribution. When µ < 2, the distribu-
tion of a sum of many Student-t distributed random variables with index µ
will converge to a stable Lévy distribution with the same index, according to
the generalized central limit theorem. For example, for µ = 1, the Student-t
distribution reduces to the Lorentz–Cauchy distribution

St1(x) = L1(x) =
1
π

A

A2 + x2
, (5.64)

which also is a stable Lévy distribution. For µ > 2 the central limit theorem
requires the distribution of a sum of many Student-t distributed random
variables to converge to a Gaussian distribution.

The Student-t distribution is named after the pseudonym “Student” of
the English statistician W. S. Gosset and arises naturally when dividing a
normally distributed random variable by a χ2-distributed random variable
[44].

5.5 Scaling, Lévy Distributions,
and Lévy Flights in Nature

Although the näıve interpretation of the central limit theorem seems to sug-
gest that the Gaussian distribution is the universal attractor for distributions
of random processes in nature, distributions with power-law tails arise in
many circumstances. It is much harder, however, to find situations where the
actual diffusion process is non-Brownian, and close to a Lévy flight [75]–[77].

5.5.1 Criticality and Self-Organized Criticality,
Diffusion and Superdiffusion

The asymptotic behavior of a Lévy distribution is, (5.44),

p(x) ∼ |x|−(1+µ) . (5.65)

The classical example for the occurrence of such distributions is provided by
the critical point of second-order phase transitions [78], such as the transition
from a paramagnet to a ferromagnet, as the temperature of, say, iron is
lowered through the Curie temperature Tc. At a critical point, there are
power-law singularities in almost all physical quantities, e.g., the specific heat,
the susceptibility, etc. The reason for these power-law singularities are critical
fluctuations of the ordered phase (ferromagnetic in the above example) in
the disordered (paramagnetic) phase above the transition temperature, resp.
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vice versa below the critical temperature, as a consequence of the interplay
between entropy and interactions. In general, for T 
= Tc, there is a typical size
ξ (the correlation length) of the ordered domains. At the critical point T = Tc,
however, ξ → ∞, and there is no longer a typical length scale. This means that
ordered domains occur on all length scales, and are distributed according to a
power-law distribution (5.65). The same holds for the distribution of cluster
sizes in percolation. The divergence of the correlation length is the origin of
the critical singularities in the physical quantities.

Critical points need fine tuning. One must be extremely close to the criti-
cal point in order to observe the power-law behavior discussed, which usually
requires an enormous experimental effort in the laboratory for an accurate
control of temperature, pressure, etc. Such fine tuning by a gifted experimen-
talist is certainly not done in nature. Still, there are many situations where
power-law distributions are observed. Examples are given by earthquakes
where the frequency of earthquakes of a certain magnitude on the Richter
scale, i.e., a certain release of energy, varies as N(E) ∼ E−1.5, avalanches,
traffic jams, and many more [79].

To explain this phenomenon, a theory of self-organized criticality has been
developed [79]. The idea is that open, driven, dissipative systems (notice that
physical systems at the critical point are usually in equilibrium!) may spon-
taneously approach a critical state. An example was thought to be provided
by sandpiles. Imagine pouring sand on some surface. A sandpile will build
up with its slope becoming steeper and steeper as sand is added. At some
stage, one will reach a critical angle where the friction provided by the grains
surrounding a given grain is just sufficient to compensate gravity. As sand is
added to the top of a pile, the critical slope will be exceeded at some places,
and some grains will start sliding down the side of the pile. As a consequence,
at some lower position, the critical slope will be exceeded, and more grains
will slide. An avalanche forms. It was conjectured, and supported by nu-
merical simulations [79], that the avalanches formed in this way will possess
power-law distributions. (Unfortunately, it appears that real sandpiles have
different properties.)

Both with critical phenomena, and with self-organized criticality, one
looks at statistical properties of a system. Can one observe true “anomalous”
distributions, corresponding to Lévy flights, in nature? Diffusion processes
can be classified according to the long-time limit of the variance

lim
t→∞

σ2(t)
t

=

⎧⎨
⎩

0 : subdiffusive
D : diffusive
∞ : superdiffusive .

(5.66)

A numerical simulation of superdiffusion, modeled as a Lévy flight in two
dimensions with µ = 3/2, is shown in Fig. 5.15. For comparison, Brownian
motion was shown in Fig. 3.8. One again notices the long straight lines, corre-
sponding more to flights of the particle than to the short-distance hops associ-
ated with diffusion. This is a pictorial representation of superdiffusive motion.
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Fig. 5.15. Computer simulation of a two-dimensional Lévy flight with µ = 3/2.
Reprinted from J. Klafter, G. Zumofen, and M. F. Shlesinger: in Lévy Flights and
Related Topics, ed. by M. F. Shlesinger et al. (Springer-Verlag, Berlin 1995) c©1995
Springer-Verlag

Of course, this is in direct correspondence with the continuity/discontinuity
observed in the 1D versions, cf. Figs. 1.3 and 5.14.

5.5.2 Micelles

Micelles are long, wormlike molecules in a liquid environment. Unlike poly-
mers, they break up at random positions along the chains at random times,
and recombine later with the same or a different strand. The distribution of
chain lengths � is

pmic(�) ≈ exp(−�/�0) . (5.67)

Any fixed-length chain performs ordinary Brownian diffusion with a diffusion
coefficient which depends on its length as

D(�) = D0�
−2β . (5.68)

In order to observe a Lévy flight, one can attach fluorescent tracer mole-
cules to such micelles [80]. Due to break-up and recombination, any given
tracer molecule will sometimes be attached to a short chain, and sometimes
to a long chain. When the chain is short, which according to (5.67) happens
frequently, it will diffuse rapidly, cf. (5.68). On long chains, it will diffuse
slowly.

Using photobleaching techniques, one can observe the apparent diffusion
of the tracer molecules and evaluate its statistical properties [80]. One in-
deed finds the superdiffusive behavior associated with Lévy flights, namely a
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characteristic function

ptrac(q, t) = exp (−D|q|µt) , µ = 2/β ≤ 2 , (5.69)

where the precise value of µ depends somewhat on experimental conditions.
Notice, however, that the true physical diffusion process underlying this

example is still Brownian (diffusion of the micelles). It is the length depen-
dence of the diffusion constant [again typical of Brownian diffusion, remember
Einstein’s formula (3.25)] which conveys an apparent superdiffusive character
to the motion of the tracer particles when their support is ignored.

5.5.3 Fluid Dynamics

The transport of tracer particles in fluid flows is usually governed both by
advection and “normal” diffusion processes. Normal diffusion arises from the
disordered motion of the tracer particles, hit by particles from the fluid, cf.
Sect. 3.3. Advection of the tracer particles by the flow, i.e., tracer parti-
cles being swept along by the flow, leads to enhanced diffusion, but not to
superdiffusion. It can be described as an ordinary random walk, but with
diffusion rates enhanced over those typical for “normal” diffusion. For long
times, therefore, the transport in real fluid flows is normally diffusive.

The short-time limit may be different in some situations. If there are
vortices in the system, the tracer particles may stick to the vortices and
their transport may become subdiffusive. On the other hand, in flows with
coherent jets, the tracer particles may move ballistically for long distances.
This process may eventually lead to superdiffusion, and to Lévy flights.

One can now set up an experiment where the flow pattern is composed
both of coherent jets and vortices, i.e., sticking and ballistic flights of the
tracer particles. The experimental setup is shown in Fig. 5.16 [81, 82]. A 38
weight% mixture of water and glycerol (viscosity 0.03 cm2/s) is contained in
an annular tank rotating with a frequency of 1.5 s−1. In addition, fluid is
pumped into the tank through a ring of holes (labeled I in Fig. 5.16) and
out of the tank through another ring of holes (O). The radial flow couples
to the Coriolis force to produce a strong azimuthal jet, in the direction op-
posite to the rotation of the tank. Above the forcing rings, there are strong
velocity gradients, and the shear layer becomes unstable. As a result, a chain
of vortices forms above the outer ring of holes (a similar vortex chain above
the inner ring is inhibited artificially). In a reference frame rotating with the
vortices, they appear sandwiched between two azimuthal jets going in oppo-
site directions. Such pattern of jets and vortices is shown in the lower panel
of Fig. 5.16. Depending on perturbations generated by deliberate axial inho-
mogeneities of the pattern of the radial flow, different regimes of azimuthal
flow can be realized [81].

When a 60 degrees sector has a radial flow less than half of that of the
flow between the remaining source and sink holes, a “time-periodic” regime
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Fig. 5.16. Setup of an experiment with coexisting jets and vortices. Upper panel :
the rotating annulus. I and O label two rings of holes for pumping and extracting
fluid in the sense of the arrows. As explained in the text, under such conditions
both jets and vortices form in the tank. Lower panel : streaks formed by 90-second-
long trajectories of about 30 tracer particles reveal the presence of six vortices
sandwiched between two azimuthal jets. The picture has been taken in a reference
frame corotating with the vortex chain. By courtesy of H. Swinney. Reprinted with
permission from Elsevier Science from T. H. Solomon et al.: Physica D 76, 70
(1994). c©1994 Elsevier Science
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is established. One can then map out the trajectories of passive tracer parti-
cles. The motion of these particles, and of the supporting liquid, has periods
of flight, where the particles are simply swept along ballistically by the az-
imuthal jets, of capture and release by the vortices, and diffusion. These
processes can be analyzed separately, and probability density functions for
various processes can be derived. They generally scale as power laws of their
variables. For example, the probability density function of times where the
tracer particles stick to vortices behaves as

Ps(t) ∼ t−(1+µs) , µs ∼ 0.6 ± 0.3 . (5.70)

The probability density distribution of the flight times behaves as

Pf (t) ∼ t−(1+µf ) , µf ∼ 1.3 ± 0.2 , (5.71)

that is, it carries a different exponent. Figure 5.17 shows the results of such
an experiment leading to these power laws. Yet another exponent is measured
by the distribution of the flight lengths �

Fig. 5.17. Probability distributions of the sticking times (a) and flight times (b)
for tracer particles moving in a flow pattern composed of two azimuthal jets and
vortices. The straight lines have slopes −1.6 ± 0.3 and −2.3 ± 0.2, respectively
(cf. text). The tracer particles execute Lévy flights. By courtesy of H. Swinney.
Reprinted with permission from Elsevier Science from T. H. Solomon et al.: Physica
D 76, 70 (1994). c©1994 Elsevier Science
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P (�) ∼ �−(1+µ�) , µ� ∼ 1.05 ± 0.0.3 . (5.72)

In these experiments, the fluid and the tracer particles in this system there-
fore perform a Lévy flight. Pictures of the traces of individual particles are
available in the literature [81, 82], and generally look rather similar to the
computer simulation shown in Fig. 5.15.

5.5.4 The Dynamics of the Human Heart

The human heart beats in a complex rhythm. Let B(i) ≡ ∆ti = ti+1 − ti de-
note the interval between two successive beats of the heart. Figure 5.18 shows
two sequences of interbeat intervals, one (top) of a healthy individual, the

Fig. 5.18. The time series of intervals between two successive heart beats, (a) for
a healthy subject, (b) for a patient with a heart disease (dilated cardiomyopathy).
By courtesy of C.-K. Peng. Reprinted from C.-K. Peng et al.: in Lévy Flights and
Related Topics, ed. by M. F. Shlesinger et al. (Springer-Verlag, Berlin 1995) c©1995
Springer-Verlag



138 5. Scaling in Financial Data and in Physics

other (bottom) of a patient suffering from dilated cardiomyopathy [83]. For
reasons of stationarity, one prefers to analyze the probability for a variation
of the interbeat interval (in the same way as financial data use returns rather
than prices directly). The surprising finding then is that both time series lead
to Lévy distributions for the increments Ii = B(i + 1) − B(i) with the same
index µ ≈ 1.7 (not shown) [83]. The main difference between the two data
sets, at this level, is the standard deviation, which is visibly reduced by the
disease.

To uncover more differences in the two time series, a more refined analysis,
whose results are shown in Fig. 5.19, is necessary. The power spectrum of the
time series of increments, SI(f) = |I(f)|2 with I(f) the Fourier transform
of Ii, for a normal patient has an almost linear dependence on frequency,
S(f) ∼ f0.93. For the suffering patient, on the other hand, the power spec-
trum is almost flat at low frequencies, and only shows an increase above a
finite threshold frequency [83]. To appreciate these facts, note that, for a
purely random signal, S(f) = const., i.e., white noise. Correlations in the
signal lead to red noise, i.e., a decay of the power spectrum with frequency
S(f) ∼ f−β with 0 < β ≤ 1. 1/f noise, typically caused by avalanches, is an
example of this case. On the other hand, with anticorrelations (a positive sig-
nal preferentially followed by a negative one), the power spectrum increases
with frequency, S(f) ∼ fβ . This is the case here for a healthy patient. With
the disease, the small-frequency spectrum is almost white, and the typical an-
ticorrelations are observed only at higher beat frequencies. Also, detrended
fluctuation analysis shows different patterns for both healthy and diseased
subjects [83].

5.5.5 Amorphous Semiconductors and Glasses

The preceding discussion may be rephrased in terms of a waiting time dis-
tribution between one heartbeat and the following one. Waiting time distri-
butions are observed in a technologically important problem, the photocon-
ductivity of amorphous semiconductors and discotic liquid crystals. These
materials are important for Xerox technology.

In the experiment, electron–hole pairs are excited by an intense laser pulse
at one electrode and swept across the sample by an applied electric field. This
will generate a displacement current. Depending on the relative importance of
various transport processes, different current–time profiles may be observed.
For Gaussian transport, the electron packet broadens, on its way to the other
electrode, due to diffusion. A snapshot of the electron density will essentially
show a Gaussian profile. The packet will hit the right electrode after a char-
acteristic transit time tT which shows up as a cutoff in the current profile.
Up to the transit time, the displacement current measured is a constant.

In a strongly disordered material, the transport is dispersive, however.
Now, electrons become trapped by impurity states in the gap of the semi-
conductor. They will be released due to activation. The release rates depend
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Fig. 5.19. The power spectrum SI(f) for the time series of increments of the time
between two successive heart beats, (a) for a healthy individual, (b) for a patient
with heart disease. The power spectrum of the healthy subject is characteristic of
time series with anticorrelations over the entire frequency range, while that of the
patient with heart failure is white at low frequencies, and exhibits the anticorrela-
tions only in its high-frequency part. By courtesy of C.-K. Peng. Reprinted from
C.-K. Peng et al.: in Lévy Flights and Related Topics, ed. by M. F. Shlesinger et al.
(Springer-Verlag, Berlin 1995) c©1995 Springer-Verlag
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on the depth of the traps. In this way, the energetic disorder of the intra-
gap impurity states generates, in a phenomenological perspective, a waiting
time distribution for the electrons in the traps. In a random walk, the walker
moves at every time step. In a biased random walk, underlying Gaussian
transport, there is an asymmetry of the probabilities of the right and left
moves which, again, take place at every time step. In dispersive transport,
particles do not move at every step. Their motion is determined, instead, by
their waiting time distribution. A shapshot of the electron density will now
show a strongly distorted profile with a flat leading and a steep trailing edge.
Only a few electrons have traveled very far, and many of them are still stuck
close to the origin. The current–time curves are now composed of two power
laws whose crossover defined the transit time

I(t) ∼
{

t−(1−α) for t < tT,
t−(1+α) for t > tT .

(5.73)

The exponent α ∈ (0, 1) depends on the waiting time distribution of the
electrons in the traps, and hence on the disorder in the material.

Current–time profiles in agreement with (5.73) have indeed been measured
in the discotic liquid crystal system hexapentyloxytriphenylene (HPAT) [84].
The data show the characteristic structure of dispersive transport, with a
power-law decay of the displacement currents. Notice, however, that the ex-
ponents are such that the motion is subdiffusive, i.e., slower than for Gaussian
transport. This is a consequence of the existence of deep traps.

Glasses are another class of materials where disorder is, perhaps, the fac-
tor most influencing the physical properties. Experimentalists now are able
to measure the spectral (optical) lineshape of a single molecule embedded in
a glass. This lineshape sensitively depends on the interaction of the mole-
cule with its local environment and on the dynamical properties of the envi-
ronment. When many guest molecules are implanted in a glassy host, their
respective lineshapes all differ due to their different local environments. A
statistical analysis of the lineshapes becomes mandatory.

The lineshape of a single molecule may be described in term of its cumu-
lants, (5.17), in complete analogy to the description of a probability density
function through its cumulants in Sect. 5.4. When the cumulants of many
spectral lines are put together, one may determine the probability distri-
bution of each cumulant. In a simulation of several thousand molecules of
terylene embedded in polystyrene, one finds that the first cumulant of the
lineshapes is distributed according to a symmetric Lorentz–Cauchy distri-
bution, the second cumulant according to a stable Lévy distribution with
µ = 1/2 and a skewness β = 1 (a maximally skew distribution defined for
positive values of the argument only), the third cumulant is drawn from a
symmetric Lévy distribution with µ = 1/3, and the fourth cumulant is drawn
from an asymmetric distribution with skewness β = 0.61 and index µ = 1/4
[85].
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Another theoretical formulation of the spectral lineshapes of molecules
embedded in glasses may even be applied rather straightforwardly to the sta-
tistical properties of financial time series [86, 87]. Physically here, each host
molecule in the neighborhood of the guest is assumed to shift the guest’s
delta-function absorption line depending on the individual host–guest inter-
action by a frequency ν̃(Rn). The total lineshape of the molecule then is the
superposition of these contributions. The two important factors determining
the lineshape are the distance dependence of the host–guest interaction and
the density of host molecules around one guest molecule. When the latter is
large, a Gaussian lineshape invariably follows. There are so many host mole-
cules around a guest molecule that simply the central limit theorem applies
and the details of the interaction process are not sampled in the lineshape.
On the other hand, when the density is small, the lineshape sensitively de-
pends on the dependence of the interaction on the spatial separation. With
ν̃(Rn) ∼ R−3/µ, a stable Lévy-like lineshape obtains. We come back to this
theory in Chap. 6.

5.5.6 Superposition of Chaotic Processes

Lévy distributions can be generated by superposing specific chaotic processes
[88]. Chaotic processes are defined by non-linear mappings of a variable X

Xn+1 = f(Xn) , (5.74)

and are often used to model non-linear dynamical systems. If the mapping
function

f(Xn) =
1
2

(
Xn − 1

Xn

)
(5.75)

is used in (5.74), and many processes corresponding to different initial con-
ditions of the variable X are superposed, the probability distribution of the
variable X iterated and superposed in this way will converge to

p(X) → 1
π(1 + X2)

, (5.76)

that is, the Lorentz–Cauchy distribution. This is a special Lévy distribu-
tion with µ = 1. More general Lévy distributions can be obtained from the
mapping function

f(Xn) =
∣∣∣∣12
(
|Xn|α − 1

|Xn|α
)∣∣∣∣

1/α

sign
(

Xn − 1
Xn

)
. (5.77)

If this mapping is iterated, and many processes corresponding to different
initial conditions are superposed, the probability density of X converges to

p(X) → α

π

|X|α−1(
1 + |X|2α

) , (5.78)

which has Lévy behavior with µ = α. This is shown in Fig. 5.20.
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Fig. 5.20. Superposition of many chaotic processes, as described in the text. α =
3/2 has been used, and N denotes the number of processes with different initial
conditions. By courtesy of K. Umeno. Reprinted from K. Umeno: Phys. Rev. E 58,
2644 (1998), c©1998 by the American Physical Society

5.5.7 Tsallis Statistics

There are many properties which the Gaussian and the stable Lévy distri-
butions share: both are fixed points, or attractors, for the distributions of
sums of independent random variables, in both cases guaranteed by a cen-
tral limit theorem, and both of them describe the probability distributions
associated with certain stochastic processes. The main difference is that the
Gaussian distribution is of finite variance, while the power-law decay of the
Lévy distributions leads to infinite variance.

From a physics perspective, we could derive the Gaussian distribution
from a maximization of the entropy, subject to constraints, cf. Sect. 5.4.2. Is
it possible to generate stable Lévy distributions in a similar way?

There are two possibilities for achieving this. One is to keep the defini-
tion of the Boltzmann–Gibbs entropy, (5.36), unchanged but to introduce a
constraint different from (5.37) for the variance of the distribution function.
This requires rather complicated constraints. The alternative is to change the
definition of the entropy. It also requires a change of the variance constraint,
but a rather simple one only. This is the way taken by Tsallis et al. [77, 89].

They generalize the entropy to
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Sq[p(x)] = kB

1 − ∫∞
−∞d

(
x
σ

)
[σp(x)]q

q − 1
. (5.79)

This reduces to the familiar Boltzmann–Gibbs entropy (5.36) in the limit q →
1. The probability distribution of the variable x characterizing the equilibrium
state of maximal entropy can then be determined by maximizing S[p] subject
to the constraints∫ ∞

−∞
dx p(x) = 1 , 〈x2〉q =

∫ ∞

−∞
d
(x

σ

)
x2 [σp(x)]q = σ2 , (5.80)

generalizing (5.37). With these generalizations, one can essentially derive the
thermodynamic relations, such as T−1 = ∂S/∂U , but the thermodynam-
ics and statistical mechanics are no longer extensive. This has given rise to
the name of “non-extensive statistical mechanics”, an area of rather intense
research currently.

The probability distributions maximizing S now depend on q. For q ≤ 5/3,
the Gaussian obtains. For 5/3 < q < 3, one finds the stable Lévy distributions
with index µ = (3− q)/(q− 1) varying from 2 to zero as q increases from 5/3
to 3. For q > 3, there is no solution [77, 89].

The stationary probability distributions obtained in this way are

pq(x) =
1
Zq

[
1 − β̃(1 − q)U(x)

]1/(1−q)

, (5.81)

where β̃ = 1/kBT is the inverse temperature, Zq is the partition function,
and U(x) is a “potential” [90]. The label “potential” is to be taken in a
generalized sense which is explained below.

One may now ask: what dynamics equations could lead to such station-
ary distributions? The question can be posed at a macroscopic level, i.e.,
how must the evolution equation of pq(x) be structured in order to produce
stationary solutions of the form (5.81)? In ordinary Boltzmann–Gibbs sta-
tistical mechanics, this is the question about the appropriate Fokker–Plank
equation. One could also search for time-dependent solutions of these Fokker–
Planck equations, but we will not pursue this further here. On the other hand,
one can ask for the evolution equation for the stochastic variable, i.e., take
a microscopic view. This is the question for the appropriate Langevin-type
equation.

We first turn to the macroscopic level. In ordinary statistical physics for
Markov processes, the evolution of the probability density function is gov-
erned by a Fokker–Planck equation

∂p(x, t)
∂t

= − ∂

∂x

[
D(1)(x, t)p(x, t)

]
+

1
2

∂2

∂x2

[
D(2)(x, t)p(x, t)

]
, (5.82)

where D(1) and D(2) are the drift and diffusion “coefficients”, respectively.
For constant D(2) and time-independent D(1)(x), the stationary solution is
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p(x) = N exp
[
−β̃U(x)

]
with D(1)(x) = −∂U(x)

∂x
. (5.83)

N is a normalization factor. The “potential” is thus defined via the drift
coefficient D(1). The drift is a result of a force acting on the particles.

In the macroscopic view of non-extensive statistical mechanics, one can
imagine arriving at (5.81) either from a Fokker–Planck equation linear in the
probability density pq(x), such as the preceding one [91], or one containing
non-linear powers of pq(x) [92]. In the linear framework, our approach is to
derive special relations between D(1)(x) and D(2)(x) by equating the general
stationary solution of the Fokker–Planck equation [37]

p(x) = N exp
{

2
∫

dx
1

D(2)(x)

[
D(1))(x) − 1

2
∂D(2)(x)

∂x

]}
(5.84)

with the stationary distribution (5.81) obtained from entropy maximization
[91]. This equation is solved when the condition

2
D(2)(x)

[
D(1)(x) − 1

2
∂D(2)(x)

∂x

]
=

−β̃

1 − β̃(1 − q)U(x)
∂U

∂x
(5.85)

is satisfied, where U(x) is defined in (5.83). On the other hand, a Fokker–
Planck equation implies a Langevin equation for the evolution of the stochas-
tic variable [37]

dx

dt
= D(1)(x) +

√
D(2)(x)η(t) , (5.86)

where η(t) is white noise. For any given U(x), (5.85) thus determines a family
of microscopic Langevin equations which give rise to non-extensive statistical
mechanics on the macroscopic level [91]. It is the special interplay of the
deterministic drift D(1) and the stochastic diffusion coefficients D(2) which
determines the steady-state distribution of the system, and not so much the
particular form of the coefficients.

Using (5.81), (5.85) can be rewritten as

dp

pq
= −β̃(Zq)q−1U(x)dx , (5.87)

which is identical to the stationary solution of non-linear Fokker–Planck equa-
tions. The non-linear Fokker–Planck equation is [92]

∂f(x, t)
∂t

= − ∂

∂x

[
D(1)(x)fρ(x, t)

]
+

1
2

∂2

∂x2

[
D(2)(x)fν(x, t)

]
. (5.88)

ν and ρ are real numbers characterizing the non-linearity. This equation is
equivalent to a Langevin equation

dx

dt
= D(1)(x) +

√
D(2)(x)f(x, t)(ν−ρ)/2η(t) . (5.89)
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Here, f(x, t) is an auxiliary distribution and not the physical probability
distribution p(x, t). The physical distribution is p(x, t) = fρ(x, t).

The important feature of (5.89) is the dependence of the effective dif-
fusion coefficient D(2)f (ν−ρ)/2 acting on the microscopic level on the prob-
ability density f (ν−ρ)/2 = p(ν−ρ)/2ρ realized at the macroscopic level [92].
The non-linear Fokker–Planck equation (5.88) and the Langevin equation
(5.89) no longer are equivalent, complementary descriptions of a stochastic
system but here turn into a system of coupled equations. The feedback of
the macroscopic into the microscopic level apparently is the prerequisite to
turn ordinary Boltzmann–Gibbs statistical mechanics into non-extensive sta-
tistical mechanics. When an interpretation in terms of Brownian motion is
sought, one would conclude that the amplitude of the shocks the Brownian
particle picks up from its environment depends on the frequency of its visits
to specific regions of space. This might lead to a cleaving of phase space.

The scaling properties of the variance of the system variable

〈x2(bt)〉 = b2/(3−q)〈x2(t)〉 with
1 − ν

1 + ν
=

q − 1
3 − q

at ρ = 1 (5.90)

demonstrate that non-extensive statistical mechanics describes anomalous
diffusion [92]. This equation suggests that the Hurst exponent H of this sys-
tem is H = 1/(3− q). It might even suggest that the processes are related to
fractional Brownian motion, (4.42). When the Hurst exponent is calculated in
the way it was originally defined [33], one finds, however, that, for the anom-
alous diffusion described in non-extensive statistical mechanics, the Hurst
exponent is H = 0.5 as for ordinary Brownian motion and independent of q
while, for fractional Brownian motion, it is different. The underlying reason
is that the stochastic process of non-extensive statistical mechanics described
by (5.89) is uncorrelated in time. Fractional Brownian motion, (4.42), on the
other hand, possesses long-range temporal correlations which are at the origin
of the non-trivial Hurst exponent.

A less formal and more intuitive approach starts from the ordinary
Langevin equation

dx

dt
= −γx + ση(t) . (5.91)

The identification with (5.86) is made through D(1)(x) = −γx and D(2)(x) =
σ2. Our emphasis here is not on the dependences of the drift and diffu-
sion coefficients on the stochastic variable but rather on the possibility that
they slowly fluctuate in time. A specific assumption is that β = γ/σ2 is
χ2-distributed with degree n [93], i.e., that

p(β) =
1

Γ (n/2)

(
n

2β0

)n/2

βn/2−1 exp
(
− nβ

2β0

)
. (5.92)

A variable which is the sum of the squares of n Gaussian distributed random
variables is distributed according to a χ2-distribution of degree n. β0 = 〈β〉
is the average of β.
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If the time scale on which β fluctuates is much longer than 1/γ, the time
scale of the stochastic variable, the conditional probability of x on β, is

p(x|β) =

√
β

2π
exp

(
−βx2

2

)
. (5.93)

The marginal probability of x then is

p(x) =
∫

p(x|β)p(β)dβ =
Γ (n+1

2 )
Γ (n/2)

√
β0

πn

(
1 +

β0

n
x2

)−(n+1)/2

. (5.94)

Comparison with (5.81) shows that the distribution found for this system with
slowly fluctuating drift and diffusion coefficients is a stationary distribution of
non-extensive statistical mechanics provided one identifies q = 1 + 2/(n + 1)
and β̃ = 2β0/(3 − q). The potential is U(x) = x2/2, as appropriate for
ordinary diffusion. Also, p(x) is identical to a Student-t distribution, (5.59),
with index µ = n and scale parameter A =

√
n/β.

Non-linear Langevin equations may be studied in the same way. As ex-
pected from (5.82) with the potential U(x) defined in (5.83), a power-law
dependence in the drift coefficient will translate into a non-trivial power-law
dependence on x in the probability distribution. We postpone the applica-
tion of this theory to a physical example, hydrodynamic turbulence, and to
financial markets, to the next chapter.

An aspect which has not been clarified satisfactorily yet is the scope
of application of non-extensive statistical mechanics. Thermodynamics and
statistical mechanics usually treat systems in or close to equilibrium. The
experimental results discussed above, where Lévy-type scaling was found, to
a varying degree depart from equilibrium situations. The example of micelles
certainly is close to equilibrium, but the rotating fluid containing jets and
vortices is a stationary state rather far away from equilibrium. What about
turbulence, the subject of the next chapter? And social systems or financial
markets? Does the non-extensive statistical mechanics describe situations
both close to and far away from equilibrium? Where in the theory could we
nail down this opening to non-equilibrium physics? Attempts to answer these
questions are just beginning to appear [94]. The state of the art in this field of
research is summarized in the proceedings of a conference on Tsallis statistics
[95].

5.6 New Developments: Non-stable Scaling, Temporal
and Interasset Correlations in Financial Markets

The assumption of statistical independence of subsequent price changes, made
by the geometric Brownian motion hypothesis, is apparently rather well sat-
isfied by stock markets, both concerning the decay of return correlation func-
tions, and the use of correlations in practical trading rules. On the contrary,
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the distribution of returns of real markets is far from Gaussian, and Sect. 5.3.3
suggested that returns were drawn from distributions which either were sta-
ble Lévy distributions, or variants thereof with a truncation in their most
extreme tails.

5.6.1 Non-stable Scaling in Financial Asset Returns

There were, however, observations in the economics literature which could
raise doubts about the simple hypothesis of stable Lévy behavior. As an
example, it appeared that the Lévy exponent µ somewhat depended on the
time scale of the observations, i.e., if intraday, daily, or weekly returns were
analyzed [96]. This is not expected under a Lévy hypothesis because the
distribution is stable under addition of many IID random variables. Returns
on a long time scale obtain as the sum of many returns on short time scales,
and therefore must carry the same Lévy exponent.

Lux examined the tail exponents of the return distributions of the German
DAX stock index, and of the individual time series of the 30 companies
contained in this index by applying methods from statistics and econometrics
[97]. Interestingly, he found his results consistent with stable Lévybehavior
for the majority of stocks and for the DAX share index, with exponents in
the range µ ≈ 1.42, . . . , 1.75.

A counter-check, using an estimator of the tail index introduced in
extreme-value theory, led to different conclusions, however. It turned out
that all stocks, and the DAX index, were characterized by tail exponents
2 < µ ≤ 4, i.e., outside the stable Lévy regime. In most cases, even the
95% confidence interval did not overlap with the regime required for sta-
bility, µ ≤ 2. Moreover, statistical tests could not reject the hypothesis of
convergence to a power law.

The estimator used is more sensitive to extremal events in the tails of a
distribution than a standard power-law fit. It deliberately analyzes the tail
of large events where, e.g., in the bottom panel of Fig. 5.10, deviations of the
data from Lévy power laws become visible. It would indicate that a power-
law tail with an exponent µ > 2 is more appropriate than an exponential
truncation scheme.

These conclusions are corroborated by an investigation using both two
years of 15-second returns and 15 years of daily returns of the DAX index. The
corresponding price charts are given in Figs. 5.5 and 1.2. Figure 5.21 displays
the normalized returns of the DAX high-frequency data presented earlier,
in double-logarithmic scale [59, 60]. The figure is essentially independent of
whether positive, negative, or absolute returns are considered, and the last
possibility has been chosen. Again, we find approximately straight behavior
for large returns, suggesting power-law behavior and fat tails.

Using the Hill estimator of extreme-value theory [98, 99] to estimate the
asymptotic distribution for |δs15′′ | → ∞, a tail index µ ≈ 2.33 for a power-law
distribution
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p(δsτ ) ∼ |δsτ |−1−µ (5.95)

is determined. This power law is shown as the dotted line in Fig. 5.21. The
solid line in Fig. 5.21 is a one-parameter fit to a Student-t distribution (5.59),
where the exponent derived from the Hill estimator was taken fixed and only
the scale parameter A of the distribution was fitted. The index µ ≈ 2.33 is
significantly bigger than Mandelbrot’s 1963 value and outside the range of
stable Lévy distributions, but roughly in line with Lux’s result using data on
a longer time scale [97].

Both the curvature of the data away from the straight line in Fig. 5.21
and the convergence, with a finite slope, of the Hill estimator to its infinite
fluctuation limit suggest that the probability distribution of extreme returns
is not a pure power law but rather contains multiplicative corrections vary-
ing more slowly than a power law. The existence of such (e.g., logarithmic)
corrections to power-law properties is well known in statistical physics in the
vicinity of critical points. The idea of slowly varying corrections to power laws
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Fig. 5.21. Probability density function of 15-second DAX returns. The straight
dotted line indicates a power law with its index µ = 2.33 derived from extreme-
value theory. The solid line is a fit to a Student-t distribution using the exponent
determined independently. From S. Dresel: Modellierung von Aktienmärkten durch
stochastische Prozesse, Diplomarbeit, Universität Bayreuth, 2001, by courtesy of
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is already contained in work by Cont [100] and a recent paper by LeBaron
[101].

A tail exponent of µ = 3 is also found for other stock markets, such as
the S&P500, the Japanese Nikkei 225, and the Hong Kong Hang Seng indices
[62]. Figure 5.22 shows the cumulative probability

P>(δS) =
∫ ∞

δS

d(δS′) p(δS′) (5.96)

for the normalized returns of the S&P500 index. Clearly, the tails containing
the extreme events follow a power law

P>(δS) ∼ (δS)−µ (5.97)

with an exponent µ = 3, beyond the limit of stability of Lévy laws. However,
we also recognize that a stable Lévy law with µ = 1.7 is a good description in
an intermediate range of returns 0.4σ ≤ δS ≤ 3σ. This power law had been
emphasized in earlier studies and was discussed in Sect. 5.3.3.

Tail exponents 2 < µ ≤ 6 have also been found in a variety of other mar-
kets, most notably foreign exchange markets, interbank cash interest rates,
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and commodities [102]. In all these cases, the variance of the data sample ex-
ists, but its convergence as the sample size is increased, may be slow. While
no longer literally applicable, many of the interpretations and practical con-
sequences of Lévy behavior discussed in Sect. 5.3.3 continue to hold qualita-
tively.

How do the power laws found here depend on the time scale τ of the
returns δSτ (t)? Using the DAX data of Figs. 5.5 and 1.2, the index µ(τ) is
determined via the Hill estimator for time lags varying in powers of four from
a quarter to 1 243 136 minutes, about 10 years, and plotted in Fig. 5.23 [59,
60]. The index increases from 2.33 to values around 10. Power laws with such
high exponents are not significantly different from exponential or Gaussian
distributions over the range of values considered, and the specific numbers
for the tail indices should not be taken too literally. The clear message of
the figure, namely that the tails of the distributions become less fat and
gradually converge to Gaussian-like distributions, is in agreement with other
studies [62].

For the S&P500 index, Gopikrishnan et al. found that the power laws do
not depend essentially on the time scale τ of the returns, so long as τ ≤ 4d
[62]. Only for returns evaluated on scales above four days does the shape of
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the cumulative probability depend significantly on τ , not quite in agreement
with the rather gradual increase in the DAX data shown in Fig. 5.23. For
the S&P500, both inspection of the cumulative probabilities on longer time
scales, as well as an analysis of the scaling of the moments of the distribution,
indicate that it becomes more Gaussian as the time scales τ are increased.

5.6.2 The Breadth of the Market

A market index is a weighted sum of many individual share prices. How can
non-stable power-law probability distributions arise as weighted sums of some
other probability distributions? What are these probability distributions of
individual shares, underlying a market index? How can we effectively charac-
terize the individual variations of securities traded in a financial market on
a given day, when we summarize by saying that the market went up/down,
e.g., 2%?

Comprehensive studies of the statistical properties of individual share
price variations were undertaken by the Boston group based on data taken
from a variety of databases with different historical extension, data frequency,
and market breadth [103, 104]. In one study, the variation of market capi-
talization (equal to the share price multiplied by the number of outstanding
shares) has been investigated rather than the share returns themselves. Vari-
ation of market capitalization is a good proxy for share-price variation when
the number of outstanding shares varies on a much slower time scale than
the share prices. This has not been studied but, for simplicity, we will neglect
this subtlety here.

By and large, the price statistics of individual companies is rather similar
to that of a market index [103, 104]. The cumulative distribution functions
in a log–log plot against asset returns are straight lines, implying power-law
return distributions. The exponents realized slightly depend on the companies
considered: on a five-minute time scale, most of them fall into the range 2 ≤
µ ≤ 6; only very few companies possess a tail index µ < 2 in the stable Lévy
range. A histogram of the returns peaks at µ = 3. When the returns of a stock
are normalized by its standard deviation on the corresponding time scale, the
cumulative distribution functions collapse onto a single master curve. This
master curve has a slope of approximately −3 in log–log representation [103].
More specifically, regression fits produce significantly different tail indices
µ+ = 3.10 ± 0.03 and µ− = 2.84 ± 0.12 for the positive and negative tails,
respectively. On the other hand, using the Hill estimator [98] produces lower
values µ+ = 2.84 ± 0.12 and µ− = 2.73 ± 0.13, which are essentially the
same, given the error bars [104]. When the time scale increases, these indices
increase gradually up to values of the order µ+ ≈ 5 . . . 6 for scales of the
order of four years. Apparently, the asymmetry between positive and negative
returns increases: the indices µ− remain of order 3 . . . 3.5 even at the largest
time scales. µ+ > µ− implies that rallies are less severe than crashes but,
given the positive global averages of the markets, also implies that positive
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returns have more weight than negative returns in the range of moderate
variations. When changing from databases with high-frequency data to those
containing daily data, a break similar to that in Fig. 5.23 is observed.

These findings, however, leave us with a puzzle: why is the probability
distribution apparently (almost?) form-invariant under addition of random
variables for the short time scales although the underlying distributions are
not stable? Why does convergence towards a Gaussian occur only beyond four
days? Or why is it so slow, if we refer to the more gradual convergence of the
DAX returns? Why do stock indices have the same power-law behavior in
their return probability density functions as have individual stocks, although
the basic probability distributions are not stable and many individual stock
returns are added to produce that of the index? The answer is not truly
established at present although it is likely that it has to do with correlations
– both temporal and interasset correlations. Some elements of an answer, and
much more information on the structure of financial time series, is provided
by higher-order correlations in the returns, or in the volatility. Other elements
are provided by studying the correlation matrix of the shares traded in one
or several markets. Before addressing these problems, we briefly turn to the
homogeneity of the markets.

The power-law tails do not inform us directly of the width of the distrib-
ution of the stock returns in a given market on a give time horizon, say one
day. A stock index may rise by 1% in a day. However, there may be days
where this 1% return is generated by moderate rises of almost all stocks, and
other days where half of the stocks rise, perhaps even by 10%, or so, and the
other half fall by almost the same amount. This effect is not captured by the
market index, neither in its return nor in its volatility, which is a property of
the index time series. It will not show up either in the power-law exponents
directly. On the other hand, such information on the inhomogeneity of the
price movements in a market may be valuable both from a fundamental point
of view and for investors.

Let γ = 1, . . . , N label a specific stock in a market, and consider one-day
returns δS

(γ)
1d (t) only. (For the remainder of this discussion, we drop the time-

scale subscript.) On each trading day, the returns of the ensemble of stocks
will be random variables, and a probability distribution p[δS(γ)(t)] can be
attributed to them. This probability distribution has been determined for
the 2188 stocks traded at the New York Stock Exchange from January 1987
to December 1998 [105].

In general, the time series of the individual stocks have different widths
and somewhat different shapes. They are transformed to random variables
with zero mean and unit variance by subtracting their temporal mean, and
dividing by the standard deviation of the time series. In log-scale, their cen-
tral part is approximately triangular, i.e., the variables are drawn from a
Laplace distribution p(δs(γ)) ∝ exp(−a|δs(γ)|) [105]. Furthermore, the distri-
bution in crash periods is very different from that of normal days where it
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displays an approximately constant form. In crash periods, the distribution
is significantly broader and asymmetric. The crash of October 1987 (Black
Monday), another event in early 1991, the October crash in 1997 (Asian cri-
sis), and the crash of August 1998 (Russian debt crisis, for the latter two cf.
Fig. 1.1 for the German DAX index) clearly stand out from the remainder
of the distribution. However, negatively skewed distributions at the crash (or
the day thereafter) are often followed by positively skewed rebounds shortly
after the crash, which is at the origin of the apparently symmetric shape of
the 1987 crash.

A more quantitative and condensed description of the market-return dis-
tribution is obtained from its first moments. The average and standard devi-
ation are

µ(t) =
1
N

N∑
γ=1

δS(γ)(t) , Σ(t) =

√
1
N

∑[
δS(γ)(t) − µ(t)

]2
. (5.98)

µ(t) is the average return of the market on a given trading day and, apart from
weight factors, should be equal to the return of the market index δSmarket(t).
Σ(t) gives the width of the return distribution of the market on each trading
day. Lillo and Mantegna have proposed to call this quantity variety of the
ensemble. It measures the inhomogeneity of the market on a given day and
should be clearly distinguished from the volatility of the market, which mea-
sures the day-to-day variations (for this reason, we have chosen the capital
letter Σ).

The probability distribution of the mean µ(t) of the 3032 trading days in
the period studied is non-Gaussian and approximately Laplacian. The prob-
ability distribution of the daily mean of each of the 2188 stocks has a similar
shape but is much narrower [105]. The probability distribution of the vari-
ety Σ(t) is positively skewed in log–log scale, while that of the volatility σi is
negatively skewed. A quadratic approximation in the central parts would give
log-normal distributions, although the accuracy of such an approximation is
questionable in their tails, due to the skewness. Similar to the returns and
the volatility of the market, the mean µ(t) is essentially uncorrelated in time,
while the variety Σ(t) possesses long-time power-law correlations with an ex-
ponent of the order 0.23, comparable in order of magnitude to the exponents
which describe the volatility correlations [105].

To what extent can one understand these results in a picture where a
market provides a collective dynamics, and the individual companies execute
additional (“idiosvncratic”) fluctuations around the market dynamics? Such
a one-factor model (one collective driver of dynamics) can be written as

δS(γ)(t) = α(γ) + β(γ)δSmarket(t) + ε(γ)(t) . (5.99)

α(γ) is the stock-specific deviation of mean returns with respect to the mar-
ket return, and ε(γ)(t) describes the zero-mean idiosyncratic fluctuations of
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the stock γ with respect to the market dynamics. β(γ) is a measure of the
correlation of the stock γ with the market. The market return δSmarket(t) can
be taken as an actual market time series, e.g., the S&P500. In this way, the
one-factor model can generate surrogate time series for the market. It turns
out that the probability density of the mean µ(t) of the return distribution of
such surrogate data is in good agreement with the probability density of the
real market. On the other hand, the probability density of the variety Σ(t)
of the surrogate data is different from that of the market data: it is almost
symmetric and much narrower than the market distribution [105]. Also, the
one-factor model cannot describe correctly changes in the symmetry of the
ensemble return distributions during crash and rally periods [106].

5.6.3 Non-linear Temporal Correlations

In Sect. 5.3.2, we saw that linear correlations of the returns of three assets,
sampled on a 5-minute time scale, (5.3), decayed to zero within 30 minutes.
For the S&P500, the linear correlation function of 1-minute returns decays
to zero even faster: within 4 minutes, it reaches the noise level [62]. The
correlations of the DAX high-frequency data decay to zero within 10 minutes
[59, 60]. This, however, is not true for non-linear correlations which persist
to much longer times.

One can consider various higher-order correlation functions, e.g.,

Cabs,τ (t − t′) ∼ 〈|δSτ (t)||δSτ (t′)|〉 , (5.100)
Csquare,τ (t − t′) ∼ 〈[δSτ (t)]2[δSτ (t′)]2〉 , (5.101)

. . .

where δSτ (t) is defined in (5.1). Cabs,τ measures the correlations of the ab-
solute returns, and Csquare,τ those of the returns squared. Both are related
to volatility correlations, Csquare,τ perhaps in a more direct way. Various
higher-order correlation functions can also be defined and evaluated.

Geometric Brownian motion assumes the volatility to be a constant. This
is true over rather short time scales, at best. Empirical volatilities vary
strongly with time and suggest considering volatility as a stochastic vari-
able. This fact has led to the development of the ARCH and GARCH mod-
els [48, 49], briefly mentioned in Sect. 4.4.1. The probability distribution of
volatilities of the S&P500 is close to log-normal [107], a fact which also holds
for various other markets, in particular foreign exchange [108]. However, the
probability distribution does not exhaust stochastic volatility: in fact, volatil-
ity is strongly correlated over time!

Figure 5.24 displays the correlation function of the absolute returns of the
S&P500 [62]. The absolute correlations decay very slowly with time,

Cabs,τ ∼ |t − t′|−0.3 . (5.102)
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Fig. 5.24. Correlation function of the absolute returns of the S&P500 index. The
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Decay of correlations with a power law is so slow that no characteristic cor-
relation time can be defined. Correlations of the absolute returns therefore
extend infinitely far in time!

The same is true for correlations of the returns squared. Figure 5.25 shows
the volatility correlations of S&P500 index futures: they again decay as power
laws

Csquare,τ ∼ |t − t′|−0.37 (5.103)

with an exponent −0.37, rather similar to that of the absolute returns. Again,
no characteristic time scale can be defined, and the correlations extend infi-
nitely far in time.

The analysis of the Hurst exponent H of a probability density function,
(4.41), also supports long-time correlations in absolute and square returns.
Lux reports such an analysis for the German stock market (DAX share index
and its constituent stocks individually) [110], and finds exponents in the
range H = 0.7, . . . , 0.88 for the absolute returns, and H = 0.62, . . . , 0.77
for the square returns. For comparison, purely random behavior leads to
H = 1/2, and is rather well obeyed by the returns. Further evidence for long-
time correlation is also available for the US and UK stock markets [111], and
for foreign exchange markets [102]. Quite generally, the correlations are the
stronger, the lower the power of the returns taken [102].

Zipf analysis, too, points towards serial correlations in financial time se-
ries. In this method, taken from statistical studies of languages, one studies
the rank dependence of the frequency of “words”. Rank denotes the position
of a “word” after ordering according to frequency. “Word” is taken literally
in linguistics, but any sequence of up- or down-moves of a stock price may be
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Fig. 5.25. Correlations of the squared returns of S&P500 index futures. The solid
line is a fit to a power law with an exponent −0.37. From [74] courtesy of R. Cont

decomposed into characteristic words whose frequency in the entire pattern
is then evaluated. From this kind of analysis, significant correlations have
been discovered, e.g., in the chart of Apple stock [112]. Similar results have
also been obtained for foreign exchange rates [113].

Writing the returns of an asset as

δSτ (t) = sign [δSτ (t)] |δSτ (t)| , (5.104)

the absence of linear correlations and presence of long-time non-linear corre-
lations in financial time series implies that the time series of the sign changes
of the returns is uncorrelated or short-range-correlated, while the long-time
correlations are embodied in the amplitudes of the returns.

This decomposition can be pursued further and suggests an interesting
analogy with diffusion [114]. On a rather long time scale τ , the asset return
δSτ (t) is aggregated from a number Nτ of individual returns δSi in the time
interval [t, t + τ ]:

δSτ (t) =
Nτ∑
i=1

δSi . (5.105)

This equation also applies to a 1D diffusion problem, where δSτ (t) and δSi

would correspond to the distance traveled by a test particle in the time
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interval τ and the distance traveled as a consequence of each of the Nτ

individual shocks. (We emphasize that the subscript i here is used to number
individual shocks on a particle/individual transactions in a market, in a small
time interval τ .) When a measurement on an actual financial time series or a
diffusing particle is made, all quantities in (5.105), δSτ (t), δSi, and Nτ , and
the times between two shocks, turn out to be random. We may thus inquire
about their statistical properties.

In ordinary diffusion, the probability distribution p(δSτ ) is Gaussian with
variance 〈δS2

τ 〉 = Nτ 〈δS2
i 〉τ = Dτ , and D is the diffusion constant. The

distribution of the number of shocks in a given time interval (attempt fre-
quency) p(Nτ ) is narrow Gaussian, and the attempt frequencies only have
short-time exponential correlations. Looking at the distribution of variances
of the individual shocks sampled over the interval τ , p(〈δS2

i 〉) again is a nar-
row Gaussian, and these variances are short-time- correlated only. One can
then introduce an effective variable,

ε(t) =
δSτ (t)√
Nτ 〈δS2

i 〉τ
. (5.106)

In diffusion, ε(t) is uncorrelated and Gaussian distributed. Of course, this
discussion refers to equilibrium, and diffusion in a stirred environment would
have different statistical properties.

Financial markets are very different from this classical diffusion problem:
for an ensemble of 1000 stocks, p(Nτ ) is not Gaussian but possesses a power-
law tail with an exponent −4.4 [114]. The correlations 〈Nτ (t)Nτ (t′)〉 ∼ |t −
t′|−0.3, i.e., show a power-law decay with a rather small exponent similar to
those observed above for the volatility. The distribution of 〈δS2

i 〉τ is a power
law with an exponent −3.9, but this variable is essentially uncorrelated in
time. Finally, ε(t) turns out to be uncorrelated and Gaussian distributed, as
in ordinary diffusion. Putting everything together again, we find that an asset
return can be written as

δSτ (t) = ε(t)
√

〈δSi〉τNτ . (5.107)

As announced above, ε(t) being Gaussian distributed and uncorrelated plays
a role similar to the sign of the return, while the square root essentially is
the amplitude of the return, and contains the long-time correlations. Alterna-
tively, in the perspective of stochastic volatility, ARCH and GARCH models,
we can say that the price changes are drawn from an uncorrelated Gaussian
variable with an instantaneous variance Nτ 〈δSi〉τ which contains long-range
correlations. The tails of the distribution of the price changes come from the
tails in 〈δSi〉τ , and the long-time correlations originate in those of Nτ . The
similarity in the exponents of the volatility correlations of financial time se-
ries and the correlations of 〈Nτ (t)Nτ (t′)〉 therefore is not accidental but, on
the contrary, causal [114].
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We finally turn to a more complicated kind of correlation known in fi-
nancial markets, the leverage effect [116]: the volatility of the returns of an
asset tends to increase when its price drops. In option markets, these negative
correlations induce a negative skew in the return distributions on longer time
scales [17]. The leverage correlation function is defined as [117]

L(t − t′) = Z−1〈[δS1d(t)]2 δS1d(t′)〉 , (5.108)

that is, a third-order correlation function between volatility and returns (for
simplicity, we assumed that 〈δS1d〉 = 0). Our discussion will be limited to
daily returns. Consequently, we temporarily drop the subscript 1d. The nor-
malization constant is chosen as Z = 〈[δS(t)]2〉2. 10-year daily closing prices
of 437 US stocks have been analyzed. The leverage effect is significant and
negative for t > t′ while it essentially vanishes for t > t′. This implies that
falling prices cause increased volatilities, and not vice versa. An exponential
fit to

L(t − t′) = −A exp (−|t − t′|/T ) (5.109)

gives a satisfactory description of the data. The best fit is generated with
A = 1.9 and T = 69 days.

A similar analysis can be performed for stock indices [117]. An exponential
function again gives a reasonable fit, however, with very different parameters:
A = 18 and T = 9.3 days, i.e., a significantly increased amplitude and a
much shorter correlation time. Moreover, there are some significant positive
correlations for t− t′ < −4 days, i.e., the volatility increases a couple of days
before the indices rally. Possibly, these correlations are related to rebounds
shortly after a strong market increase causes increased volatility.

A retarded return model, eventually extended by a stochastic volatility,
can account for some of the effects observed [117]. Write the change in asset
price (we use ∆S for the absolute price change to distinguish from the return)
over the fixed time scale of one day as

∆S(t) = SR(t)σ(t)ε(t) , (5.110)

where σ(t) is the (possibly time-dependent) volatility, ε(t) is a random vari-
able with unit variance, and the retarded price SR(t) is defined as

SR(t) =
∞∑

t−t′=0

K(t − t′)S(t′) . (5.111)

K(t − t′) is a kernel normalized to unity with a typical decay time T . This
retarded model interpolates between an additive stochastic process when the
decay time T tends to infinity, and a purely multiplicative process when
T → 0. The argument for considering such a model is that the proportionality
of return to share price should hold on the longer time scales of investors. On
shorter time scales where traders rather than investors operate, the prices are
more determined by limit orders which are given in absolute units of money.
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Evaluating this model for constant volatility and in the limit of small
price fluctuations over the decay time T (σ

√
T ll1), one obtains for the small-

time limit of the leverage function L(t − t′ → 0) = −2. Stochastic volatility
fluctuations could increase the magnitude of this term. This limit is satisfied
by the individual stocks analyzed, as well as similar data from European and
Japanese markets. In the perspective of the retarded model, the leverage effect
would just be a consequence of a different market structure, or of different
market participants, determining the price variations on different time scales.

It is surprising then that the leverage of stock market indices is much
bigger, and decays on a much shorter time scale, than that of individual stocks
[117]. The index being an average of a number of stock prices, one would
expect rather similar properties than for the single stocks. Apparently, an
additional panic effect is present in indices, which leads to significantly more
severe volatility increases following a downward price move which, however,
would persist only over time scales of one to two weeks.

The leverage effect has also been observed in a 100-year time series of
the daily closing values of the Dow Jones Industrial Average [118]. The effect
there is about one order of magnitude smaller than the individual-stock effect
discussed above, and more than two orders of magnitude smaller than that
of the stock indices just discussed. Also, the decay time of the effect here
is about 20 . . . 30 days, somewhat intermediate between the stock and index
decay times of Bouchaud et al. [117]. Perelló and Masoliver [118] show that
stochastic volatility models, even without retardation, are able to explain the
effect observed.

5.6.4 Stochastic Volatility Models

The preceding sections have demonstrated that the assumption of constant
volatility underlying the hypothesis of geometric Brownian motion in finan-
cial markets is at odds with empirical observations. Volatility is a random
variable drawn from a distribution which is approximately log-normal and
which possesses long-time correlations in the form of a power law. The ques-
tion then is to what extent stochastic volatility should be explicitly included
in the model of asset prices.

Two standard models with stochastic volatility were briefly described in
Sect. 4.4.1. In the ARCH(p) and GARCH(p,q) processes, (4.46) and (4.48),
the volatility depends on the past returns and (for the GARCH process) the
past volatility, i.e., these models are examples of conditional heteroskedastic-
ity. These models have been analyzed extensively in the financial literature.
Another popular class of stochastic volatility models considers the volatility
as an independent variable driving the return process. The starting point for-
mally is geometric Brownian motion, (4.53), with a time-dependent volatility

dS(t) = µS(t)dt + σ(t)S(t)dz1 . (5.112)
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dz1(t) describes a Wiener process. With v(t) = σ2(t), the time-dependent
variance again follows a stochastic process

dv(t) = m(v)dt + s(v)dz2 . (5.113)

Several popular models use different specifications for m(v) and s(v) [10]:

m(v) = γv , s(v) = κv (Rendleman − Bartter model),
m(v) = γ(θ − v) , s(v) = κ (Vasicek model),
m(v) = γ(θ − v) , s(v) = κ

√
v (Cox − Ingersoll − Ross model).

(5.114)

In the Vasicek and Cox–Ingersoll–Ross models, the volatility is mean-reverting
with a time constant γ−1 and an equilibrium volatility of θ.

The leverage effect suggests that the volatility and return processes may
be correlated in addition:

dz2(t) = ρr−vdz1(t) +
√

1 − ρ2
r−vdZ(t) , (5.115)

where dZ(t) describes a Wiener process independent of dz1(t). Recently, the
Cox–Ingersoll–Ross model with a finite return-volatility correlation ρr−v has
been solved for its probability distributions [119], extensively using Fokker–
Planck equations. The logarithmic probability distributions for log-returns on
short time scales (1 day) are almost triangular in shape, while they become
more parabolic for longer time scales, e.g., 1 year.

For long time scales γτ � 1, the probability distribution of xτ (t) =
δSτ (t) − 〈δSτ (t) takes the scaling form

P (xτ ) = Nτe−p0xτ P�(z) , P�(z) = K1(z)/z . (5.116)

Nτ is a time-scale-dependent normalization constant, p0 is a constant depend-
ing on the return-volatility correlations and the parameters of the volatility
process, and K1(z) is the modified Bessel function. The argument z is of
the schematic form z2 = (axτ + b)2 + c2 [119]. In the limit of large returns,
lnP (xτ ) ∼ −p0xτ − (. . .)|xτ |, i.e., the tails of the probability distribution of
the returns are exponential with a different slope for the positive and nega-
tive returns. These slopes, however, do not depend on the time scale τ in this
long-time-scale limit. The exponential tails are reminiscent of some variants
of the truncated Lévy distributions discussed in Sect. 5.3.3. In the limit of
small returns at long time scales, a skewed Gaussian distribution of returns
is obtained. When the solutions are compared to 20 years of Dow Jones data,
an excellent collapse onto a single master curve is obtained for time scales
from 10 days to 1 year with four fitting parameters only, γ, θ, κ, µ. Indepen-
dently, the correlation coefficient ρr−v has been found to vanish [119]. These
four parameters are summarized in Table 5.3, where they are given both in
daily and annual units.



5.6 Non-Stable Scaling and Correlations in Financial Data 161

Table 5.3. Parameters of the stochastic volatility model obtained from the fit of
the Dow Jones data. In addition to the parameters listed, ρ = 0 for the correlation
coefficient and 1/γ = 22.2 trading days for the relaxation time of the variance are
found

Units γ θ κ µ

1/day 4.50 × 10−2 8.62 × 10−5 2.45 × 10−3 5.67 × 10−4

1/year 11.35 0.022 0.618 0.143

5.6.5 Cross-Correlations in Stock Markets

With the exception of the Black–Scholes analysis where we used the correla-
tions in price movements between an option and its underlying security, we
have not yet considered possible correlations between financial assets. How-
ever, it would be implausible to assume that the price movements of a set of
stocks in a market are completely uncorrelated. There are periods where a
large majority of stocks moves in one direction, and thus the entire market
goes up or down. On the other hand, in other periods, the market as a whole
moves quite little, but sectors might move against each other, or within an
industry share values of different firms could move against each other, either
as a result of changing market share, or due to more psychological factors.

Can correlations between different stocks be quantified, or those between
stocks and the market index be quantified? As will become apparent in
Chap. 10, knowing such correlations accurately is a prerequisite for good
risk management in a portfolio of assets. Unfortunately, it turns out that
many of these correlations are hard to measure.

Correlations between the prices or returns of two assets γ and δ are mea-
sured by the correlation matrix

C(γ, δ) =
〈[δS(γ)(t) − 〈δS(γ)(t)〉] [δS(δ)(t) − 〈δS(δ)(t)〉]〉

σ(γ)σ(δ)
(5.117)

≡ 1
T

T∑
t=1

δs(γ)(t)δs(δ)(t) . (5.118)

A time scale τ = 1 day has been assumed for the returns, and the corre-
sponding subscript has been dropped, δS

(γ)
1d (t) ≡ δS(γ)(t). We also assume

stationary markets, i.e. C(γ, δ) is time-independent. The returns δS(γ)(t)
have been defined in (5.1), σ(γ) are their standard deviations, the normalized
returns δs(γ) were defined in (5.2), and the averages 〈. . .〉 are taken over time.
Uncorrelated assets have C(γ, δ) = δγ,δ. In finance, the label β is reserved for
the correlation of a stock γ (or a portfolio of stocks) with the market [10]:

β = C(γ,market) . (5.119)
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In order to appreciate the subsequent discussion, let us look at two un-
correlated time series δs(1)(t) and δs(2)(t), each of length T (and zero mean,
unit variance, of course). From (5.117), we have

C(1, 2) =
1
T

T∑
t=1

δs(1)(t)δs(2)(t) . (5.120)

C(1, 2) is the sum of T random variables with zero mean. Despite the ab-
sence of correlations (by construction) between the two time series, for finite
T , C(1, 2) is a random variable itself and different from zero. C(1, 2) is drawn
from a distribution with zero mean and a standard deviation decreasing as
1/
√

T . Only in the limit T → ∞ will C(1, 2) → 0, as is appropriate for uncor-
related random variables. The finite time scale T , over which the correlations
between the two time series are determined, produces a noise dressing of the
correlation coefficient. More specifically, for two independent time series of
length T of normally distributed random numbers εi(t) with zero mean and
unit variance, the correlation coefficient again is a random number [120]

〈εi(t)εj(t)〉 = δij +

√
1 + δij

T
εi(t) . (5.121)

The finite-length autocorrelation is a random normally distributed variable
with mean unity and variance 2/T , and the cross-correlation is a random
normally distributed variable with zero mean and variance 1/T .

For correlation matrices where many time series enter, noise dressing may
be a severe effect. N time series with T entries each may be grouped into an
N × T random matrix M, and the correlation matrix is written as C = T−1

M · M where M is the transpose of M. In the same way as noise dressing
for finite T produced an artificial finite random value for C(1, 2), for finite T ,
noise dressing will produce artificial finite random entries C(γ, δ) in the corre-
lation matrix. Figure 5.26 demonstrates this effect: the correlation matrix C
of 40 uncorrelated time series is random when the time series is only 10 steps
long (left panel). The absence of correlations C(γ, δ) = δγ,δ is well visible for
1000 time steps (right panel). The two panels of Fig. 5.26 are consistent with
(5.121). For T = 10, the autocorrelation is a Gaussian variable with mean
unity and standard deviation 0.48, and the cross-correlation coefficients are
Gaussians with mean zero and standard deviations of 0.32. For T = 1000,
the mean values are the same but standard deviations have decreased by
one order of magnitude. Roughly, for N time series, T � N time steps are
required in the series in order to produce statistically significant correlation
matrices.

Random matrix theory predicts the spectrum of eigenvalues λ of a ran-
dom matrix (of the type appropriate for financial markets [121, 122]) to be
bounded and distributed according to a density

ρ(λ) =
Q

2πσ2

√
(λmax − λ)(λ − λmin)

λ
,
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Fig. 5.26. Noise dressing of a correlation matrix. The correlation matrix of 40
uncorrelated time series is shown for a length of 10 steps (left panel) and 1000 steps
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λmax
min = σ2

(
1 +

1
Q

± 2
√

1
Q

)
, (5.122)

where Q = T/N ≥ 1 is the ratio of time series entries to assets. This density
is shown as the dotted line in Fig. 5.27.

Recently, two groups calculated the correlation matrices of large samples
of stocks from the US stock markets [121, 122], and compared their results
to predictions from random matrix theory. This is partly done with refer-
ence to the complexity of a real market (a detailed analysis of all correlation
coefficients would not be useful) and partly in order to compare empirical
correlations with a null hypothesis (purely random correlations, the alterna-
tive null hypothesis of zero correlations being rather implausible). Random
matrix theory was developed in nuclear physics in order to deal with the en-
ergy spectra of highly excited nuclei in a statistical way when the complexity
of the spectra made the task of a detailed microscopic description hopeless
[123] – a situation reminiscent of financial markets.

Figure 5.27 displays the eigenvalue density of the correlation matrix of 406
firms out of the S&P500 index based on daily closes from 1991 to 1996 [121].
Similar results are available also for other samples of the US stock market
[122]. A very large part of the eigenvalue spectrum is indeed contained in the
density predicted by random matrix theory, and therefore noise-dressed.

There are some eigenvalues falling outside the limits of (5.122), however,
which contain more structured information [121, 122]. The most striking is
the highest eigenvalue λ1 ≈ 60. Its eigenvector components are distributed
approximately uniformly over the companies, demonstrating that this eigen-
value represents the market itself. Another 6% of the eigenvalues fall outside
the random matrix theory prediction for the spectral density but lie close to
its upper end. An evaluation of the inverse participation ratio of the eigen-
vectors [122] suggests that there may be a group of about 50 firms with def-
initely non-random correlations which are responsible for these eigenvalues.
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Fig. 5.27. Density of eigenvalues of the correlation matrix of 406 firms out of the
S&P500 index. Daily closing prices from 1991 to 1996 were used. The dotted line is
the prediction of random matrix theory. The solid line is a best fit with a variance
smaller than the total sample variance. The inset shows the complete spectrum
including the largest eigenvalue which lies about 25 times higher than the body
of the spectrum. By courtesy of J.-P. Bouchaud. Reprinted from L. Laloux et al.:
Phys. Rev. Lett. 83, 1467 (1999), c©1999 by the American Physical Society

Interestingly, high inverse participation ratios are also found for some very
small eigenvalues. While they apparently fall inside the spectral range of ran-
dom matrix theory, the high values found here seem to give evidence for
possibly small groups of firms with strong correlations [122]. However, these
groups would not have significant cross-group correlations.

Kwapién et al. have shown that drawing 451 time series of length 1948
each out of a Gaussian distribution produces a remarkably good approxima-
tion to (5.122) [124]. For fixed N , Q increases with T , and λmax and λmin

approach each other and both approach σ2 (σ = 1 in our case). We there-
fore recover an N -fold-degenerate eigenvalue 1, as expected for uncorrelated
variables.

The empirical properties of the S&P500 correlation matrices can be clari-
fied further using a model of group correlations [125]. Here, one assumes that
industries cluster in groups (labeled by g while the individual firms are labeled
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by γ), and that the return of a stock contains both a “group component” and
an “individual component”

δs(γ)(t) =
√

wgγ

1 + wgγ

fgγ
(t) +

√
1

1 + wgγ

εγ(t) . (5.123)

fgγ
(t) and εγ(t) are both random numbers and represent the synchronous

variation of the returns within a group, and the individual component with
respect to the group, respectively. The relative weight of the group dynamics
with respect to the individual dynamics is measured by the weight factor
wgγ

. In the model, there may also be a number of companies which do not
belong to a group. They formally obtain a weight factor w = 0. This is a
straightforward generalization of the one-factor model (5.99) introduced when
discussing variety. There is no built-in correlation between industries. With
infinitely long time series, the correlation matrix of the model without in-
group randomness [εγ(t) ≡ 0] is a block diagonal matrix. It is a direct product
of Ng × Ng matrices whose entries are all unity (Ng is the size of group g).
These blocks have one eigenvalue equal to Ng, and Ng−1 eigenvalues equal to
zero. When the time series are finite, and the firms have an individual random
component in their returns, the eigenvalues will be changed. The influence
on the eigenvalue Ng will be minor so long as the individual randomness is
not too strong. However, the most important effect will be a splitting of the
(Ng − 1)-fold-degenerate zero eigenvalues into a finite spectral range. Under
special circumstances, one may also observe high inverse participation ratios
for small eigenvalues [125]. This happens when the noise strength of a group
is small, i.e., when the variance of the “individual firm contribution” to the
returns is small compared to the variance of the “group contribution”. This
effect is also seen in numerical simulations [125].

A nice feature of this model is that its correlation coefficients can be de-
termined analytically for finite times series lengths T [120] when the price
dynamics is governed by geometric Brownian motion (returns normally dis-
tributed). From (5.117) and using (5.121), we find

C(γ, δ;T ) =
√

wgγ

1 + wgγ

√
hgδ

1 + whδ

(
δgγhδ

+

√
1 + δgγhδ

T
εgγhδ

)

+

√
1

1 + wgγ

√
1

1 + whδ

(
δγδ +

√
1 + δγδ

T
εγδ

)

+
√

wgγ

1 + wgγ

√
1

1 + whδ

1√
T

εgγδ

+

√
hgδ

1 + whδ

√
1

1 + wgγ

1√
T

εγhδ
(5.124)
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to leading order in
√

T . The indexation of the four random numbers ε is
meant to indicate that they are different and independent, but is irrelevant
else.

Moreover, the model can be simulated numerically quite easily. When
comparable parameters are used, an eigenvalue spectrum similar to Fig. 5.27
is obtained. This is demonstrated in Fig. 5.28. In that simulation it was
assumed that assume that, among N = 508 stocks considered, there are six
correlated groups g = 1, . . . , 6 with sizes growing as 2g+1 and weights wg =
1 − 2−g−1. The sizes increase from 4 to 128 companies, and weight factors
increase from 0.75 to 0.99 [120]. The remaining 256 stocks were supposed to
be uncorrelated.

For a time series length of T = 1, 650, the spectrum in the top left panel
of Fig. 5.28 is rather similar to 5.27. When the length of the time series is
increased to T = 5, 000 and on to T = 50, 000, the structure of the eigenvalue
spectrum of the correlation matrix is changed. The bulk of the spectrum first
develops a bimodal structure and subsequently splits into two distinct and
clearly separated spectra, one centered around λ = 0.5 and the other spec-
trum centered around λ = 1. In addition, we still have the large eigenvalues
discussed in the analysis of the S&P500 data.
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Fig. 5.28. Spectral densities ρT (λ) of simulated correlation matrices. The
length of the time series increases from top left to bottom right as T =
1, 650, 5, 000, 20, 000, 50, 000. The densities are split into two regions, 0 ≤ λ ≤ 2.2
(main body of each panel) and 2.2 ≤ λ ≤ 70 (inset of each panel). The densities
are given in units of N . By courtesy of B. Kälber. Reprinted from T. Guhr and B.
Kälber: J. Phys. A: Math. Gen. 36, 3009 (2003), c©2003 by the Institute of Physics
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Extending Noh’s argument [125], we can attribute the three groups of
spectra to different mechanisms. The large eigenvalues outside the spectrum
described by random matrix theory, consist of the market component and
the large eigenvalues of each individual industry. The eigenvalues centered
around λ = 0.5 represent intra-industry correlations. For every industry,
there is an almost Ng −1-fold degenerate eigenvalue at λ = 1/(1+wg) which,
with wg-factors in the range 0.75 . . . 0.99, lies close to λ = 0.5. (The N th

g

eigenvalue of the industry group is among the “large” eigenvalues.) These
eigenvalues descend from the Ng −1-fold degenerate zero eigenvalue obtained
in the simplified problem where all entries of the intra-industry correlation
matrix equal unity. Finally, the group of eigenvalues around λ = 1 represents
the trivial autocorrelation of those companies which do not belong to any
industry group.

The detailed understanding of the T -scaling of the entries of the correla-
tion matrix, (5.124), in the Noh model [125] allows to formulate a heuristic
method called power mapping, to identify instrinsic correlations in a broad
eigenvalue spectrum such as that shown in Fig. 5.27. Power mapping is equiv-
alent to artificially extending the length T of the time series underlying the
correlation matrix [120]. Power mapping is achieved by raising every element
of the correlation matrix to its qth power

C(q)(γ, δ;T ) = sign [C(γ, δ;T )] |C(γ, δ;T )|q . (5.125)

Notice that the power-mapped matrix C(q)(γ, δ;T ) is different from the qth

power of the correlation matrix [C(γ, δ;T )]q. Now consider the influence of
this mapping on the three different types of contributions to C(γ, δ;T ). The
diagonal terms

C(γ, γ;T ) ∼ 1 +
b1

T 1/2
→ C(q)(γ, γ;T ) ∼ 1 + q

b1

T 1/2
, (5.126)

where b1 is a constant. The intra-industry off-diagonal terms g = h but γ 
= δ
are mapped as

C(γ, δ;T ) ∼ a +
b2

T 1/2
→ C(q)(γ, γ;T ) ∼ aq + q

b2

T 1/2
, (5.127)

with constants 0 < a < 1 and b2. The terms off-diagonal both in industry
and in company index, on the other hand, behave as

C(γ, δ;T ) ∼ b3

T 1/2
→ C(q)(γ, γ;T ) ∼

(
b3

T 1/2

)q

∼ T−q/2 . (5.128)

When q > 1, the decay of these terms is accelerated by power-mapping with
respect to the diagonal or intra-industry off-diagonal terms. It is for this
suppression of off-diagonal noise-induced correlation coefficients that power-
mapping is equivalent to a prolongation of the time series.
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Numerical simulations of the Noh model confirm that power mapping with
q > 1 acts to reduce the noise dressing of the correlation matrix. With q = 1.5,
a clear two-peak structure in the eigenvalue spectrum is visible when the
original (q = 1) spectrum looked similar to Fig. 5.27. All three components of
the eigenvalue spectrum, intra-industry correlations, isolated companies, and
industry and market collective contributions are readily apparent. However, it
turns out that the range of powers q where the mapping separates the spectral
components, is actually quite limited. When q increases, the aq-constant in
the intra-industry off-diagonal terms are strongly suppressed with respect to
the equivalent term of size unity in the diagonal terms. Consequently, the
intra-industry correlation structure is distorted significantly, and the two-
peak structure in the eigenvalue spectrum of C(q)(γ, δ;T ) is lost. Apparently,
q = 1.5 is the optimal value for the power-mapping approach [120].

A variant of this model allows to perform a mean-field analysis of the
correlations in a stock market [126]. The dynamical equation is written as

Sα(t + 1) = (1 − εM − εg) [Sα(t) + εα(t)]

+
εM

N

N∑
β=1

[
Sβ(t) + εβ(t)

]
+

εg

Ng

∑
γ∈g

[Sγ(t) + εγ(t)] . (5.129)

N is the number of stocks in the market, and Ng is the size of the industry
group which a particular stock belongs to. εM and εg are coupling constants
(weight factors) parameterizing the correlation of the price movement of the
stock Sα with the market and the industry group. One important difference
to (5.123) is the explicit presence of the market mode. This is typical of
mean-field approaches in statistical physics. Its appearence in (5.129) does
not have an immediate financial interpretation. (However, one might think
about the benchmark-driven fund managers of today’s mutual fund industry.)
The other important difference to (5.123) becomes apparent when regrouping
the terms in (5.129) in a different manner (we set εM = 0 for simplicity)

δSα(t) + εg

[
Sα(t) − 1

Ng

∑
γ∈g

Sγ(t)

]
= εα(t) − εg

[
εα(t) − 1

Ng

∑
γ∈g

εγ(t)

]

(5.130)
The coupling to the stocks of the same industry is implemented through the
difference terms which measure the deviation of the current stock price Sα

from the “industry mean-field”
∑

γ Sγ , and similarly for the price changes εα.
The coupling to the market mode is realized with the same structure [126].

(5.129) can be rewritten as a continuity equation

δS1(t) = S(t + 1) − S(t) = ε(t) + ∆ · [S(t) + ε(t)] . (5.131)

∆ = ∆M + ∆g is a Laplace-type operator which describes flows due to the
presence of gradients from the market and industry modes over an underlying
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network. The gradients due to the intra-industry correlations are exhibited
by the difference terms in (5.130), and the gradients from market correlations
have similar structure. The elements of ∆M and ∆g are functions of εM and
εg, respectively [126]. The picture embedded is that of a network whose nodes
are formed by the labels of the stocks in the market, where a part of the price
changes is generated by flows induced by the correlations.

Setting εg = 0 and εM = 1 produces a mean-field limit where the correla-
tion matrix can be calculated analytically. Its entries are [126]

C(γ, δ;T → ∞) =

⎧⎨
⎩

a(εM )
[1 − a(εM )]N + a(εM )

if γ 
= δ

1 if γ = δ
(5.132)

with a(εM ) = εM (3−2εM )/(2−εM ). The largest eigenvector of this correlation
matrix

λM =
N

[1 − a(εM )] N + a(εM )
≈ 2 − εM

(1 − εM )2
as N → ∞ . (5.133)

The eigenvalue of the market component diverges quadratically as the cou-
pling strength εM → 1 in the large-N limit. This divergence, which is rem-
iniscent of critical phenomena as the fully correlated state is approached, is
confirmed by numerical simulations. The actual position of the market eigen-
value can be used to calibrate the coupling constant εM of the model. When,
at the next stage, the industry groups and the coupling constants εg are de-
termined, one obtains good fits to the eigenvalue spectra shown in Fig. 5.27.
In particular, the fits produce the very large market eigenvector λM , several
large eigenvalues due to industry correlations above the spectral range of ran-
dom matrix theory, and significant spectral weight at or below the lower edge
of the random matrix theory spectrum [126]. As has been shown above based
on the model (5.123), this weight is the necessary counterpart to the large
intra-industry eigenvalues. Based on the eigenvalues, a rather detailed picture
of correlations and industry groups for financial markets can be derived.

Approaches developed for cross-correlations in markets can also be adap-
ted to search for temporal correlation structures in one time series [124, 127].
Take a high-frequency time series of the DAX such as that shown in Fig.
5.5, and transform to normalized returns, (5.2). Now divide the history into
N days, and let T denote the length of the intraday time series recorded in
15-second intervals. One now can form a correlation matrix C(ni, nj) where
ni denotes the nith day of the history. Averaging is done over the intraday
recordings. C(ni, nj) = 1 would imply that the time series of days ni and nj

were identical. Of course, C again is a random matrix, and one can proceed
as above.

From about three years of DAX high-frequency data a spectrum quite
similar to Fig. 5.27 is found where two eigenvalues of the order 4 fall outside
the spectrum of random matrix theory, and are thus statistically significant
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[124, 127]. They can be interpreted by generating a weighted return time
series

δs
(λk)
15′′ (t) =

N∑
α=1

sign(vk
α)|vk

α|2δs(α)
15′′(t) . (5.134)

For the eigenvalue λk, the weights are determined by the corresponding eigen-
vectors vk. These two time series show one prominent spike each. The spike
of one time series is positive and located at 2:30 p.m. This is the local time in
Germany when the financial news release in the United States starts. Inter-
estingly, it is one hour before the opening of Wall Street which is not clearly
detectable, and there is a significant weighted positive return at that time.
The other spike is negative and located at 5 p.m., which corresponds to the
closing of the German market.

There are other ways of representing correlations in a financial market.
The preceding discussion may be thought of, roughly speaking, as an ensem-
ble view containing (all correlation coefficients of) a correlation landscape
built on a regular lattice (the indices of the correlation matrix entries), con-
taining all fine details in a kind of grayscale (all values between −1 and 1
represented). An alternative representation could be a view where only the
highest elevations in a landscape are connected (maximal correlations involv-
ing a stock emphasized, irrespective of its position in an index), and con-
trast is enhanced to black and white (all subdominant correlation coefficients
dropped). In this way, the mountain ranges of the landscape become corre-
lation clusters of stocks in a market or market indices in the global financial
systems. A taxonomy of stock markets is built [128]–[130], which emphasizes
the topology of correlations. This taxonomy is similar in structure though
different in detail from the one derived from the model of coupled random
walks [126].

We slightly simplify the discussion of the actual analysis, which proceeds
by using elements of spin-glass theory such as ultrametric spaces. Let C(γ, δ)
defined in (5.117) be the correlation coefficient between the assets γ and δ
and define a “distance”

d(γ, δ) =
√

2 [1 − C(γ, δ)] . (5.135)

Highly correlated assets have a small distance in this representation. In this
way, a hierarchical structure of asset clusters can be formed, and their evolu-
tion with time can be monitored. When, e.g., country indices of stock markets
are analyzed, three distinct clusters, North America, Europe, and the Asia–
Pacific region, emerge [129]. The participation of countries in these clusters
evolves with time, however. The North American cluster including the Dow
Jones Industrial Average, the S&P500, the Nasdaq 100, and the Nasdaq Com-
posite is stable over time. The European cluster contains, in the late 1980s,
the Amsterdam AEX, the Paris CAC40, the DAX, and the London FTSE.
In the mid-1990s, the Madrid General and Oslo General indices have joined
the European cluster. Other countries, most notably Italy, stayed outside this
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cluster. A similar expansion is observed for the Asia–Pacific cluster, where
Japan remains a poorly linked important economy in the cluster region.

A similar analysis can be performed for the stocks within one market
[128, 130]. When the best linked stocks of the New York Stock Exchange are
graphed, a rather fractal structure emerges. Branches of this cluster often can
be identified as industries. Interestingly, the stock of General Electric forms
a natural center of this network.

Also, a connection to graph and network theory can be derived, in rather
close analogy to such a taxonomy [131]. After defining a reduced variable
(again for a one-day time horizon) δS(γ) −N−1

∑N
δ=1 δS(δ)(t) by subtracting

the one-day return of the entire market, one readily calculates the correlation
matrix of this reduced variable for the N assets of a market whose structure
roughly is comparable to that of C(γ, δ). The correlation coefficients are as-
signed to the edges of fully connected graphs. (A fully connected graph is a
graph generated from an ensemble of points/vertices by connecting each point
to all other points.) The sum of all edges connecting to one particular vertex is
the influence strength of this vertex, i.e., a measure of how well connected this
vertex is to the rest of the system. Using data from the 500 companies of the
S&P500, it turns out that the distribution of these influence strengths follows
a power law with an exponent −1.8, i.e., the network formed from the cross-
correlations of the S&P500 is scale-free with a fat-tailed influence-strength
distribution [131]. A comparable analysis of other scale-free networks, such
as the world wide web or the metabolic network, produces exponents sys-
tematically larger than two. These systems apparently possess less fat tails
in their influence-strength distribution than financial markets.

With a somewhat related procedure, one can also map the correlations in
a stock market on a liquid [132]. Here, however, the idea is to search for a
quantity satisfying the axiomatic properties of a distance in Euclidean space.
To do this, introduce an instantaneous stock price conversion factor Pγδ by

S(γ)(t) = Pγδ(t)S(δ)(t) . (5.136)

The three equations for three stocks can only be satisfied when Pβδ(t) =
Pβγ(t)Pγδ(t). These relations can be defined on an ensemble of H time hori-
zons T1 < T2 < . . . < TH . Finally, logarithmic variations of these conversion
factors with time are defined as

dα
γδ(t) =

1
Tα

ln
[

Pγδ(t)
Pγδ(t − Tα)

]
. (5.137)

Interestingly, the H-component vector dγδ ≡ (d1
γδ, . . . , d

N
γδ) has all the prop-

erties required for an oriented distance vector between the assets γ and δ and,
for any norm in Euclidean space, ||dγδ|| is a well-defined distance between γ
and δ. Assets with a small distance behave as strongly correlated.

Summing over one index, i.e., all shares in the market, generates position
vectors
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xγ(t) =
1
N

N∑
δ=1

dγδ(t) , xγ − xδ = dγδ . (5.138)

The temporal fluctuations of the assets translate into fluctuations of the
conversion factors Pγδ(t), their distances dγδ(t), and their positions xγ(t).
We would thus obtain a mapping of the financial assets on the positions of
particles in a gas or a liquid [132].

The standard deviation of the positions is

σ =
1
N

√ ∑
1≤γ<δ≤N

||dγδ||2 (5.139)

and, within this formalism, it plays a role reminiscent of the variety discussed
above, and is a measure of the linear extension of the system. Transposing
to financial markets, it is a measure of the heterogeneity of the market at a
given time.

Using the time dimension, one can construct a temperature. To this end,
the linear system size is scaled to unity through rγ = xγ/σ, and a velocity
is defined as vγ(t) = [rγ(t) − rγ(t − T1)]/T1. A temperature then is defined
via T = 〈〈v2

γ(t)〉γ〉t/H. Finally, from the two-point pair correlation function,
one can derive a pair potential for the particles. This potential possesses a
long-range attractive tail and a short-range repulsive core. The long-range
attractive tail confines the particles in a finite volume σH . Therefore, so long
as σ is finite, they behave as a droplet of liquid. Such a mapping of financial
market on droplets of liquids is possible both for small ensembles of assets
such as the 30 stocks composing the DAX [132] as well as for larger ensembles,
e.g., 2800 stocks traded at the New York Stock Exchange [133].



6. Turbulence and Foreign Exchange Markets

The preceding chapter has shown that, when looking at financial time series
in fine detail, they are more complex than what would be expected from
simple stochastic processes such as geometric Brownian motion, Lévy flights
or truncated Lévy flights. One of the main differences to these stochastic
processes is the heteroscedasticity of financial time series, i.e., the fact that
their volatility is not a constant. While this has given rise to the formulation
of the ARCH and GARCH processes [48, 49] briefly mentioned in Chap. 4.4.1,
we here pursue the analogy with physics and consider phenomena of increased
complexity.

6.1 Important Questions

The flow properties of fluids are such an area. In this chapter, we will discuss
the following questions:

• How do fluid flows change as, e.g., their velocity is increased?
• Is there a phase transition between a slow-flow (laminar) and a fast-flow

(turbulent) regime?
• What are the hallmarks of turbulence? What are its statistical properties?
• Are there models of turbulence?
• Are there similarities in the time series and in the statistical properties

between turbulence and financial assets?
• Are the models of turbulence useful to formulate models for financial mar-

kets?
• Are there benchmark financial assets which are particularly well suited to

study statistical and time series properties?
• Is there a relation to geometrical constructions such as fractals and multi-

fractals, and is it useful?

6.2 Turbulent Flows

A good introduction to the field of turbulence has been written by Frisch
[134]. We first introduce turbulence in a phenomenological way. In a second
step, we discuss time series analysis of turbulent signals.
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6.2.1 Phenomenology

The basic question is: how do fluids flow? The answer is not clear-cut, and
depends on a control parameter, the Reynolds number

R =
Lv

ν
. (6.1)

Here, L is a typical length scale, v a typical velocity, e.g.,
√〈v2(x)〉, and ν the

kinematic viscosity. For incompressible flows in fixed geometry, the Reynolds
number R is the only control parameter.

Then, in the limit R → 0, laminar flow obtains. In the opposite limit,
R → ∞, one has turbulent flow. What happens in between is much less clear.
Apparently, it is not clear to what extent the transition to turbulence is sharp
or smooth, and even less the critical value Rc at which it might take place.

To illustrate this point, we consider a uniform flow with velocity v = vx̂,
past a cylinder of diameter L, oriented along ẑ [134]. In this simple case,
the quantities L and v directly enter the numerator of the Reynolds number.
A pictures of the resulting flow at small Reynolds number is shown in the
upper panel of Fig. 6.1. R = 1.54 is typical for the laminar flow in the small-
R limit. The fluid flows along the cylinder surface on both sides and closes
behind the cylinder. As the Reynolds number is increased, say in the range
R ∼ 10, . . . , 20, the flow detaches from the cylinder walls at the rear, and
forms two countercirculating eddies. The bottom panel of Fig. 6.1 shows a
rather extreme case (R = 2300) of the opposite limit. At very large Reynolds
numbers, eddies of all sizes form in irregular structures behind the cylinder.
The situation is rather similar to the bottom panel of Figs. 6.1. This picture
shows a turbulent water jet emerging from a nozzle at R ≈ 2300, and has
been preferred for its photographic quality.

The basic equation for fluid flow is the Navier–Stokes equation

∂tv + v · ∇v = −∇P + ν∇2v . (6.2)

The various terms have an immediate interpretation. The left-hand side is
the total derivative dv/dt including two contributions: the explicit acceler-
ation of fluid molecules within a small volume, and the change in velocity
due to the flow, i.e., molecules entering and leaving the small reference vol-
ume with different velocities. The first term on the right-hand side is the
external force (pressure gradient), and the second term represents friction.
An incompressible fluid, in addition, has

∇ · v = 0 . (6.3)

It is believed that these two equations are sufficient to describe turbulence.
The problem is that there are no explicit solutions, and almost no exact
information on their properties. Much of our information therefore comes
from computer simulations.
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Fig. 6.1. Flow past a circular cylinder at R = 1.54 (top panel, photograph by S.
Taneda). Turbulent water jet at R ≈ 2300 (bottom panel, photograph by Dimotakis,
Lye, and Papatoniou). Reprinted from M. Van Dyke (ed.): An Album of Fluid
Motion, c©1982 Parabolic Press, Stanford
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Here are a few important facts:

• Scaling: With
δv‖(�) = [v(r + �) − v(r)] · �̂ (6.4)

being the difference of the component of the velocity parallel to the flow,
between two points along the flow direction, the structure function

S2(�) = 〈δv2
‖(�)〉 ∼ �2/3 (6.5)

has power-law scaling with the distance of the points. At the same time,
the same function involving the velocity components perpendicular to the
flow direction scales with the same exponent

〈δv2
⊥(�)〉 ∼ �2/3 . (6.6)

The energy spectrum then scales as

E(k) ∼ k−5/3 , (6.7)

where k ∼ �−1 ∼ ω is the wavenumber.
• The rate of energy dissipation per unit mass remains finite even in the limit

of vanishing viscosity:

dε

dt
> 0 even for ν → 0 . (6.8)

• Kolmogorov theoretically derived

〈δv3
‖(�)〉 = −4

5
ε� for R → ∞ , (6.9)

which represents one of the few exact results on turbulence. It is derived
from the Navier–Stokes equation, assuming in addition homogeneity and
isotropy.

• The cascade idea is illustrated in Fig. 6.2. Here, one starts from the ob-
servation that turbulence generates eddies at many different length scales.
One now assumes that external energy is injected into the eddies at the
largest scale of the problem (injection scale). Eddies break up into smaller
eddies which themselves break up into smaller eddies, etc., and energy
is transferred from the big eddies into the small eddies, until one arrives
at the smallest scale where the energy is finally dissipated. Kolmogorov
and Obhukov have turned this idea into a quantitative model [134] from
which, e.g., the scaling exponents of the various moments of the velocity
differences, (6.5), (6.6), or (6.9), can be derived.
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Fig. 6.2. The cascade idea. Energy is injected at the biggest length scale. Eddies at
that scale break up into smaller eddies, transferring energy to smaller and smaller
scale, until it is dissipated at the smallest scale, the dissipation scale
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Fig. 6.3. Time series of a turbulent flow. The local velocity of a helium jet at low
temperature has been recorded with a hot-wire anemometer. Data provided by J.
Peinke, Universität Oldenburg
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6.2.2 Statistical Description of Turbulence

Some progress can be made by attempting a statistical description of turbu-
lence [135, 136]. Figure 6.3 suggests a close analogy to problems of finance: it
represents the signal (velocity of the flow) recorded as a function of time, by
a hot-wire anemometer, a local probe in a low-temperature helium jet. These
data are part of the time series used in the statistical analysis of Chabaud et
al., to be discussed below [135]. In the absence of information, it would be
difficult to decide if this is a financial time series or not!

From these time series, one can deduce probability density functions for
the changes of the longitudinal velocity component (6.4) measured on differ-
ent length scales �i [135, 136]. In much the same way, we discussed proba-
bility density functions of the price changes of financial assets, measured on
different time scales, e.g., Fig. 5.10. Figure 6.4 displays such a set of distrib-
ution functions. For large scales, the probability densities are approximately
Gaussian, while they approach a more exponential distribution as the length
scales are reduced.

Do these probability densities show scaling? We may rescale the distrib-
utions empirically as (the index ‖ on δv will be dropped from now on)

P�(δv) → 1
σ�

P�

(
δv

σ�

)
, (6.10)

Fig. 6.4. Probability density functions of the longitudinal velocity in turbulent
flows at different length scales, decreasing from top to bottom in the wings. �i =
424, 224, 124, 52, 24 from top to bottom with �0 = 1024. Circles are data points,
and crosses have been obtained by iteration with the experimentally determined
conditional probability density functions, starting at �0. By courtesy of J. Peinke.
Reprinted from R. Friedrich and J. Peinke: Phys. Rev. Lett. 78, 863 (1997), c©1997
by the American Physical Society
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Fig. 6.5. Rescaled probability density function for the longitudinal velocity changes
of turbulent flows. The solid line is a fit explained in the text. By courtesy of J.
Peinke. Reprinted from B. Chabaud, et al.: Phys. Rev. Lett. 73, 3227 (1994), c©1994
by the American Physical Society

where σ� is the empirical standard deviation at length scale �. As shown
in Fig. 6.5, all data now more or less collapse onto a single master curve,
demonstrating that they obey the same basic laws, and are only distinguished
by the different length scales of the measurement. The master curve has
some similarity to a Gaussian in its center and is more like an exponential
distribution in the wings. While there is no simple expression, it can be
described as an integral over a continuous family of Gaussians [135]

1
σ�

P�

(
δv

σ�

)
=
∫ ∞

−∞
d ln σ G�(ln σ)

1
σ

P�0

(
δv

σ

)
(6.11)

with

G�(lnσ) =
1√

2πλ(�)
exp

(
− ln2 σ/σ�0

2λ(�)

)
. (6.12)

Notice that the empirical distribution function at the largest length scale,
P�0 , is nearly Gaussian. The probability distribution at a smaller length scale
� < �0 is therefore represented by a weighted integral over Gaussians whose
standard deviations are log-normally distributed. This integral over Gaus-
sians describes the curves extremely well. The standard deviations σ� are
scale dependent through the width λ(�) of their distribution, and generate
themselves from those on bigger length scales. This directly implements the
cascade idea. However, Kolmogorov’s theory predicts that λ ∝ − ln(�/�0)
which is not observed in the experiment.
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At this point, recall the Gaussian distribution which describes the Wiener
stochastic process. All Gaussians can be collapsed onto each other by rescal-
ing with the standard deviation, in much the same way as we rescaled the
empirical distribution functions above. For a Wiener process, we know that
σ ∝ √

T − t, so that the empirical standard deviation of an eventually in-
complete data set is not needed. Above, in (6.10), the empirical standard
deviation was used. From the general similarity of the two procedures, one
may wonder if the similarity between turbulence and stochastic processes is
superficial only. Or: can turbulence be described as a stochastic process in
length scales, instead of (or in addition to) time?

In order to pursue this question, we first check the Markov property, cf.
Sect. 4.4.1. Markov processes satisfy the Chapman–Kolmogorov–Smoluchow-
ski equation, (3.10), which we rewrite as

p(δṽ2, λ2|δṽ1, λ1) =
∫ ∞

−∞
dṽ3 p(δṽ2, λ2|δṽ3, λ3)p(δṽ3, λ3|δṽ1, λ1) . (6.13)

λ has been defined above, and the velocities have been rescaled as

δṽ = δv 3
√

�0/� . (6.14)

This form of rescaling is suggested by theoretical arguments [134, 136]. Under
the assumption that the eddies are space-filling, and that the downward en-
ergy flow is homogeneous, on can derive a scaling relation ξn = n/3 between
the exponents ξn of the structure functions, and their order n which is rather
well satisfied by the data at least for small n, cf. Fig. 6.7 below.

Indeed, the empirical data satisfy the Chapman–Kolmogorov–Smoluchow-
ski equation: one can superpose the conditional probability density function
p(δṽ2, λ2|δṽ1, λ1) derived from the experimental data, with that calculated
according to (6.13), using experimental data on the right-hand side of the
equation. The result very well matches the p(δṽ2, λ2|δṽ1, λ1) measured di-
rectly. As a consequence, one is allowed to iterate the experimental prob-
ability density function for �0 (not shown in Fig. 6.4) with (6.13) and the
experimentally determined conditional probability distributions. The results
of this procedure (shown as crosses in Fig. 6.4) exactly superpose the exper-
imental data on scales � < �0, shown as circles.

When the Chapman–Kolmogorov–Smoluchowski equation is fulfilled, one
may search for a description of the scale-evolution of the probability density
functions in terms of a Fokker–Planck equation. Quite generally, one can
convert the convolution equation (6.13) into a differential form by a Kramers–
Moyal expansion [37],

∂p(δṽ2, λ2|δṽ1, λ1)
∂λ2

=
∞∑

n=1

[
− ∂n

∂(δṽ2)n
D(n) (δṽ2, λ2) p(δṽ2, λ2|δṽ1, λ1)

]
.

(6.15)
The Kramers–Moyal coefficients are defined as
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D(n) (δṽ2, λ2) =
1
n!

lim
λ3→λ2

1
λ3 − λ2

∫ ∞

−∞
d(δṽ3) (δṽ3 − δṽ2)

n
p(δṽ3, λ3|δṽ2, λ2) .

(6.16)
If all D(n) with n > 2 vanish, one obtains a Fokker–Planck partial differential
equation

∂p(δṽ2, λ2|δṽ1, λ1)
∂λ2

=
[
− ∂n

∂(δṽ2)
D(1) (δṽ2, λ2) (6.17)

+
∂2

∂(δṽ2)2
D(2) (δṽ2, λ2)

]
p(δṽ2, λ2|δṽ1, λ1) ,

and the stochastic process is completely characterized by the drift and dif-
fusion “constants” D(1) and D(2). It turns out that, within experimental
accuracy, this is the case, and

D(1)(δṽ, λ) ∼ −δṽ , (6.18)
D(2)(δṽ, λ) ∼ a(λ) + b(λ)(δṽ)2 . (6.19)

Great care must be taken when estimating these quantities from actual data.
In particular, for a discrete, finite sampling interval contributions from the
drift terms D(1) may contaminate the esimators of D(2) and lead to incorrect
estimates of the parameters in (6.19) [137]. This may have affected actual
estimates [136, 137], but our general conclusions are robust. A related ob-
servation has been made from the perspective of integration of stochastic
differential equations by Timmer [138].

In this perspective, turbulence is described as a stochastic process over a
hierarchy of length scales. The drift term contains the systematic downward
flow of energy postulated by the cascade model. The diffusion term describes
the fluctuations around the otherwise deterministic cascade [136], and shows
that there is a strong random component in this energy cascade. This is
connected with the indeterminacy of the number and size of the smaller
eddies produced from one big eddy, as one drifts down the cascade.

6.2.3 Relation to Non-extensive Statistical Mechanics

When the evolution of the probability density of a stochastic process is de-
scribed by a Fokker–Planck equation, an equivalent stochastic differential
equation for the stochastic variable can be found, and it takes the form of
a Langevin equation, (5.86) [37]. A general form of a non-linear Langevin
equation is [93]

dx

dt
= −γF (x) + ση(t) . (6.20)

It is not necessary to consider explicitly a non-linearity in the diffusion term,
as it can be reduced to a constant by a transformation of variables [37].
F (x) = −∂U(x)/∂x is the non-linear force. If U(x) = C|x|2α, the non-linear
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Langevin equation generates one of the power-law probability distributions
of non-extensive statistical mechanics, cf. Sect. 5.5.7. The parameters are
identified as

q = 1 +
2α

αn + 1
, β̃ =

2α

1 + 2α − q
β0 . (6.21)

As in Sect. 5.5.7, β̃ = 1/kBT is the inverse temperature and n the number of
degrees of freedom of the χ2-distribution used to describe the slow temporal
fluctuations of the parameters of the Langevin equation [93].

Assume now that a test particle in a turbulent flow moves for a while
in a region with a (fluctuating) energy-dissipation rate εr on scale r. τ is
a typical time scale during which energy is dissipated, typically the time
of sojourn in the region with εr. Then β = εrτΛ is a fluctuating quantity,
and as a model we may assume that it is χ2-distributed. Λ is a constant
necessary to adjust the dimensions of β. At the smallest scale, the dissipation
scale η, β = u2

ηΛ, where uη is a fluctuating velocity. In the simplest model,
the three components of uη would fluctuate independently and would be
drawn from Gaussian distributions with mean zero. This would suggest that
n = 3, and with α ≈ 1 (weak non-linearity of the forcing potential) would
give q ≈ 3/2. These values are in very good agreement with experimental
data on velocity differences of a test particle over very small time scales
in turbulent Taylor–Couette flow with a Reynolds number R = 200 [93,
139]. The probability distributions observed there are rather similar to those
depicted in Figs. 6.4 and 6.5. At the dissipation scale, the fluctuations of
εr=η can be viewed in terms of the ordinary diffusion of a particle of mass M

which is subject to noise of a temperature T = 1/kBβ̃. The changes of the
distributions as the spatial scale of the experiments is varied are embodied
in different values of n, q, and β̃. Tsallis statistics allows us to relate one
to another. This discussion suggests that Tsallis statistics is applicable to
systems with fluctuating energy-dissipation rates.

6.3 Foreign Exchange Markets

6.3.1 Why Foreign Exchange Markets?

Foreign exchange markets are extremely interesting for statistical studies be-
cause of the number and quality of data they produce [102, 140]. The markets
have no business-hour limitations. They are open worldwide, 24 hours a day
including weekends, except perhaps a few worldwide holidays. Trading is es-
sentially continuous, the markets (at least for the most frequently traded
currencies) are extremely liquid, and the trading volumes are huge. Daily
volumes are of the order of US$ 1012, approximately the gross national prod-
uct of Italy. Typical sizes of deals are of the order of US$ 106–107, and most
of the deals are speculative in origin. As a consequence of the liquidity, good



6.3 Foreign Exchange Markets 183

databases contain about 1.5 million data points per year, and data have been
collected for many years.

6.3.2 Empirical Results

Ghashghaie et al. [141] analyzed high-frequency data consisting of about
1.5× 106 quotes of the US$/DEM exchange rate taken from October 1, 1992
until September 30, 1993. The probability density function for price changes
δSτ over a time scale τ is shown in Fig. 6.6. The time scale τ of the returns
increases from top to bottom, and the curves have been displaced vertically,
for clarity. Both the fat tails characteristic of financial data, and the similarity
to the distributions in turbulence, e.g., Fig. 6.4, are apparent. Specifically, one
can notice a crossover from a more tent-shaped probability density function
at short time scales to a more parabolic (Gaussian) one at longer scales. This
would imply that the probability density function is not form-invariant under
rescaling, as was found, at least for not too long time scales, in the analysis
of stock market data [62] discussed in Sect. 5.6.1.

There are more analogies between foreign exchange markets and turbu-
lence. For example, one can investigate the scaling of the moments of the

Fig. 6.6. Probability density function for variations of the US$/DEM exchange
rate for time delays ∆t ≡ τ = 640 s, 5120 s, 40 960 s, and 163 840 s (top to bottom).
The full lines are fits using integrals over Gaussian distributions. The identification
of the legends with our text is: ∆x ≡ δSτ and ∆t ≡ τ . By courtesy of W. Breymann.
Reprinted by permission from Nature 381, 767 (1996) c©1996 Macmillan Magazines
Ltd.
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Fig. 6.7. Dependence of the scaling exponents ξn of the nth moment of the proba-
bility densities on its order for foreign exchange markets and turbulent flows. The
dotted line is ξn = n/3. By courtesy of W. Breymann. Reprinted by permission
from Nature 381, 767 (1996) c©1996 Macmillan Magazines Ltd.

distribution function with time scale (referring to the financial data)

〈|δSτ |n〉 ∼ τ ξn . (6.22)

Examples of the equivalent scaling behavior in turbulence, involving δv(�),
have been discussed in Sect. 6.2.1. Figure 6.7 shows the dependence of the
exponents found in foreign exchange rates and turbulence on the order of
the moment. The turbulence data start on the line ξn = n/3 at small n,
discussed above [141], and then bend downward, in rough agreement with
a prediction by Kolmogorov. The financial data are slightly off both the
ξn = n/3 line and the turbulence data, but it should be noted that estimates
of the exponents can vary up to 30% depending on details of the estimation
procedure. However, even with different methods, the scaling of the exponents
of the moments with their order systematically has a concave shape [140, 142].

As a consequence of this analysis, one would postulate a strong simi-
larity, perhaps a true mapping, between turbulence and foreign exchange
markets [141]. From the cascade model for turbulence, one would then infer
the existence of some kind of cascade in financial markets. Details of this
conjectured correspondence are shown in Table 6.1.

The idea of a cascade, perhaps an information cascade, is not completely
speculative. It has been born in an analysis of time-scale-dependent volatility
in FX and commodity markets in the economics literature [143], and has also
been hypothezized for the S&P500 stock market index [144]. As we have
seen in the previous chapter, volatility is a long-time-correlated variable. It
therefore can be predicted, in principle. Obviously, the better the stochastic
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Table 6.1. Postulated correspondence between fully developed three-dimensional
turbulence and foreign exchange markets. Adapted from [86]

Hydrodynamic Turbulence Foreign Exchange Markets

Energy Information

Spatial distance Time delay

Intermittency (laminar periods Volatility clustering

interrupted by turbulent bursts)

Energy cascade in space hierarchy Information cascade in time hierarchy

〈|δv|n〉 ∼ �ξn 〈|δS|n〉 ∼ τ ξn

volatility process and its driving mechanisms are understood, the better a
prediction one can hope to generate.

In a heterogeneous market, the different types of traders present, e.g.,
long-term investors, day traders, etc., in general act with different time hori-
zons. A day trader will observe market volatility on a very short scale. On
the other hand, a long-term investor will not watch the market often enough
to even perceive short-term volatility. The question of how statistics reflects
the various types of operators in the marketplace then is reduced to the cor-
relations between the volatilities characterizing the various actors. In FX and
commodity markets, Müller et al. [143] have studied the correlation of finely
defined volatility with coarsely defined volatility.

We define the finely and coarsely defined volatilities by absolute values of
return and, to be specific, use a one-week time scale

σfine(N) =
1
5

5∑
i=1

|δS1d(N, i)| and σcoarse(N) = |δS1w(N)| . (6.23)

The fine volatility is the sum of daily volatilities while the coarse volatility is
the weekly return directly. N labels weeks and, where necessary, i labels the
business days of the week. A lagged correlation

ρτ =
〈[σcoarse(N + τ) − 〈σcoarse(N + τ)〉] [σfine(N) − 〈σfine(N)〉]〉N√

var[σcoarse(N)] var[σfine(N)]
(6.24)

measures the correlation of the coarse volatility with the fine volatility τ weeks
earlier. Empirically, it turns out that ρτ − ρ−τ < 0 for τ > 0 quite generally
[143]. This implies that the coarse volatility predicts the fine volatility better
than vice versa. This result is observed both for daily data (assumed in the
equations above) and for high-frequency intraday data. It can be explained
by a hypothesis of heterogeneous markets: coarse volatility matters both for
a long-term investor and for a day trader. It will set the overall scale for the
latter, and a day trader will take different positions depending on the level
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of volatility. On the other hand, short-term volatility is only important for
the short-term trader.

More formally, in complete analogy to turbulence, one can search for a
stochastic process across time scales in foreign exchange markets. It may
not surprise the reader that indeed the probability density functions of the
US$/DEM exchange rate satisfy the Chapman–Kolmogorov–Smoluchowski
equation and allow one to reduce it to a Fokker–Planck equation [145]. Dif-
ferences are only found in details, such as the precise functional form of the
rescaling of δSτ . The drift and diffusion constants are found to be

D(1)(δS, τ) = −0.93 δS , (6.25)
D(2)(δS, τ) = 0.016τ + 0.11(δS)2 . (6.26)

The numerical prefactor of τ in (6.26) is given in units of days. The com-
parison of the scale dependence of the “experimental” probability density
function with the one obtained by solving the Fokker–Planck equation using
the appropriate empirical probability density function for long time scales is
shown in Fig. 6.8.

In fact, the numbers given in (6.25) and (6.26) above are not the orig-
inal results of Friedrich et al., but have been corrected by improved data
analysis and a more robust fitting procedure, based on conditional instead of
unconditional probability distributions and accounting explicitly for possible
observational noise [146]. Firstly, one may calculate the power spectrum of
the time series

Π(ω) =
∫ ∞

−∞
dt eiωt〈S(t)S(0)〉 . (6.27)

For approximately two decades in frequency, it decreases as ω−2 before level-
ing off to a constant, i.e., white noise, at high frequency. The presence of white
noise suggests that the signal may be composed of two components, the in-
trinsic signal with Π(ω) ∼ ω−2, and white observational noise. The presence
of observational noise in similar financial data has been shown independently
in an investigation using more traditional approaches of time-series analysis
[147]. However, there observational noise is found neither in the prices nor in
the returns but in the time series of squared returns.

As a consequence of observational noise, one should work with a smoothed
signal where this observational noise has been averaged out. The width of
the averaging window defines a minimal time scale of 4 minutes. With this
analysis, the expressions for D(1)(δS, τ) and D(2)(δS, τ) are obtained. The tail
index µ of the unconditional probability distribution can also be calculated
from the drift and diffusion coefficients. A value of µ = 4.2± 0.8 is obtained,
quite in the range of the data analyzed in Sect. 5.6 [146, 148]. It is not clear
to what extent this improved analysis still is affected by possible errors in
D(2) related to the finite time scales used [137, 138].
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Fig. 6.8. Probability densities for variations of the US$/DEM exchange rates (dots)
compared to the solutions of a Fokker–Planck equation (solid lines) with the initial
distribution taken as the one for τ = 40 960 s. Time delays were τ = 5120 s, 10 240 s,
20 480 s, and 40 960 s. Both the data set and the notation are the same as in Fig.
6.6. By courtesy of J. Peinke. Reprinted from Friedrich et al.: Phys. Rev. Lett. 84,
5224 (2000), c©2000 by the American Physical Society

Quite some time before this work, possible analogies between hydrody-
namic turbulence and financial time series [141] have been questioned because
of different (and, in some instances, less well defined) power-law scaling in the
S&P500 index and air-flow data at R = 1500 [149]. One interesting aspect
of this work is that the power spectrum of the S&P500 data is ω−2 in the
entire frequency range considered, and no crossover to observational noise is
observed. This may be related to the time scale τ = 1 hour of the S&P500
returns analyzed.

With a Fokker–Planck equation for the probability distributions of finan-
cial data at hand, it would be interesting to search for improvements, e.g.,
in the theory of option pricing, etc., to include the effects of non-Gaussian
statistics. This will be pursued further in Sect. 7.6 below.



188 6. Turbulence and Foreign Exchange Markets

An interesting phenomenological analogy between turbulence and finan-
cial markets also follows from realizing the similarity of the probability dis-
tributions and their scale dependences to the spectroscopic lineshapes of im-
purity molecules in disordered solids [86, 87]. Ideally, the optical absorption
spectrum of a molecule in a crystal consists of a series of delta functions.
Imperfections is real systems always lead to a broadening. There, a change
of the lineshape from a Lorentzian distribution to a Gaussian is observed
when the density of the disordered units is varied: when the influence of
the disordered matrix units (which are present in important concentrations)
on a molecule is dominant, the lineshape is a Gaussian, as required by the
central limit theorem. When, on the other hand, the interaction of certain
two-level systems which are quite dilute with the host molecule dominate its
absorption, Lorentzian lineshapes are observed. Models for these line shapes
usually assume additive contribution of the individual perturbing elements
in the neighborhood of the molecules probed.

In a financial market, the traders would take the role of the dye mole-
cules in glasses. The environment influencing their behavior is information
which becomes available at various moments of time. The time passed since
the arrival of a piece of information plays the role of spatial distance in
the molecule-in-a-glass problem. The influence function which, in the spec-
troscopy problem, is taken by the dipole–dipole interaction, becomes a mem-
ory function af(t − t′) in a market. a is the amplitude, t is the time of
a trading decision, and t′ is the time of arrival of a piece of information
[86, 87]. The probability distribution of the price changes observed then is
determined by the functional form of f(t − t′). If the frequency of informa-
tion arrival is large with respect to the inverse time scale of the returns under
consideration, the precise form of f(t− t′) does not matter: the central limit
theorem requires that the resulting probability distribution will be Gaussian,
independently of the details of the memory functions. On the other hand,
when the frequency of information arrival is low or the time scale of the re-
turns short enough, the functional form of f(t− t′) matters. For example, for
an exponential memory kernel, the short-time probability distributions have
very flat wings with a pronounced spike at zero return. Such spikes are not
observed in real markets, but they were generated in numerical simulations
of artificial financial markets to be discussed in Sect. 8.3.2. On the other
hand, for a stretched-exponential decay in the memory kernel, a set of time-
scale-dependent probability distribution functions similar to Fig. 6.6 with
a truncation in the wings were obtained. Finally, for an algebraic memory
function, the probability distributions at short times were of the form of the
truncated Lévy distributions discussed in Sect. 5.4.4. The interesting conclu-
sion from this work is that, in terms of fundamental analysis, traders would
account for, resp. the market would reflect, information with a memory which
is scale-free (stretched-exponential or power-law memory function) [86, 87].
In turbulence, the role of the dye molecule/trader would be played by the
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measurement device (anemometer), and that of the perturber would be taken
by the eddies depicted in Fig. 6.1.

6.3.3 Stochastic Cascade Models

The idea that turbulent flows or foreign exchange markets are described by
a stochastic cascade across spatial or time scales can be formalized. Here,
we restrict ourselves to capital markets [144, 150]. Our discussion in the
preceding section is equivalent to postulating for returns on a scale τ

δSτ (t) = στ (t)ε(t) . (6.28)

Here, ε(t) is a scale-independent random variable, and στ (t) is a positive
random variable depending on the scale, and identified with the standard
deviation on that scale τ . There is a hierarchy of scales τ0 = T > · · · > τk >
· · · > τN . If the cascade is purely multiplicative, the σs are related by

σ(k)(t) = a(k)(t)σ(k−1)(t) , σ(k)(t) ≡ στk
(t), (6.29)

with time-dependent random factors a(k)(t). If our discussion of turbulent
signals by a cascade in Sect. 6.2.2, and a similar analysis of foreign exchange
quotes underlying the solid lines in Fig. 6.6, are rephrased in terms of (6.29),
the probability distribution of the a(k)(t) is log-normal with a k-dependent
width, cf. (6.12). This gives for the volatility at scale τm

σ(m) = σ(0)
m∏

k=1

a(k)(t) . (6.30)

One particularly simple realization would be a geometric progression in the
inverse scales, e.g., τk = τk−1/2, and to associate two random numbers a

(k)
1

and a
(k)
2 with the passage from one level to the next lower [144].

In this model, there is a definite direction for the net flow of information
from large to small scales. Namely, one can calculate the cross-correlation
coefficient [144]

Cτm,τn
(∆t) =

〈lnσ(m)(t) ln σ(n)(t + ∆t)〉
var(lnσ(m))var(lnσ(n))

. (6.31)

One finds that Cτm,τn
(∆t) > Cτm,τn

(−∆t) if τm > τn and ∆t > 0. This
can be interpreted as a flow of information contained in lnσ(n+∆)(t) to
lnσ(n)(t + ∆t).

More sophisticated updating schemes for the random numbers a(k), re-
lating the volatilities on neighboring time scales, have been devised [150]. At
t0, one draws the a(k)(t0) from a log-normal distribution with k-dependent
width. In later time steps, the factors at the top of the hierarchy, a(1)(tn+1),
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are updated with a certain probability, again from a log-normal distribution.
If this factor is updated, all lower-level factors a(k>1)(tn+1) are also updated.
If the top-level factor was not updated at tn+1 the next-level factor will be
updated only with a certain, level-dependent probability, and so on. These
level-dependent probabilities are small near the top level, leading to very few
updates, and increase as one descends the cascade to give rather frequent
updates there. As shown in Fig. 6.9, when the parameters of the model are
suitably fixed, a numerical simulation can reproduce very well the observed
probability distributions of the US$–Swiss Franc exchange rates over time
scales from 1 hour to 4 weeks [150]. With optimized parameters, the model
also reproduces other important features of the data set such as, e.g., the
slow decay of the autocorrelation function of absolute returns [150].

An alternative to cascade models is provided by a variant of the ARCH
processes, the HARCH process [143]. Applying it to FX data, it turns out
that seven market components, each with a characteristic time scale τn, are
both necessary and sufficient to provide an adequate description of the lagged
coarse–fine volatility correlations.
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Fig. 6.9. Dots: distribution of returns of the US$–Swiss Franc exchange rate for
time horizons ranging from 1 hour to 4 weeks. Full lines: simulation of the stochastic
cascade model described in the text, with optimized parameters. Data are offset
for clarity. By courtesy of W. Breymann. Reprinted from Breymann et al.: Int. J.
Theor. Appl. Financ. 3, 357 (2000), c©2000 by World Scientific
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6.3.4 The Multifractal Interpretation

Fractals and Multifractals

Geometry is the most popular area for thinking about fractals [33]. While
ordinary macroscopic bodies such as spheres, cubes, cones, etc., are charac-
terized by a small surface-to-volume ratio (surface scales as L2 and volume
as L3, with L the linear dimension of the system), there are other objects
with large surface-to-volume ratio. They look porous, ragged, hairy, and of-
ten play a fundamental role in natural phenomena. Examples are sponges,
the human lung, the landmass on earth, dendrites, the fault structure of the
earth’s crust, or river basins. These systems are fractals. Fractals are scale-
invariant over several orders of magnitude of size, i.e., their observed volume
depends on the resolution with a power law. On the contrary, regular bodies
are not scale-invariant, and their observed volume does not essentially depend
on resolution.

We introduce a grid with cell size �. Then, the observed volume of a fractal
is the number of cells filled (partially or totally) by the object. With resolution
defined as ε = �/L, the observed volume scales as N(ε) ∼ ε−D0 , where D0 is
the fractal dimension of the object [151]. The simplest mathematical fractals
are built by the repetitive application of a generator to an initiator: the
Cantor set, e.g., takes as initiator the interval [0, 1], and the generator wipes
out the central third of this line, yielding {[0, 1/3], [2/3, 1]} in the first stage,
{[0, 1/9], [2/9, 1/3], [2/3, 7/9], [8/9, 1]} in the second stage, etc. The Cantor
set has D0 = ln 2/ ln 3, and is an example of a deterministic monoscale fractal.

Three successive generalizations lead us from geometry to stochastic time
series [151]. The first one is the introduction of several scales, producing
multiscale fractals: the initiator is now divided into unequal parts. For the
example of the Cantor set, we can construct a first stage as {[0, r1], [r2, 1]}.
The second one is fractal functions. These are simple functions of an argument
(perhaps time) which are nowhere differentiable. Their graph is a fractal
curve. An example is the Weierstrass–Mandelbrot function [33]

C(t) =
∞∑

n=−∞

1 − cos(γnt)
γ(2−D0)n

. (6.32)

The third generalization is randomness. For a multiscale fractal, one might
choose randomly which rule to apply from a menu of choice. Randomness
can also be introduced into fractal functions. An example is the fractional
Brownian motion introduced in Sect. 4.4.1. The fractal dimension of the graph
is related to the Hurst exponent H by D0 = 2 − H.

A physical process on a fractal support may generate a stationary distri-
bution. A fractal measure is a fractal with a time-independent distribution
attached to it [151], e.g., the voltage distribution of a random resistor net-
work. Such distributions can be used to analyze the fractal by opening fractal
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subsets, e.g., by selecting the subset which gives the dominant contribution
to the nth moment of the distribution. If this is the case, the system will
be called multifractal. Returning to the example of the Cantor set, instead
of eliminating the central third of the initiator, we may attach two differ-
ent probabilities p1 and p2 = 1 − p1 to the extremal and central thirds of
the initiator, respectively. By iterating this rule an infinite number of times,
a probability distribution which is discontinuous everywhere, a multifractal
measure, is generated.

Multifractal Time Series

The generation of a multifractal time series is best illustrated with a specific
example devised for financial markets. One multifractal model for the time
series of asset returns has been defined by [22], [152]–[155]

δSτ (t) = BH [Θ(t)] . (6.33)

Here, BH describes fractional Brownian motion with a Hurst exponent H,
cf. (4.42), and Θ(t) is a multifractal time deformation.

A non-fractal time series x(tn) = x0 +
∑n

m=0 ∆x(tn), say Brownian
motion, is constructed by adding increments ∆x(tn) = ε(tn)

√
∆t with

∆t = tn− tn−1 = const., or the corresponding continuum limit, cf. (4.22) and
(4.23). This can be generalized to increments scaling as ∆x(t) = ε(t)(∆t)H , at
least in the sense of expectation values (cf. Sect. 4.4.1 for the case of ordinary
Brownian motion). Fractional Brownian motion corresponds to a non-trivial
Hurst exponent H 
= 1/2 [155]. A generalization allowing for non-constant t-
dependent exponents H(t) then defines the increments of a multifractal time
series

∆xmf(t) = ε(t)(∆t)H(t) . (6.34)

H(t) may be a deterministic or a random function.
Take as the initiator again the line interval [0, 1]. In a binomial cascade,

divide the interval into two subintervals of equal length and assign fractions p1

and p2 = 1−p1 of the total probability mass to the subintervals. Then repeat
this process ad infinitum. In a log-normal cascade, at each iteration step, p1

is random and is drawn from a log-normal distribution. The results of this
cascade, with each subinterval interpreted as a time step, define a multifractal
time series. In the model formulated by Mandelbrot, Calvet, and Fisher, this
time series is used as a transformation device from chronological time tn to
a multifractal time Θ(t). The values of the final iteration of the cascade are
interpreted as the increments of a (positive-valued) stochastic time process
∆Θ(t). Θ(t), which is an irregularly increasing function of chronological time
t, can be interpreted as a trading time [155]. Tick-by-tick data of real financial
markets show that the trading activity is very non-stationary, and that there
are periods of hectic trading alternating with quiescent periods. Θ(t) would
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increase very quickly in periods of heavy trading, and more slowly when
the tick-to-tick interval is rather large. The existence of such a Θ-time has
been demonstrated empirically in foreign exchange markets [156] and used
for asset-pricing theories [157].

As a last step, the multifractal model of asset prices (6.33) uses this
deformed time as the driver of a fractional Brownian motion process [152]–
[155]. Empirically, however, the statistical evidence for a non-trivial Hurst
exponent H 
= 1/2 seems to be rather weak, and one may as well inject the
multifractal Θ-time series into ordinary Brownian motion, H = 1/2 [158].

At the level of multifractal stochastic processes, it is important to notice
one important difference to ordinary (non-fractal and monofractal) processes.
In an ordinary stochastic process, the subsequent value of the random vari-
able can be determined from the past time series and an “innovation”, a
new random increment, and the time series can be continued as long as one
wishes. For multifractal time series as they have been formulated to date, the
entire time series is constructed in one shot. In the case above, this applies
in particular to the cascade generating the multifractal Θ-time, while the
stochastic process driven by Θ-time obeys the usual rules.

Our discussion very much emphasized the construction of a multifractal
stochastic process. Alternatively, one can simply define a multifractal stochas-
tic process by its statistical properties, as do Mandelbrot, Calvet, and Fisher
[152]–[154]: a stochastic process δSτ (t) is called multifractal if it satisfies the
scaling property

〈|δSτ (t)|n〉 = c(n) τ ξn . (6.35)

This brings us to the statistical properties of multifractals.

Multifractal Statistics

Let us return to the multifractal generated by attaching probabilities p1 and
p2 = 1 − p1 to the generator of the Cantor set. We first ask which regions
of [0, 1] give the main contribution to the total probability. The locus of
these regions (boxes) defines a fractal subset with a dimension f1 [151]. The
number of such boxes scales with ε as N1(ε) ∼ ε−f1 . For the specific case of
the binomial cascade, we have f1 = −(2p1 ln p1+p2 ln p2)/ ln 3. The dominant
contributions to the nth moment of the distribution define different fractal
subsets, each with its specific fractal dimension fn, which can be calculated
[151]. fn describes the nth fractal subset of the multifractal, i.e., the support
of a distribution, but not the distribution itself.

This probability distribution is described by another set of exponents,
αn, called crowding indices or Hölder exponents. We write the probability
in a specific box in the lth iteration as Pm = pm

1 pl−m
2 . Then, the dominant

contribution to the total probability defining the first fractal subset comes
from regions with a single specific index m1. Pm1 scales with box size as
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Pm1 ∼ εα1 , defining α1. The idea in this procedure is straightforward (as-
sume p1 > p2). On the one hand, the maximal probability is in the cell with
pl
1, but the weight of this cell is 1/l and thus negligible. On the other hand,

the most rarified boxes are numerous, but their probability mass is too small.
The dominant contribution will thus come from cells with some intermediate
values of m, and it turns out that, for l → ∞, only a single index m1 con-
tributes [151]. The higher αn then are defined through a similar procedure
using the higher fractal subsets. Eliminating n from fn and αn generates a
relation f(α). The spectra (fn, αn) or the f(α) spectrum characterize a given
multifractal. The relation αn = 1/Hn relates the Hölder exponents αn to the
generalizations Hn of the Hurst exponent, often also called Hölder exponents.

The f(α) spectrum also determines the structure function χn(ε), which
is defined as

χn(ε) =
N(ε)∑

j

Pn
j , (6.36)

that is, the sum over the nth-power box probabilities. Using the scaling laws
found above, this can be rewritten as

χn(ε) =
∑

j

Nn(ε, fk)(εαk)n ∼
∑

k

εαkn−f(αk)+1 . (6.37)

Since ε � 1, the last sum will be dominated by those values of k for which
the exponent of ε is minimal, leading to

χn(ε) ∼ εξn with ξn = min
α

[nα − f(α)] + 1 . (6.38)

In complete analogy, the empirical study of multifractal return time series
δSτ (t) of a financial asset proceeds via the scaling of its moments, i.e., the
estimation of its structure function

χn(τ) = 〈|δSτ (t)|n〉 . (6.39)

As in (6.22), we expect a scaling

χn(τ) ∼ τ ξn . (6.40)

ξn in general is a concave function of n and satisfies ξ0 = 0. Both for the
binomial and for the log-normal cascades, the spectra f(α), and thus the
scaling exponents ξn, are known [158],

fbin(α) = − αmax − α

αmax − αmin
log2

(
αmax − α

αmax − αmin

)

− α − αmin

αmax − αmin
log2

(
α − αmin

αmax − αmin

)
, (6.41)

flog−nor(α) = 1 − (α − λ)2

4(λ − 1)
. (6.42)
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For the binomial cascade with p1 > 1/2, αmin = − log2 p1 and αmax =
− log2(1 − p1), while for the log-normal cascade, the logarithms of the mul-
tipliers are drawn from a normal distribution with mean −λ and variance
2(λ − 1)/ ln 2. These expressions characterize the multifractal properties of
the cascade generating Θ(t). Assuming that the return process in chronolog-
ical time is ordinary Brownian motion, the f(α) spectrum of the compound
return process is fδS(α) = fΘ(2α) [158].

Figure 6.7 shows examples for the dependence of the scaling exponents of
the moments on their order, taken from FX markets and from two turbulent
flows [141]. All three data sets display a concave bend downward away from
a straight line ξn = n/3, corresponding to the Kolmogorov hypothesis for
turbulence. One can, in principle, derive the f(α) spectrum from such a
scaling behavior, inverting (6.38). Numerous analyses of turbulent flows in
terms of multifractal properties have been performed following the pioneering
work of Mandelbrot [159]. We will not discuss them here. Some of the most
recent work, e.g., finds evidence for multifractal atmospheric cascades from
global scales down to about 1 km from the analysis of satellite cloud pictures
at visible and infrared wavelengths [160].

Qualitatively similar though quantitatively different behavior has been
found in 14 years of daily data of the French Franc (FRF) against the Swiss
Franc (CHF), the US Dollar (USD), the Great Britain Pound (GBP), and
the Japanese Yen (JPY) [142, 161]. Firstly, the slope of the small-n approxi-
mations is rather close to 1/2, instead of 1/3 as above, for the high-frequency
USD/DEM rates. 1/2 is the slope expected for Brownian motion, so one may
wonder if the appearance of this slope may be related to the longer time
scale analyzed. Secondly, while again one observes a systematic concavity of
the ξn versus n curves, it is particularly weak for the JPY and particularly
pronounced for the DEM exchange rate. The case of FRF against GBP is re-
vealing because, during the last two years of the sampling interval, the GBP
entered the European Exchange Mechanism which allowed a maximal devi-
ation of 12% from a preset reference value: imposing this restriction leads
to a significant increase of the concave downward bend in the ξn versus n
curves, rather similar to the FRF/DEM curves, while before the behavior
was more akin to FRF/USD or FRF/CHF [161]. If confirmed, this finding
would imply that unregulated and regulated markets can be discriminated
by the concavity of their ξn(n) curves.

The behavior of the exponents of the lowest moments can be interpreted in
simple pictures [162]. ξ1 = H, the Hurst exponent, describes the roughness of
the path described by the time series: ξ1 > 1/2, a persistent time series gives
a more ragged path than Brownian motion while an antipersistent time series
(ξ1 < 1/2) gives a smoother path. A sparseness coefficient C1 can be defined
by taking ξn as a continuous function of n, and taking the derivative C1 =
−d(ξn/n)/dn|n=1. The sparseness describes the intermittency, or temporal
concentration, of the signals. For C1 = 0, i.e., ξn ∝ n, ξ1 = 0 describes white
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noise and ξ1 = 1 describes differentiable functions, with Brownian motion
midway in between. On the other hand, for ξ1 = 0, there is an evolution from
white noise at C1 = 0 to Dirac delta functions at C1 = 1. Quite generally,
one then can locate various signals in a C1 versus ξ1 diagram. Analyzing
a multitude of foreign exchange rates, Vandewalle and Ausloos have found
that they scatter over a rather large part of the diagram, perhaps with the
exception of the corners [162].

Many of these studies are based on graphical superposition of data ana-
lyzed and theoretical predictions of multifractal models. These methods can
fail, however, as demonstrated by the multifractal analysis of a simulated
monofractal stochastic process [163]. Here, the apparent multiscaling is a
consequence of a crossover phenomenon at an intermediate time scale in the
process. As an alternative, statistical hypothesis tests can also be used to
assess the significance or “explanatory power” of multifractal cascade mod-
els [158]. No parametric tests for multifractal models are available, but one
can turn around this problem by setting up a Monte Carlo simulation of the
stochastic multifractal process with the estimated parameters, and then ap-
ply a Kolmogorov–Smirnov test [44]. This test evaluates the probability of
the null hypothesis that both sets of data are drawn from the same underly-
ing probability distribution. This test program was carried out by Lux using
daily data for the DAX stock index, the New York Stock Exchange Com-
posite Index, the USD/DEM exchange rate, and the gold price [158]. With
only one adjustable parameter, p1 for the binomial or λ for the log-normal
cascades, the null hypothesis cannot be rejected at the 95% significance level.
The tests perform equally well for both types of cascades, and the parameter
estimates for the four time series are rather similar. The p1 estimates fall into
the range p1 = 0.63 . . . 0.69, while λ = 1.04 . . . 1.12 is estimated for the log-
normal cascade. On the contrary, the description of the empirical probability
distributions by a GARCH(1,1) process are significantly worse, and draw-
ing the random increments in GARCH(1,1) from a Student-t distribution
only partially improves the situation. This would suggest that a multifractal
model indeed can capture some important elements of the return dynamics
of financial assets.



7. Derivative Pricing Beyond Black–Scholes

In the two preceding chapters, we have observed that the price dynamics
of real-world securities differs significantly from geometric Brownian motion,
most importantly by fat tails in the return distributions and by volatility
correlations. The fundamental assumptions behind the Black–Scholes theory
of option pricing and hedging do not hold in real markets. More general
methods which include these stylized facts are called for.

7.1 Important Questions

This leads us to the following important questions concerning derivative pric-
ing.

• Can the Black–Scholes theory of option pricing and hedging be worked out
for non-Gaussian markets?

• Can we formulate a theory of option pricing which does not make any
assumptions on the properties of the stochastic process followed by the
underlying security, and for which Black–Scholes obtains as a special limit?

• Are analytic expressions for option prices available when the underlying
returns are taken from a stable Lévy distribution?

• Are path-integral methods from physics useful in the elaboration of op-
tion pricing schemes for non-Gaussian markets, and can we formulate a
quantum theory of financial markets?

• How are American-style options priced?
• Can option prices and hedges be simulated numerically?

7.2 An Integral Framework for Derivative Pricing

In Chap. 4, we determined exact prices for derivative securities. In particular,
we derived the Black–Scholes equation for (simple European) options. Our
derivation relied on the construction of a risk-free portfolio, i.e., a perfect
hedge of the option position was possible.

The derivation was subject, however, to a few unrealistic assumptions:
(i) security prices performing geometric Brownian motion, (ii) continuous
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adjustment of the portfolio, (iii) no transaction fees. That (i) is unrealistic
was demonstrated at length in Chap. 5. It is clear that transaction fees forbid
a continuous adjustment of the portfolio. Also liquidity problems may prevent
this. Both factors imply that a portfolio adjustment at discrete time steps is
more realistic. However, both with non-Gaussian statistics, and with discrete-
time portfolio adjustment, a complete elimination of risk is no longer possible.

A generalization of the Black–Scholes framework, using an integral rep-
resentation of global wealth balances, was formulated by Bouchaud and Sor-
nette [17, 164]. To explain the basic idea, we take the perspective of a financial
institution writing a derivative security. In order to hedge its risk, it uses the
underlying security, say a stock, and a certain amount of cash. In other words,
it constitutes a portfolio made up of the short position in the derivative, the
long position in the stock, and some cash. The stock and cash positions are
adjusted according to a strategy which we wish to optimize. The optimal
strategy, of course, should minimize the risk of the bank (it can’t eliminate it
completely). However, in a non-Gaussian world, this strategy will depend on
the quantity used by the bank to measure risk, and in contrast to the Black–
Scholes framework, where the risk is eliminated instantaneously, here one can
minimize the global risk, incurred over the entire time interval to maturity.
While the Black–Scholes theory was differential, this method is integral.

To formalize this idea, we establish the wealth balance of the bank over
the time interval t = 0, . . . , T up to the maturity time T of the derivative.
The unit of time is a discrete subinterval of length ∆t = tn+1 − tn. The
asset has a price Sn at time tn, it is held in a (strategy dependent) quantity
Φ(Sn, tn) ≡ Φn and has a return µ. The amount of cash is Bn, and its return
is the risk-free interest rate r. At t = tn, the wealth of the bank then is

Wn = Φ(Sn, tn)Sn + Bn . (7.1)

How does it evolve from n → n + 1? The updated cash position is

Bn+1 = Bner∆t − Sn+1(Φn+1 − Φn) . (7.2)

The first term accounts for the interest, and the second term is due to the
portfolio adjustment Φn → Φn+1, due to stock price changes Sn → Sn+1.
The difference in wealth between tn and tn+1 is then

Wn+1 − Wn = Φn(Sn+1 − Sn) + Bn

(
er∆t − 1

)
. (7.3)

Bn can be eliminated from this equation by using (7.1), the resulting equation
can be iterated, and the wealth of the bank after n time steps can be expressed
in terms of the stock position alone:

Wn = W0ern∆t +
n−1∑
k=0

Φker(n−k−1)∆t
(
Sk+1 − Sker∆t

)
. (7.4)

The term in parentheses is the stock price change discounted over one time
step, and its prefactor in the sum is the cost of the portfolio adjustment.



7.3 Application to Forward Contracts 199

7.3 Application to Forward Contracts

As a simple application, we consider a forward contract. In a forward, the
underlying asset of price SN is delivered at maturity T = N∆t for the forward
price F , to be fixed at the moment of writing the contract. As we have seen
in Sect. 4.3.1, there are no intrinsic costs associated with entering a forward
contract because the contract is binding for both parties. The value of the
bank’s portfolio at any time before maturity therefore is

Πn = Wn at tn < T = N∆t . (7.5)

At maturity, it becomes

ΠN = WN + F − SN at T = N∆t . (7.6)

The bank delivers the asset for SN and receives the forward price F .
Using (7.4), it is possible to rewrite the resulting equation so that the

stock price Sk only appears in the form of differences Sk+1 − Sk, and of the
initial stock price S0

ΠN = F + W0erT − S0 − S0(er∆t − 1)
N−1∑
k=0

Φker(N−1−k)∆t

+
N−1∑
k=0

(Sk+1 − Sk) (7.7)

×
(

Φker(N−1−k)∆t − [
er∆t − 1

] N−1∑
l=k+1

Φler(N−1−l)∆t − 1

)
.

The idea behind this complicated rewriting is that the only term representing
risk in this equation is the evolution of the stock price from one time step
to the next, Sk+1 − Sk. If its prefactor can be made to vanish, the risk will
be eliminated completely. (As we know, this must be possible for a forward
contract because the contract is not traded and binding to both parties.)
This gives the conditions(

Φker(N−1−k)∆t − [
er∆t − 1

] N−1∑
l=k+1

Φler(N−1−l)∆t − 1

)
= 0 (7.8)

at every time step. This equation can be iterated backwards, starting at
k = N − 1,

ΦN−1 − 1 = 0 . (7.9)

In order to completely hedge its risk in the short forward position, the bank
must hold one unit of stock at the last time step before the delivery of the
stock is due at maturity. In the second-last time step, we have
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ΦN−2er∆t − [
er∆t − 1

]
ΦN−1 − 1 = 0 ⇒ ΦN−2 = 1 , (7.10)

where ΦN−1 = 1 has been used. This process can be continued,

Φn = 1 for all n . (7.11)

The portfolio need not be adjusted in the case of a forward contract, and a
perfect hedge of the short forward position is possible by going long in the
underlying security at the time of writing the contract.

The sum in (7.8) is a geometric series which can be summed, and the final
value of the portfolio is

ΠN = F + W0erT − S0erT . (7.12)

No arbitrage is possible if this is equal to the wealth of the bank in the
absence of the forward contract

ΠN = W0erT . (7.13)

Then, the value of the contract is the same for the long and the short posi-
tions. This gives the forward price

F = S0erT (7.14)

already derived in Sect. 4.3.1. This is not surprising. By construction of the
forward contract, a perfect hedge does not require portfolio adjustment, and
our derivation of the forward price (4.1) in Sect. 4.3.1 did not make any
reference to the statistics of price changes.

7.4 Option Pricing (European Calls)

The situation is very different for option positions, however. The value of the
portfolio at the maturity of a European call is

ΠN = W0erT +CerT−max(SN−X, 0)+
N−1∑
k=0

Φker(N−1−k)∆t
(
Sk+1 − Sker∆t

)
.

(7.15)
The first and the last terms on the right-hand side have been discussed in the
preceding section. The second term is the price of the option which the bank
receives up front, compounded by interest, and the third term is the amount
it has to pay to the long position at maturity. As this term is nonlinear in
SN , the risk can no longer be eliminated completely.

A fair price for the option, C, can now be fixed from the requirement that
the expected change in the value of the bank’s portfolio, over its initial value
compounded by the riskless rate r, vanishes,
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〈∆W 〉 = 〈ΠN − W0erT 〉 = 0 , (7.16)

which can be solved for the call price

C = e−rT

[
〈max(SN − X, 0)〉 −

N−1∑
k=0

〈
Φker(N−1−k)∆t

(
Sk+1 − Sker∆t

)〉]
.

(7.17)
This price, a priori, is strategy dependent (Φk appears and cannot be elim-
inated). Moreover, since even the optimal strategy carries a residual risk, a
risk premium can be added to the call price C.

The price changes during k → k + 1, Sk+1 − Sk, are statistically inde-
pendent of the fraction of stock held at tk, Φk. Then Sk+1 − Sker∆t is also
statistically independent of Φk, and one can separate〈

Φk

(
Sk+1 − Sker∆t

)〉
= 〈Φk〉

〈(
Sk+1 − Sker∆t

)〉
(7.18)

in (7.17). If r � 1, the exponential can be set to unity. If the stock price is
then drift-free,

〈Sk+1 − Sk〉 = 0 . (7.19)

Alternatively, in a risk-neutral world, the same conclusion would obtain with-
out making the assumptions on the smallness of r and the martingale property
of Sk. A priori, however, the notion of a risk-neutral world is tied to geomet-
rical Brownian motion, and should be used with much care here. Then

C = e−rT 〈max(SN − X, 0)〉 = e−rT

∫ ∞

X

dS (S − X)p(S,N |S0, 0) . (7.20)

One recovers the expectation value pricing formula for option prices (4.95)
which reduces to the Black–Scholes expression (4.85) for a log-normal distrib-
ution. The result is a direct consequence of the assumed martingale property
(7.19) of the stock price which also had to be made to derive (4.95). Of course,
in this limit, the option price comes out strategy-independent.

If the stochastic process of the stock price is not a martingale, the full
expression (7.17) must be used. The drift in the second term will then partly
compensate the drift in the first term. Both terms will drift because the
historical price densities are used in the calculation of the expectation values
in (7.17).

Then, the optimal hedging strategy {Φ�
k} must be designed so as to mini-

mize the risk of the bank. One possible definition of the risk R in this frame-
work is to minimize the variance of the (integral) wealth balance

R2 = 〈(∆W )2〉 − 〈∆W 〉2 = 〈(∆W )2〉 . (7.21)

This is minimized by equating to zero the functional derivative
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0 =
δR2

δΦk
(7.22)

=
δ

δΦk

{
N−1∑
k=0

〈
Φ2

k

〉
e2r(N−1−k)∆t

〈(
Sk+1 − Sker∆t

)2〉
(7.23)

− 2
N−1∑
k=0

〈
max(SN − X, 0)

(
Sk+1 − Sker∆t

)
Φk

〉
er(N−1−k)∆t

}
.

Here, terms independent of Φk have already been dropped. Moreover, price
changes have been assumed to be independent, 〈δSkδSl〉 = 〈(δSk)2〉δkl, and
terms proportional to

〈
Φk

(
Sk+1 − Sker∆t

)〉
have been neglected with the

same assumptions as above.
A rather subtle problem concerns the use of probability density functions

in the various expectation values. The strategy Φk is determined by the stock
price Sk. Therefore, p(Sk, k|S0, 0) is the appropriate distribution for the first
expectation value. The price changes Sk+1 − Sk are governed by p(Sk+1, k +
1|Sk, k), which must be used in the second expectation value. Finally, in the
third expectation value, p(SN , N |Sk+1, k + 1) must be introduced for the
payoff of the option. Also, in this expectation value, only those variations of
Sk+1 − Sk must be allowed which end up at SN after N time steps. For IID
random variables, all intermediate steps contribute the same amount, and
[17]

〈Sk+1 − Sk〉(Sk,k)→(SN ,N) =
SN − Sk

N − k
. (7.24)

Using this result, (7.22) becomes

0 =
δ

δΦk

{
N−1∑
k=0

∫ ∞

−∞
dS Φ2

k(S)p(S, k|S0, 0)e2r(N−1−k)∆t
〈(

Sk+1 − Sker∆t
)2〉

−2
N−1∑
k=1

∫ ∞

−∞
dS Φk(S)p(S, k|S0, 0)er(N−1−k)∆t (7.25)

×
∫ ∞

X

dS′ (S′ − X)p(S′, N |Sk)〈Sk+1 − Sk〉(Sk,k)→(SN ,N)

}
= 2Φke2r(N−1−k)∆tp(Sk, k|S0, 0)〈(Sk+1 − Sk)2〉

−p(Sk, k|S0, 0)er(N−1−k)∆t (7.26)

×
∫ ∞

X

dS′ (S′ − X)p(S′, N |Sk, k)〈Sk+1 − Sk〉(Sk,k)→(SN ,N) .

This can be solved to determine the optimal strategy

Φ�
k(Sk) =

e−r(N−1−k)∆t

〈(Sk+1 − Sk)2〉

∫ ∞

X

dS′ (S′ − X)
S′ − Sk

N − k
p(S′, N |Sk, k) , (7.27)
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which should be inserted into (7.17) to provide the correct option price. If
p(S′, N |Sk, k) is taken from either a Gaussian or a log-normal distribution,
and if one takes the continuum limit for time, one can show that the optimal
strategy reduces to the ∆-hedge of Black, Merton, and Scholes. In general,
however, Φ�

k will give a different strategy, and more importantly, a residual
risk

R2 [{Φ�
k}] 
= 0 (7.28)

will remain.
A pedagogical example is provided by assuming that returns are IID ran-

dom variables drawn from a Student-t distribution Stµ(δS) as defined in
(5.59) [165]. The variance exists for µ > 2, and for µ an odd integer, one
can derive closed expressions for the hedging functions Φ�

k above. Figure 7.1
shows the price C of a European call option at seven days from maturity,
in units of the standard deviation, as a function of the price of the under-
lying, using the optimal hedge derived from the formalism of this chapter
(crosses). It also shows the residual risk which cannot be hedged away, as the
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Fig. 7.1. Price of a European call option sevend days from maturity, determined
from the optimal hedging strategy discussed in this chapter, for IID random vari-
ables drawn from a Student-t distribution (crosses) together with residual risk
(dashed error bars). For comparison, the price and residual risk of the same call is
shown when the return process is Gaussian in discrete time (solid error bars). Due
to discreteness of time, a finite residual risk remains even for a Gaussian return
process, unlike in the continuous-time Black–Scholes theory. Both the call price C
and the initial difference between the price of the underlying and the strike price,
S(0) − X, are measured in units of the standard deviation σ of the daily returns.
By courtesy of K. Pinn. Reprinted with permission from Elsevier Science from K.
Pinn: Physica A 276, 581 (2000). c©2000 Elsevier Science
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dashed error bars. A Student-t distribution with µ = 3 has been assumed.
For comparison, the solid error bars show the call price and residual risk
of a Gaussian return process in discrete time. While for a continuous-time
Gaussian return process, the risk can be hedged away completely by follow-
ing the Black–Scholes ∆-hedging strategy (cf. Chap. 4), for a discrete-time
process, a residual risk always remains [165]. The figure nicely demonstrates
both the effects of the fat-tailed distribution, and of discrete trading time.

What about real markets? Figure 7.2 compares the market price of an
option on the BUND German government bond, traded at the London futures
exchange, to the Black–Scholes price. The inset shows the deviations from
a correctly specified theory, represented by the straight line with slope of
unity in the main figure. There is a systematic deviation between the Black–
Scholes and the market price so that the market price is higher. Black–Scholes
therefore underestimates the option prices, because it underestimates the
risk of an option position. The market corrects for this. On the other hand,
the comparison between the theoretical price calculated from (7.17) using
the optimal strategy (7.27) and the market price is much better, as shown
in Fig. 7.3. The inset again shows the deviations from a correctly specified
theory. These deviations are symmetric with respect to the line with slope
unity, and essentially random. Also, their amplitude is a factor of five smaller
than those between the market and Black–Scholes prices. The theory exposed
in this chapter therefore allows for a significant improvement over the Black–
Scholes pricing framework [17].

Notice, however, that the market did not have this theory at hand, to
calculate the option prices. The prices were fixed empirically, presumably
by applying empirically established corrections to Black–Scholes prices and
prices calculated by different methods. This has led to speculations that fi-
nancial markets would behave as adaptive systems, in a manner similar to
ecosystems [115].

Earlier, arbitrage was defined as simultaneous transactions on several
markets which allow riskless profits. This requires that risk can be elimi-
nated completely. This is possible in the case of a forward contract quite
generally. For options, it is possible only in a Gaussian world, as shown by
Black, Merton, and Scholes. The notion of arbitrage becomes much more
fuzzy in more general situations (e.g., options in non-Gaussian markets, etc.)
where riskless hedging strategies are no longer feasible. Then, it will depend
explicitly on factors such as the measurement of risk, risk premiums, etc.,
and is no longer riskless in itself.

7.5 Monte Carlo Simulations

Monte Carlo simulations are an important tool for option pricing. Starting
from the ideas of Black, Merton, and Scholes and requiring that no arbi-
trage opportunities exist in a market, the important input for a calculation
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Fig. 7.2. Market price of an option on the BUND German government bond,
compared to the Black–Scholes price. The inset shows the deviations from the ideal
line with slope unity. The Black–Scholes price systematically underestimates the
market price of the option. Reprinted from J.-P. Bouchaud and M. Potters: Théorie
des Risques Financiers, by courtesy of J.-P. Bouchaud. c©1997 Diffusion Eyrolles
(Aléa-Saclay)

of option prices by numerical simulation is the risk-neutral probability distri-
bution of returns which, in real-world markets, is different from the normal
distribution assumed in the Black–Scholes theory. One can either assume
a distribution consistent with the empirical facts, or try to reconstruct the
risk-neutral distribution from quoted option prices. Price charts then are gen-
erated from this risk-neutral distribution, the payoff of the option for each
particular trajectory is evaluated, and finally the option price is calculated as
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Fig. 7.3. Market price of an option on the BUND German government bond,
compared to the price calculated by minimizing the risk of an integral wealth bal-
ance, explained in the text. The inset shows the deviations from the ideal line with
slope unity. Deviations from the market price are distributed approximately sym-
metrically around zero. Reprinted from J.-P. Bouchaud and M. Potters: Théorie
des Risques Financiers, by courtesy of J.-P. Bouchaud. c©1997 Diffusion Eyrolles
(Aléa-Saclay)

the expectation value of the payoffs over the various trajectories. This basic
procedure works for simple options, such as European plain-vanilla calls and
puts. For American-style options or path-dependent options, efficient exten-
sions have been developed [166]. One major drawback of these approaches is
that the variance of the option price is rather important. More importantly,
though, its derivatives such as ∆ = ∂f/∂S, which are important for hedging
purposes and trading strategies, come out to be extremely inaccurate.
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One can, however, also use the theory exposed in the preceding section
to develop an efficient Monte-Carlo approach to option pricing [167]. The
following features of the approach of Sect. 7.4 directly carry over to the
Monte Carlo variant:

• At the same time, the option price, the optimal hedge, and the residual
risk are calculated.

• No assumption is made on a risk-neutral measure, or on the nature of
the stochastic process, except the absence of linear correlations on the
time scale of an elementary Monte Carlo step. One can use complex re-
turn processes, and even do a historical simulation where the historically
observed price increments of the underlying are used.

• In addition, one obtains an important reduction of the variance of the
option price and hedge. When the residual risk is minimized by finding the
optimal hedging strategy, the variance of the option prices is automatically
minimized.

Being optimally hedged by construction, the method has been called Hedged
Monte Carlo.

For simplicity, we only consider a European call option. Numerical option
pricing always works backward in time because at maturity T = Nτ the
option price CN is known exactly and is equal to the payoff of the option.
At time tk, the price of the underlying is Sk, the option price is Ck, and the
hedge is Φk(Sk), as above. In the absence of linear temporal correlations in
the prices, the wealth balance ∆W becomes the sum of local changes ∆Wk

between steps k and k+1. The same applies to its variance, the residual risk,
which can be minimized locally. The analog to (7.21) at time step k is

R2
k =

〈(
e−rτCk+1(Sk+1) − Ck(Sk) + Φk(Sk)

[
Sk − e−rτSk+1

])2〉
, (7.29)

where the expectation value is taken with the historical probability distrib-
ution of the underlying [167]. Ck(Sk) and Φk(Sk) must be chosen so as to
minimize R2

k given Ck+1(Sk+1) and Sk+1. In order to implement this mini-
mization numerically, one decomposes Ck and Φk over a set of suitable basis
functions

Ck(S) =
M∑

α=1

γα
k Cα(S) , Φk(S) =

M∑
α=1

φα
k Fα(S) . (7.30)

In actual applications, the basis functions Fα(S) and Cα(S) have been cho-
sen piecewise linear and piecewise quadratic, respectively. In this way, the
problem has been reduced to a variational search for the coefficients γα

k and
φα

k , and one is left with an ordinary least-squares minimization of

NMC∑
�=1

(
e−rτCk+1(Sk+1) −

M∑
α=1

γα
k Cα(S�

k) +
M∑

α=1

φα
k Fα(S�

k)
[
S�

k − e−rτS�
k+1

])2

.

(7.31)
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Using a delta hedge

φα
k = γα

k , Fα =
dCα(S)

dS
(7.32)

simplifies the problem even further and often produces very good results
[167].

In order to assess its accuracy, this method is tested on a standard Black–
Scholes problem [167]. The asset price S(t) follows geometrical Brownian
motion with a drift rate µ = r = 5%/y and a volatility σ = 30%/

√
y. A

three-month European call option is priced with X = S(0) = 100, and the
Black–Scholes price is CBS

0 = 6.58. For 500 simulations containing 500 paths
each, N = 20 time intervals and M = 8 basis functions have been used.
Hedged Monte Carlo gives a call price CHMC

0 = 6.55 ± 0.06, a very good
approximation to the Black–Scholes price indeed. The unhedged risk-neutral
Monte Carlo scheme [166] would yield a price CRNMC

0 = 6.68 ± 0.44. A
reduction in the standard deviation of the call price by a factor of seven has
been achieved.

The example of a European call option has been chosen for pedagogi-
cal reasons and, of course, Hedged Monte Carlo is not restricted to it. For
example, American-style options with early exercise features have been suc-
cessfully priced and hedged, with results superior to established approaches
[167]. The simulations can also be performed for exotic, path-dependent op-
tions. As an example of historical simulation, a series of one-month options
on Microsoft has been priced using the price chart of eight years of daily
quotes. As explained in Chap. 4, one can invert the Black–Scholes equation
to calculate an implied volatility σimp from an option price. Performing this
inversion for the series of simulated prices, a volatility smile not unlike those
observed in real-world option markets is found.

7.6 Option Pricing in a Tsallis World

In Sect. 5.5.7 we showed that power-law distribution functions for random
variables obeying special, non-linear Langevin equations with a rather pe-
culiar feedback between macroscopic and microscopic variables could be ob-
tained from an extension of statistical mechanics. In that approach, an en-
tropy somewhat different from the usual definition was maximized, and the
corresponding statistical mechanics was not extensive. To be specific, the
distributions with entropic indices of 3/2 or 5/3 produce tail indices for the
power-law distributions µ = 3 resp. 2, and would thus be able to describe
financial time series [168].

The correspondence between Tsallis statistics and financial markets is
made by postulating that the return of an asset over an infinitesimal time
scale (i.e., in continuous-time finance) follows the Tsallis version of Brownian
motion
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d ln S = µdt + σdΩ with dΩ = P (Ω)(1−q)/2dz . (7.33)

dz describes ordinary Brownian motion. The probability density P (Ω) both
makes the differential equation non-linear and mediates the peculiar mac-
roscopic–microscopic feedback effects discussed in Sect. 5.5.7. It can be de-
termined self-consistently from a Fokker–Planck equation and behaves as a
power law with exponent 2/(2 − q) in Ω, as does the distribution of lnS in
that variable. Equation (7.33) describes an Itô process, cf. (4.40). Using Itô
calculus, a differential equation for the price can be derived [169]:

dS =
[
µ +

σ2

2
P 1−q(Ω)

]
Sdt + σSdΩ, (7.34)

which might be dubbed geometric Tsallis motion.
From this point on, one would like to compose a portfolio of a suitable

quantity of the underlying and a European call or put option (worth f) on
it which, by a magic trick, is described by a Black–Scholes-type equation

∂f

∂t
+ rS

∂f

∂S
+

1
2

∂2

∂S2
σ2S2P 1−q(Ω) = rf . (7.35)

Again, the P (Ω) term induces a non-linear dependence on S but vanishes as
q → 1 (geometric Brownian motion). Itô’s lemma has been applied and, as
with the Black–Scholes problem, a Delta hedge apparently makes the port-
folio riskless.

The basic procedure now follows the standard Black–Scholes scheme, al-
though there are a few subtleties to be considered due to the different statis-
tics. In particular, the non-linearity P (1−q)/2(Ω) in the stochastic differential
equations (7.33) and (7.34) requires a particular treatment of the martingale
property of the stochastic process. Transforming explicitly to an equivalent
martingale measure introduces an alternative noise term into the integration
of dS, namely

dz̃ =
µ + σ2

2 P 1−q(Ω) − r

σP (1−q)/2(Ω)
dt + dz . (7.36)

Following (4.95), the derivative price can be written as

f = e−rT 〈h [S(T )]〉Q , (7.37)

where h[S(T )] is the payoff function of the derivative, Q is the equivalent
martingale measure, and the price of the underlying at maturity T is

S(T ) = S(0) exp

(∫ T

0

σP (1−q)/2(Ω)dz̃s +
∫ T

0

[
r − σ2

2
P 1−q(Ω)

]
ds

)
.

(7.38)
The expectation value in (7.37) is taken over a Tsallis distribution, and the
final result – the price of a European call option – is the difference of two
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lengthy integrals. Apparently, this theory gives rather realistic option prices.
When represented in terms of an implied volatility (invert the Black–Scholes
equation for the true option price and solve for σ), one nicely reproduces the
main features of the characteristic skewed volatility smile observed in real
option markets [169].

7.7 Path Integrals: Integrating the Fat Tails
into Option Pricing

When deriving the Black–Scholes solution of option pricing and hedging in
Sect. 4.5.1, we mentioned that the Black–Scholes equation could be solved
by path-integral methods, defining a Black–Scholes “Hamiltonian”, (4.93),
on the way [51]. Also, the integral framework based on a global wealth bal-
ance and the minimal variance hedging strategy of Sect. 7.4 is very reminis-
cent of the path integrals used in physics [50]. This is not accidental: one
can in fact systematically derive path-integral representations for the con-
ditional probability distributions encountered in finance, introducing on the
way “Hamiltonians” [170]. The door to quantum finance has been opened.

To make the notation easier, define the log-price of an asset as x ≡ lnS,
and assume that its evolution equation is determined by a stochastic differ-
ential equation

dx

dt
= µx + σε(t) . (7.39)

The relative rate of return of the asset price follows

1
S

dS

dt
= µ + σε(t) . (7.40)

Geometric Brownian motion follows these equations, cf. (4.53) and (4.62),
with independent ε(t) drawn from a Gaussian, and with µx = µ − σ2/2.
The difference between both growth rates is the noise-induced drift. Here,
however, we allow the independent ε(t) to be taken from some general dis-
tribution

p(x) =
∫

dz

2π
eizxp̂(z) ≡

∫
dz

2π
eizx−H(z) . (7.41)

For non-Gaussian probability distributions, the relation between µx and µ is
not fixed, and depends on the specific distribution considered. The charac-
teristic function p̂(z) was introduced in (5.16), and the last identity defines a
Hamiltonian associated with this distribution. To keep consistency with Sect.
5.4, we use the variable z in the characteristic function. Analogy with physics
would suggest using p instead, but this would conflict with the use of p for
probabilities. For a Gaussian distribution with zero mean, the Hamiltonian
is HG = σ2z2/2. The Gaussian Hamiltonian describes a free particle with
mass m = 1/σ2 and momentum z. For a symmetric, stable Lévy distribution
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with zero mean, (5.42), the Hamiltonian is HL = a|z|µ, with no obvious in-
terpretation in terms of a physical system. The definition of the cumulants
cn in (5.17) immediately suggests the following power-series expansion of the
Hamiltonian:

H(z) =
∞∑

n=0

cn(iz)n

n!
, (7.42)

the equivalent to the cumulant expansion of the characteristic function. Two
Hamiltonians related to H(z) are useful:

H̄(z) = H(z) − ic1z , (7.43)
Hr(z) = H(z) − ic1z + irz . (7.44)

The conditional probability distribution for finding xb at time tb, condi-
tioned on xa at ta, then is given by the path integral [170]

p(xb, tb|xa, ta) =
∫
Dε

∫
Dx exp

{
−
∫ tb

ta

dtH̃[ε(t)]
}

δ

(
dx

dt
− ε

)
. (7.45)

The function H̃(x) is defined by

H̃(x) ≡ − ln p(x) . (7.46)

The path integral in (7.45) is evaluated by cutting the time interval into
N slices of length τ each, integrating over all x(tn), and taking the limit
N → ∞, τ → 0 with tb − ta = Nτ = const. [50]. In complete analogy to
physics, one can calculate a partition function, a generating function, and
all moments and correlation functions in the path-integral formulation. The
path integrals also satisfy a Chapman–Kolmogorov–Smoluchowski equation
(3.10), implying that they describe Markov processes. This is not surprising,
though, as we required independent increments in (7.39) from the outset.

Also, a general Fokker–Planck-type equation

∂

∂t
p(xb, tb|xa, ta) = −H

(
−i

∂

∂x

)
p(xb, tb|xa, ta) (7.47)

can be derived, where the canonical substitution z → −i∂x has been per-
formed in the Hamiltonian. Clearly, H(z) in general is not a quadratic func-
tion of z, and (7.47) therefore contains higher-order terms beyond the drift
and diffusion terms present in the canonical Fokker–Planck equation. In that
sense, (7.47) is more correctly termed a Kramers–Moyal equation, And, from
what has been said in Chap. 6, there is no equivalent Langevin equation
in this case [37, 146]. The unconditional probability distribution p(x, t) also
satisfies (7.47),

∂

∂t
p(x, t) = −H

(
−i

∂

∂x

)
p(x, t) , (7.48)
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a Schrödinger equation in imaginary time (with a substitution p → ψ, the
illusion is complete) [170].

The stochastic processes considered here, in general, are not Itô processes
of the form (4.40). Therefore Itô’s lemma, (4.57), does not apply in the form
given there. However, one can use the Schrödinger equation above to derive
a generalized Itô relation [170]. The evolution of a function f of a stochastic
variable obeying (7.39) with increments drawn from an arbitrary probability
distribution is given by

df [x(t)]
dt

=
∂f [x(t)]

∂x

dx

dt
− H̄

(
i

∂

∂x

)
f [x(t)] . (7.49)

H̄ appears instead of H because the first derivative of f has been taken out
of H, cf. (7.43), to emphasize the similarity with the equivalent Gaussian
expression (4.57).

From (7.39), the relation between the stochastic variable x(t) and the
asset price is S(t) = exp[x(t)]. Using the generalized Itô relation, we can
relate µx to µ by

µx = µ + H̄(i) = µ + H(i) − iH ′(0) (7.50)

and relate the log-return rate dx = d lnS to the relative return rate [170]:

1
S

dS

dt
=

dx

dt
− H̄(i) =

dx

dt
− H(i) + iH ′(0) . (7.51)

Integrating the expectation value of this equation from zero to t gives the
expected asset price at t,

〈S(t)〉 = S(0)eµt = S(0) exp [µxt − H(i) + iH ′(0)] . (7.52)

Path integrals are useful for calculating expectation values of stochastic
variables, or functions thereof. As explained in Sect. 4.5.3, in an option-
pricing context, this implies that one has to use the equivalent martingale
process of the underlying, rather than the historical price process. What is
the equivalent martingale process to (7.39)? The simplest solution is

e−µtS(t) = e−µtex(t) = e−µteµxt+σ
∫ t

0
dt′ε(t′)

. (7.53)

A martingale distribution which gives such a process is

pM (xb, tb|xa, ta) = e−µt

∫
Dε

∫
Dx exp

{
−
∫ tb

ta

dtH̃µx
[ε(t)]

}
δ

(
dx

dt
− ε

)
.

(7.54)
This, however, is not the only distribution with a time-independent expec-
tation value. There is an entire family of equivalent martingale distributions
with this property, among them
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pMr(xb, tb|xa, ta) = e−rt

∫
Dε

∫
Dx exp

{
−
∫ tb

ta

dtH̃r[ε(t)]
}

δ

(
dx

dt
− ε

)
.

(7.55)
This distribution is also called the natural martingale [170].

The application to option pricing now uses a differential equation for the
wealth of a portfolio consisting of NS(t) assets of price S(t), Nf (t) options
of price f(t), and NB(t) units of a risk-free bond (or cash) of price B(t). The
aim is to determine a hedging strategy {NS(t), Nf (t), NB(t)} which makes
the portfolio

Π(t) = NS(t)S(t) + Nf (t)f(t) + NB(t)B(t) (7.56)

grow exponentially without fluctuations:

dΠ(t)
dt

= rΠΠ(t) . (7.57)

The risk-free position B(t) grows with the risk-free interest rate r. The ab-
sence of arbitrage then implies that

rΠ = r . (7.58)

As in the Black–Scholes theory, in the absence of transaction costs, the trad-
ing strategy is self-financing, i.e., there is no net cash flow into or out of the
portfolio. This is expressed by

dNS(t)
dt

S(t) +
dNf (t)

dt
f(t) +

dNB(t)
dt

B(t) = 0 . (7.59)

Injecting this equation into (7.57) cancels the terms involving the bond (which
is why cash or bonds did not appear in our discussion of the Black–Scholes
theory). Rewriting all remaining contributions in terms of the option price
f(t) and its derivatives, and in terms of the log-price x(t), the ∆-hedge of
Black and Scholes is found by requiring that the fluctuating variable dx/dt
must disappear from the equations. At the same time, the option price sat-
isfies the Fokker–Planck-type equation

∂f

∂t
= rf − [

r + H̄(i)
] ∂f

∂x
+ H̄

(
i

∂

∂x
f

)
. (7.60)

This is a straightforward generalization of the Black–Scholes equation (4.75),
as can be checked by using the quadratic Hamiltonian HgBm = σ2z2/2 of
geometric Brownian motion. The general solution of this equation is

p(xb, tb|xa, ta) = e−r(tb−ta)

∫ ∞

−∞

dz

2π
eiz(xb−xa)−[H̄(z)+i{r+H̄(i)}z][tb−ta] .

(7.61)
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This equation, however, must be solved numerically. Unfortunately, no ex-
amples have been worked out to date which would demonstrate the potential
power of the method [170].

Path-integral techniques can also be useful when path-dependent options
are priced and hedged [171]. Examples of path-dependent options are Asian,
barrier, or lookback options. The payoff of an Asian option usually is deter-
mined by the average of the price of the underlying during a certain period
[10]. The payoff of a barrier option is triggered by the underlying passing
above or below a certain threshold price. The payoff of a lookback option
depends on the maximal or minimal stock price realized during the lifetime
of the option. For a European call it is the difference between the maximum
and the minimum of the price of the underlying while, for a European put, it
is the difference between the maximal price and the price at maturity of the
underlying stock. The general ideas are somewhat similar to the preceding
presentation, which is why we will be rather brief here.

Assume that we know the risk-neutral stochastic process of the under-
lying, and assume further (for simplicity, this is not a requirement) that it
follows geometric Brownian motion. Then the price f of a path-dependent
option at maturity is

f [S(T ), I, T ] = h[S(T ), I] = h[ex(t), I] , (7.62)

where h[. . .] is the payoff profile of the option, and the path-dependent ran-
dom variable

I =
∫ T

t

ds w(s) g[x(s), s] (7.63)

is written as an integral over an arbitrary function g with a sampling function
w(s). For continuous sampling w(s) = 1 while, for discrete sampling, w(s)
is a series of delta functions. In a risk-neutral world, the option price is the
discounted expectation value of the payoff

f [S(t), t] = e−r(T−t)〈h[ex(T ), I]〉t (7.64)

= e−r(T−t)

∫ ∞

−∞
dx(T )

∫ ∞

−∞
dI p[x(T ), I|x(t)] h[ex(T ), I ]. (7.65)

From the preceding discussion, it is obvious that the conditional proba-
bility distribution can be represented as a path integral (given here for the
special case of geometric Brownian motion)

p[x(T ), I|x(t)] =
1
2π

exp
[
µ{x(T ) − x(t) − µ(T − t)}

σ2

]

×
∫ ∞

−∞
dke−ikIK[x(T ), x(t);T − t] , (7.66)
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K[x(T ), x(t);T−t] =
∫ x(T )

x(t)

Dx(s) exp

{
− 1

2σ2

∫ T

t

ds

[
dx(s)

ds
+ V [x(s), s]

]}
,

(7.67)
V [x(s), s] = −2 i k σ2 w(s) g[x(s), s] . (7.68)

K[x(T ), x(t);T − t] is a propagator, and the path integral in (7.67) integrates
over all paths connecting x(t) at the initial time t with x(T ) at maturity T .
V [x(s), s] is a potential whose shape is determined by the path-dependent
random variable I.

These path integrals, and the corresponding option prices, cannot be
evaluated analytically in general. Matacz [171] has shown, however, that a
partial average can be performed systematically based on the path-integral
representation, which considerably reduces the numerical effort compared
to standard numerical methods such as Monte Carlo. The path integral in
K[x(T ), x(t);T − t] is evaluated by discretizing time and deriving a cumulant
expansion for the propagator (s = t + nε, ε = (T − t)/N):

K[x(T ), x(t);T − t] =
∫ ∞

−∞
dxN−1 . . . dx1

N∏
n=1

K[xn, xn−1; ε] , (7.69)

K[xn, xn−1; ε] =

√
1

2πσ2ε
exp

[
− (xn − xn−1)2

2σ2ε

+
∞∑

m=1

1
m!

(
− ε

2σ2

)m

Cm(xn, xn−1; ε)

]
. (7.70)

Notice that the path dependence of the option has entirely been transformed
into the details of the cumulants. The cumulant expansion at the same time
is a power-series expansion in ε, the length of a time slice. A partial averaging
of the short-time propagator K[xn, xn−1; ε] can then be performed by simply
truncating the cumulant expansion at some order. For example, a propagator
correct to second order in ε is obtained by dropping all cumulants beyond
the first. The first cumulant is given by

C1[xn, xn−1; ε] = −i2σ2k

∫ 1

0

dτw(τ)
∫ ∞

−∞
dpτ

e−p2
τ /2ν2

τ√
2πν2

τ

g[x̄τ + pτ , τ ] (7.71)

with the abbreviations ν2
τ = σ2ε(1 − τ)τ , x̄τ = τ(xn − xn−1) + xn−1, and

τ = (s − sn−1)/ε. If required, higher-order terms can also be calculated.
The option price finally becomes in this first-order cumulant approxima-

tion

f [S(t), t] = e−r(T−t)

∫ ∞

−∞
dxN . . . dx1 p[xN , . . . , x1|x0]

×h

[
exN , 2σ2ε

N∑
n=1

C1(xn, xn−1; ε)

]
+ . . . . (7.72)
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Often, the first cumulant can be calculated analytically. Within our approxi-
mation of geometric Brownian motion, it is simply the Gaussian transform of
the function g containing the path dependence of the option. An important
practical advantage is that the size ε of the time slices entering the partially
averaged cumulants can be chosen much bigger than the sampling scale of the
options, which determines the structure of the sampling function w. This is
an important simplification in the evaluation of the multidimensional integral
in (7.72), which can be evaluated by standard Monte Carlo methods [171].
Again, however, no benchmark examples are provided which would allow for
a critical assessment of the virtues and drawbacks of this method.

Another perspective is opened up by applying directly numerical meth-
ods to the Lagrangian (or Hamiltonian) which is generated by a path-integral
formulation of the conditional probability distribution functions [172]. One
such method is simulated annealing, which is an extension of a Monte Carlo
importance sampling method. The aim is to find the global minimum of a
ragged energy landscape. To this end, simulated annealing works at finite
temperature. The process is started at high temperature, and the temper-
ature then is lowered in order to trap the system in an energy minimum.
Normally, this minimum will not be the global but rather a local minimum.
In order to find the global minimum, the system is reheated and recooled
in cycles. In finance, the equivalent of the ragged energy landscape would be
stochastic volatility. The global minimum dominates the evolution of the con-
ditional probability density with time. Once it has been calculated from the
path-integral representation, one again we can use it for expectation-value
derivative pricing in a risk-neutral world.

7.8 Path Integrals: Integrating Path Dependence
into Option Pricing

It is surprising that less work has been done on the use of path integrals to
incorporate path dependences into option theory. The most prominent exam-
ple of path-dependent options are the plain vanilla American-style options.
Depending on the actual path followed by the price S(t) of the underlying,
early exercise may or may not be advantageous [10]. In Sect. 4.5.4, we have
discussed that the correct pricing of American options requires approximate
valuation procedures even when the price of the underlying follows geometric
Brownian motion. Some of them certainly can be improved. Exotic options
with path-dependent payoff profiles are other examples where the methods
described in the following can be useful.

The central problem in pricing path-dependent options is the evaluation
of conditional expectation values such as those used on the right-hand sides
of (4.100) and (4.101). We can write them in the general form
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〈h[S(t)] | S(t′)〉 =
∫ ∞

−∞
dx h

[
ex(t)

]
q(x, t | x′t′) . (7.73)

The notation x = lnS has been kept from above. q(x | x′), where explicit
time variables are dropped from now on, is the transition probability of the
log-price between times t′ and t. h(S) is the payoff function of the option
taken at price S of the underlying. From our earlier discussions, there are a
few indications that path integrals could be useful in evaluating the transition
probability q(x | x′), and expectation values involving this quantity: (i) In
Sect. 4.5.2, we saw that path integrals led to a quantum Black–Scholes Hamil-
tonian (4.93) for the European options with the standard solution [51]. (ii)
The Fokker–Planck equation employed in Chap. 6 also admits a path-integral
representation [37]. The transition probabilities q(x | x′) only depend on the
stochastic process involved and not on the specific option considered. Option
properties only enter through the expectation values (7.73).

By iterating the Chapman–Kolmogorov–Smoluchowski equation (3.10),
and discretizing time between t′ and t into n + 1 slices of length ∆t = (t −
t′)/(n + 1), we write the transition probability as [173]

q(x | x′) =
∫ ∞

−∞
. . .

∫ ∞

−∞
dx1 . . . dxn

1√
(2πσ2∆t)n+1

× exp

{
− 1

2σ2∆t

n+1∑
k=1

[
xk − xk−1 −

(
r − σ2

2

)
∆t

]2
}

. (7.74)

Formally, we set x = xn+1 and x′ = x0. A direct evaluation of q(x | x′)
by Monte Carlo simulation requires very long simulation times when good
accuracy is sought. On the one hand, by taking the continuum limit, one can
derive a path integral representation [173]

q(x | x′) =
∫

D [
σ−1x̃

]
exp

{
−
∫ t

t′
dτ L

[
x̃(τ),

dx

dτ
; τ
]}

(7.75)

with a Lagrangian

L

[
x̃(τ),

dx

dτ
; τ
]

=
1
2σ

[
dx

dτ
−
(

r − σ2

2

)]2

(7.76)

equivalent to the Black–Scholes Hamiltonian (4.93).
On the other hand, one can use substitutions common in the evaluation

of path integrals to transform (7.74) into a form which allows a fast and
accurate Monte Carlo evaluation. Two steps are necessary to overcome two
important obstacles in the evaluation of (7.74) or (7.75). Firstly, the integral
kernels are nonlocal in time: (7.74) depends on the difference xk − xk−1,
and (7.75) on dx/dτ . An expression local in time would allow to separate
the multi-dimensional resp. path integral into a product of independent one-
dimensional integrals. Secondly, the integral should be brought into a form
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which allows a Monte Carlo evaluation which is fast and accurate at the
same time. As discussed in Sect. 4.5.4, the convergence of a direct Monte
Carlo evaluation is rather slow. One therefore seeks a representation of the
integral where Monte Carlo simulations give a good convergence.

The first goal is achieved by the substitution

yk = xk − k

(
r − σ2

2

)
∆t (7.77)

which eliminates the drift term in (7.74). The argument of the exponential
in (7.74) is transformed

n+1∑
k=1

[
xk − xk−1 −

(
r − σ2

2

)
∆t

]2

=
n+1∑
k=1

[yk − yk−1]
2

= yT · M · y +
[
y2
0 − 2y0y1 + y2

n+1 − 2ynyn+1

]
. (7.78)

yT = (y1, . . . , yn) is the transpose of y, and M is a tridiagonal matrix which
can be diagonalized by an orthogonal matrix O with eigenvalues mi and
eigenvectors wi. We obtain for the transition probability

q(x | x′) =
e−(y2

0+y2
n+1)√

(2πσ2∆t)n+1

n∏
i=1

∫ ∞

−∞
dwi exp

{
− 1

2σ2∆t

×
n∑

i=1

(
mi

[
wi − (y0O1i + yn+1Oni)

mi

]2

− (y0O1i + yn+1Oni)2

mi

)}
.

(7.79)

The coupled, multi-dimensional integral over the xk, resp. yk, now is decou-
pled into a product of one-dimensional integrals over the wi-variables with a
Gaussian kernel.

A naive Monte Carlo integration of the integral over wi uses uniformly
distributed random numbers wi, and determines the value of the integral as
the product of the average of the kernel at the positions wi times the area
sampled [174]. The error depends on the standard deviation of the kernel at
the positions wi, and decreases as the inverse square root of number of wi.
This is the problem of slow convergence. The problem will be computationally
more efficient if we can transform to a structure where the kernel is constant
(or almost constant), and the random numbers are no longer distributed
uniformly. This technique is known an importance sampling [174] and, for
our kernel, is achieved by the substitution

dhi =
√

mi

2πσ2∆t
exp

{
− mi

2πσ2∆t

[
wi − (y0O1i + yn+1Oni)

mi

]2
}

dwi .

(7.80)
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The resulting transition probability

q(x | x′) =
e−(y2

0+y2
n+1)√

(2πσ2∆t)n+1

n∏
i=1

∫ ∞

−∞
dhi (7.81)

× exp
{
− 1

2σ2∆t

(y0O1i + yn+1Oni)2

mi

}

possesses the desired features: A constant kernel the integral which – in Monte
Carlo – is sampled by random numbers hi drawn from a Gaussian with mean
(y0O1i + yn+1Oni)2/mi and variance σ2∆t/mi [173]. With these transforma-
tions, the asset price is given by

Si = exp

{
n∑

k=1

Oikhk + i

(
r − σ2

2

)
∆t

}
. (7.82)

The normal distribution of the hi implies the log-normal distribution of the
prices Si, as required for geometric Brownian motion. This simple represen-
tation of the price in terms of the random sampling variables hi makes this
method well suitable for evaluating path-dependent options.

This path intergral representation and its discretized counterpart trans-
formed as above, are useful for several purposes.

• Firstly, it is a competitive alternative, both in terms of accuracy and calcu-
lation speed, to finite difference methods, to binomial trees, and to Green
function methods [173].

• Secondly, for American options, the continuum limit in time, ∆t → 0, can
be combined with an “infinitesimal trinomial tree” in the space of the log-
prices, xk, to allow a seminanalytical evaluation of the fundamental integral
(7.73). Specifically, noting that the transition probability, for small ∆t, is an
almost δ-function peak in xk −xk−1, the payoff function h(ex) is expanded
to second order on the trinomial tree xj

k = xk−1 + r∆t + jσ
√

∆t with j =
−1, 0, 1. The integral (7.73) is evaluated analytically with the second-order
expanded payoff function, and the second-order coefficient is determined by
numerical differentiation on the trinomial tree. The implementation of this
scheme makes almost negligible the numerical effort of calculated prices
and hedges for American options (for geometric Brownian motion) [173].

• The path integral representation can be generalized to path-dependent op-
tions on assets following multidimensional, correlated geometric Brownian
motion. Examples include options dependent on baskets of stocks, or bas-
kets containing stocks, bonds, and currencies. Often, the statistical prop-
erties of the basket price are less well known than those of the constituent
assets. Path-dependent exotic options on such baskets can be evaluated by
generalizing the techniques described above [175].



8. Microscopic Market Models

In the preceding chapters, we described the price fluctuations of financial
assets in statistical terms. We did not ask questions about their origin, and
how they are related to individual investment decisions. In the language of
physics, our approach was macroscopic and phenomenological. We considered
macrovariables (prices, returns, volatilities) and checked the internal consis-
tency of the phenomena observed. In this chapter, we wish to discuss how
these macroscopic observables are possibly related to the microscopic struc-
ture and rules governing capital markets. We inquire about the relation of
microscopic function and macroscopic expression.

8.1 Important Questions

Hence we face the following open problems:

• Where do price fluctuations come from? Are they caused by events external
to the market, or by the trading activity itself?

• What is the origin of the non-Gaussian statistics of asset returns?
• How do the expected profits of a company influence the price of its stock?
• Are markets efficient?
• Are there speculative bubbles?
• What is the reference when we qualify market behavior as normal or anom-

alous?
• Can computer simulations be helpful to answer these questions?
• Can simulations of simplified models give information on real market phe-

nomena?
• Is there a set of necessary conditions which a microscopic market model

must satisfy, in order to produce a realistic picture of real markets?
• What is the role of heterogeneity of market operators?
• Is there something like a “representative investor”?
• What is the role of imitation, or herding in financial markets? Is such

behavior important, if ever, only in exceptional situations such as crashes,
or also in normal market activity?

• Can realistic price histories be obtained if all market operators rely, in
their investment decisions, on past price histories alone (chartists) or on
company information alone (fundamentalists)?



222 8. Microscopic Market Models

• Are game-theoretic approaches useful in understanding financial markets?

8.2 Are Markets Efficient?

The efficient market hypothesis states that prices of securities fully reflect all
available information about a security, and that prices react instantaneously
to the arrival of new information. In such a perspective, the origin of price
fluctuations in financial markets is the influx of new information. Here, the
origin of price fluctuations would be exogeneous. The information could be,
e.g., the expected profit of a company, interest rate or dividend expectations,
future investments or expansion plans of a company, etc., which constitute
the “fundamental data” of the asset. Traders who hold such an opinion are
“fundamentalists” who therefore search/wait for important new information
and adjust their positions accordingly.

Opposite to this opinion is the idea that the fluctuations and price statis-
tics are caused by the trading activity on the markets itself, rather indepen-
dently of the arrival of new information. Here, the origin of the fluctuations
is endogeneous. Related to this picture is the hypothesis that past price his-
tories carry information about future price developments. This is the basis
of “technical analysis”. Its practitioners are the “chartists”, who attempt to
predict future price trends based on historic data. They base their investment
decisions on the signals they receive from their analysis tools.

Concerning the crash on October 27, 1997 (the “Asian crisis”), one might
ask if and to what extent the cause of the price movements was indeed the
collapse of major banks in Asian countries, if they were caused to a large
extent by the traders themselves who reacted – perhaps in exaggerated man-
ner – to the news about the bank collapse, or if there was just an accidental
coincidence. In a similar way, there are conflicting views about the origins
of the crash on Wall Street on October 19, 1987, which cannot be linked
unambiguously to a specific information flow.

Unfortunately, it is difficult in practice to make a clear case for one or the
other paradigms. One reason is that most traders do not base their invest-
ment decisions on one method alone but rather use a variety of tools with
both fundamental and technical input. However, the point can also be seen
checking one or both paradigms empirically. As an example, Fig. 8.1 shows
the expected profit per share of three German blue chip companies: Siemens,
Hoechst (now Aventis), and Henkel. The expectation is for the business year
1997, and its evolution from mid-1996 through 1997 is plotted. If the funda-
mentalist attitude is correct, the evolution of the stock prices should somehow
reflect these evolving profit expectations. Figure 8.2 shows the evolution of
the Henkel stock price over a similar interval of time. The expected profits of
this company increased monotonically from DM4.00/share to DM4.50/share.
With the exception of the period July–October 1997, culminating in the crash
on October 27, 1997, the stock price by and large followed an upward trend,
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Fig. 8.1. Expected profit per share of three German blue chip companies for 1997,
in DM, as a function of time from mid-1996 through 1997: Siemens (solid line),
Hoechst (dashed line), and Henkel (dotted line). Adapted from Capital 2/1998 cour-
tesy of R.-D. Brunowski, based on data provided by Bloomberg
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Fig. 8.2. Share price of Henkel from 2/7/1996 to 31/12/1997

too, in agreement with what fundamentalists would claim. If a moving av-
erage with a time window of more than 100 days is taken, the drawdowns
in summer 1997 are averaged out, and the parallels are even more striking.
The situation is, however, much less clear for Siemens and Hoechst, shown in
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Figs. 8.3 and 8.4. While the profits of Siemens were expected to fall almost
monotonically, its stock sharply moved up until early August 1997, when it
reversed its trend and started falling until about the end of 1997. The case of
Hoechst is also interesting, in that profit expectations changed from increase
to decrease in March 1997, and there is indeed a strong drawdown in their
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Fig. 8.3. Share price of Siemens from 2/7/1996 to 31/12/1997
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Fig. 8.4. Share price of Hoechst (now Aventis) from 2/7/1996 to 31/12/1997
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stock price in that period. However, the further evolution does not appear to
be strongly correlated with the expected profits per share. These three exam-
ples show that, while there is some evidence for the influence of fundamental
data on stock price evolution, this evidence is not so systematic as to rule
out other, possible endogenous, influences.

Another issue of market efficiency, often discussed in conjunction with
crashes, is about speculative bubbles. In such a bubble, prices deviate signifi-
cantly from fundamental data, and increasingly so in time. They are believed
to be caused by some positive feedback mechanism, such as imitation, or
herding behavior, and self-fulfilling prophecies are often involved. An impor-
tant issue in economics is whether such bubbles can be detected, controlled,
and avoided. One explanation forwarded for Black Monday on Wall Street,
the crash on October 19, 1987, is related to a hypothetical speculative dollar
bubble. It is not universally shared, however.

Currency markets, e.g., are very speculative with only a small fraction of
the transaction being executed for real trading purposes (paying a bill in for-
eign currency). Most transactions are due to speculation. The sheer amount
of trading volume raises doubts about market efficiency. Tobin therefore pro-
posed raising a small tax on currency transactions, in order to raise the
threshold of speculative profits, in order to prevent the formation of bubbles.
The question, of course, is whether such a Tobin tax would be successful, or
whether it would adversely affect currency markets.

The big problem with speculative bubbles, however is their timely diag-
nosis. To this end, one must know the fundamental data, and they must be
translated into asset prices with the correct market model. Any misspecifica-
tion of the model will inevitably lead to incorrect diagnoses about bubbles.
As a recent example, take the internet, or “New Economy” bubble 1996–
2000. During this period, the DAX returned about 30% per year, cf. Fig. 1.2.
While from about 2001, this period has been recognized as a speculative
bubble, essentially nobody voiced such an interpretation during the period
in question.

Unlike in physics, where controlled laboratory experiments are usually
carried out to answer similar questions, economics does not allow for such
experiments. Computer simulation of models for artificial markets is therefore
the only possibility of clarifying some aspects of these problems. The situation
is rather similar to climate research where large-scale experiments are also
impossible, but there is an obvious need for (at least approximate) answers
to a variety of questions ranging from weather forecasting, to the greenhouse
effect, to the ozone hole, etc. For a physicist, a market is basically a complex
system away from equilibrium, and such systems have been simulated in
physics with success in the past.
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8.3 Computer Simulation of Market Models

Computer simulations of markets have a long history in economics. Two early
examples were concerned precisely with market efficieny [5], and aspects of
the 1987 October crash on Wall Street [176].

8.3.1 Two Classical Examples

Stigler challenged both the statements, and the assumptions underlying a
report of a committee of the US congress on the regulations of the securities
markets in the US [5]. This report tested market efficiency by two meth-
ods which, in an essential way, relied on continuous stochastic processes for
the prices, in order to be significant. In the course of his arguments, Stigler
devised a simple random model of trading at an exchange. Starting from a
hypothetical order book with 10 buy orders at subsequent prices on one side
(labeled 0, . . . , 9), and no sell orders on the other side, prices are gener-
ated from two-digit random numbers. The parity of the first digit (even or
odd) indicates if the price is bid (buy) or ask (sell). There are rules when
transactions take place (bid > ask), how to treat unfulfilled orders, etc. This
simple model creates a strongly fluctuating transaction price, certainly not
the smooth price histories assumed in the tests conducted in the report.

Another market model was developed by Kim and Markowitz in response
to speculations about the role of portfolio insurance programs during the 1987
October crash on Wall Street [176]. A published report ascribed a large part
of the crash to computerized selling of stock by portfolio insurance programs
run by large institutional investors. This view, however, was disputed by
others, and no consensus could be reached. The aim of Kim and Markowitz’
work was to study if a small fraction of portfolio insurance sell orders could
sufficently destabilize the market, to lead to the crash.

Portfolio insurance is a trading strategy designed to protect a portfolio
against falling stock prices. The specific scheme, constant proportion portfolio
insurance, implemented in Kim and Markowitz’ model illustrates the general
ideas. At the beginning, a “floor” is defined as a fraction of the asset value, say
0.9. The “cushion” is the difference between the value of the assets (including
riskless assets such as bonds or cash), and the floor. At finite times, one
ideally leaves the floor unchanged, and the cushion changes with time as the
stock price varies. (In practice, however, the floor must be adjusted both for
deposits and withdrawals of money, and for changes in interest rates of the
riskless assets.) One now defines a target value of the stock in the portfolio
as a multiple of the cushion. As an example, suppose that a portfolio worth
$ 100,000 consists of $ 50,000 in stock and $ 50,000 in cash, and that the
target value of stock is five times the cushion. The floor is then $ 90,000
and the cushion is $ 10,000. Now assume that the value of the stock falls to
$ 48,000. The cushion reduces to $ 8,000, and the target value of stock falls
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to $ 40,000. The portfolio manager (or his computer program) will sell stock
worth $ 8,000.

In addition to portfolio insurers, the model contains two populations of
“rebalancers”. These agents will attempt to maintain a fixed stock/cash ratio
in their portfolio, and give buy and sell orders accordingly. The two groups of
rebalancers have different preferred stock/cash ratios, i.e., different risk aver-
sion. At the beginning, all three populations receive the same starting capital,
half in stock and half in cash. One rebalancer group has a preferred stock/cash
ratio larger than 1/2, the other one smaller. This element of heterogeneity
is important for the simulation. There is a set of rules which determine the
course of trading. The stock price changes because the two rebalancer groups
will place orders to reach their preferred stock/cash ratio. This will generate
orders from the portfolio insurance population, etc.

With rebalancers alone, important trading activity takes place at the be-
ginning but quickly dies out because they can reach their preferred stock/cash
ratios. As the fraction of portfolio insurance population on the market in-
creases from zero to two-thirds, the volatility of the prices increases by or-
ders of magnitude. Returns and losses of 10–20 % in a single day are not
uncommon. It is therefore very conceivable that portfolio insurance schemes
contributed to the crash on October 19, 1987. Interestingly, when the sim-
ulations allowed margins for the dealers, i.e., the possibility of short selling
or buying on credit, the market exploded even with a 50% portfolio insurer
population and 33% margin. Prices would then diverge, and the simulation
had to be stopped.

This work gives a good impression of the sensitivity of such models in gen-
eral, and the need to specify them correctly in terms of both rules and initial
conditions. Meanwhile, computer simulations in economics have become more
complex and have greater performance, and some scientists have attempted
to model a stock market under rather realistic conditions. In the most ad-
vanced simulations, agents can evaluate their performance and change their
trading rules in the course of the simulation [177]. In some cases, however,
the models have become so complex that a correct calibration is difficult, to
say the least.

8.3.2 Recent Models

The physicist’s approach, on the other hand, is usually to formulate a minimal
model which depends only on very few factors. Such a simple model may not
be particularly realistic, but the hope is that it will be controllable, and allow
for definite statements on the relation between observables, such as prices or
trading volumes, and the microscopic rules. Once such a simple model is
well understood, one might make it more realistic by gradually including
additional mechanisms. Such models will be presented in Sect. 8.3.2.

The first model was chosen rather arbitrarily to introduce the general
principle. Other models, in part historically older, will be discussed later.



228 8. Microscopic Market Models

Space, however, only allows us to discuss the most general principles, and we
refer the reader to a more specialized book for more details [20].

A Minimal Market Model

One minimal model for an artificial market was proposed and simulated by
Caldarelli et al. [178]. It consists of a number of agents who start out with
some cash and some units of one stock, an assumption common to most
models. The agents’ aim is to maximize their wealth by trading. The only
information at their disposal is the past price history, i.e., an endogenous
quantity. There is no exogenous information. The agents therefore behave
as pure chartists. Therefore, this model addresses the interesting question of
whether realisitic price histories can be obtained even in the complete absence
of external, fundamental information.

Structure of the Model There are N agents (e.g., N = 1000), labeled by
an integer i = 1, . . . , N . Their aim is to maximize their wealth Wi(t) at any
instant of time t:

Wi(t) = Bi(t) + Φi(t)S(t) . (8.1)

Here, Bi(t) is the amount of cash owned by agent i at time t, and it is assumed
that no interest is paid on cash (r = 0 in the language of the preceding
chapters). S(t) is the spot price of the stock, and Φi(t) is the number of
shares that agent i possesses at t. It is also assumed that there is no long-
term return from the stock, i.e., the drift of its stochastic process vanishes:
µ = 0. Agents change their wealth (i) by trading, i.e., simultaneous changes
of Φi(t) and Bi(t), and (ii) by changes in the stock price S(t).

The trading strategies of the agents are “random” in a sense to be spec-
ified, across the ensemble of agents, but constant in time for each agent. In
order to “refresh” the trader population, at any time step, the worst trader
[mini Wi(t)] is replaced by a new one with a new strategy. This, of course, is
to simulate what happens in a real market where unsuccessful traders disap-
pear quickly. Apart from this replacement, there are no external influences,
and the system is closed.

Trading Strategies The agents place orders, i.e., want to change their Φi(t)
by ∆Φi(t) with

∆Φi(t) = Xi(t)Φi(t) +
γiBi(t) − Φi(t)S(t)

2τi
. (8.2)

There are two components implemented here.
The first term is purely speculative: Xi(t) is the fraction of the number

of shares currently held by agent i, which he wants to buy (Xi > 0) or sell
(Xi < 0) in the next time step. Each agent evaluates this quantity from the
price history based on the rules that define his trading strategy, i.e., from a
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set of technical indicators. One may determine Xi(t) from a utility function
fi(t) through

Xi(t) = fi [S(t), S(t − 1), S(t − 2), . . . , ] , (8.3)

i.e., the agent follows technical analysis to reach his investment decision.
Each agent’s utility function fi is now parametrized by a set of � indicators
Ik. These indicators are available to all agents. Possible indicators are

I1 = 〈∂t lnS(t)〉T ∼
〈

ln
S(t)

S(t − 1)

〉
T

I2 = 〈∂2
t lnS(t)〉T (8.4)

I3 = 〈[∂t lnS(t)]2〉T
. . .

The symbols 〈. . .〉T denote moving averages over a time window T , i.e., from
t−T to t. An exponential kernel is claimed to be chosen [178] but this is not
clear from the explicit expressions given.

The individual trading strategies are then defined through the set of
weights ηik which the agents i use on the indicator Ik, to compose their
utility function. Each agent forms his or her global indicator according to

xi =
�∑

k=1

ηikIk ({S}) . (8.5)

The utility function is then implemented as a simple function of the global
indicator

Xi(t) = f(xi) (8.6)

and should have the following properties: (i) |f(x)| ≤ 1 since Xi(t) is the
fraction of stock to be sold (bought) at time t, and short selling is not per-
mitted; (ii) sign(f) = sign(x), i.e., negative indicators trigger sell orders and
positive indicators lead to buying; (iii) f(x) → 0 for |x| → ∞, implementing
a cautious attitude when fluctuations become large. This may be unrealistic,
especially when x → −∞, so exceptional situations in practice may not be
covered by this model. The function chosen in [178] is

f(x) =
x

1 + (x/2)4
. (8.7)

Notice, however, that this f(x) violates condition (i)!
The second term in (8.2) represents consolidation. The idea is that every

trader, according to his attitude towards risk, has a favorite balance between
riskless and risky assets. In a quiet period, he or she will therefore try to
rebalance his portfolio towards his personal optimal ratio, in order to be in the
best position to react to future price movements. This is exactly the strategy
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of the “rebalancers” of Kim and Markowitz [176]. The optimal stock/cash
ratio is given by

γi =
ΦiS

Bi
(8.8)

and is reached with a time constant τi. This interpretation of the second term
is reached from (8.2) by putting the first term to zero (in a quiet period,
the indicators should be small or zero, making Xi vanish). An important
difference between this model and the one by Kim and Markowitz lies in the
implementation of heterogeneity: here, there is a single population of traders
with heterogeneous strategies (random numbers) whereas in the earlier work,
there were three populations with homogeneous strategies.

To simulate random trading strategies, the variables ηik and γi, τi are
chosen randomly (although it is not specified from what distribution). These
numbers completely characterize an agent.

Order Execution, Price Determination, Market Activity Price fixing
and order execution are then determined by offer and demand. Agents submit
their orders calculated from (8.2) as market orders. The total demand D(t)
and offer O(t) at time t are simply sums of the individual order decisions

D(t) =
N∑

i=1

∆Φi(t)Θ [∆Φi(t)] ,

O(t) = −
N∑

i=1

∆Φi(t)Θ [−∆Φi(t)] , (8.9)

where Θ(x) is the Heavyside step function. Usually, demand and offer are not
balanced. If D(t) > O(t), the shares are alloted as{

∆Φi(t) = ∆Φi(t)
O(t)
D(t) if ∆Φi(t) > 0

∆Φi(t) = ∆Φi(t) if ∆Φi(t) < 0 .
(8.10)

Each agent who wanted to buy gets a fraction of shares ∆Φi(t) < ∆Φi(t) of
his buy order, while the sell orders are all executed completely. The reverse
holds if O(t) > D(t). The new price is then fixed as

S(t + 1) = S(t)
〈D(t)〉T
〈O(t)〉T . (8.11)

Apparently [178], the moving averages here extend over the same time hori-
zon as the indicators underlying the investment decisions. One may have a
critical opinion on this fact. The order execution and price fixing is some-
what different from real markets, discussed in Sect. 2.6. It is not clear to
what extent the outcome depends on these details.

The model is then run as follows: (i) initialize the market by defining
all agents through their random numbers ηik, γi, τi, and by giving all dealers
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their starting capital Bi(0), Φi(0) while the initial stock price is Si(0). Few
specifications are found in the literature [178] on how this is done precisely. In
our own simulations, we gave all dealers the same amount of cash Bi(0) = B
and shares Φi(0) = Φ so that the initial value of cash and shares was equal
ΦS(0) = B. Trading and price fluctuations then initially arise just because
this equipartition does not correspond to the preferred consolidation level
of the agents. Following this, the different indicators acquire nonzero values,
and will take their influence on the operators’ investment decisions. After
a finite transient, the results should become independent of these starting
details. (This statement has, however, not been checked extensively.)

At t = 1, finite ∆Φi(t), D(t), O(t) are found, and the dealers who had
issued buy orders change the number of stocks in their portfolio, and their
amount of cash as

Φi(t + 1) = Φi(t) + ∆Φi(t) , (8.12)
Bi(t + 1) = [1 + εi(t)]Bi(t) − S(t)(1 + π)∆Φi(t) , (8.13)

and likewise for the dealers with sell orders (but π = 0). εi(t) is a small
random number of order 10−3 whose origin and importance have remained
rather obscure (looking like a random interest rate), and π are transactions
costs. The second term in (8.13) is just the price of the shares acquired. The
new price S(t + 1) is then fixed according to (8.11), and the wealth balance
Wi(t) is evaluated for each operator. Finally, the worst operator is replaced
by a new one, the indicators are updated, and new orders are placed.

Results Price fluctuations are clearly the first issue one is interested in.
Figure 8.5 shows price histories obtained in a simulation. At least to the
eye, they look rather realistic, indicating that many of the essentials of real
markets might have been captured by this simple model. More importantly,
the data show scaling behavior within the limits of their accuracy. The upper
panel of Fig. 8.6 shows raw data for the probability distribution p(∆Sτ , τ),
of price changes ∆Sτ = S(t + τ) − S(t) over a time horizon τ , for various
τ = 4, . . . , 4096. Again these probability distributions look rather similar to
those obtained on real markets, especially concerning the fat tails for large
changes. The pronounced peak for small price changes is not usually observed
on real markets. This peak may be due to the use of an exponential memory
kernel in the indicators [86]. If the price changes and probability distributions
are rescaled as

∆Sτ → ∆Sτ/τH

p(∆Sτ , τ) = τ−Hp(∆Sτ τ−H , 1) (8.14)

with a Hurst exponent H = 0.62, all data collapse onto a single universal
curve, as shown in the lower panel of Fig. 8.6. Observation of scaling of this
kind suggests that the different distributions observed are generated from a
single master curve by variation of one parameter, the time horizon τ over
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Fig. 8.5. Price history for a system of 1000 agents. Prices pt in the figure correspond
to S(t) in the text. The parameters are ε = 0.01 and π = 10−3. The lower part is a
zoom of the area in the upper rectangle. By courtesy of M. Marsili. Reprinted from
G. Caldarelli, et al.: Europhys. Lett. 40, 479 (1997), c©1997 EDP Sciences

which the returns are evaluated, and that the same underlying mechanism
is responsible for the functional form of all probability distributions. The
value of the Hurst exponent is derived from a power law found for the return
probability to the origin over the horizon τ , p(0, τ) ∼ τ−H [178]. For Lévy
distributions, µ = 1/H = 1.61, quite close, in fact, to the values µ ∼ 1.4
found in empirical studies, e.g., by Mantegna and Stanley [69] of the S&P500
index. If copying of successful strategies is allowed, e.g., when new traders
replace the unsuccessful ones, similar data are obtained, but the exponent
H = 0.5 now, i.e., scaling is like that for a random walk.

Extremal events, i.e., |∆Sτ | → ∞, obey slightly different statistics

p(∆Sτ , τ) → |∆Sτ |−2 for |∆Sτ | → ∞ . (8.15)

This is higher than both a Lévy flight (p ∼ |∆Sτ |−(1+µ)) and practice (p ∼
|δSτ |−4, cf. Sect. 5.6.1), and might indicate that traders act according to
different rules in such extreme situations [178].

The distribution of wealth, after a sufficiently long run, is described by
Zipf’s law,

Wn ∼ n−1.2 (8.16)
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where the traders have been reordered according to their wealth, i.e., W1 >
W2 > · · · > W1000. Quite early, Zipf had found that the distribution of wealth
of individuals in a society follows a power law [179].

Criticism Despite these encouraging results, there are a few problems with
this work. Some of them have been mentioned above, e.g., the fact that the
required bounds on f(x), (8.6), are violated, or that the published kernel for
the moving averages does not produce exponential decay in time.

Moreover, while the authors state that the results are rather independent
of initial parameters and robust against variation, it appears that fine-tuning
of parameters is necessary, indeed, at least into certain parameter ranges.
Together with A. Rossberg (Bayreuth/Kyoto), we have written a program
for this model and attempted to calibrate it against the published results.
These attempts have failed so far. While for special values of the parameters,
we indeed observed a rather dynamical price history over half a million time
steps, this was rather the exception than the rule. Such an example is shown
in Fig. 8.7. More typically, we have observed price histories such as that
shown in Fig. 8.8 where a rapid “equilibration” of the system into a state
with strongly bounded price variation occurs. Here, the price variations seem
to be rather similar to those one would observe from a Gaussian random walk.
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Fig. 8.7. Exceptional results of a simulation of the CMZ model by Rossberg and
Voit. The price history S(t) is shown in arbitrary units. Only every 10th data point
of a 500 000 step simulation is shown

Looking at their microstructure, however, reveals that they are quasiperiodic
and not random. The origin of this quasiperiodicity is not clear, at present.
In the same way, the differences between these more typical results of the
simulations by Roßberg and Voit, and those of Caldarelli, et al., have not yet
been understood.

The Levy–Levy–Solomon (LLS) Model

An earlier model simulation by Levy, Levy, and Solomon [180] emphasizes
the role of agent heterogeneity on the price dynamics of financial assets.
Here, we only discuss the most elementary aspects of this model. There is
much literature on this model and various extensions [20].

Structure of the Model Levy, Levy, and Solomon consider an ensemble
of agents which can switch between a risky asset (stock) and a riskless bond
[180]. The bond returns interest with rate r. There is a positive dividend
return on the stock, and additional (positive or negative) returns arise from
the variation of the stock price. Time steps in this model are taken as years.
Unlike the previous model which focuses on short-term speculative trading,
this model takes a long-term perspective and has a strong fundamentalist
element.
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Fig. 8.8. Typical results of a simulation of the CMZ model by Rossberg and Voit.
Shown is the price history S(t) in arbitrary units. Only every 10th data point of a
300 000 step simulation is shown

The evaluation of order volumes and prices differs from the preceding
model. The traders have a memory span of k time steps. The price, or return,
which they expect for the next time step, is taken from the past k prices with
equal probability 1/k. From these expected prices, they determine their order
volume by maximizing a utility function f [〈W (t+1)〉] of their expected wealth
〈W (t+1)〉 at the next time step. The utility function should be monotonically
increasing and concave, e.g., f(W ) = lnW .

Prices are determined by demand and supply. To do this, LLS assume
a series of hypothetical prices Sh(t + 1) for the next time step. The wealth
of an investor at t + 1 will then depend on this price, and on his order vol-
ume. The agent can now determine, for each hypothetical price Sh(t+1), his
corresponding order volume Xh(t + 1) from his utility function. Then, the
hypothetical order volumes Xh(Sh, t + 1) are summed over all investors, to
determine the aggregate demand and supply functions of the market. This
is rather similar to our determination of the same functions in a stock ex-
change auction with limit orders. The stock price is then determined by the
intersection of the demand and supply functions, as in Sect. 2.6. Up to this
point, everything is deterministic. Randomness is now introduced by giving
the X(t) a random component which is drawn from a Gaussian.
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An important element of the LLS work is that they simulate two differ-
ent versions of the model, one with a homogeneous trader population, and
another one with hetereogeneous traders.
Agent Homogeneity Versus Agent Heterogeneity The homogeneous
model has been specified in the preceding section. The only trader-specific
component is the random number added to the order volumes of the various
traders. Interest rates were taken as 4% per year, and the initial dividend
yields were 5% per year. Dividends were increased by 5% annually. Similar
numbers apply to the S&P500 index [180].

Such a model goes through a series of booms and crashes [180]. After
an initial transient, the stock price rises exponentially with the return rate
of the dividends. This rapid rise makes the investors very bullish about the
stock, and they will invest into the stock as much as possible. However,
in such a homogeneous situation, a small change in return can lead to a
discontinuous change of investment preferences, and trigger massive sales.
The market crashes and reaches a bottom at a much lower level. Again, it
will become more homogeneous, and a small increase of returns will trigger
a boom: investors sell the bond and buy the stock, and the price increases
sharply. This pattern reproduces periodically, with the period equal to the
memory span of the investors.

Additional heterogeneity can be introduced in several ways. One can give
the agents different memory spans, or different utility functions. In both cases,
the return histories lose their periodicity. In the simplest case with two pop-
ulations with different memory spans, the returns still oscillate between the
two limiting values of the homogeneous model, but the oscillations are “less
periodic” than before. Not surprisingly, they become more aperiodic when
the memory spans of the traders are randomized, and when in addition, they
get different utility functions. Finally, when another population is introduced
which holds a constant investment proportion in the stock, price histories are
simulated which compare favorably with the actual evolution of the S&P500.

This work shows, among other things, that heterogeneity is an important
element in the financial market. A “representative investor” as assumed in
many theoretical arguments of economics, is a construction which is not justi-
fied by the behavior of real markets. Moreover, it shows that several elements
of heterogeneity must be present simultaneously, in order to produce appar-
ently realistic time series, such as heterogeneity of memory, of expectations,
and investment strategies. When the market becomes more homogeneous,
crashes are inevitable. Notice finally that so much has been learned about
real markets because of the extensive discussion of simulation results which
deviate significantly from real market behavior [180].

Ising Models, Spin Glasses, and Percolation

In the previous models, the amount of stock bought or sold by the traders
was a continuous variable. One can achieve a higher degree of simplifica-



8.3 Computer Simulation of Market Models 237

tion by replacing this continuous variable by a discrete three-state variable
∆Φi(t) [181]: ∆Φi(t) = +1, 0,−1 according to whether the trader i wants to
buy one unit of stock at time t, stay out of the market, or sell one unit of
stock. The greater simplification allows one to introduce additional features
of complexity into the model.

An article by Iori addresses three possibly important mechanism of price
dynamics in financial markets: heterogeneity, threshold trading, and herding
[181]. Heterogeneity will no longer be discussed here. We have seen in the
preceding section that it is essential. When the possible order volumes are
restricted to 1, 0,−1, threshold trading is a necessity. However, it is also an
important fact in reality. An investor will not enter a market whenever he
receives a positive signal (e.g., from his utility functions discussed above, or
from technical or fundamental analysis) however small. In the presence of
transaction costs, the expected profit from the trade must at least provide
for these costs. Moreover, investors usually buy or sell stock only when they
are sufficiently bullish or bearish about it. Thus, orders are placed only when
the signals received are beyond certain thresholds. In Iori’s model, traders
have heterogeneous thresholds ξ±i (t) which vary with time, and the actions
are taken as a function of a trading signal Yi(t) according to

∆Φi(t) =

⎧⎨
⎩

+1 if Yi(t) ≥ ξ+
i (t) ,

0 if ξ−i (t) < Yi(t) < ξ+
i (t) ,

−1 if Yi(t) ≤ ξ−i (t) .
(8.17)

The third important aspect is communication between the agents, leading
to herd behavior in its extreme consequences. Direct communication has not
been modeled in the previous sections. There, the traders “interacted” only
through the common variable of the past price history. Here, communica-
tion is explicitly modeled in the trading signal which each agent receives at
time t:

Yi(t) =
∑
〈i,j〉

Jij∆Φj(t) + Aνi(t) + Bε(t) . (8.18)

Jij is the interaction, or communication, between agents i and j, and the
symbol 〈i, j〉 restricts the sum to those j which are nearest neighbors to
i. νi(t) represents idiosyncratic noise of the traders, and ε(t) is a noise field
common to all traders. This could be, e.g., the arrival of new information. The
model assumes that the traders “live” on a two-dimensional square lattice.
However, this assumption can probably be relaxed, and it would certainly be
interesting to introduce a more realistic communication structure. The idea
of “small-world networks” [182] could prove useful here.

Depending on the choice of the interaction parameters Jij , one recovers
variants of interesting physical problems. If all Jij = 1, one has the random-
field Ising model [183]. ∆Φi(t) plays the role of the spins (for consistency with
the remainder of this book, we avoid the symbol S for the Ising spins here),
and the model has spin 1 (the inactive state ∆Φi(t) = 0 is not allowed in the
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standard spin-1/2 model). As a function of the noise level, this model has
a transition from a paramagnetic to a ferromagnetic state. If Jij = 1 with
a certain probability p, and zero otherwise, one obtains a bond percolation
problem [184]. Finally, with Jij random, a spin-glass problem is generated
[185]. In this case, as well as in the random-field Ising limit, the first term in
(8.18) is the Weiss molecular field.

In this model, a price history is generated although apparently the stock
prices do not influence the traders’ decisions to buy or sell. The traders
receive cash and stock as in the preceding sections. Before the first trade,
a consultation round is opened. Traders whose idiosyncratic signals Aνi(t)
exceed the thresholds manifest their ordering decisions ∆Φi(0). Then traders
decide sequentially if they want to revise their decisions under the influence
of the communication term

∑
Jij∆Φj(0), i.e., follow their neighbors. This

process continues until convergence is reached. Then orders are placed, and
the price S(t) is changed according to demand and supply, (8.9), as

S(t + 1) = S(t)
(

D(t)
O(t)

)α

with α =
D(t) + O(t)

N
. (8.19)

The numerator of the exponent α is the trading volume, and the denominator
is the number of traders, i.e., the number of sites of the square lattice, N = L2.
At the same time, due to (8.17), it is the maximal number of stocks that can
be traded at any single time step. The power-law dependence in the price
law creates stronger price changes when there is a large imbalance between
demand and supply, which is reasonable. The dependence of the exponent
on the trading volume generates a correlation of price changes with trading
volume. α reduces the influence of an imbalance of demand and supply if it
is created only by very few traders. At the end, the thresholds of the traders
are adjusted by multication by S(t+1)/S(t). This is the only way the actual
prices can influence the trading decisions of the agents.

When the model is simulated in the percolation mode, one can clearly
observe the influence of communication. In the absence of thresholds, the
price fluctuations increase by an order of magnitude when the probability
of Jij = 1 is increased from 0.4 to 0.8 [181]. Finite but fixed thresholds
stabilize the system. Even for p = 1, i.e., in the random-field Ising limit, the
price fluctuations are strongly bounded, and presumably give rise to Gaussian
statistics of returns. Interactions between the agents increase the fluctuations
but do not change them qualitatively. Occasional big fluctuation periods, i.e.,
volatility clustering, is observed only when interactions are combined with
adjusting thresholds. The lower curve in Fig. 8.9 shows the results of such a
simulation. Periods of quiescence and turbulence are observed in this market.
Trading is hectic in turbulent times, as shown by the positive correlation of
volatility and trading volume. This effect is also observed in real financial
markets [186], and has been built into this model through the structure of
the exponent α.
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Fig. 8.9. Return of stock r(t) (lower curve) and trading volume V (t) (upper curve)
in a simulation of a random-field Ising model for stock markets. Notice the correla-
tion between volatility and trading volume. By courtesy of G. Iori. Reprinted from
G. Iori: Int. J. Mod. Phys. C 10, 1149 (1999), c©1999 by World Scientific

News arrival (ε(t) 
= 0) also leads to a synchronization of the traders
even in the absence of interaction. Adjusting thresholds, and communication,
however increase the volatility clustering in the time series [181]. Finally, with
all the important factors present at the same time, the model reproduces
the important features of financial time series discussed in Chap. 5, such
as fat tailed probability distributions, a crossover from Lévy-like to more
Gaussian statistics as the time scale of the returns increases, and the long-
time correlations of the absolute returns and volatility.

A particularly simple model of threshold trading was introduced by Sato
and Takayasu [187]. Here, all dealers (labelled by i) publish their bid and ask
prices Bi and Ai, and they all have the same bid–ask spread Λ = Ai − Bi.
A trade can be concluded between dealers i and j when Bi > Aj , and one
chooses those traders who propose the maximal bid and minimal ask price.
The transaction price S is fixed as the arithmetic mean of the bid and ask
prices. In each time step, traders change their bid (and ask) prices as

Bi(t + 1) = Bi(t) + ai(t) + c [S(t) − S(tprev)] , (8.20)

where ai(t) denotes the ith dealer’s expectation of the bid price in the next
time step (the idiosyncratic noise above) and c is the dealers’ response to
a change in market price since the last trade at tprev, i.e., a trend-following
attitude. Finally, it is assumed that the traders’ resources are limited, and
that therefore they want to become sellers after buying and buyers after
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selling. This can be included by changing the sign of their ai(t) after each
trade in which they took part.

This simple model generates interesting price histories [187]. For c ≈ 0,
price changes follow exponential statistics. For larger c, however, they follow
power laws, and for c = 0.3, e.g., a Lévy-like probability distribution function
with an exponent µ ≈ 1.5 is found. Larger c gives even smaller exponents.
More interesting is the fact that one can derive a Langevin-like stochastic
difference equation

∆S(tk+1) = cnk∆S(tk) + φk (8.21)

in terms of three more elementary stochastic processes. tk is the time of the
kth trade, and nk = tk+1 − tk is the time interval between two successive
trades. nk is a stochastic variable and drawn from a discrete exponential
distribution

W (n) =
∞∑

m=1

1 − e−γ

e−γ
exp(−γm)δ(n − m) . (8.22)

Even for c = 0 price fluctuations exist at the trading times. They are denoted
by φk, and drawn from a Laplace distribution

U(φ) =
1
2σ

exp(−|φ|/σ) . (8.23)

Finally, ∆S(tk) is the price change at the last trade. From a detailed analysis
of the individual stochastic processes in terms of the microscopic parameters
c, Λ, the number of traders, and the width of the distribution of the ai, one
can derive conditions on these parameters to find, e.g., power-law scaling in
the distribution of returns [187]. It is interesting that very recent empirical
studies also seem to find evidence for a decomposition of the price or return
process of a financial time series, into more elementary processes involving
the waiting times between trades, etc. [114, 188].

Increasing communication led to stronger price fluctuations in the model
by Iori, and communication was an essential ingredient to obtain a realis-
tic volatility clustering. Herding must be an important factor in financial
markets. On the one hand, economic studies produce evidence for herd be-
havior [189]. On the other hand, there are also mathematical and physical
arguments showing that the independent agent hypothesis cannot be a good
approximation under any circumstances [190]. The argument basically goes
as follows. Assume that price changes of a stock are roughly proportional to
excess demand. If then the probability of a certain demand by an individual
agent has a finite variance, and agents act independently, the central limit
theorem guarantees the convergence of the excess demand distribution to a
Gaussian. By proportionality, price changes should then also obey Gaussian
statistics. Even if we do not assume a finite variance of the individual demand
distribution, the generalized central limit theorem would still require conver-
gence to a stable distribution. The persistent observation of price changes
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being strongly non-Gaussian and nonstable, cf. Chap. 5, such as a truncated
Lévy distributions, or a power-laws with non-stable exponents

p(∆S) ∼ |∆S|−(1+µ) exp(−a|∆S|) or p(∆S) ∼ |∆S|−4 (8.24)

is solid evidence against an independent agent approach.
The influence of communication and herding alone can best be studied

by focusing on an even simpler model: percolation, as proposed by Cont and
Bouchaud [190]. Agents again have three choices of market action: buy, sell,
or inactive, as in Iori’s model. They can form coalitions with other agents
who share the same opinion, i.e., choice of action. N agents are assumed to
be located at the vertices of a random graph, and agent i is linked to agent
j with a probability pij . A coalition is simply the ensemble of connected
agents (a cluster) with a given action ∆Φi. This, of course, precisely defines
a percolation problem [184].

Agents in a cluster share the same opinion and do not trade among
themselves. They issue buy and sell orders to the market with probabili-
ties P (∆Φi = +1) = P (∆Φi = −1) = a, and remain out of the market with
P (∆Φi = 0) = 1 − 2a. a is the traders’ activity, and for a < 1/2, a fraction
of traders is inactive. If all pij = p, the average number of agents, to which
one specific agent is connected, is (N − 1)p. In order to solve the model, one
is interested in the limit N → ∞. In this limit, (N − 1)p should remain finite
so that the probability of a link scales as p = c/N . Finally, price changes are
assumed to be proportional to the excess demand

∆S ∝
∑

i

∆Φi . (8.25)

Random graph theory now makes statements on the sizes W of clusters
in the limit N → ∞ [190]. When c = 1, there is a power-law distribution of
cluster sizes in the large-size limit

p(W ) ∼ W−5/2 for W → ∞ . (8.26)

For c slightly below unity (0 < 1 − c � 1), the power law is truncated by an
exponential

p(W ) ∼ W−5/2 exp
(

(c − 1)W
W0

)
for W → ∞ . (8.27)

For c = 1, variance and kurtosis are infinite. They become finite but large
when c < 1. Notice the similarity of (8.27) to the truncated Lévy distributions
with µ = 3/2, discussed earlier. When c is close to unity, an agent forms a
link with one other agent, on the average. Larger clusters can still form from
many binary links.

The law of price variations can be calculated in closed analytical form
[190]. In the limit where 2aN is small, i.e., most of the traders are inactive,
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it reduces to (8.26) or (8.27), depending on the value of c, with the replace-
ment W → ∆S. From this model, one would therefore predict that the Lévy
exponent µ = 3/2, which is close to the empirical results discussed in Chap.
5, should be universal.

In terms of percolation theory, the model formulated by Cont and Bou-
chaud [190] is in the same universality class as Flory–Stockmayer percolation
[191]. Numerical simulations, however, become easier when the random graph
underlying the Cont–Bouchaud model is replaced by a regular hypercubic
lattice. On such lattices, critical behavior with the functional forms of cluster
sizes similar to (8.26) and (8.27) is obtained, but the exponent in the power
laws generally differs from 5/2. Only for lattices in more than six dimensions
is the 5/2-power law recovered [184].

Stauffer and Penna performed extensive Monte Carlo simulations of such
percolation problems [191]. They verified the power-law scaling of the prob-
ability distribution function of price changes, and its exponential truncation,
on hypercubic lattices from two to seven dimensions if the activity a of the
traders was chosen sufficiently small. They were also able to show that a
crossover to more Gaussian return statistics occurred in the Cont–Bouchaud
model when the activity a was increased, at least on hypercubic lattices.

The Cont–Bouchaud model can be extended further to include interac-
tions between the coalitions of traders (percolation clusters), and the influ-
ence of fundamental analysis [192]. To this end, one replaces the percolation
clusters by superspins Σi. A superspin is a spin with variable magnitude.
This magnitude is the size of the original percolation clusters, and can be
drawn from an appropriate distribution function, such as (8.26), eventually
with a free exponent µ. In spin language, the excess demand on the market is
equivalent to the magnetization of the superspin model, and the price changes
are proportional to it. If the spin magnitudes are drawn from a power-law
distribution without truncation, one can show that the distribution of mag-
netization, and with it the distribution of returns, carries the same power
laws as the spin size distribution, if its Lévy exponent was µ < 2.

Ferromagnetic interactions between the superpsins then correspond to
herding behavior of the coalitions of traders in the Cont–Bouchaud model
[192]. In practical terms, one might think of the managers of mutual funds
imitating their colleagues’ behavior. This is modeled by an “exchange inte-
gral” Jij , in the same way as in the first term of (8.18). The local energy

Ei = −
∑
j �=i

JijΣiΣj (8.28)

is a measure of the disagreement of trader i with the prevalent opinion.
Conformism leads to energy minimization. If one assumes the same Jij = J
between all spins, a ferromagnetic state results in the physics version, and a
boom or crash in the finance version of the model. This is unrealistic. One
way to avoid such a totally ordered state is through the introduction of a
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fictitious temperature T which, when sufficiently high, returns the system to
its paramagnetic state. In this case, the expected return is zero. This still
gives power-law price statistics, and can be mapped onto an equivalent zero-
temperature, zero-interaction model.

The agents so far behaved as noise traders, i.e., their opinions were ran-
domly chosen. In this superspin variant, one can also include opinions which
might arise from fundamental analysis of a company [192]. This can be done
by a (coalition dependent) random field hi(t) which introduces a bias into
the spin energy. Equation (8.28) is then changed to

Ei = −
∑
j �=i

JijΣiΣj + Σihi . (8.29)

Such a field must be time-dependent, too. Assume that there is a certain stock
price justified from fundamental analysis. If the actual price is much higher
than the fundamental price, there should be a bias towards selling. When
the price falls sufficiently below the fundamental price, a buying bias must
arise. If this scheme is implemented, however, in a model with interactions,
finite temperature, and a 50% population of agents with a fundamental bias,
the price changes become quasiperiodic, and a bimodal return distribution
curve is found. As a consequence, either bubbles and crashes on real markets
are caused by much less rational behavior than included in the model [192], or
the herding effect between the coalitions of traders has been overemphasized.

Adaptive Trader Populations

In the models discussed above, there was either just one population of traders
with heterogenous trading strategies (random number parameters), or there
were two or more populations of traders with different strategies (rebalancers,
portfolio insurers, noise traders, fundamentalists, etc.). In all cases, these
populations were fixed from the outset, and traders were not allow to change
camp when they saw that their competitors’ strategies were more successful.
Changing camp, however, is certainly an important feature of herding in real
financial markets where the operators often use a variety of analysis tools to
reach their investment decisions, and the influence of the various tools on the
decisions may well change with time.

Strategy hopping is at the center of a model formulated by Lux and
Marchesi [193]. It had also been included in a simulation by Coche, of a
more realistic model with much higher complexity [177] which we do not
discuss here in detail. In the Lux–Marchesi model, traders are divided into two
groups: fundamentalists and noise traders. Fundamentalists use exogeneous
news arrival, modelled by geometric Brownian motion for a “fundamental
price” Sf (the returns are normally distributed and the prices are drawn from
a log-normal distribution). An example of this process is shown in Fig. 8.10.
Noise traders, on the other hand, rely on chart analysis techniques and the
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Fig. 8.10. Simulation of the Lux–Marchesi model. Panel (a) shows the history of
the fundamental prices (Sf of our text is denoted pf here), and of the actual share
prices (S in the text is p here). Both price series have been offset for clarity. There is
thus no long-term difference between both series, and the model market is efficient
in the long run. Panel (b) displays the return on the share, while panel (c) is the
return process of the fundamental price. Notice the very different return dynamics
of both time series. By courtesy of T. Lux. Reprinted by permission from Nature
397, 498 (1999) c©1999 Macmillan Magazines

behavior of other traders as information sources. Moreover, noise traders are
divided into an optimistic and a pessimistic group. When the share price
rises, optimistic noise traders will buy additional shares while pessimistic
noise traders will start selling.

The important feature of this model is the possibility for strategy change
by the traders. Noise traders change between optimistic (+) and pessimistic
(−) with rates

π−→+ = ν1
nc

N
eU1 , π+→− = ν1

nc

N
e−U1

with U1 = α1
n+ − n−

nc
+

α2

ν1

1
S

dS

dt
. (8.30)

Here, N = nc + nf is the total number of traders, and nc = n+ + n− is the
number of noise traders of optimistic (n+) or pessimistic (n−) opinion. nf is
the number of fundamentalist traders. The first term in the utility function
U1 measures the majority opinion among the noise traders, and the second
term measures the price trend. ν1 and α1,2 are the frequencies of reevaluation
of opinions and price movements. If both signals, majority opinion and price
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movement, go in the same direction, a strong population change will take
place. If they point in opposite directions, the migration between the two
noise trader subgroups will be much less pronounced.

Switching between the noise trader and fundamentalist group is driven
by the difference in profits of both groups. Four rates are needed because of
the two subgroups of noise traders

πf→+ = ν2
n+

N
eU2,1 , π+→f = ν2

nf

N
e−U2,1 ,

πf→− = ν2
n−
N

eU2,2 , π−→f = ν2
nf

N
e−U2,2 . (8.31)

nf denotes the number of fundamentalists, and ν2 the reevaluation frequency
for group switching. The utility functions here are more complicated because
the profits of both groups are different. The fundamentalists’ profit is given
by the deviation of the stock price from its fundamental price, but the profit
is realized only in the future when the stock price returns to the fundamental
value. They must be discounted therefore with a discounting factor q < 1, and
are given by q|S − Sf |/S. The profit of the optimist chartists is given by the
excess return of dividends (D) and share price changes ν−1

2 dS/dt per asset,
over the average market return R. The profit of the pessimistic chartists is
just its negative, and is realized when prices fall after assets have been sold.
The utility functions U2,1 and U2,2 then become

U2,1 = α3

{
D + 1

ν2

dS
dt

S
− R − q

∣∣∣∣S − Sf

S

∣∣∣∣
}

,

U2,2 = α3

{
R − D + 1

ν2

dS
dt

S
− q

∣∣∣∣S − Sf

S

∣∣∣∣
}

. (8.32)

The order size of the noise traders is assumed to be the average transac-
tion volume, and their contribution to the excess demand is then proportional
to the difference between optimistic and pessimistic noise traders. The fun-
damentalists, on the other hand, will order in proportion to the perceived
deviation of the actual stock price from its fundamental price, and the total
excess demand is just the sum of both contributions. In the Lux–Marchesi
model, the price changes are not deterministic but are given by probabilities
which depend on the excess demand [193].

An interesting result of the simulations of this model is that, on the av-
erage, the market price equals the fundamental value [193]. This is shown
in panel a of Fig. 8.10 where both price series have been offset for clarity.
In the long run, the model market is efficient, and there are no persistent
deviations of the share price from its fundamental value. As is apparent from
panels b and c, however, the return processes of input and output are very
different. The input process for the news arrival is geometric Brownian mo-
tion. The output process exhibits much stronger fluctuations, and volatility
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clustering. When the statistics of the return process of the share price is an-
alyzed, one finds fat tails with power-law decay when the time scale of the
returns is one time step. The exponent of the power law has been estimated
as µ ≈ 2.64±0.077, but this may vary with parameters [193]. This value of µ
compares favorably with the empirical studies discussed in Sect. 5.6.1. When
the time scale is increased, the probability for large events decreases more
steeply, and shows evidence for crossover to a Gaussian, again in agreement
with what is found in real markets. Also, there are long-time correlations in
the absolute returns of the shares, and volatility clustering.

The driving force of the model performs geometric Brownian motion. The
peculiar scaling behavior found in the output stochastic process therefore
must be the result of the interactions among the agents [193]. Analysis of the
simulations shows that big changes of volatility are caused by the switching
of traders between the various groups. The volatility is usually high when
there are many noise traders. When the fraction of noise traders exceeds
a critical value, the system becomes unstable. However, the action of the
fundamentalists who can make above-average profits from such situations
soon brings back the system into a stable regime. This mechanism is rather
similar to the phenomenon of intermittency in turbulence.

The preceding discussion has emphasized the variety of mechanisms con-
tributing to the price dynamics of real financial markets: herding, fundamen-
tal analysis, portfolio insurance, technical analysis, rebalancing portfolios,
threshold trading, dynamics of trader opinions, etc. Every model discussed
contained a unique mix of these factors, and emphasized different aspects of
real markets. In the future, it will certainly be important to quantify more
precisely the influence of the individual factors in specific markets. It is con-
ceivable, e.g., that the role of fundamental analysis is different in stock, bond,
and currency markets. A first step towards more quantitative investigation
of markets by computer simulation of simplified models will be a careful cal-
ibration against a minimal set of market properties, such as those discussed
in Chap. 5.

8.4 The Minority Game

Game theory deals with decision making and strategy selection under con-
straints. Game theory as applied by economists is built on one standard
assumption of economics – that agents behave in a rational manner. Loosely
speaking, agents know their aims, and what are the best actions to achieve
them. The non-trivial problem comes from constraints, and conflicting though
structurally similar behavior of the other agents. This assumption of ratio-
nality eliminates randomness from the games, and makes them essentially
deterministic. In this perspective, games involve an optimization problem.
The benefits of a player are often described by a utility function which, of
course, depends on the strategies of all players. Under the assumption of
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complete information sharing between all players, the solution of the game
is a Nash equilibrium. A Nash equilibrium is a state which is locally optimal
simultaneously for each player, e.g., a local maximum of all utility functions.

In a physics perspective, such Nash equilibria in deterministic games
might be viewed as zero-temperature solutions, where all possible (classical)
fluctuations are frozen [194]. Introducing fluctuations, or randomness, then
would correspond to finite-temperature properties. Depending on the impor-
tance of fluctuations, the properties of a finite-temperature system may or
may not be close to those of its zero-temperature solution.

In the presence of randomness, games, in essence, will turn into scenario
simulations. One may wonder to what extent game theory can improve our
understanding of financial markets. Financial markets certainly provide the
basic ingredients of game theory: a common goal and the necessity of strategy
selection and decision making under constraints. However, uncertainty is an
essential feature of capital markets, and while some information is available at
high frequency and quality, the information on the strategies of other players
is very limited, and can be guessed at best. In this section, we will explore a
very simple game where agents have to make decisions using strategies chosen
from a given set. They are selected based on their perceived historical per-
formance using the available common information. Players however do not
know their fellows’ strategies. While the models grown from this seed have
evolved some way towards the market models discussed above, the emphasis
is different. Before, each agent either operated according to a random fixed
strategy, or stochastically switched strategy according to an indicator func-
tion. Here, the question is how to select winning strategies for the agents in a
market, possibly by simple deterministic rules despite the randomness present
in the game, and how the stylized facts of financial markets may be generated
by the interplay of agents with heterogeneous strategies. This process may
be closer to real life where often strategies are selected and switched on a
trial-and-error basis.

8.4.1 The Basic Minority Game

Take a population of an odd number Np of players, each with a finite number
of strategies, NS. At every time step, every player must choose one of two
alternatives, ±1, buy or sell, attend a bar or stay at home, etc. without
knowing the choices of the other players [195, 196]. To be specific, we take
binary digits, and the decision of player i at time t is denoted by ai(t). The
rule then is to reward those players on the minority side with a point. The
winner is the player with the maximal number of points.

The time series of 0 or 1 is available to all players as common information.
A strategy of length M is a mapping of the last M bits of the time series of
results into a prediction for the next result, e.g., for M = 3 it maps the eight
3-bit signals into a set of eight predictions
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The “history” h(t) is the signal broadcast to all players at a given instant of
time, i.e., the last M outcomes of the game. Agents react to information, and
they modify this information through their own actions. Different strategies
are distinguished by the different predictions from the same signals. There
are 2M signals of M bits, and two possible predictions for each signal. The
space of strategies of length M therefore is of size 22M

(= 256 for M = 3).
M is an indicator of the memory capacity of the agents. When the number
of strategies available to a player NS � 22M

, very few strategies will be used
by two or more players. On the other hand, when the inequality is violated,
many players will have a common reservoir of strategies, and only very few
strategies will not be available to another player.

At every turn of the game, the players evaluate the results of all their
strategies on the outcome of the game, and assign a virtual point to all
winning strategies, no matter if the strategy actually used in the game was
among them (in which case the player won a real point) or not. At every time
step, the player uses that strategy from his set which features the highest
number of virtual points, i.e., which would have been his most successful
strategy based on the historical record. The game is initialized with a random
strategy selection [196]. All agents enter the game with the same weight, i.e.,
there are no rich agents who can invest much, and no poor agents who only
can invest small sums.

To understand the outcome of the game, consider two extreme situations.
One possible result is that only one player selects one side, and all the re-
maining Np − 1 players take the other one. In this simple game, a single
point is awarded in this turn of the game, to the winning player. The other
extreme is an almost draw, when (Np − 1)/2 players take the minority side
and (Np +1)/2 players form the majority. In this case, (Np − 1)/2 points are
awarded. If one imagines the points to come from a reservoir, the second case
would be interpreted as a very efficient use of resources by the player ensem-
ble (they gather the maximal number of points to be gained in a single trial)
whereas the first result would imply a huge waste. Clearly, this is opposite to
a lottery where a fixed amount of money is distributed to the winners, and a
lonely winner would gain much more than a winner in a large crowd.

The record of the game then is the time series of actions

A(t) =
Np∑
i=1

ai(t) . (8.34)
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Points are awarded to all players with ai(t) = −sign A(t). When the game
is simulated, the time series A(t) oscillates rather randomly around 0. The
variance of the time series is high when M is small, and vice versa. In the
interpretation suggested before, players with larger memories then would
better use the available resources because, as an ensemble, they would score a
higher number of points on the average. Remarkably, this behavior is achieved
by selfish players who only search to optimize their own performance.

Is there an optimal strategy for an individual player in this game? For the
ensemble of players, the optimal score is (Np − 1)/2 per turn. The maximal
average gain per trader and per game therefore is 1/2. Can this gain be real-
ized by an individual player with a simple strategy, systematically choosing
one side, say ai(t) = 1? If this were the case indeed, then other players would
be attracted to make similar choices, too, because those of their strategies
predicting an outcome 1 on a given signal would accumulate more virtual
points. Then, however, the prediction 1 would quickly become a majority
action, and not win points any longer. Notwithstanding these findings, in
every game, there are players with success rates higher than 1/2. When the
number of strategies NS of each player increases, the success rate decreases.
Players more often switch strategies and face more difficulties in identifying
outperforming strategies in their pool. Quite generally, the less players switch
strategies, the higher their success rates.

However, strategies are good or bad only on a given time horizon. When
the virtual points of all strategies are analyzed, the distribution at short times
is rather wide, indicating that there is a big spread between good and bad
strategies. As time increases, the distribution shrinks. This tells us that, on
the long run, all strategies become equal. Success or failure then is linked to
the good or bad timing in the use of specific strategies [196].

8.4.2 A Phase Transition in the Minority Game

The standard deviation of A(t) (volatility) displays a very interesting be-
havior as the memory size of the agents is varied [197]. For small M , the
volatility

σA =
√

var A(t) (8.35)

decreases steeply from high values when the memory size M of the agents in-
creases. σA increases gently with M from rather low values, beyond a critical
memory size. Opposite behavior is found as a function of Np, i.e., the effective
parameter for the transition is α = 2M/Np, the information complexity per
player. The critical memory size increases with the number of strategies NS

available to each player. With reference to the extreme situations discussed
above, the highly volatile low-α (low M , large Np) regime describes a “sym-
metric” (the meaning will become clear in Sect. 8.4.4) information-efficient
phase. This phase is named “crowded” because, due to the limited number
of strategies available, the “crowding” of several players on one strategy is
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likely [197]. The more players present in the game at constant memory size,
(i.e., size of the strategy space) or the smaller the agent memory, i.e., infor-
mation, at constant number of players, the more likely this crowding effect
is. Also, many of the strategies available are actually used, and information
is processed efficiently. On the other hand, in the “dilute” large-α (large M ,
small Np) phase, the strategy space is huge, and it is extremely unlikely that
two agents will use the same strategy. This phase is termed “asymmetric”
(cf. below), and information is not used efficiently: many strategies remain
unexplored.

An interesting explanation can be given for these findings in terms of
crowding effects [197]. Suppose that there is a specific strategy R used by
NR agents, who thus act as a crowd. For each strategy R, there is an anticor-
related strategy R where all predictions are reversed. The NR agents using R

form the anticrowd. R and R form a pair of anticorrelated strategies. Pairs of
strategies are uncorrelated. When NR ≈ NR, the actions of the crowds and
of the anticrowds almost cancel, and σA will be small. On the other hand,
when NR � or � NR, herding dominates and generates a high volatility.

It turns out that the behavior of the volatility is almost unchanged when
a reduced strategy space made up only of pairs of anticorrelated strategies
is used [197]. Different pairs being uncorrelated, the signal A(t) can be de-
composed into the contributions of the various groups. Each of these groups
essentially performs a random walk of step size |NR − NR|. The variance of
these walks then determines the standard deviation σA, and it turns out that
the extent of crowd–anticrowd cancellation determines the non-monotonic
variation of the volatility.

In terms of this crowd–anticrowd picture, the asymmetric large-α phase
corresponds to NR, NR ∈ {0, 1}. Strategies are either selected once, or not at
all. The volatility is almost that of a discrete random walk with unit step size.
When more agents play, the simultaneous use of R and R will become more
likely, giving cancellations, i.e., zero step size in the random walk, and σA

decreases. With even more players, the crowd sizes on R and R will become
sizable but likely very different. The step size of the random walk will grow,
as does the volatility. The behavior of σA can thus be interpreted in terms
of repulsion, attraction, and incomplete screening of crowds and anticrowds
[197].

8.4.3 Relation to Financial Markets

In the basic form described above, the minority game shares some features of
financial markets. Agents have to take choices under constraints, uncertainty,
and with limited information. The most fundamental decision in a financial
market is binary: buy or sell. Speculators may find their strategies by trial and
error, and their strategy pool may be limited. There is competition in the mi-
nority game as in markets, and agents cannot win all the time. Furthermore,
there is no a priori definition of good behavior in markets. Good behavior
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is defined with respect to the behavior of the competitors, a posteriori, and
based on success. As a corollary, the definition of good behavior may change
when the reference behavior of the other agents changes. The choice to take
in the minority game amounts to predict a future event – which depends only
on the choices of all other players [198]. Of course, one might argue that, in a
fundamental perspective, financial markets are also influenced by the arrival
of external information. However, many readers will know from experience
that on certain days, external information strongly moves markets, while on
other days, it is completely ignored by the operators. Most likely, psychology
is at the origin.

However, there are also important differences. Firstly, with an average
expectation of a winning trade of ideally 50%, it is not clear why agents
trade at all. One tentative answer which has been given to this question is
the presence of non-speculative trades in a market, originated by “producers”
or investors. In a commodity market, there will be producers who sell their
goods, and buyers who need those goods for their utility, rather than for
profit. An investor might buy shares in a stock market for gaining control
over a company, rather than for speculative profits. One can then set up an
argument that these producers would introduce predictable patterns into the
markets which would be exploited by speculators who can adapt much more
quickly to a market situation than producers [198]. It is not clear, however,
to what extent such an argument could explain trading in FX markets, where
more than 90% of the trading volume is speculative in origin, and which are
extremely liquid.

Secondly, one suspects that the aim of the players taking part in the
minority game corresponds to a contrarian trading strategy. “Be part of the
minority!” implies to buy when everybody is selling and vice versa. However,
in financial markets, one often finds extended trending periods where the most
successful strategy would be to buy when the majority buys and sell when the
majority sells (hopefully early enough, though). Is it more appropriate then
to view financial markets as the playground for a majority game rather than
a minority game? Remember that the presence of different trader populations
and the switching of their trading philosophy in the Lux–Marchesi model (cf.
the preceding section) was essential to produce realistic time series in that
artificial market.

Thirdly, in a real-world market, operators may not trade in a given time
interval. This is ignored in the minority game. A straightforward general-
ization to a “grand-canonical minority game” would open such an avenue.
In order to decide whether to trade or not, an agent should compare her
strategies to a benchmark. The basic minority game only compares the rela-
tive merits of all her strategies, and trading is done also when all strategies
lose out. To remedy for that deficiency, a rule can be introduced that an agent
only trades when at least one of her strategies has a positive score. Here, one
still faces the problem that the success of the strategy at the origin of the
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decision to trade, is virtual while any loss incurred while being in the market,
would be real. A more realistic benchmark would be to trade only when at
least one strategy is available whose success rate is superior to a threshold
[198].

The minority (and majority) games can be derived from a market mech-
anism [199], once price formation and market clearing are defined. We pro-
ceed as in Sect. 8.3.2, i.e., determine the price at which the market is cleared
from the aggregated demand D(t), the aggregated supply O(t), and the price
quoted in the last time step, according to

S(t) = S(t − 1)
D(t)
O(t)

, (8.36)

D(t) =
Np∑
i=1

ai(t)Θ[ai(t)] =
Np + A(t)

2
, (8.37)

O(t) = −
Np∑
i=1

ai(t)Θ[−ai(t)] =
Np − A(t)

2
. (8.38)

The return on an investment for one time step from t to t + 1 [ai(t) = 1,
ai(t + 1) = −1] is

δS1(t + 1) = ln
(

S(t + 1)
S(t)

)
≈ S(t + 1)

S(t)
− 1 . (8.39)

Of course, the information on S(t + 1) is not available to the players when
they must place their orders. The best they can do is to base their decision
on their expectation for the return on their investment. Assume that the
expectation of player i at time t for the price of the asset at t + 1 is

E
(i)
t [S(t + 1)] = (1 − ψi)S(t) + ψiS(t − 1) . (8.40)

Let each player place an order at t according to that expectation, calculate
the payoff on the investment over one time step, and compare the payoffs of
the majority and the minority sides. It turns out that agents with ψi > 0
are on the winning side when they are in the minority, i.e., they follow a
contrarian investment strategy. They expect that the future price movement
is negatively correlated with the past move. On the contrary, agents with
ψi < 0 are trend followers and play a majority game. Thus it appears that
real markets may be described best as mixed minority–majority games.

8.4.4 Spin Glasses and an Exact Solution

A slightly modified, “soft minority game”, can be solved exactly using meth-
ods from spin-glass physics in the limit Np → ∞ [201]. Agents do not simply
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choose the strategy with the highest virtual score, but proceed in a proba-
bilistic manner: a strategy is chosen with a probability which depends expo-
nentially on its virtual score in the game. Moreover, the binary payoff of one
point when the strategy played was successful, is changed into a gain function
linear in the population difference between minority and majority sides,

gi(t) = −ai(t)A(t) , (8.41)

i.e., the minority wins points or money, and the majority loses them. By
definition, this is a negative sum game. The total average loss in the system
then is

−
∑

i

〈gi〉 = σ2
A . (8.42)

This equation reemphasizes the interpretation of σA as a measure of the waste
in the system.

The dynamical equations of the minority game then suggest a description
in terms of a Hamiltonian which is reminiscent of disordered spin systems
[200, 201]. To see the essentials, we limit ourselves to NS = 2 strategies
which would correspond to spin 1/2. To distinguish strategies si ∈ {↑, ↓}
from actions ai,s (the subscript emphasizes that the action ai depends on a
strategy si), decompose ai,s(t) as

a
h(t)
i (t) = ω

h(t)
i + si(t)ξ

h(t)
i , ωh

i =
ah

i,↑ + ah
i,↓

2
, ξh

i =
ah

i,↑ − ah
i,↓

2
. (8.43)

ωh
i represents a fixed bias in the strategies of agent i, whereas ξh

i represents
the flexible part. Of course, they depend on the history h(t) of the game. The
time dependence of ai(t) now is attributed to two time-dependent factors:
one is the particular history h(t) realized in the game during the M rounds
preceding t. This is why ωh

i and ξh
i depend on t only through h(t). The second

factor is the time dependence of si(t), which reflects the choice of strategy
made by agent i at time t based on the available history and his strategy
selection rules (probabilistic or deterministic).

Introducing Ω =
∑

i ωi, A(t) can be rewritten as

Ah(t) = Ωh +
Np∑
i=1

ξh
i si(t) , (8.44)

and its variance becomes

σ2
A = Ω2 +

∑
i

[
ξ2
i + 2Ωξi〈si〉

]
+
∑
i�=j

ξiξj〈si〉〈sj〉 . (8.45)

Here, 〈x〉 denotes the temporal average of a quantity x while x is the average
over histories. Unless necessary, the history superscript h is dropped under
the history averages. All 2M histories are explored for long enough times.
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This allows us to decompose a temporal average into one conditioned on
history 〈xh〉, followed by one over histories, i.e., 〈x〉 = 〈xh〉. By symmetry,
〈A〉 = 0. However, for particular histories, there may be a finite expectation
value 〈Ah〉 
= 0. One may then calculate the average over the histories of the
history-dependent expectation values of A,

〈Ah〉2 = Ω2 + 2
∑

i

Ωξi〈si〉 +
∑
i,j

ξiξj〈si〉〈sj〉 ≡ H . (8.46)

When the scores of the strategies are updated using a reliability index

Us,i(t + 1) = Us,i(t) − 2−Mas,i(t)A(t) (8.47)

and a probabilistic strategy selection rule P [si(t) = s] ∼ exp[ΓUs,i(t)] is
adopted, the evolution of 〈si〉 with time scale τ = 2−Mδt can be cast in the
form

d〈si〉
dτ

= −Γ
(
1 − 〈si〉2

)( ∂H

∂〈si〉
)

. (8.48)

Formally, these are the equations of motion for magnetic moments mi = 〈si〉
in local magnetic fields Ωξi interacting with each other through exchange
integrals ξiξj . H in (8.46) then is a spin-glass Hamiltonian [200].

Such Hamiltonians can be studied using the replica trick familiar from
the theory of spin glasses [185] and it turns out that, under the standard
assumptions, the ground state of the Hamiltonian which describes the sta-
tionary state always is in the replica-symmetric phase [200, 201]. Within the
replica-symmetric phase, there is a transition, however, as a function of the ra-
tio between the information complexity 2M and the number of players. When
this number is small, the probability distribution of the strategies used in the
game is continuous while, for a large ratio, it contains two delta functions at
the positions of static strategies ai = ±1 in addition to a Gaussian distri-
bution. Agents contributing to the delta functions do not switch strategies
while those under the continuous distributions stochastically change strate-
gies. This is the phase transition seen in the dependence of the volatility on
the memory length/agent number discussed in Sect. 8.4.1.

The small-α phase is called “symmetric” because both 〈A〉 = 0 and
〈Ah〉 = 0. In the “asymmetric” large-α phase, we have 〈A〉 = 0 but 〈Ah〉 
= 0
at least for some histories. 〈Ah〉 therefore is akin to an order parameter in
a symmetry-breaking phase transition. Here, it is the symmetry between the
histories which is lost at the critical αc. In the asymmetric phase, for those
histories with 〈Ah〉 
= 0, there is a best strategy

ah
best(t) ≡ ah

best = −sign 〈Ah〉 (8.49)

which allows for a positive gain |〈Ah〉| − 1. In this phase, the market is pre-
dictable. The measure of predictability is H ≡ 〈Ah〉2, (8.46). Using (8.36)–
(8.38), we have
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A(t) = D(t) − O(t) , (8.50)

i.e., A(t) also is the excess demand in the market. When 〈Ah〉 
= 0, there
are persistent periods of excess demand/supply where price will move in
one direction. The volatility is somewhat better than coin tossing but not
dramatically so, because of the crowd–anticrowd repulsion. That information
is used not very efficiently is evidenced by σA, which is significantly above its
minimum at αc. The game becomes more information-efficient when players
are added who more evenly cover the strategy space.

In the symmetric small-α phase, H = 0, i.e., the market is unpredictable.
Moreover, 〈A(t)〉 = 0, i.e., there is no excess demand on the average, and
prices are stable. When there are very many players at moderate informa-
tion complexity, herding takes place due to the incomplete crowd–anticrowd
screening, and the volatility increases again. The waste of resources/total loss
of the population is minimal at the transition α = αc.

When the agents include a term into their strategy selection probability
which rewards the strategy actually used by them in the game with respect
to virtual strategies, a replica-symmetry broken solution can be found. The
interesting point is that the replica-symmetry broken solution describes a
Nash equilibrium. Nash equilibria in the minority game correspond to pure
(static) strategies ai = ±1 independent of t. The replica-symmetric solution,
on the other hand, does not correspond to a Nash equilibrium. However, the
trimodal solution for the strategy probability including the delta-function
peaks at pure strategies contain some of its ingredients.

8.4.5 Extensions of the Minority Game

A variety of extensions can be formulated in order to bridge the gap between
the basic game and a model for financial markets. The agent population can
be made heterogeneous in various dimensions such as memory size, strategy
diversification, evolutionary strategies, etc., and agents may choose to stay
out of the market. When the game is played with mixed memory sizes, players
with longer memories perform better than those with shorter memories [196].
When the payoff function is changed to lottery-type, i.e., the payoff (both in
real and virtual points) increases with decreasing number of winners, the
probability distribution of A(t) becomes bimodal – it is monomodal in the
standard game. This is a remarkable example of self-organization because
the most likely configurations are avoided by the players at the expense of
somewhat less likely ones.

One can introduce explicitly hedgers who only possess one strategy. They
do not enter the marketplace for speculation but for “fundamental” (exoge-
neous) reasons, cf. Sect. 2.5. They might as well be producers who use the
market for selling or buying goods. In the game, their role is to introduce
information through their trading activity which is supposed to be due to
drivers external to the game [200]. Also, noise traders, who take random de-
cisions, can be included. Further extensions could include insiders and spies.
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It is particularly interesting that the minority game can be extended to
allow for predictions of moves in actual markets [202]. It is based on the
“grand canonical” extension of the minority game where agents trade or stay
out of the market depending on the comparison of their scores (virtual or
real) with a threshold value. Thus the number of active traders has become
variable. Also, the threshold can be made a dynamic quantity. One restric-
tion is that the threshold should be positive, i.e., a trader should only use
strategies which have won more often than lost. As a second restriction, the
threshold should increase when the player’s scores decrease, i.e., one should
take less risk after losing for some period of time. These rules generate quite
diverse populations of traders. One may further diversify the trader popula-
tion in terms of wealth (initial capital), investment size (wealthy investors will
place big orders), and investment strategy (trend following versus contrar-
ian, or minority versus majority games). The mechanism of price formation
is assumed to be similar to (8.36).

This extended mixed minority–majority game is trained on a financial
time series, converted into a binary sequence, e.g., by just recording the signs
of market moves. In other words, the game is fed with a signal where Zipf
analysis, discussed in Sect. 5.6.3, has demonstrated that non-trivial correla-
tions exist [112, 113]. Such correlations have been uncovered specifically in
the USD/JPY exchange rates [113] which have been used in this experiment.
Players then take their actions based on that signal history h(t). The sign
history is an external signal whereas A(t) in the minority game was generated
internally to the game. The feedback effect included in A(t) has been removed.
However, the game and the time series of aggregated actions A(t) are used
to carry the game forward into the future. When using hourly quotes of ten
years of USD/JPY exchange rates, the game performs much better than ran-
dom, and the accumulated wealth of the total agent population is increasing
steadily. The actual increase, however, depends on the pooling of the agents’
predictions which is not specified for the best performances [202]. The trad-
ing strategy certainly is somewhat oversimplified: depending on the minority
game prediction, put the investment on the USD or JPY side and, after
one hour, withdraw it. Neglect transaction costs, slippage, etc. Despite these
simplifications, the game apparently produces many of the stylized facts of
financial markets: fat-tailed return distributions, price–volume correlations,
volatility clustering, . . . [202, 203].

More importantly, when run into the future for several time steps, the
game also generates prediction corridors for future prices of the asset [204].
In many cases, large changes can be predicted accurately in the sense that
the probability density function of the returns possesses a large mean and
a narrow variance. In other cases, the prediction of a sign change comes
out correctly although the prediction corridors are rather wide. Large price
movements such as crashes or booms apparently can be predicted with some
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degree of reliability based on the minority game. Johnson et al. have filed a
patent application on these algorithms [204].

As a final remark, it has been shown that a winning strategy can be
set up by playing two different losing games one after the other (Parrondo’s
paradox) [205]. It would certainly be interesting to include such effects into
the minority game.



9. Theory of Stock Exchange Crashes

Crashes of stock exchanges, and speculative markets more generally, have
occurred ever since trading securities and commodities has become an im-
portant activity. A historical example is the “tulipmania”, the rise and sub-
sequent crash of prices for tulip bulbs on Dutch commodity markets in 1637
[206, 207], or the South Sea bubble in England, where Newton lost much of
his fortune, cf. Chap. 1. Modern financial crashes are discussed below. Since
in such events enormous fortunes are at stake, efforts towards an improved
understanding are mandatory.

9.1 Important Questions

In this chapter, we will attempt answers to the following important questions
concerning financial crashes:

• What are the origins of stock exchange crashes?
• Are crashes compatible with rational behavior of investors?
• Are they endpoints of “speculative bubbles” and signal the return of market

prices to their “fundamental values”?
• Do crashes signal phase transitions in markets?
• Are there parallels to earthquakes or avalanches?
• Are earthquakes predictable?
• Are crashes part of the normal statistics of asset price fluctuations, or are

they outliers?
• Can crashes be predicted? Are there crashes which have been predicted

successfully in the past?
• Are there examples of anticrashes, i.e., trend reversals from falling to rising

prices which follow patterns established for crashes?
• Can one measure the strength of crashes in the same way as the Gutenberg–

Richter scale measures the strength of earthquakes?
• Are there signals for the end of a crash?
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9.2 Examples

Here is a list of the more recent examples of financial crahes, some of which
readers may well remember.

1. The “Asian crisis” on October 27, 1997 and the “Russian debt cri-
sis” starting in summer 1998, have been discussed briefly in Chap. 1.
Figure 1.1 shows these two events in the variation of the DAX, the Ger-
man stock index, from October 1996 to October 1998. The Asian crisis is
a drawdown of about −10% on the German stock market on October 27,
1997, with a very quick recovery. Interestingly, the aggregate drawdown
over scales even as short as a week was rather small. Notice, however,
that the DAX stopped its upward trend in July 1997, and one question
we wish to discuss here is to what extent this can be viewed as a kind of
precursor of the crash. Indeed, there have been predictions of this crash
[208].
On the contrary, the drawdowns of the stock markets in Asia was much
stronger. The Hang Seng index of the Hong Kong stock exchange, e.g.,
lost 24% in a week. The index is shown as the dotted line in Fig. 9.1.
The solid line shows the variation of the US S&P500 index in the four
years prior to the 1997 crash. The long-term upward trend is stopped by

94 95 96 97 98

S&P 500
Hang Seng

t1 t2 t3 t4? ? t5

Fig. 9.1. Extrema of variation of the S&P500 and the Hong Kong Hang Seng index,
prior to the 1997 crash. Notice that the Hang Seng index has two pronounced
minima not lying on the log-periodic sequence marked by the vertical lines. By
courtesy of J.-P. Bouchaud. Reprinted from L. Laloux, et al.: Europhys. Lett. 45,
1 (1999), c©1999 EDP Sciences
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the drawdown in late October 1997. Similar to the European markets,
its amplitude was much smaller than on the Asian markets. However,
unlike the German market, the index continued to increase throughout
summer 1997 although there have been certain periods of local short-time
decrease, marked by the vertical lines. The labels “ti” and “?” on these
lines will be explained in Sect. 9.4.
The impact of the Russian debt crisis on the German stock market was
very different from the Asian crisis. The decrease was much less abrupt –
though much more persistent and of much larger amplitude, at the end.
Over four months, the DAX lost 39% which corresponds to an average
loss of 2.7% per week. It is obvious from Fig. 1.1 that losses of this order
of magnitude occurred regularly, almost every week, between July and
October 1998.
With reference to the discussion in Sect. 5.3.3, notice that stop-loss orders
would not have protected investors from sizable losses in the Asian crisis
while they would have offered protection throughout most of the Russian
debt crisis. On the other hand, due to the quick recovery of the markets
after the Asian crisis, an investor simply holding his assets for a few more
weeks would have wiped out most, if not all of his losses.

2. Figure 9.2 shows the variation of the Dow Jones Industrial Average in the
Wall Street crash of October 1987 [209]. The index lost about 30% in one
day. To put that into perspective, the loss in a single day is comparable

Fig. 9.2. The Dow Jones Industrial Average during the October crash 1987. By
courtesy of N. Vandewalle. Reprinted with permission from Elsevier Science from
N. Vandewalle, et al.: Physica A 255, 201 (1998). c©1998 Elsevier Science
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to the decline of the DAX over the entire four month Russian debt crisis
period in autumn 1998! This was the largest crash of the century.

3. Other important crashes took place in 1929, and at the outbreak of World
War 1. Figure 9.3 shows the largest weekly drawdowns of the Dow Jones
in this century. The biggest crash was 1987, followed by World War 1,
and the 1929 crash. Notice that on this scale, the Asian and Russian
crisis are completely negligible, and contribute to the leftmost points in
this figure. (Of course, they are no longer negligible when the variations
of the Asian or Moscow stock exchanges are plotted.)

Figure 9.3 uses an exponential distribution to fit the weekly drawdowns
of the Dow Jones index. If this procedure is endorsed, crashes would appear
as outliers: they would not be subject to the same rules as “ordinary” large
drawdowns and be governed by separate mechanisms. Indeed, this point of
view has been defended in the recent research literature by several groups,
and we will discuss it in the present chapter.

Notice, however, that the assumption of an exponential distribution is ar-
bitrary, to some extent, and that statistics is difficult on singular events such
as a major crash. In the framework of stable Lévy distributions, discussed in
Chap. 5, crashes would be part of the statistical analysis, and not be gener-
ated by exceptional mechanisms. This may also apply to power-law statistics

Fig. 9.3. Number of large negative weekly price variations of the Dow Jones in
the 20th century. By courtesy of D. Sornette. Reprinted from D. Sornette and A.
Johansen: Eur. Phys. J. B 1, 141 (1998), c©1998 EDP Sciences
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with nonstable tail exponents. Most likely, in such frameworks, crashes will
not be predictable.

Theories based on exceptional mechanisms underlying crashes therefore
can only be tested on their predictive power.

For all crashes, various economic “causes” have been discussed in the lit-
erature. Hull [10] lists a variety of such possibilities. For the 1987 crash, e.g.,
it was observed that investors moved from stocks to bonds, as the return of
bonds increased to almost 10% in summer 1987. Another cause may have
been the increasing portfolio hedging, using index options and futures, com-
bined with the implementation on computers which generated automatic sell
orders once the index fell below a certain limit. This effect has been mod-
elled explicitly in the computer simulation by Kim and Markowitz [176], cf.
Sect. 8.3.1. Changes in the US tax legislation may have contributed. Rising
inflation and trade deficits weakened the US dollar throughout 1987, and
this may have pushed overseas investors to sell US stocks. Finally, one may
think about imitation and herd behavior. However, it seems to be a common
feature of the major crashes that no single economic factor can be identified
reliably as the triggering event.

Looking at the behavior of the market operators, a crash occurs when
a synchronization of the individual actions takes place. In normal market
activity, the individual buy and sell orders are not strongly correlated, and
rather weak price or index variations result. In a crash, on the other hand,
all operators decide to sell, and there are no compensating buy orders which
would maintain market equilibrium. The market seems to behave collectively.

An increasing synchronization, or correlation, is observed in physics when
a phase transition, especially a critical point, is approached. Examples are the
transition from a paramagnet to a ferromagnet, or from an ordinary metal to
superconductivity. Certainly, there are important differences, in that crashes
take place as a function of time while the critical points in physics usually
are reached by careful fine-tuning of an external control parameter. The idea
of critical points has been generalized to self-organized critical points in open
nonequilibrium systems [79], and the question is if stock exchange crashes
can be considered as critical points, or self-organized critical points, as they
occur in physics.

There are other nonequilibrium situations in nature whose phenomenol-
ogy seems to be similar to market crashes, and where ideas and models about
phase transitions and critical points have been formalized, too: earthquakes
and material failure. We shall discuss them in the following section, before re-
turning to the (admittedly phenomenological) description of stock exchange
crashes.
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9.3 Earthquakes and Material Failure

Earthquakes and material failure are both characterized by a slow building
up of strains, and a sudden discharge. The idea of these phenomena being
critical points in time has been discussed in the literature for some time.
There is some evidence for this view, although it is still controversial.

1. Figure 9.4 shows the cumulative Benioff strain prior to the earthquake
occurring on October 18, 1989 near Loma Prieta (northern California).
The cumulative Benioff strain ε(t) is defined as

ε(t) =
N(t)∑
n=1

√
En . (9.1)

n is the number of small earthquakes from some starting date t = 0 until
t, and En is the energy liberated in quake n. The appearance of energy
under the square-root can simply be understood in terms of a spring
obeying Hooke’s law: at a given strain ε, the energy stored in the spring
is E = (f/2)ε2 where f is the spring constant. Fig. 9.4 also shows a fit
of ε(t) to a power law in time-to-failure

ε(t) = A + B|tf − t|µ , A > 0 , B < 0 , 0 < µ < 1 . (9.2)

Fig. 9.4. Cumulative Benioff strain before the Loma Prieta earthquake in 1989
(dots) and fit to a power law (solid line). By courtesy of D. Sornette. Reprinted
from D. Sornette and C. G. Sammis: J. Phys. I (France) 5, 607 (1995), c©1995 EDP
Sciences
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Power laws are the hallmarks of critical points, and the fit apparently
supports the idea of a critical point occurring in time. Notice that ε(t)
stays finite at tf but dε(t)/dt → ∞ as t → tf . Notice that the deviations
between the measured points and the power-law fit do not look exactly
random. There are hints of oscillatory behavior.

2. Both the cumulative Benioff strain, and the concentration of Cl− ions,
before the earthquake in Kobe (Japan) on January 17, 1995, show a
similar increase [210]. Again, oscillations seem to be superposed on the
smooth power-law variation of (9.2).

3. On a laboratory scale, acoustic emissions recorded before the failure of
materials under increasing load show similar variations.

For earthquakes and material failure, models have been developed which
substantiate power-law behavior, and thus the critical point hypothesis, and
even additional oscillations as the critical point is approached. Their most
important ingredient is their hierarchical structure.

An important model for the description of earthquakes is due to Allègre
et al. [211], and pictured schematically in Fig. 9.5. One starts from a cube
formed by joining eight bars by bolts in the corners of the cube. On the next
level, eight bigger bars form a bigger cube, and eight of the small cubes of

Fig. 9.5. The Allègre model
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the preceding level are used as bolts to join the bars. This rule is continued
to ever larger scales. The load on the bars and bolts of the biggest cube is
distributed over all levels of the hierarchy. If this load is increased, the weakest
bolt which is on the lowest level may break. Eventually, more than one bolt
will break. This will lead to a redistribution of the load on the next level of
hierarchy, and bolts may fail there, too, either immediately, or once the load
is increased further, and so on. Finally, the highest levels of the hierarchy will
break, resulting in a catastrophic event.

Similar ideas may be invoked for the failure of materials, e.g., composed
of fibers. Figure 9.6 illustrates a hierarchical model for a fiber bundle. The
cross-section of the bundle is shown, and the fibers are oriented perpendicular
to the figure. The mechanism for failure of such a bundle under increasing
load is rather similar to that of the cubic structures of the Allègre model.

Both models show some kind of critical behavior, and power laws, as the
load on the structure is increased. Their criticality is different, however, from
the ordinary critical points of physics in one important aspect. Power laws are
related to scale invariance. Critical points associated with phase transitions
in standard physical systems (magnetism, superconductivity, etc.) exhibit

Fig. 9.6. A hierarchical model of a fiber bundle
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continuous scale invariance. Under a change of scale x → x′ = λx, scale
invariance of a system implies that a function f(x) reproduces itself, perhaps
up to some prefactor, i.e.,

f(x) = µf(x′) = µf(λx) , (9.3)

with real λ, µ. This equation is solved by power laws,

f(x) = Cxα , (9.4)

which lead to the condition

λαµ = 1 , i.e., α = − lnµ/ ln λ . (9.5)

Physically, continuous scale invariance comes out because the properties at
the phase transition are determined completely by a diverging correlation
length (the “synchronization” mentioned above), which is much larger than
typical lattice constants, or nearest-neighbor distances. Notice that the un-
derlying structures or Hamiltonians of such systems are not scale invariant,
and that scale invariance only results from the spontaneous collective behav-
ior.

As is obvious from Figs. 9.5 and 9.6, there can be no continuous scale in-
variance in hierarchical models. If they are continued to infinity, there will be
no scale on which the “microscopic” structural details can become negligible
because collective behavior would set in on much longer length scales. Un-
like the models of statistical mechanics, however, hierarchical systems have a
built-in discrete scale invariance. Under a discrete rescaling, x → x′ = λnx
with λn = λn

0 , they reproduce themselves. For example, we have λ0 = 2
for the structure in Fig. 9.6. An important consequence of discrete scale in-
variance is that critical exponents can become complex [212]. These complex
exponents naturally come out of (9.5) when rewritten as

λαµ = exp(2πin) , i.e., αn = − lnµ

lnλ
+

2πin
lnλ

. (9.6)

A priori, any n is permissible in (9.6). However, for the usual critical phe-
nomena, solutions with n 
= 0 can be discarded because they would imply
the existence of typical scales in the problem, which contradicts the scale
invariance postulated to be at the origin of the power-law behavior. On a
hierarchical structure, such an objection is not possible, and complex expo-
nents must be allowed. As a consequence, when finite n are kept, a series of
log-periodic oscillations is superposed on the power-law behavior

(tf − t)α → (tf − t)α

(
1 +

∞∑
n=1

cn cos
[
2πn

lnλ
ln |tf − t|

])
(9.7)

Such oscillations have indeed been observed both in earthquakes and fi-
nancial data. An important practical advantage of the modified scaling law
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(9.7) is that the determination, and in particular, a possible prediction of
tf , i.e., the time to failure or to an earthquake, become much more accurate
if log-periodic oscillations lock in on the data in a fit. The disadvantage is
that the number of fit parameters to be used on a noisy data set increases
significantly, at least from four (pure power law) to seven [including the first
log-periodic oscillation, cf. (9.8) below]. Under these circumstances, there
may be many apparently equally good fits, and their interpretation as well
as the selection of a “best” fit, become a nontrivial problem [213]. Analyzing
the data in Fig. 9.4 a posteriori by fitting them to a pure power law such
as (9.2), one would “predict” the Loma Prieta earthquake to have occurred
at tf = 1990.3 ± 4.1. Using the first log-periodic oscillations, the prediction
becomes tf = 1989.9 ± 0.8, i.e., is both significantly closer to the actual date
of the earthquake, and carries a much smaller error bar. Figure 9.7 shows a
fit to the same data as in Fig. 9.4 but using log-periodic corrections, showing
the kind of agreement that can be reached. Similar fits can also be done on
Kobe data [210].

This analysis has been done after the actual earthquake occurred. What
about using the method to predict a quake? This has also been attempted
by Sornette and Sammis [213]. Figure 9.8 shows data taken up to 1995 in the
Komandorski islands, a part of the Aleutian islands in Alaska. Also shown
is a fit to (9.7) which produces a (true) prediction of a major earthquake at

Fig. 9.7. Cumulated Benioff strain prior to the Loma Prieta earthquake (dots),
fitted to a power law with log-periodic corrections (solid line). By courtesy of D. Sor-
nette. Reprinted from D. Sornette and C. G. Sammis: J. Phys. I (France) 5, 607
(1995), c©1995 EDP Sciences
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Fig. 9.8. Cumulated Benioff strain released by earthquakes of magnitude 5.2 or
greater, in the Komandorski segment of the Aleutian islands (dots), and a fit to
a power law with log-periodic corrections (solid line). By courtesy of D. Sornette.
Reprinted from D. Sornette and C. G. Sammis: J. Phys. I (France) 5, 607 (1995),
c©1995 EDP Sciences

tf = 1996.3 ± 1.1, i.e., after the submission (January 1995) and publication
(May 1995) of the paper. This prediction is to be compared to one based on
a pure power law, (9.2), giving tf = 1998.8 ± 19.7, certainly too inaccurate
to be of any use. Apparently the earthquake did not happen. However, as
communicated to me by D. Sornette, from a considerably refined analysis
method, the authors of the original prediction understand that it was an
artifact of approximations used.

Earthquake predictions have also been attempted using different models,
closer to the standard lines of geophysical research [214]. One model is based
on the hypothesis that an earthquake occurs when a fault has been reloaded
with the stress which was relieved in the most recent earthquake. The time
from one earthquake to the next is the stress drop in the most recent earth-
quake divided by the fault stressing rate. It incorporates directly some of the
physical processes which are believed to be at the origin of earthquakes. This
would convey some degree of predictability to this “recurrence model”. If,
on the other hand, earthquakes occurred completely randomly, their timings
would follow a Poisson distribution.

A test of this recurrence model has been performed in one of the sup-
posedly ideal locations, Parkfield, California [215]. The town of Parkfield is
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located on the San Andreas fault, one of the most seismically active regions
of the earth. At least five earthquakes of magnitude MS = 6 on the Richter
scale [for a definition, cf. (9.16) below], or larger, have occurred in this area
with an average interval of 22 years, the most recent one in 1966. With a pre-
diction of the next earthquake around 1988, in 1986 the US Geological Survey
set up a focused experiment to measure the stress accumulation, capture the
nucleation of the next rupture and watch it propagate. The “problem” today
is that the earthquake never arrived. In fact, the recordings of the experiment
constitute the longest documented period of quiescence at Parkfield. More-
over, using one in-situ data set and one from GPS signals, it was shown that
the stress which was released in the 1966 earthquake had recovered, at the
95% confidence level, by 1987. It continues to increase as a consequence of
continuous fault slippage. When considering a release of stress to the level
just after the 1966 quake, one now is faced with the nightmare idea that the
next major earthquake in the Parkfield region could approach magnitude 7
on the Richter scale [215].

9.4 Stock Exchange Crashes

In the initial phase of research, the basic postulate of all groups trying to
predict crashes on stock exchanges was that they work according to the same
principles as those of earthquakes, or overarching generalizations thereof.
They would view financial crashes as phase transitions in a hierarchical sys-
tem, characterized by discrete scale invariance, and being increasingly loaded
with time. However, there is no evidence for mean-reversion in stock prices
unlike the assumptions of, e.g., the recurrence model for earthquakes. More
recently, research on financial crashes has gained a momentum of its own,
and the relation to models of earthquakes has loosened somewhat [21].

Following the earthquake analogy, a stock price or index rising in time
would build up some stress in the market. It would be released in a singular
failure event, the crash, which would mark a critical point. If this hypothesis
is endorsed, the variation S(t) of a stock price, resp. index, prior to a crash
should obey

S(t) = A + B(tf − t)α {1 + C cos [ω ln(tf − t) − φ]} (9.8)

or more complicated generalizations thereof. φ is the phase of the oscillations.
An alternative or complement to fitting this expression is to analyze the
times of occurrence tn of pronounced minima in the price variation which are
predicted to follow a geometric progression

tn+1 − tn
tn − tn−1

= exp
(

2π

ω

)
< 1 . (9.9)
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Fig. 9.9. S&P500 index in the seven years preceding the 1987 crash on Wall Street,
and a fit to a power law with log-periodic oscillations. By courtesy of D. Sornette.
Reprinted with permission from Elsevier Science from D. Sornette and A. Johansen:
Physica A 245, 411 (1997) c©1997 Elsevier Science

Price histories conforming approximately to (9.8) are called log-periodic
power laws. With a positive power-law prefactor B, they correspond to bub-
bles. The understanding then is that a crash is the sudden collapse of a spec-
ulative bubble which has built up over a long time. Imitation and herding
among market participants have pushed market prices of assets significantly
above their fundamental values. The accelerating oscillations in (9.8) then
reflect the competition between the instabilities of the inflating bubble due
to sell orders on the one side, and the synchronization due to herding on the
other side.

Figure 9.9 shows a fit of (9.8) to the S&P500 index in the years preceding
the 1987 crash [216], showing clear signs of log-periodic oscillations. A similar
fit is shown in Fig. 9.10 for the 1929 crash, using the Dow Jones index [216].
While these fits apparently describe the large-scale evolution of the data quite
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Fig. 9.10. Log-periodic fit of the Dow Jones Industrial Average over the eight years
preceding the 1929 crash. By courtesy of D. Sornette. Reprinted with permission
from Elsevier Science from D. Sornette and A. Johansen: Physica A 245, 411 (1997)
c©1997 Elsevier Science

well, there are numerous additional oscillations in the data which are not
accounted for by (9.8), and some subjective judgment certainly is required
when using these methods to predict a crash.

The data shown in Fig. 9.2 can be analyzed in a similar way [209]. Van-
dewalle et al. first subtracted an exponential background corresponding to a
long-term average growth rate of 0.1 per year, shown as a dotted line. An
accelerated growth, corresponding to about 0.3 per year, sets in about two
years before the crash (solid line). These departures from the long-term trend
in the two years preceding the crash then are fitted to a variant of (9.8) where
α is put to zero, i.e.,

|tf − t|α → ln |tf − t| as α → 0 , (9.10)

producing a rather successful description of the data. This is shown in
Fig. 9.11. An advantage is that, the “exponent” being fixed now, there is
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Fig. 9.11. Analysis of the excess evolution of the Dow Jones index over its long-
term trend, in the two years prior to the 1987 crash, in terms of log-periodic os-
cillations. By courtesy of N. Vandewalle. Reprinted with permission from Elsevier
Science from N. Vandewalle, et al.: Physica A 255, 201 (1998). c©1998 Elsevier
Science

one less fit parameter. If time t was taken to be temperature T , the law
would correspond to the specific heat variation close to the critical point of
the 2D Ising model [209]. Why this is the relevant quantity on which to model
the evolution of a stock index, remains unclear. The claim of the authors that
this variant would fit better than (9.8) with a power law [209] has, however,
been disputed in the literature [217].

Based on these ideas, the crash in October 1997 (“Asian crisis”) has been
predicted by two groups. The prediction of Vandewalle, Bouveroux, Minguet,
and Ausloos appeared in the popular press [208] first, and then in the scientific
literature [218]. The analysis was performed both on the basis of (9.8) with
α = 0, and on the geometric progression of the extrema of the log-periodic
oscillations, (9.9). The crash times predicted by both methods deviated from
each other by less than the error bars. The corresponding data are shown in
Fig. 9.12. An independent prediction of the 1997 crash by Didier Sornette
is discussed in footnote 12 of [219]. Another group has given an analysis of
this crash, using a rather similar theory, immediately after the event [220].

There have also been critical opinions on the predictability of financial
crashes [221]. One problem is that the prediction based on log-periodic os-
cillations does not always work. Figure 9.13 shows a crash that did not take
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Fig. 9.12. Analysis of the 1997 crash of the Dow Jones index in terms of log-
periodic oscillations. By courtesy of N. Vandewalle. Reprinted from N. Vandewalle,
et al.: Eur. Phys. J. B 4, 139 (1998), c©1998 EDP Sciences

place: the price variation of Japanese Government Bonds during 1993–1995
could be fit to a log-periodic variation, suggesting a crash by September 1995.
This crash did not take place although the apparent quality of the fitted was
best just during the year 1995! Based on log-periodic oscillations, there were
also warnings of a crash possibly occurring in late 1998 on the web sites of
Phynance technology [222], a young Belgian company marketing anticrash
software based on the ideas discussed in this chapter, throughout the second
half of 1998 and early 1999. No crash occurred, although the markets were
extremely volatile, as readers may remember.

Moreover, there may be technical problems involved in the analysis which
might make a prediction somewhat unreliable (consider your investment
which depends on the quality of your prediction!) [221]. One, of course, is
the rather large number of fit parameters implying that there will likely be
several sets of equally good fit parameters yielding different crash times. In
the analysis of the extrema of the putative log-periodic oscillations, one often
encounters extrema which do not follow a hypothetical log-periodic sequence,
but which are more pronounced than those which lie on the sequence. A de-
cision then has to be made to either discard them or look for a different se-
quence. The latter will most likely yield a different prediction. This problem
is illustrated in Fig. 9.1 [221]. The most prominent minima of the S&P500
index indeed lie on a log-periodic progression marked by ti. However, the
Hong Kong Hang Seng index has two additional minima labeled by question
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Fig. 9.13. Price variation of Japanese Government Bonds 1993–1995, and fit to a
log-periodic variation. Note that the crash suggested by the fit did not take place.
By courtesy of J.-P. Bouchaud. Reprinted from L. Laloux, et al.: Europhys. Lett.
45, 1 (1999), c©1999 EDP Sciences

marks which do not fall into the log-periodic sequence. Nevertheless it was
on the Asian markets that the crash started.

Finally, the predicted crash time is often not reached, but the crash can
occur before – or not at all. Even with an accurate crash warning, an investor
then has to decide how much time ahead he has to change his investment
from risky assets to riskless ones, to protect it. Of course, if many investors
do so well in advance, the crash might be avoided simply by the reaction of
investors to a crash warning. Alternatively, investors might panic at a crash
warning, and trigger the crash immediately. The warning then has become a
self-fulfilling prophecy.

Despite these reservations, evidence for log-periodic oscillations in finan-
cial time series continues to accumulate. An analysis of both the Nasdaq
composite index and of individual US stocks has shown that the crash in
april 2000 was accompanied by significant log-periodic oscillations [223].
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9.5 What Causes Crashes?

The efficient market hypothesis does not provide for crashes – at least not
with the frequency they occur with. Its core statement that all available infor-
mation on a stock is reflected immediately and in an unbiased way in the stock
price, would only allow for a financial crash in the case of a truly catastrophic
event. There is no systematic evidence in favor of such a mechanism.

Confronting the efficient market hypothesis to reality, one ecounters es-
sentially three situations: (i) there is a crash due to a catastrophic event, (ii)
there is a catastrophic event but no crash occurs, (iii) there is a crash but no
catastrophic trigger event can be identified.

A prominent example of a crash triggered by a catastrophy is provided by
September 11, 2001, where most markets in the world crashed. For the DAX,
cf. Fig. 5.12. The cause–effect relationship is obvious here. Others include the
outbreak of World War 1, or the coup against Gorbachev in August 1991, or
the Nazi invasion of France in 1940.

Catastrophic events sometimes do not lead to crashes on stock markets.
The outbreak of the Gulf War in early 1991 did not affect the stock prices in
the Western world, or rather gave them a positive impetus. The fear of a war
in Iraq, and its outbreak in 2003, increased the volatility of many financial
markets but did not send them into decline. The earthquake in Taiwan in
fall 1999 did not lead to a collapse of stock markets in Asia. The Kobe
earthquake in Japan 1995 had a strong influence on some stocks but much
less on the Japanese stock market as a whole. Also the South Asian tsunami
on December 26, 2004, affected some stocks but it did not affect the financial
markets as a whole, neither in Southern Asia nor worldwide.

On the other hand, often an entire market, or many world markets crash,
and no single triggering event can be identified. According to Sect. 9.2, no
single cause could be identified for the 1987 crash on Wall Street, resp. in
the world markets [10, 224]. The situation is similar for many other crashes,
e.g., the Black Monday in 1929, the Asian crisis in 1997 or the burst of the
“dot.com” bubble on Nasdaq in 2000. There is a common feature in these
cases, though: inflated expectations about the future evolution of economies.
In 1929, the focus was on utilities, in 1987 on the effects of financial dereg-
ulation, in 1997 on the growth of the South-East Asian “Tiger States”, in
2000 on the succes of telecommunication and computer industries.

Apparently, there are two classes of crashes in financial markets: crashes
caused by catastrophic events (“exogeneous crashes”) and crashes whose root
and trigger must have been in the financial markets themselves (“endogeneous
crashes”) [225]. In the financial markets, do they show up with the same
signatures? In other words, if we only possess the time series of a financial
asset containing a crash event, could we unambiguously attribute the event
to one of the two classes?

Indeed, one can. A systematic investigation of about fifty events from
many different markets shows that the presence of a log-periodic power law
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of the type (9.8) or generalizations thereof is the discriminating factor [225].
Endogeneous crashes happen more or less close to the culmination point of a
log-periodic sequence. The log-periodic precursor sequence therefore allows,
with the reservations made above, a prediction of the event. Clear examples
include in 1929 Black Monday (Fig. 9.10), the crash of October 1987 in many
world markets (Figs. 9.2 and 9.9 for Wall Street), the Asian crash in 1997
(Figs. 9.1 and 9.12 for the Hang Seng and Dow Jones indices, respectively),
and the 2000 crash on Nasdaq, among others. Common to these endogeneous
crashes is that one cannot identify a single underlying cause or triggering
event, and that the systematically happen after long bullish rallies [225].

Exogeneous crashes happen out of the blue, and are not preceded by
a log-periodic power-law time series, as can be verified with the examples
cited above and many more [225]. They are intrinsically unpredictable. An
exogeneous crash in a specific market can, however, be due to the crash of
another market. This can be seen on the time series of the DAX in 1987
which does not carry the log-periodic power-law signatures of Wall Street.
Apparently, the endogeneous crash of Wall Street was perceived by german
investors as an exogeneous, catastrophic event, and they reacted in panic.

Within a model of multifractal random walks [226, 227], building on the
concepts discussed in Chap. 6, exogeneous and endogeneous crashes relate to
different quantities and therefore produce, e.g., different decay of the volatility
in the markets. The basic idea is as follows. Independently of its origin, the
crash produces a volatility shock. Unlike in the simple models, volatility in
real markets is a long-time correlated variable, cf. Chap. 5.6.3 and Figs. 5.24
and 5.25. The temporal decay of the excess volatility now depends on the
nature of the perturbation, and the state of the market at the time of the
perturbation [228].

For the exogeneous crash, the volatility decay is determined by the re-
sponse of the market to a single piece of very bad news, i.e. to a delta
function-like perturbation δ(t). Based on the linear response functions of the
multifractal random walk model, a decay of the excess volatility ∼ 1/

√
t − tf

is found. The excess volatility after an exogeneous crashes indeed decays in
this way while after an endogenous crashes, it does not [228].

For an endogenous crash, the volatility response conditional on a major
volatility burst within the system is relevant. Evaluating the appropriate con-
ditional response function, one finds that the excess volatility can formally be
written as a power law of time, ∼ (t−tf)−α−β [228]. The exponent α depends
on the strength of the volatility perturbation. β contains a logarithmic time
dependence itself. Unless α � β, the volatility after an endogeneous crash
therefore does not decay as a pure power law.

Prior to an endogeneous crash, a description of the market behavior in
terms of incorporation of information into prices can only be given if it is
assumed that there has been a particular sequence of small pieces of infor-
mation which brought the market into an unstable state. The endogeneous
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crash itself finally is due only to an additional small piece of information.
This is in line with the systematic failure of attempts to identify a trigger
event in such a case [228].

9.6 Are Crashes Rational?

The consistency of the efficient market hypothesis with financial crashes is
doubtful. A crash due to a catastrophic external event apparently is con-
sistent. When a catastrophy occurs and no crash happens, one may argue
that investors very quickly understand the limited impact on the economy,
or that they see positive impacts counterbalancing the negative ones. E.g.
after an earthquake or tsunami, tourism may decline temporarily, but at the
same time construction certainly increases. However, the market reports of-
ten point out that a certain moderate or violent response to external events
seems to depend on the assurance or fright of the markets as a whole. How-
ever, for the case of an endogeneous crash, the efficient market hypothesis
has a problem: the crash simply should not happen.

One may turn around this argument and use it against the efficient mar-
ket hypothesis. If crashes then occur as often as they do, this must be due
to deviations from market efficiency. Expectations of future earnings may, in
periods of general euphoria, create speculative bubbles which end in crashes.
Such arguments have been invoked for the bubbles preceding historic crashes
such as the tulipmania in the Netherlands of the 17th century [207], but also
for those before the major crashes of this century in 1929 (driven by unreal-
isitc expectations from the utilities sector), 1987 (driven by general market
deregulation), 1998 (driven by investment opportunities in Russia), and 2000
(driven by the euphoria about the “New Economy” of high-technology stocks)
[223]. As a corrolary, crashes would be the consequence of irrational behav-
ior of investors, of their “mad frenzy” [223]. In the preceding chapter, we
have discussed some models which attempt to shed light on such irrational
behavior as herding and imitation of agents.

However, despite the apparent failure of the efficient market hypothe-
sis, and despite the wording often used to describe investor behavior during
speculative bubbles (cf. preceding paragraph) “abnormal” price increases and
crashes can occur, with rational investors, when a finite exogeneous probabil-
ity of a crash is allowed for [229]. In other words, when exogeneous crashes
can happen, endogeneous crashes may be the consequence.

When interest rates, transaction costs, etc. are neglected and a risk-
neutral world is assumed, the efficient market hypothesis requires share prices
to follow a martingale stochastic process

〈S(t′ > t)〉 = S(t) . (9.11)

Now assume that there is a nonzero probability of a crash. This can be
modeled as a jump process j(t) = Θ(t − tc) which is zero before and unity
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after the crash occurring at an unknown tc. tc itself is now a stochastic
variable, with a probability density function q(t), a cumulative distrbution
function Q(t) =

∫ t

−∞dt′q(t′), and a hazard rate h(t) = q(t)/[1 − Q(t)]. The
hazard rate is the probability per unit time that the crash happens in the
next time step if it has not happened yet. With such an exogeneous crash
probability, the dynamics of the share price becomes [229]

dS = µ(t)S(t)dt − κS(t)dj . (9.12)

In this equation, κ is the fraction of drawdown in the crash, and µ(t) is the
return of the stock, treated as an open parameter at present. Apart from
the crash probability, other sources of exogeneous noise have been neglected.
In this case, if the crash probability was zero, the share price would stay
constant. With a finite crash probability, however, the martingale condition
for the share price becomes 〈dS〉 = 0, and therefore requires a return on the
stock before the crash

µ(t) = κh(t) . (9.13)

This leads to a price dynamics before the crash

S(t) = S(t0) exp
(

κ

∫ t

t0

dt′ h(t′)
)

. (9.14)

The surprising result of this argument is that with a finite probability of
a crash, even in a world of rational investors, there must be a boom period
before the crash. The price increase before a crash is necessary to compensate
for the losses during the crash [229]. However, in this simple model, the crash
time follows a stochastic jump process and cannot be anticipated. Therefore,
despite the booms preceding the crashes, abnormal profits cannot be earned.
The situation may be better in real markets if the precursor signals discussed
in the previous section consistently have predictive power.

Observe also that, despite much discussion to the contrary, there have
been occasional reports discussing the most prominent features of the Dutch
tulipmania in terms of market fundamentals [206].

9.7 What Happens After a Crash?

Despite some universality, we have also seen major differences between
crashes. One example is provided by Fig. 1.1 containing the crashes of Octo-
ber 1997 and fall 1998. They are different in their shapes in the DAX time
series but also in the duration of the “depression” they generated. The conse-
quences of the 1997 event are no longer visible in the DAX quotes a few days
after the crash. The 1998 drawdown lasted much longer: only one year after
the event, the DAX again reached its precrash level. After the 1987 crash,
the Dow Jones Industrial Average reached its precrash high after about two
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years. Figure 9.2 shows, however, that it resumed the long-term rise with a
rate of about 0.1 per year which it had followed until about two years before
the crash, almost immediately after. Finally, the consequences of a crash of
the Japanese Nikkei 225 index in 1990 (not discussed above), have persisted
for at least 10 years. At the time of writing the first edition of this book, the
Nikkei index was at about 16,000 points, compared to about 40,000 at the
beginning of 1990. In November 2002, when this book was updated for its
second edition, the Nikkei traded below 9,000 points. On November 18, 2002,
it closed at 8,346. In April 2005, it had risen back to about 11,000 points.
How long do crashes persist?

Investors would like to have a signal identifying the trend reversal after
a crash. In particular, one would like to have an exogenous variable, inde-
pendent of the stock market. On a purely empirical basis, the interest rate
spread on the bond market has been identified as such a variable recently
[230].

A trend reversal after a crash should correspond to a change in the trader
attitude from bearish to bullish. Bear markets are characterized by fear of
the future evolution, bull markets rather by optimism about the future. The
idea therefore is to search for a measure of the uncertainty which the market
actors have about the future evolution. One possibility is to look at interest
rates. In principle, the more uncertain the future, the more one expects high
interest rates. The default risk of an debtor, which must be compensated by
the interest payment, is the higher the more uncertain the repayment of the
credit. The uncertainty on the repayment of a credit clearly is correlated with
the future evolution of the economy. However, in practice, there is no strong
and systematic correlation of interest rates with stock price evolution during
and after a crash.

A different picture emerges, however, when one considers the spread in
interest rates for credits extended to borrowers of different quality. If one
takes as a measure of the interest rate spread the difference of the interest
rates of bonds of the lowest credit rating with the rates of highly rated bonds,
a strong correlation emerges [230]. Roehner has investigated this correlation
for various crashes in the 19th and 20th centuries. He found significant corre-
lations between the bottom line after a crash and a maximum in the interest
rate spread after the crash, for all of the crashes in the last two centuries [230].
Figure 9.14 shows as an example the 1929 crash on Wall Street. The solid
line is the stock index normalized to 100 at the beginning of the crash as a
function of the number of months after the crash, the thick dotted line is the
interest rate spread, and the thin dashed line is the interest rate. Throughout
the series of crashes studied, similarly good correlations are found between
stock price and interest rate spread (correlation −0.86 in 1929), but normally
less good correlations between the stock prices and interest rates (the cor-
relation coefficient of −0.72 is exceptionally high in 1929 compared to other
dates). One can also establish parallels between the interest rate spread and
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Fig. 9.14. Normalized stock prices (solid line, left scale), interest rate spread (thick
dotted line, right scale), and interest rate (thin dashed line) at the New York Stock
Exchange after August 1929. The horizontal axis numbers the months after the
crash. The correlation stock price/spread is −0.86, and the stock price/interest
rate correlation is −0.72. By courtesy of B. M. Roehner. Reprinted from B. M.
Roehner: Int. J. Mod. Phys. C 11, 91 (2000), c©2000 by World Scientific

a lack of consumer confidence in the market. Apparently both measure the
uncertainty perceived by the market actors, about the future evolution of the
stock markets, and of the economy more generally.

In all of our discussion, the crash seen as a phase transition occurred
after prices rose with time. This corresponds to lowering the temperature
towards a critical temperature in physics. However, critical phenomena in
physics are also observed when one raises the temperature and approaches
the critical temperature from below. Can we observe “reverse crashes” on
financial markets?

With some caveats, one can, indeed. In the past, financial markets often
entered severe depression after long bullish periods. However, these bull mar-
kets did not end in a crash but more gently crossed over into depression. Two
examples are the Japanese Nikkei 225 stock index and the gold market [231].
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One indeed observes log-periodic oscillations superposed on a power law as
Japan entered the depression. The price oscillations then are decelerating,
and the power law is decreasing with time. Both the Nikkei 225 and the gold
price have been fitted successfully to [231]

lnS(t) = A + B(t − tf)α + C(t − tf)α cos [ω ln(t − tf) − φ1]
+ D(t − tf)α cos [2ω ln(t − tf) − φ2] . (9.15)

The following changes have been made with respect to (9.8) describing a
bubble. The time to the crash has been reversed, tf − t → t − tf to become
time after the crash. A second harmonic with prefactor D has been added. In
principle, the most general expression for the index variation is a log-periodic
harmonic series. Here, it has been truncated at the second order. Finally, it
turns out that on long time scales, the logarithm of the index variations lnS(t)
provides better fits to the log-periodic harmonic series than the index S(t)
itself. Moreover, it is in line with one of the fundamental postulates discussed
in Sect. 4.4.2 in connection with geometric Brownian motion, namely that
investors are more focussed on returns than on the absolute prices.

Most remarkable, however, is the fact that the fit of the Nikkei index
allowed the prediction of a trend reversal of this index in early 1999 [232]. The
prediction was made at a time when the Nikkei was close to its 14-year low,
and economists were skeptical about the further evolution of the Japanese
markets. The further evolution throughout 1999 confirmed the prediction:
the Nikkei index returned to levels between 19,000 and 20,000 points by the
end of 1999. By mid-2000, it fell to 16,000 points, and continued falling to
below 8,500 points in late 2002. It has recovered to levels of 10,000 . . . 12,000
points, by early 2005.

In Chap. 8.2, bubbles have been defined as an overvaluation of market
prices with respect to fundamental prices. Imitation and herding on the buy-
side of the market fuelled by an optimistic outlook on the future evolution
of the economy, was suspected to be the main driving mechanism behind a
bubble. When a pessimistic outlook is predominant, exactly the same mech-
anisms, imitation and herding, on the sell-side of the market may lead to
increasing synchronization and to decreasing prices. In such a situation, an
anti-bubble may build up, again following some log-periodic power law price
history. An anti-bubble corresponds to falling prices with log-periodic os-
cillations expanding in time. More specifically, prices during an anti-bubble
will approximately follow (9.15). It is characterized by a power-law prefactor
B < 0 [233]–[235]. tf is the starting date of the anti-bubble.

Based on this theoretical framework, strong predictions have been pub-
lished on the future bearish behavior of many of the world’s financial mar-
kets [233]–[236]. For the US S&P500 index, based on data up to August
2002, a prediction was issued in September 2002 that (i) the index would
reach its minimum at that time, (ii) reverse its trend to increase to a level
of about 1,000 index points in late 2002 or early 2003, (iii) to slowly and
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slightly decrease until the second semester of 2003, and (iv) to sharply fall
to below 700 index points in the first semester of 2004, always following
(9.15) [233]. Underlying this predicted price variation is an anti-bubble which
formed around August 2000, about four months after the collapse of the “new
economy bubble” (or “dot.com bubble”) on April 14, 2000 [223].

This bubble can be seen in Fig. 1.2 as the anomalous increase in the DAX
from about 1996 to 2000. It was fuelled by collective beliefs that new commu-
nication technologies, more powerful computers, more intelligent software, the
spreading use of the internet, etc. would give birth to a “new economy” with
high growth rates where many traditional products and trading structures
would be replaced by data and communication paths. Prices of companies
like Cisco, Global Crossing, etc. were high because investors expected enor-
mous future earnings – the current earnings per share of the companies at
that time were actually rather low. Established blue chips like car makers
traded at much lower prices or returns although their earning per share were
rather high. The expectation of future earnings made the whole difference!
The collapse of the bubble started on April 14, 2000 on the Nasdaq which lost
about 37% until April 17, 2000 [223]. Other high-technology market segments
in the world crashed in a similar way. The decline of these indices was not
finished at the end of the crash, though, as investors were sent into depression
after the end of the bubble, and negative sentiments prevailed on almost all
markets. The consequences of the bubble collapse on the blue chip indices or
very broad market indices such as the S&P500 were much milder, and could
qualify for a crossover between a bubble and an anti-bubble.

Actually, many markets worldwide are well described by anti-bubble the-
ory between mid-2000 and summer 2002 [233, 234]. The prediction made in
summer 2002 about the future behavior of the S&P500 index based on the
anti-bubble [233] was extended to the major stock indices of other countries
[234], i.e. the anti-bubble went global. The prediction for the US market
(sharp decline in 2004) was reemphasized in 2003 with a time scale set for
validation by summer 2004 [235]. There are also reports of modifications with
a slight shift in the dates of plunge and recovery. The year 2004 was held up,
though, as the time of the decline with some recovery, perhaps, in 2005 [236].

It turned out, however, that only a small part of every prediction mate-
rialized! Summer 2002 indeed formed the bottom of many stock indices, and
the predicitions of rising quotations through the second semester of 2002 gen-
erally were realized. However, the more spectacular part of the predictions
(“Bear markets to return with a vengeance” [236]), namely that the trend
reversal would be followed by another decline – first gentle, then steep – from
early 2003 at least until 2004 did not happen on the world markets. After
another, often deeper minimum in spring 2003, most market indices rose until
the end of 2004, at least.

Here, we discuss the behavior of the DAX German blue chip index in
more detail. Figure 9.15 displays the index (ragged solid line) together with
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a fit (smooth solid line) to (9.15) [234]. In the best fit based on the data up to
September 30, 2002 (left vertical line in Fig. 9.15), tf = October 6, 2000, i.e.
the anti-bubble started almost half a year after the burst of the new economy
bubble. Quite generally, there need not be a coincidence between the date of
a crash (if one occurs) and the starting date of an antibubble. Similarly, one
does not expect a symmetry between bubble and antibubble [235]. The other
parameters are α = 0.94, ω = 8.47, φ1 = 3.61, φ2 = 4.58, A = 4.58, B =
−0.0012, C = 0.00041, D = 0.00012. The negative value of B identifies
the anti-bubble. The time t is measured in calendar days, unlike many other
statistical analyses which refer to trading days.

Figure 9.15 shows that these expressions indeed give a good ex-post fit
of the variation of the DAX, i.e. for the time period where data were avail-
able. The date where the predicition was issued is marked by the left vertical
line in Fig. 9.15. On the other hand, (9.15) does not give a reliable ex-ante
description of the DAX. While prediction and actual realization still are con-
sistent during the last quarter of 2002, they vary in completely different ways
thereafter. After an intermediate high at about 3200 points in late 2003, the
DAX falls to its nine-year low at 2202.96 points on March 12, 2003, while
the prediction rises to about 3500 points. The DAX then rises gradually to
about 4000 points until early 2004 to stay in this range for the rest of that
year. The prediction, on the other hand levels off at 3500 points to enter the
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Fig. 9.15. Variation of the DAX from January 3, 2000 until December 30, 2004,
and comparison to the anti-bubble prediction of Zhou and Sornette [234]. The DAX
is the ragged solid line. The dotted line is the pure power-law component in (9.15).
The dashed line includes the first log-periodic harmonic as well. The smooth solid
line in addition includes the second log-periodic harmonic, i.e. describes (9.15) with
the parameters given in the text. The left vertical bar labels the date where the
prediction was issued. The right vertical bar is the shortest of the dates of validity
of the prediction
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bear market in early 2004. During 2004, the DAX was predicted to fall to
almost 1000 index points, making up for a twenty-year low.

Several limits of validity have been attached to these predictions. One is
at the end of 2003, marked by the right vertical line in Fig. 9.15 [234]. Others
are in 2004, between the right vertical line and the right end of the figure
[235, 236]. It is clear, though, that the prediction did not materialize in either
of these time spans, and that significant deviations started as early as the
beginning of 2003. The prediction also failed for all other indices investigated.

It therefore appears that log-periodic power-law behavior is a universal
feature of speculative markets, no matter whether they are stock indices, in-
dividual stocks, commodities or currencies. They represent a kind of correla-
tion very different from those discussed in Chap. 5. Apparently, log-periodic
power-law price variations are common in financial markets and can both
be associated with bubbles (bull markets) and anti-bubbles (bear markets).
Likely, both are due to self-reinforcement of expectations and beliefs at the
origin of trading decisions. Apparently, they are less stable and the problem
of competing fits with different parameter sets is more serious, though, than
advertised by their proponents. The fact that predictions are not systemati-
cally followed by markets, and sometimes fail, does not necessarily invalidate
the concept as such. It indicates, however, that more research is mandatory
before we can claim to understand crises and crashes in financial markets,
and before reliable predictions can be made systematically.

9.8 A Richter Scale for Financial Markets

This chapter has drawn heavily on potential analogies between earthquakes
and captial markets. For most of our discussion, we concentrated on the
idea that these extreme events are related to the critical points discussed
in physics, and on deterministic precursor signals. However, we have done
little to quantify the magnitude of financial crashes. It is not even clear
what features make up a “crash”, or a “crisis” in a capital market. Should
the “second black monday” on October 27, 1997, be called a “crash” in
Germany or the US, where the stock indices lost about 7% in one day and
recovered quickly, or only in Asia with, e.g., a 24% drawdown in Hong Kong
(cf. Fig. 9.1)? Moreover, both in seismology, and in finance, the extreme
events we call crashes are relatively rare, but there is much continuous seismic
activity in the earth as well as much persistent turmoil on capital markets
on smaller levels. We therefore need an accurate, quantitative measure of the
state of financial markets.

In seismology, the Richter scale provides such an indicator. It is a loga-
rithmic scale of the total seismic energy Etot released in an earthquake. The
magnitude MS on the Richter scale is related to the total energy release by
[237]
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MS =
2
3

(lnEtot − 11.8) . (9.16)

Moreover, the Gutenberg–Richter law

P (Etot) ∼ E−1.5
tot (9.17)

relates the probability per unit time, i.e., frequency, of an earthquake to its
energy release, and thereby to its magnitude on the Richter scale. In other
words, the Richter scale also measures the inverse frequency of earthquakes
of a certain magnitude

MS ≈ 2
3

ln
(

Etot

E0

)
=

4
9

ln
(

1
P (Etot)

)
. (9.18)

A group at Olsen & Associates, Zürich, has recently constructed an analogous
scale for financial markets [108]. In fact, two such “scales of market shocks”
(SMS) are needed: One is an absolute, universal scale which allows one to
compare the influence of one specific event on a variety of assets. The other
scale is an adaptive one which compares the relative importance of various
events on a single asset.

An indicator measuring market shocks can be constructed in analogy with
mechanics [108]. The kinetic energy is Ekin = (m/2)v2 with (1D) velocity
v = dx/dt the derivative of position x. If we identify position in space with
the logarithmic price lnS(t) of an asset, velocity is equivalent to time-scaled
returns

v(t) → r[τ, S; t] =
lnS(t) − lnS(t − τ)√

τ
≡ δSτ (t)√

τ
. (9.19)

√
τ appears in the denominator because of the stochastic nature of the price

process. Unlike mechanics where the limit dt → 0 is well defined and usually
finite, it is not obvious that a limit τ → 0 can be taken in (9.19). The√

τ -scaling in (9.19) removes the time scaling of the volatility of returns of
geometric Brownian motion 〈(δSτ )2〉 ∼ τ . In all other cases, the volatility of
rescaled returns will continue to depend on the time scale τ , and may vanish
or diverge as τ → 0.

A scaled volatility is then defined on an N -point grid in the time scale τ
as the standard deviation of the scaled returns

v[τ, S; t] =

√√√√ 1
N − 1

N∑
i=1

r2

[
τ

N
, S; t − τ

(i − 1)
N

]
. (9.20)

The equivalent of the kinetic energy is then time-scaled variance, i.e.

Ekin ∼ v2 → v2[τ, S; t] . (9.21)

An indicator can be built on the expectation value of this quantity which,
of course, is scale dependent. Big earthquakes are usually well separated
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from the background seismic activity. The integration of the energy release
therefore poses no problems. In financial markets, the background signal is
much stronger, and events cannot be clearly separated from their background.
Therefore, time-rescaled variance v2[τ, S; t] may be a better quantity to use
in financial markets than bare variance 〈(δSτ )2〉.

Now remember that volatilities are distributed log-normally, to a good
approximation (cf. Chap. 5, [107, 108])

p(v) =
1√

2πσvv
exp

[
− 1

2σ2
v

(
ln

v

v0

)2
]

, (9.22)

with maximum and mean at

vmax = v0 exp(−σ2
v) , and v̄ = vmax exp(3σ2

v/2) , (9.23)

respectively. v0, and consequently vmax and v̄ are τ -dependent when unscaled
returns are used [107] and almost τ -independent with scaled returns [108] for
smaller volatilities. A τ -dependence persists, however, for large v � vmax.
Analogy with (9.18) then suggests the following function for mapping volatil-
ity into the SMS indicator:

fadap(v) =
sign(v − vmax)

2σ2
v

(
ln

v

vmax

)2

. (9.24)

By superposing this function on a log-normal distribution, one notices that
fadap(v) is sensitive to large and small volatilities, but almost vanishes in the
range of the normal background signals v ≈ vmax.

The adaptive scale of market shocks is finally defined as an integral of
this indicator function over time scales

SMSadap =
∫

d ln τ µ(ln τ)fadap(v[τ ]) (9.25)

with a weight function

µ(ln τ) = ce−x

(
1 + x +

x2

2

)
with x = 2

∣∣∣∣ln τ

τcenter

∣∣∣∣ . (9.26)

c is a normalization constant, and τcenter sets the time scale of maximum
sensisitivity of the indicator. In practical applications τcenter = 1 day has been
used successfully. The universal scale of markets shocks SMSuni is defined in
the same way, except that a mapping function

funi(v) = v
dfadap

dv

∣∣∣∣
v=3vmax

(9.27)

is taken. It is proportional to v/vmax. vmax itself is strongly asset-dependent,
and therefore ensures the normalization of the universal scale of market
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Fig. 9.16. Adaptive scale of markets shock for the USD/JPY markets in 1997/98
(left scale), and the corresponding price (right scale). By courtesy of G. O. Zumbach.
Reprinted from Introducing a Scale of Market Shocks, Olsen & Associates preprint

shocks. Events in markets with different background volatilities thereby be-
come comparable.

Figure 9.16 shows the exchange rate USD/JPY on the right scale, and
the adaptive scale of market shocks on the left scale for the years 1997 and
1998. These years have been discussed throughout this book, as they were
full of events. The scale of market shocks apparently works very well, and
provides a much better distinction of exceptional from normal events than
the price chart itself. Some strong peaks on the SMS are almost invisible in
the price evolution. Conversely, strong price variations produce strong SMS
signals. The reason for the high signal/noise ratio is the shape of the mapping
function fadap(v) used in the SMS and its sensitivity to big events, and the
use of τcenter = 1 day which gives a good sensitivity to intraday fluctuations.
More importantly, perhaps, most though not all of the major market shocks
can be correlated with news headlines, be they on actual events or rumors.



10. Risk Management

In this chapter, we will describe the basic principles and methods of risk
management. We define risk and various measures of risk. We discuss the
types of risk which banks face, and how they actually manage them.

10.1 Important Questions

There are many important questions on risk.

• How is risk defined?
• How is risk measured quantitatively?
• What types of risk does a bank face?
• Are they independent of each other, or correlated?
• Are extreme risks and typical risks related in a simple manner, or do we

need separate theories or methods for each?
• Why do people resp. institutions accept risk?
• What is the reward of accepting risk?
• What is the purpose of risk management?
• What are the tools for controlling, i.e., minimizing risks?
• Are there additional tools for complex portfolios of assets, compared with

the hedging of a single security?
• Do the measures of risk, and the methods to control it, rely on Gaussian

markets, or can they be adapted to the more general properties of asset
prices discussed in Chaps. 5 and 6?

• How can we optimize the relation between risk and return?

Although measures of risk have been available and risk management functions
in financial institutions have existed for a long time, the problem of correctly
quantifying risk and prudently managing risk again has become very impor-
tant recently. There have been unexpectedly big losses, e.g., at Barings Bank,
Daiwa, Yamaichi, Hokkaido Takushoku Bank, Sanyo Securities, Allied Irish
Bank, or Long Term Capital Management during the last couple years, or so.
Rules have been established for financial institutions to control their risks,
and banking has become one of the most heavily regulated businesses today.
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However, many models used for risk management in banks and in the regu-
latory framework to which banks are subject, in one way or another rely on
the Gaussian distribution for asset returns. Extreme risks are absent there!

10.2 What is Risk?

Future is uncertain. Highlighted by Lao Zi’s words in the front material of this
book (“One must act on what has not happened yet”), the consequences of
human decisions both in personal and in business life reach into the uncertain
future. Economists refer to this situation as decisions under uncertainty. The
notion of risk – as opposed to uncertainty – comes in when the decision
maker possesses a probability distribution of future events – either objective,
i.e. statistical, or at least subjective. This classification of probabilities into
objective or subjective probabilities was foreshadowed by Bachelier [6, 7]:

“One can consider two kinds of probabilities: 1. The probability which
might be called ‘mathematical’, which can be determined a priori and
which is studied in the games of chance. 2. The probability dependent on
future events and, consequently, impossible to predict in a mathematical
manner. This last is the probability which the speculator tries to predict.”

Many business decisions also must rely on subjective probabilities. Systematic
scenario analysis usually helps to go some way from subjective to objective
probability, i.e. from 2. to 1. In contrast, uncertainty describes situations
where the likelyhood of outcomes is unknown, and cannot even be estimated.

More precisely then, uncertainty refers to situations where it is only known
that one of several outcomes will be realized. Risk describes situations where
we know that a particular outcome will be realized with a certain – objective
or subjective – probability. Certainty, of course, describes situations with a
deterministic outcome.

Risk then may be looked at from three different perspectives:

1. Planning perspective: Failure to reach targets set for the future.
2. Decision perspective: Wrong decisions.
3. Financial perspective: Losses.

All three perspectives are important in banking. Given the focus of this book
on the description of financial markets and asset prices, we usually implied
the last meaning when speaking about risk.

In all three perspectives, risk refers to the deviation of the actual out-
come of a decision from its planned consequences. When such a situation
can be described in terms of a numerical variable, risk describes the devi-
ations of the future realizations of this variable from a target or expected
value. These values can be set either by a strategic management decision
or a business plan (“targets”) or by statistical techniques. Examples of the
latter include statistical expectation values 〈x(t)〉, the explicit or implicit
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assumption of martingale properties, forecasts derived from autocorrelated
stochastic processes or, perhaps an extreme case, the predictions of crashes
in financial markets discussed in Chap. 9. Deviations can be positive or neg-
ative. In a more narrow sense, risk is understood as the negative deviations
whereas the positive deviations often are referred to as chance or reward. In
banking practice, this restricted focus on negative deviations is common. In
the special cases when probability distributions are symmetric around zero, a
case often encountered to a good approximation in this book, risk and chance
cannot be separated, and both are measured by the same quantities.

In quantitative finance, we hence define risk as the negative deviations
of the future value (return) of a portfolio (possibly a single asset) from its
expectation or predicted value.

Risk management can be reduced to two main questions:

1. How can one ensure that the actual outcome of an action/investment is
as close as possible to the expected outcome or, more pragmatically, that
the consequences of the actual outcome are as close as possible to (those
of) the expected outcome?

2. What provisions can one take for the case that risk strikes, i.e. that the
outcome of an action (investement) significantly differs from the expected
outcome?

This chapter focusses on the first question, and on instruments to measure
risk. The second question is the subject of Chap. 11.

Etymologically, the term risk apparently is derived from risco in medieval
Italian and Spanish, meaning cliff. It is established that risk was used in
maritime insurance in fourteenth century Italy – quite naturally then, in
view of the elevated rates of loss of vessels at those times.

10.3 Measures of Risk

Once risk has been defined, we must find quantitative measures of risk. Risk
is defined and must be measured at various levels of hierarchy: the risk of an
individual position, empirically derived, e.g., from a certain time series. Next
comes portfolio risk. Again, risk can be measured based on the time series
of portfolio values, similar to the risk of an individual position. However, the
time series of portfolio values is an aggregation of the individual time series
of the assets held in the portfolio. Consequently, we expect the risk measure
of a portfolio to be generated from the risk measures of the constituent assets
by some process of aggregation. This process of aggregation can be continued
hierarchically, until on the last level, the total bank-wide risk, aggregated from
all portfolios and risk types, is determined. The aggregation of individual time
series and subsequent determination of portfolio risk from the aggregated
time series, rarely is a practical process. Consequently, in practice, one is
forced to aggregate risk measures taken on individual time series. Aggregation
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resp. the opposite process, disaggregation, present formidable challenges for
the definition of risk measures, and for practical risk management.

In the following, as often before, we first will take a pragmatic approach
and explain standard risk measures. We then will look more in depth and
discuss properties that coherent risk measures should possess. We will show
which risk measures fall short of them, and which measures pass the test.

10.3.1 Volatility

The standard measure of risk in finance apparently is volatility, i.e., the stan-
dard deviation στ of a time series of price changes on a time scale τ . This is
certainly true for the more basic aspects or quick information on a financial
product. Volatility is often found in the characterization of the variability of
stocks and funds in magazines and on internet sites for investors. The ad-
vanced risk management of professional financial institutions, however, often
is based on the risk measures described later in this chapter.

For a historical time series containing N +1 data points Si spaced in time
by τ , the (historical) volatility, or the standard deviation, of the returns is
estimated as

στ =

√√√√ 1
N − 1

N∑
i=1

([
Si − Si−1

Si−1

]2

−
〈

Si − Si−1

Si−1

〉2
)

(10.1)

with 〈. . .〉 =
∑N

i=1 . . .. Various related definitions, e.g., for continuous-time
processes, have been given elsewhere in this book. For a Gaussian process,
the discrete-time volatility στ is related to the continuous-time volatility rate
by στ = σ

√
τ . In this situation, (10.1) provides an estimator for σ from a

historical realization of the process.
The importance of σ for risk measurement is certainly due to at least

two factors. On the one hand, the central limit theorem seems to guarantee a
Gaussian limit distribution for which σ is appropriate (we have seen, however,
in Sect. 5.4 that the Gaussian obtains only when the random numbers are
drawn from distributions of finite variance – but this seems to be the case in
real-world markets). The other factor is the technical simplicity of variance
calculations.

In a Brownian motion model, there is a practical interpretation of σ. Given
a generalized Wiener stochastic process, (4.37), one can ask after what time
the drift has become bigger than the standard deviation. The answer is

µt > σ
√

t , t > (σ/µ)2 . (10.2)

After that time, it is improbable that profits due to the drift µ in the stock
price will be lost completely in one fluctuation. For geometric Brownian mo-
tion, (4.53), one can make the same argument for the drift and fluctuations
of the return rate dS/S.
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As an example, assume µ = 5%y−1, σ = 15%y−1/2 (y−1 ≡ p.a.). Then,
t > 9y. Or consider the Commerzbank stock in Fig. 4.5. From the difference
of end points, one has a drift µ = 58%y−1, and a volatility σ = 33.66%y−1/2.
Then t > 4 m only.

For strictly Gaussian markets, σ is the only relevant quantity. All other
risk measures, in one way or another, can be reduced to σ. It may apply either
to a position in stock, or bond, or derivative. With a probability of 68%, price
changes ∆Si/Si are contained in the interval between ±σ around 〈∆Si/Si〉,
while they fall outside this range with 32% probability. The confidence levels
for multiples of σ for Gaussian processes are listed in (5.6). For more general
processes, historic volatility is defined and estimated through (10.1).

Some of the (serious) problems related to the use of σ for risk measurement
have been discussed earlier. Here are some more:

• The limit N → ∞ underlying the central limit theorem, is unrealistic, even
when one ignores or accepts the restriction that the random variables to
be added must be of finite variance. With a correlation time of τ ≈ 30
minutes, a trading month will produce only about 320 statistically inde-
pendent quotes.

• Extreme variations in stock prices are never distributed according to a
Gaussian. There are simply not enough extreme events – by definition.
The central limit theorem then no longer justifies the use of volatility for
risk measurement. On the other hand, these extreme events are of par-
ticular importance for investors, be they private individuals or financial
institutions.

• The volatility σ as a measurement for risk is tied to the Gaussian dis-
tribution. For stable Lévy distributions, it does not exist. In Chap. 5, we
have seen, however, that the variance of actual financial time series pre-
sumably exists. On long time scales, they may actually converge towards
a Gaussian.

• For fat-tailed variables, σ is extremely dependent on the data set. The
convergence of the estimator (10.1) as the length N of the time series
increases, is the worse the fatter the tails of the underlying probability
distribution. Ultimately, when µ ≤ 2 in the equations following (5.41)
or (5.59), volatility diverges when the length of the time series increases
without bounds, and otherwise is extremely sample-dependent. Consider
again the Commerzbank chart in Fig. 4.5: how much of the volatility of is
due to the period July–December 1997?

• For non-Gaussian distributions, the relation of volatility to a specific con-
fidence level of the statistics of returns is lost.

10.3.2 Generalizations of Volatility and Moments

Two other aspects should be kept in mind when σ is used for measuring
risk. The first is that volatility, together with the likelihood of a negative
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fluctuation, also measures the positive ones. These we would not consider as
a risk.

Of course, for symmetric distributions – and most of the return distribu-
tions of financial time series we have seen in this book are nearly symmetric –
a risk measure operating on the negative fluctuations will inevitably also give
an equivalent characterization of its positive fluctuations. For the skewed dis-
tributions characterizing credit and operational risk (cf. below), however, it
is important to have (possibly additional) risk measures depending on the
negative fluctuations only.

An immediate generalization of volatility is the lower semivariance. Vari-
ance, in (5.14), has been defined as

σ2 =
∫ ∞

−∞
dx (x − 〈x〉)2 p(x) . (10.3)

A consistent definition for the lower semivariance, measuring the negative
deviations from the expectation value, is

σ2
< =

∫ 〈x〉

−∞
dx (x − 〈x〉)2 p(x) . (10.4)

For a symmetric distribution, σ2
< = σ2/2. This equation is also consistent

with our definition of risk in the sense of Sect. 10.2, i.e. risk being defined
as the probability of negative deviations from expectation, independent of
sign(x).

√
σ2

< has the same dimension as volatility. As an alternative gener-
alization of σ2, the upper limit of the integral in (10.4) could, in principle, be
set to zero so that only negative fluctuations are sampled, cf. below, (10.7).
However, the version given in (10.4) is closer to banking practice where a
terminology of expected losses and unexpected losses, to be explained further
below, is common.

As shown in (5.14) and (5.15), the variance essentially is the second mo-
ment of the distribution. Lower semivariance is the below-expectation part
of variance. A generalization of the lower semivariance to higher moments
leads to the definition of the lower partial moments of the probability density
function

m<,k(r) =
∫ r

−∞
dx (r − x)k p(x) . (10.5)

The lower semivariance is

σ2
< = m<,2(〈x〉) . (10.6)

In the same way as the higher moments of a symmetric distribution, e.g.
kurtosis, give indications of the fatness of the tails of the distribution, the
lower partial moments are sensitive to extreme negative fluctuations. Their
sensitivity to extreme tail risk increases with the order k of the moment.
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For completeness, we list two further generalizations of these risk mea-
sures, Stone’s risk measures

RS1(k, r, q) =
∫ q

−∞
dx |r − x|k p(x) , (10.7)

RS2(k, r, q) = k
√

RS1(k, r, q) . (10.8)

RS1 allows for the fluctuation range to be included in the risk measure and the
range of negative deviations from expectations to differ, while RS2 reduces
the dimension of the risk measure to that of the risky variable. The direct
generalization of the standard deviation, or volatility, to negative deviations
from expectation only, thus is

σ< ≡
√

σ2
< = RS2 (2, 〈x〉, 〈x〉) =

√∫ 〈x〉

−∞
dx |〈x〉 − x|2 p(x) . (10.9)

Semivariance (10.4), singles out fluctuations below the expectation value
for risk measurement. The lower partial moments weigh fluctuations below
a threshold r, depending on their degree k. They, together with the more
general Stone measures, allow to focus on the big fluctuations.

10.3.3 Statistics of Extremal Events

The emphasis of our thinking on risk on big adverse events best is illustrated
by the example of car insurance. We contract an insurance because we want
to eliminate the risk associated with major accidents, destroying the vehicle
or causing damage to persons – not because there is a chance of small damage
to the bumper. Risk is associated with large negative events.

We therefore first deal with the statistics of extremal events. Consider N
realizations xi of a random variable x. What is the maximal value contained
in {xi}?

This question only has a probabilistic answer. The probability for xmax <
Λ, some threshold, is

P (xmax < Λ) = [P<(Λ)]N = [1 − P>(Λ)]N

≈ exp [−NP>(Λ)] for P>(Λ) � 1 . (10.10)

P<(Λ) and P>(Λ) are defined as

P<(Λ) =
∫ Λ

−∞
dx p(x) , P>(Λ) =

∫ ∞

Λ

dx p(x) . (10.11)

Λ is the lower P<-quantile, or the upper P>-quantile of the probability dis-
tribution of x, respectively. In the first equality in (10.10), we use the fact
that, in order for xmax to be smaller than Λ, each of the N realizations of x,
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drawn from the same distribution, must be smaller than Λ. The last equality
in (10.10) relies on the first-order expansions of both terms. For the median,
i.e. at the 50% confidence level, Λ1/2, with

P (xmax < Λ1/2) =
1
2
, i.e., P>(Λ1/2) ≈ ln 2

N
, (10.12)

we have a 50% probability that the maximal value of N random numbers
from the same distribution will indeed be below the threshold Λ1/2. At the
p-confidence level,

P (xmax < Λp) = p, i.e., P>(Λ1/2) ≈ − ln p

N
∼ 1

N
, (10.13)

this probability is 100 × p%.
This was completely general. The practically important value of Λp, how-

ever, depends sensitively on the underlying distribution, i.e., the functional
form of p(x). Let us illustrate this with some examples.

• The exponential distribution is mathematically very simple. From

p(x) =
α

2
e−α|x| , (10.14)

we find

P>(Λp) =
e−αΛp

2
and Λp =

lnN

α
− ln(−2 ln p)

α
, (10.15)

where the second term is completely negligible.
• The Gaussian distribution

p(x) =
e−x2/2σ2

√
2πσ

(10.16)

gives

P>(Λ) =
1
2
erfc

(
Λ√
2σ

)
≈ e−Λ2/2σ2 σ√

2πΛ

[
1 − σ2

Λ2
+ · · ·

]
. (10.17)

erfc(x) denotes the complementary error function. Equating this with
(10.13), we find

Λp <
√

lnN . (10.18)

• For a stable Lévy distribution,

p(x) ∼ µAµ

|x|1+µ
, (10.19)

one obtains

P>(Λ) ∼ Aµ

Λµ
and Λp ∼ A

[
N

− ln p

]1/µ

. (10.20)
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• We can get a feeling for the difference in probability of extreme events
between the different distributions by taking N = 10000. The thresholds
Λp such that numbers smaller than −Λp (or bigger than Λp) occur only
with a probability p, are then determined by

ln 10 000 ≈ 9.21 (exponential) ,√
ln 10 000 ≈ 3.03 (Gaussian) , (10.21)

(10 000)2/3 ≈ 464 (Lévy with µ = 3/2) .

More instructive even are the changes when N is decreased to 5000:

ln 5000 ≈ 8.52 (exponential) ,√
ln 5000 ≈ 2.92 (Gaussian) , (10.22)

(5000)2/3 ≈ 292 (Lévy with µ = 3/2) ,

i.e., approximately 7%, 3%, and 50% for exponential, Gaussian, and Lévy
distributions. Changing the number of realizations does not cause big
changes for the threshold Λp for the exponential and Gaussian distribu-
tions, but significantly changes it for Lévy distributions. This is a conse-
quence of their fat tails. Notice also that for both exponential and Gaussian
distributions, Λp becomes independent of p for any reasonably large num-
ber. The p-dependence remains, however, for the Lévy distribution. (Of
course, the above comparison ignores all kinds of prefactors in P>(Λ).
While this may change the numbers, the trends both with changing N and
changing the distributions, are independent of these details.)

10.3.4 Value at Risk

A good manager must be prepared to face bad events. On the other hand, a
good manager cannot afford to become paralyzed by a constant preoccupation
of extreme catastrophies which could hit his firm. He therefore requires a clear
definition of the realm of his management activities: what is to be managed
and what is not? A practical and wide-spread approach can be built on the
ideas of Sect. 10.3.3, and leads to the notion of value at risk [245, 246]. Value
at risk, roughly speaking, measures the amount of money at risk over a given
time horizon τ with a certain probability Pvar.

Define Λvar(Pvar, τ) by

Pvar =
∫ −Λvar(Pvar,τ)

−∞
d(δSτ ) p(δSτ ) . (10.23)

The value at risk Λvar(Pvar, τ) is the negative of the one-sided Pvar-quantile
of the return distribution function. 1−Pvar then is the confidence level of the
underlying return distribution.
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Λvar(Pvar, τ) as defined in (10.23) measures the percentage amount which
a portfolio can loose over a time scale τ with probability Pvar. An alternative
and equivalent definition is

Pvar =
∫ −Λvar(Pvar,τ)

−∞
d(∆Sτ ) p(∆Sτ )

=
∫ S(t)−Λvar(Pvar,τ)

−∞
dS(t + τ) p[S(t + τ)|S(t)] . (10.24)

Here, Λvar(Pvar, τ) measures the dollar amount which can be lost over a time
scale τ with probability Pvar. ∆Sτ (t) = S(t)−S(t−τ), and strictly speaking,
in (10.23) and (10.24), δSτ (t + τ) and ∆Sτ (t + τ) should be understood.
We neglect this subtlety assuming that the statistical properties of returns
and price changes do not change over the time scale τ considered. In the
following, we will work with (10.23) to keep consistency with the remainder
of this book. On the other hand, a portfolio manager or banker likely is more
interested in knowing Λvar of his portfolio, resp. his bank.

For Pvar small enough, Λvar(Pvar, τ) usually is a large positive number.
We have chosen this sign convention to keep consistency with the preceding
section on the one hand, and with the frequent association of value at risk to
losses on the other hand. When working with returns as we do consistently
throughout this book, the explicit minus sign in (10.23) is necessary. Statis-
tically, −Λvar(Pvar, τ) is the 100 × Pvar%-quantile of the return distribution.
Financially, it is the biggest return expected over a time scale τ during the
100 × Pvar% worst periods τ . For Pvar = 0.01, e.g., and τ = 1 d, one will
expect the biggest daily return from the one percent worst trading days to
be −Λvar(0.01, 1d). Conversely, with (10.23) rewritten as

1 − Pvar =
∫ ∞

−Λvar(Pvar,τ)

d(δSτ ) p(δSτ ) (10.25)

in 99% of the trading days, the daily returns would be expected to be bigger,
i.e. the outcome to be better, than −Λvar(0.01, 1d). Value at risk then is the
lowest return expected with a probability 1 − Pvar over a period τ .

Equivalently, in a picture based on losses �τ = −δSτΘ(−δSτ ),

Pvar =
∫ ∞

Λvar(Pvar,τ)

d(δ�τ ) p̃(�τ ) . (10.26)

the value at risk Λvar(Pvar, τ) is the smallest loss over a time scale τ expected
to be incurred during the 100 × Pvar% worst periods τ . In (10.26), p̃(�τ ) =
p(δSτ )δ(�τ + δSτ )Θ(−δSτ ). With the numbers from above, Λvar(0.01, 1d) is
the smallest loss expected during the 1% worst trading days, resp. the biggest
daily loss expected with a probability of 99%.

Transforming (10.23) into (10.25) is permissible only for a continuous dis-
tribution. For discrete distributions or distributions with discrete or piecewise
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continuous support, or discontinuous distributions, the definition of value at
risk must be generalized to

Λvar(Pvar, τ) = inf (Λ ≥ 0 | P (δSτ ≥ −Λ) ≥ Pvar) , (10.27)
Λvar(Pvar, τ) = inf (Λ ≥ 0 | P (�τ ≤ Λ) ≥ Pvar) , (10.28)

for general returns and for losses, respectively. When the probability distri-
bution or its underlying support are not continuous, the interpretations of
value at risk as, e.g., “the smallest loss during the 1% worst trading days”
and “the biggest loss during the 99% best trading days”, resp. “the worst
daily loss expected with a 99% probability” no longer are equivalent. Only
the first interpretation, based on (10.23) and (10.26) is the correct one is such
cases, and the one of general validity.

Of course, as is clear from the discussion in Sect. 10.3.3, for given Pvar, the
value of Λvar sensitively depends on the probability density function. For a
Gaussian distribution with width σ

√
τ , e.g. generated by geometric Brownian

motion
Λvar(Pvar, τ) =

√
2σ

√
τ erfc−1 (2Pvar) , (10.29)

justifying the use of σ for risk measurement in this case. erfc−1(x) is the
inverse complementary error function. Value at risk in units of the standard
deviation for different confidence levels 1 − Pvar is given in Table 10.1. On
the other hand, for a stable Lévy distribution,

Λvar(Pvar, τ) ∼ A (Pvar)
−1/µ

. (10.30)

Value at risk measures the probability of individual extreme realizations
of the underlying random variable. It does not make statements about the risk
of accumulating many unfavorable subsequent realizations. The consideration
of N subsequent realizations, however, for IID random variables reduces to
a sum of N independent realizations and, at the same time, amounts to
changing the time scale τ → Nτ . The question then is about the scaling of

Table 10.1. Value at risk Λvar(Pvar, 1) of a driftless Gaussian process with unit
time scale as the one-sided Pvar-quantile

Pvar 1 − Pvar Λvar(Pvar, 1)

0.16 0.84 1.0 σ

0.1 0.9 1.28 σ

0.05 0.95 1.65 σ

0.02 0.98 2 σ

0.01 0.99 2.33 σ

0.001 0.999 3.09 σ
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Λvar(Pvar, τ) with time scale τ . Answers can be given for stable distributions,
i.e. Gaussian or Lévy distributions, which obey definite aggregation laws.

As discussed in Sect. 5.4.2, a sum x(N) =
∑N

i=1 xi of N IID random,
normally distributed variables xi is distributed again according to a normal
distribution with rescaled parameters

µ(N) = Nµ , σ(N) =
√

Nσ . (10.31)

Packaging the N independent realizations into a rescaled time scale τ (N) =
Nτ , it follows from (10.29) that

Λvar(Pvar, Nτ) =
√

NΛvar(Pvar, τ) (10.32)

for the same Pvar-quantile.
For a sum x(N) =

∑N
i=1 xi of N IID random variables xi drawn from

a stable Lévy distribution, we know from Sect. 5.4.3 that x(N) is described
again by a stable Lévy distribution with the same tail exponent µ (not to be
mixed up with the Gaussian drift parameter µ from the previous paragraph),
and an N -fold tail amplitude, (5.50). With (10.30), we have

Λvar(Pvar, Nτ) = A

(
Pvar

N

)−1/µ

= N1/µΛvar(Pvar, τ) (10.33)

for the same Pvar-quantile.
In all realistic situations such as those described in Chaps. 5 and 6, the

scaling of value at risk with time scale cannot be deduced easily. Moreover, it
may depend both on the time scale in question and on the quantile examined.
Nonstable distributions of IID random variables are governed by the central
limit theorem and approach either a Gaussian or a stable Lévy distribution,
depending on the finiteness of the variance. The scaling then depends on
whether the time scale is large enough for statements to be based on the
central limit theorem, and on whether the quantile examined is in the range
of values for which the statements of the central limit theorem hold. Most
likely, for specific propositions, numerical simulations are required.

The preceding discussion was concerned with value at risk as derived
from the statistical properties of a single time series. In practice, one often is
interested in the value at risk of portfolios involving many different assets. The
number of assets of a portfolio may vary from a few up to several thousands.
In those circumstances, the aggregation of the individual data into a single
portfolio time series may not be practical. Moreover, a portfolio manager
would often like to estimate the change in portfolio value at risk when assets
are added to or liquidated from the portfolio. Correlation then is an important
issue.

For uncorrelated identically distributed assets, the results used for time
scaling can be used directly (relying only on the fact that the N assets con-
sidered are statistically independent)
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ΛN, Gauss
var (Pvar, τ) =

√
NΛGauss

var (Pvar, τ) ,

ΛN, Lévy
var (Pvar, τ) = N1/µΛLévy

var (Pvar, τ) . (10.34)

The scaling with portfolio size is very different in the opposite limit of perfect
correlation (correlation coefficient unity)

ΛN, Gauss
var (Pvar, τ) = NΛGauss

var (Pvar, τ) ,

ΛN, Lévy
var (Pvar, τ) = NΛLévy

var (Pvar, τ) . (10.35)

Both for the Gaussian and for the Lévy stable processes, perfect correla-
tion reduces the aggregation of N identically distributed random variables
x to the time series of a single random variable Nx. For perfect correlation,
value at risk scales linearly with portfolio size, a result valid not only for
stochastic processes governed by stable distributions but more generally for
all perfectly correlated time series. For intermediate correlations, numerical
simulations are necessary for an accurate determination of the value at risk
of complex portfolios in general. In addition, numerous approximations have
been developed which may be useful in practice [245, 246].

For identically distributed asset returns not described by one of the stable
distributions, or with a correlation coefficient smaller than unity, an equality
for the aggregation of value at risk can no longer be derived. However, the
inequality

ΛN
var(Pvar, τ) < NΛvar(Pvar, τ) (10.36)

still holds. It only depends on the absence of perfect correlation.
Correlation strongly increases the portfolio risk, as shown by the different

scaling of value at risk with portfolio size in (10.34) and (10.35). In other
words, adding assets to a portfolio which are weakly correlated with those
already held, leads only to a weak increase of the portfolio’s risk. However,
the portfolio return is the sum of the returns of its constituent assets, inde-
pendent of correlations, i.e. the return of the asset added simply adds to the
return of the portfolio held previously. This effect – linear increase of returns
combined with sublinear increase of risk – is known as diversification and is
an important tool for risk management. An even stronger effect is achieved
by negative correlations between assets which will reduce the portfolio risk
while increasing its returns. Negative correlations tend to hedge the risk of
a portfolio. We will come back to these points in Sect. 10.5.5 when we deal
with the techniques of risk management and portfolio selection.

The definitions of value at risk in (10.23) and (10.26) imply that value at
risk is measured with respect to the present position. Another terminology
common in risk management in banks and in banking regulation [238] is
closer to our definition of risk in terms of the negative deviations between
realizations and expectations. It uses the same general ideas but expresses
the value at risk as defined above, in two separate terms, “expected losses”
and “unexpected losses”. The origin of these terms lies in the area of credit
risk which will be briefly described in Sect. 10.4.2 below. In credit risk, one
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usually considers separately the losses from credit default (the risk that a
obligor is unable to repay his credit either in part or entirely, i.e. counterparty
risk) and the interest payments which, statistically, must compensate these
losses. The losses from defaulted credits in a portfolio are represented by
skewed, usually fat-tailed distributions with finite expectation values. Quite
generally, expected losses simply represent the expectation value of the losses
over a time horizon τ under their probabilitly distribution

EL(τ) =
∫ ∞

0

d�τ p(�τ ) �τ . (10.37)

Unexpected losses at a certain confidence level, say (1 − Pvar) × 100%, are
the difference of the Pvar value at risk Λvar(Pvar, τ) and the expected losses,

UL(Pvar, τ) = Λvar(Pvar, τ) − EL(τ) . (10.38)

Of course, (10.24) can be used to find equivalent formulations giving the
dollar amount of expected and unexpected losses.

The notion of expected losses is clear and consistent. Strictly speaking,
the notion of unexpected losses is a misnomer. It should be thought of as
a semantic rule to label values of a variable or quantiles of its which differ
from its expectation value. Of course, any size of losses is expected under
a given probability distribution so long as it is consistent with its support.
Also, with a probability Pvar, losses of the size of the “unexpected losses” are
expected under the given probability distribution. Worse, even losses much
bigger than the “unexpected losses” still are expected for a given probability
distribution – they only would occur at probabilities still smaller than Pvar.
Truly unexpected losses would be inconsistent with the underlying probability
distribution, i.e. would reject, at a certain confidence level, the null hypothesis
of the portfolio losses being drawn from the prespecified loss distribution.
This rejection of a null hypothesis is usually not implied by the notion of
unexpected losses in banking jargon.

The legitimation of the decomposition of value at risk into expected and
unexpected losses comes from banking practice. In a well-run bank, expected
losses should be included in the cost calculation for the banking services
provided (e.g. credits) by the department acquiring the customer, e.g. sales or
corporate finance. As we explain below, unexpected losses can only be covered
by provisions, i.e. they bind capital (“risk capital”, “economic capital”) which
cannot be used for other profitable business.

The cost of this capital is its interest rate in the market. In a holistic
approach to bank management, this cost should be billed by risk management
to the department generating the business, as an insurance premium for the
coverage of “unexpected losses”.

Both, value at risk and unexpected losses, are consistent with the manage-
ment requirement set out above. Losses smaller than the value at risk, resp.
the unexpected losses, are covered by capital. Losses bigger than the value at
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risk are accepted, even expected with a certain small probability Pvar. Such
losses can threaten the ability of a bank to meet its contractual requirements
with counterparties, or even its existence. Risk management then requires
(i) to fix an acceptable confidence level 1 − Pvar underlying the definition
of value at risk and determining the expected frequency of such disastrous
losses, and (ii) to select a portfolio with an acceptable value at risk. A risk
strategy would set this value at risk to an amount consistent with the finan-
cial ressources of the bank, and its business objective, e.g. to attain a certain
rating score.

The consistency with management requirements may be one reason for
the popularity of value at risk as a risk measure. Value at risk, though, has
a series of fundamental shortcomings. They do not manifest themselves at
the level of the preceding discussion which was concerned with the risk of a
single position. They turn up, however, when value at risk is calculated for
complex portfolios involving derivatives where the probability density may
not be unimodel or which may possess a discontinuous support.

10.3.5 Coherent Measures of Risk

One may wonder if a generalization of (10.36) to the case where the returns of
the constituents of a portfolio are no longer identically distributed, is availabe.
In other words, how does the risk of a portfolio vary when arbitrary assets
are added? And how does value at risk change in such a situation?

Apart common sense (“Don’t put all eggs into one basket”), an economic
argument makes clear that quite generally

ρ

(∑
i

Πi

)
≤
∑

i

ρ(Πi) . (10.39)

In (10.39), ρ(. . .) is a risk measure, and Πi is the value of the ith position
in the portfolio Π. (In this section, we switch our presentation from returns
to values/prices.) The property (10.39) is called subadditivity. The inequality
(10.39) holds independent of the stochastic properties of the asset prices,
correlations, the time horizon over which risk is assessed, etc. The argument
is based on contradiction and goes as follows. It was mentioned above that
a financial institution must hold an appropriate amount of economic capital
to cover the unexpected losses, i.e. the risk, of a portfolio. Now suppose that
contrary to (10.39), ρ (

∑
i Πi) >

∑
i ρ(Πi). This implies that the capital to

be held for the aggregate portfolio is bigger than the sum of the capital
requirements of the individual positions. In such a situation, it would be
advantageous to open separate accounts for each portfolio position in order
to minimize the total capital requirement. Portfolio composition then would
be useless, and equations like (10.39) need not be considered. Portfolios of
assets precisely are composed in order to reduce their risk below the bound
fixed by the right-hand side of the inequality (10.39).
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Unfortunately, value at risk does violate (10.39) when portfolios more
complex than in (10.34) are set up. One example is provided by two out-of-
the-money short positions, one in a call and the other one in a put option
[247]. We assume that t = T −τ where T is the maturity of the options and τ
the time scale over which value at risk is calculated. The payoff profile of short
option positions at maturity was sketched in Figure 2.2. The short put is at
a loss when ST < Xput − P where Xput is the strike price of the put and P
its price at T − τ . Similarly, the short call is at a loss when ST > Xcall +C in
terms of the call’s strike price and present value. For the positions described,
the strike prices of the options are very far from the present price of the
underlying, Xput � ST � Xcall, thus the probability of incurring a loss in
one of the option positions is low.

To be definite, assume that a 95% confidence level is set for a value-at-risk
calculation (Pvar = 5%). Assume further that the Xput and Xcall are such
that∫ Xput−P

−∞
dST p(ST ) = 4% , and

∫ ∞

Xcall+C

dST p(ST ) = 4% . (10.40)

In this case, the risk of a loss in every option position alone is 4%, and
goes undetected in a value at risk based on a 95% confidence level. On the
other hand, the value at risk at the 95% confidence level certainly is finite, the
probability of an unfavorable evolution of the market being close to 8% (when
P ,C � Xput,call). By adding two positions which are riskless at the 95%
confidence level, we generate one which is risky at the same confidence level,
i.e. violate (10.39). The violation of subadditivity is not a specific feature of
this example – more examples can indeed be produced [248, 250]. It is due
to the specific properties of value at risk as a risk measure.

What then makes up a good risk measure? Given the long history of risk
management, it is surprising that an in-depth answer to this question was
only given at the very end of the past millenium. A set of four mathematical
axioms defining a coherent measure of risk was formulated [247, 248] which
describe the minimum set of conditions a risk measure must satisfy in order
to behave economically reasonable. Let ρ(Π) be a risk measure and Π the
random value of a portfolio (or position). A time scale τ is implied. ρ(Π) is
a coherent risk measure if and only if it satisfies the axioms

ρ(Π1 + Π2) ≤ ρ(Π1) + ρ(Π2) (subadditivity) , (10.41)
ρ(λΠ) = λρ(Π) (homogeneity, scale invariance) , (10.42)
ρ(Π1) ≥ ρ(Π2) if Π1 ≤ Π2 (monotonicity) , (10.43)
ρ(Π + nerτ ) = ρ(Π) − n (risk − free condition) . (10.44)

Axiom (10.41) requires the risk measure to be subadditive when two po-
sitions are added. It is the same as (10.39), and the preceding discussion
shows that value at risk as well as other popular risk measures (e.g. standard
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deviation [247]) are not subadditive. Subadditivity guarantees that one can
conservatively estimate the risk of a portfolio by adding the risks of its indi-
vidual positions. An upper bound for the risk to which a financial institution
is exposed, can be found by adding the risks of its various business lines, etc.
In this way, a decentralized calculation of risk becomes safe and feasible. A
complete centralized calculation in a major bank, on the other hand, would
require prohibitive computational and data management resources. Finally,
and perhaps most importantly, the subadditivity axiom (10.41) guarantees
that diversification as a tool of risk management works: investing 1000$ into
two different assets is less risky – independent of the splitting ratio – than
investing the 1000$ into a single asset.

The homogeneity (or, as physicists would prefer, scale invariance) axiom
(10.42) states that the risk of a given position scales with the size of the posi-
tion. The monotonicity axiom (10.43) assigns the greater risk to the “smaller”
position. Two random variables Π1 and Π2 are ordered in size through their
cumulative probability distributions

Π1 < Π2 if P (Π1 < a) > P (Π2 < a) . (10.45)

The position Π1 then is more risky than Π2 if it more often realizes small or
negative values.

Finally, the risk-free condition (10.44) states that n units of capital in-
vested into a risk-free asset with return r, reduce the risk of the position by n.
It guarantees that capital invested into a risk-free asset lowers the risk of the
aggegate position (naked position plus capital cover). Consequently, putting
aside risk capital as a cushion to cover risk is reasonable. We shall come back
to this point in Sect. 11.2 below. More specifically, (10.44) states that the
effect of n units of capital invested into at the risk-free interest rate r on
the portfolio risk is the same as that of a rigid shift of the random portfolio
value Π by the capital invested including interests, erτn. It also follows that
ρ[Π + erτρ(Π)] = 0. Consequently, n = ρ(Π) is the right amount of capital
to cover the portfolio under consideration.

Equation (10.44) also embodies translational invariance. It allows to as-
sume a position covered by capital today when measuring the risk of future
variations, as is done in the seminal work of Artzner, Delbaen, Eber, and
Heath [247, 248]. Acceptable positions then are those for which ρ(Π) ≤ 0,
i.e. there is enough capital to cover the risk of future variations of the po-
sition (equality), resp. capital can even be withdrawn (inequality). On the
other hand, capital has to be added to an “inacceptable position”, ρ(Π) > 0.
If free capital is not available, risk management has to become active.

“Risk measures” which fail to satisfy all axioms (10.41)–(10.44) do not
measure risk correctly and, in the first place, should not be called risk mea-
sures at all. Unfortunately, as shown at the beginning of this section, value at
risk does not satisfy subadditivity in general, and thereby does not qualify as
a risk measure – in spite of its popularity in financial institutions [245, 246]
and even among bank regulators [238, 249].
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On the positive side, coherent risk measures can be constructed from
generalized scenarios. A generalized scenario is a probability measure on the
states of nature. A simple example might be “The price of the asset falls by
1%”, or “There is a 30% probability of the asset price moving up by 1%, a
40% probability of a fall by 1%, and a 30% probability of a fall by 3%”. Of
course, reality is more complex than these simple examples, and this should be
taken into account in practical work. We can also specify the probabilities of
future asset prices from a model or from a historical probability distribution.
A coherent risk measure ρ(Π) of the portfolio then is given by [247, 248]

ρ(Π) = sup
all scenarios

〈−Πe−rτ
〉
scenario

. (10.46)

The important point here is that, unlike value at risk, the coherent risk
measure is defined through an expectation value over scenarios. The supre-
mum operation guarantees that if several scearios are evaluated, risk is mea-
sured by the worst result obtained.

The downside risk of the two simple scenarios above is 1% in both cases.
When a scenario is defined in terms of a model or a historical probability
distribution, the risk measure is just the expectation value of this distribution.
If all the scenarios mentioned are considered in the definition of the risk
measure, it would obtain as the biggest of the scenario risks.

Of course, the preceding scenarios were discussed only to illustrate the
principle of building a coherent risk measure, not for their intrinsic value.
To make a step towards reality, though, let us look at the following scenario
“Losses bigger than the historical 5% value at risk are realized with proba-
bilities determined by their historical probability distribution”. This scenario
may be included into the set of scenarios on which (10.46) is evaluated and
certainly yields a bigger risk estimate than those discussed before.

10.3.6 Expected Shortfall

In the previous scenario, only realizations of the random value of the portfolio
below its 5% quantile were considered. Applying (10.46) to this scenario and
assuming p(Π) to be continuous, would give the expectation value below the
quantile, the tail conditional expectation (tail value at risk) [248]

ρ(Π) = −〈Π|Π < −Λvar(0.05, τ)〉 = −
∫ −Λvar(0.05,τ)

−∞
dΠ p(Π) . (10.47)

The tail conditional expectation depends on the probability distribution, and
formulating a scenario with a different probability distribution will produce
a different scenario risk. For continuous distributions, the tail conditional ex-
pectation is a coherent risk measure. For discontinuous distributions, there
are some mathematical subtleties which can destroy the subadditivity prop-
erty required for coherence [251].
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To be specific, assume a continuous probability density function p̃(x) for
a random variable x plus at least one delta-function peak

p(x) = p̃(x) + p0δ(x − x0) . (10.48)

The cumulative probability distribution

P (x) =
∫ x

−∞
dx′ p(x′) =

∫ x

−∞
dx′ p̃(x′) + p0Θ(x − x0) (10.49)

possesses a discontinuity of strength p0 at x0. Define Λα as the lower α-
quantile

Λα = inf {x | P (x) ≥ α} . (10.50)

This definition is more general than the integral definition used in (10.11)
which applies only to continuous distributions, and has been used in (10.27)
and (10.28) above. It may now happen that, due to the discontinuity in p(x),

P (Λα) ≡ P (x ≤ Λα) > α (10.51)

when Λα = x0 (delta function in the integrand at the upper limit of the
integral).

Returning to the notation used before, we now can formulate a definition
of expected shortfall as

ES(Pvar) = − 1
Pvar

{〈Π | Π ≤ −Λ(Pvar)〉
+ Λvar(Pvar) [P (Π ≤ −Λvar(Pvar) − Pvar]} . (10.52)

1 − Pvar is the confidence level underlying the value at risk Λvar(Pvar), and
〈Π | Π ≤ −Λvar〉 denotes the expectation value of the portfolio value Π
conditioned on being smaller than the value at risk −Λvar. The term in square
brackets vanishes for continuous distributions, and is finite for discontinuous
distributions whenever a quantile happens to coincide with the location of a
discontinuity. The time scale τ used in the value-at-risk definition has been
left implicit here. Also, an explicit minus-sign appears in front of Λvar keeps
consistency with the definition (10.23) resp. (10.24). Expected shortfall as
defined in (10.52) is a coherent risk measure [250, 252]. Acerbi and Tasche
[251] expand on mathematical properties of expected shortfall, and related
coherent risk measures.

Expected shortfall is being implemented in practical risk management ap-
plications. It is not consistent, though, with the management perspective on
risk discussed earlier. Unlike value at risk, it does not draw a clear boundary
line between what is to be steered by a risk manager, and what is beyond the
realm of his activity. A connection between the expected shortfall of a finan-
cial institution and and its rating is difficult to establish. On the other hand,
expected shortfall provides important information on what is not managed
when value at risk is used (“How bad is bad?”). Moreover, its definition as an
expectation value makes it easily applicable in risk-based capital allocation,
a topic to be discussed in the next chapter.
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10.4 Types of Risk

In almost every department of a bank, the outcome of a decision may neg-
atively deviate from its expected consequences. Drivers of risk lurk around
every corner. In the following sections, we briefly describe the most important
types of risk encountered in banking.

10.4.1 Market Risk

Market risk describes the negative deviations of the positions of traded assets
from their expected values, or of positions dependent on traded assets. Market
risk, of course, includes the risk from investments in stocks, bonds, currencies,
commodities, traded derivatives, etc. Market risk, however, also includes the
risk from OTC derivative positions, from investments into mutual funds,
funds of funds, hedge funds, etc. In terms of risk types, the preceding chapters
of this book only treated aspects of market risk!

The above items probably constitute the biggest contributions to the mar-
ket risk of an investment bank. For a commercial bank, or a credit union,
there are more, and more important, contributions to the market risk, pri-
marily interest rate risk related to credits. When a loan is extended to a
client with variable interest rates, say LIBOR + x% (LIBOR is the London
InterBank Offered Rate, one of the interest rate benchmarks available), the
interest payments received by the bank vary and constitute a source of risk.
When a loan is given to a client with a fixed interest rate, say 8% per year,
the instantaneous value of the credit depends on the market interest rates,
which are variable.

There are investments whose inclusion into or exclusion from market risk
is ambiguous. One example is private equity. Another one is real estate. In
both cases, the investment products are not traded regularly, and do not
depend directly on the values of a regularly traded asset. On the other hand,
both can be valued in principle, though perhaps not very precisely, and their
value sensitively depends on certain market conditions.

10.4.2 Credit Risk

There are two drivers of risk for a bank giving a loan to a customer:

1. Interest rate risk. Assuming that the borrower meets all of of his payment
obligations in due course, as specified in the credit contract, the bank
either faces a variable inflow of cash (credit with variable interest rate,
e.g. LIBOR+x%) or receives a deterministic cash flow but faces a variable
valuation of the credit (fixed interes rates) following the variability of
market driven interest rates. As explained above, interest rate risk is a
part of market risk.
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2. Credit default risk, also termed counterparty risk. The assumption that
a borrower meets all of his payment obligations exactly as specified in
the credit contract, unfortunately is an unrealistic one. It often happens
that debtors either pay their interests and repayments too late, or do
not deliver their supposed payments at all. The obligors default, resp.
the credit is foul. Credit risk usually is understood to be synonymous to
credit default risk.

Buying a bond essentially is equivalent to writing a credit. The emitter of
a bond is the debtor to bond holders. Bond holders therefore also face both
interest rate risk (i.e. a market risk) and default risk (i.e. credit risk).

With the similarity between buying a bond and giving a loan we can
show how fixed interest rates on the loan or bond lead to a variable value
of the loan or bond. For a zero-coupon bond, all interest rate payments of
the bond emitter are accumulated into a discount of the emission price with
respect to the nominal. Assume that a zero-coupon bond with nominal X
and a maturity T is emitted at t = 0. Let the interest rate on the bond be
fixed at rZC . The emission price of the bond then is

S(0) = Xe−rZCT . (10.53)

At maturity, the nominal X is repaid to the bond holder. When the interest
rates on the open market vary, the bond holder must revalue the bond in his
portfolio. The new bond price is such that, when the market interest rates
for zero-coupon bonds with maturity T are accrued, the nominal X is repaid
at maturity. The instantanous value of the bond at time t with interest rate
r(t) is

S(t) = Xe−r(t)(T−t) . (10.54)

Because fixed interest rates have been agreed upon for the bond, its daily
value varies as a function of market interests. Although details are different
for a coupon-carrying bond, or for loans, the basic mechanism explained here
also works for these products.

For commercial banks active in the credit business, and for credit unions,
credit risk usually is considered to be the biggest risk in the bank, more im-
portant than market risk, and the risk types to be described below. Credit
risk repeatedly has led to big write-offs in large banks, and led to the col-
lapse at least of smaller banks. Readers in Germany may remember the case
of Schmidt bank, a small, privately owned bank active in a limited regional
market, in 2001. The default of the state of Argentina in meeting its oblig-
ations from a variety of bonds has gained universal prominence as many
private and institutional bond holders have lost a fortune.

The moratorium of Russia on its debt repayments in 1998 also consti-
tute a case of default (late payment). While to the best of my knowledge, all
payment obligations have been honoured by Russia at later times, the conse-
quences of the moratorium have spread far beyond the bond markets. They
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have affected stock markets worldwide, as shown for the DAX stock market
index e.g. at the right end of Figure 1.1. This case points to an important
issue: different types of risk often are not independent but correlated. In the
case of the Russian debt crisis, market risk was driven by credit default risk.
We will see below that credit default risk may also be driven by market risk,
or be a consequence of operational risk.

Credit risk was not treated in this book, so a brief digression may be
justified. There are two basic approaches to quantifying credit risk. One is
based on rating. Big, publicly listed companies regularly are rated for their
creditworthiness by rating agencies. The best known agencies are Moody’s,
Standard & Poor’s, and Fitch. Rating systems, however, can be set up by
any bank, or any company more generally, and can be applied to any type
of customer (company, non-profit organization, private individual, etc.). Also
private individuals are regularly rated, e.g., by their telephone companies.

Rating is a statistical procedure which attempts to estimate the prob-
ability of credit default of a customer from a combination of quantitative
information (e.g. salary, balance sheet, cash flow, future pension payment
obligations) and qualitative information (degree of innovation of product line,
market perspectives, management experience, etc.). Its results most often are
communicated as marks such as AAA, BB, etc. A bank then would adjust its
credit spread, i.e. the (positive) difference between the interest rate charged
to a customer and the risk-free rate, according to the rating information.
We will come back to the issue of rating in Sect. 11.3.5, because it plays an
important role in the new capital adequacy framework Basel II.

An alternative approach more in the spirit of this book is provided by the
mapping of credit default onto option pricing theory [42, 239, 60]. Assume
that there is a company A which takes a credit. Its ability to repay the credit
will depend on its value at the time of maturity (in principle also on its value
at all times where interests are due). However, the value of company A is
difficult to quantify: it comprises the value of common stock it may have
emitted, the value of machines and factories it possesses, its human capital,
its brand names, etc.

In order to make progress, assume that company A has issued stock and
introduce a company B whose sole purpose is to hold the stock of A. While
the firm value of A is difficult to measure, the firm value of B is simply
the number of shares of A it holds multiplied by the share price. Under the
standard model of quantitative finance, the value of B therefore would follow
geometric Brownian motion

dVB = µVBdt + σVBdz . (10.55)

Notice that this is an assumption made for simplicity, and to show the argu-
ment. The body of this book emphasizes that this assumption not satisfied
by actual share prices, i.e. firm values!

In order to keep things simple, we simplify to the extreme and assume
that taking a credit is essentially the same as issuing a bond. Moreover, we
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assume that the bond/credit is a zero-coupon bond, i.e. there are no interest
payments during the lifetime of the bond/credit. All interests are discounted
into the price of the bond which is lower than its nominal, to be repaid at
maturity. At time t = 0, company B thus issues a zero-coupon bond with
nominal X, priced X − P where P contains the interests, possibly including
a spread with respect to the risk-free rate. The bond matures (the credit
must be paid back) at t = T . If the firm value VB(T ) > X, the bond/credit
is repaid in full. However, if the firm value VB(T ) < X, company B defaults:
it cannot pay back the entire bond X but only the fraction corresponding to
its value VB . The obligor or bond emitter (holder of the stock of company A)
therefore has acquired the right to sell company B to the bond holder at the
price X even though it may be worth less. Of course, this right is exercised
only when VB(T ) < X, i.e. default has occurred. This right carries a price
tag of P .

Taking a credit, resp. a short position in the bond, therefore is equivalent
to a long position in a (european style) put option on the company value.
When (10.55) is satisfied, the put option may be priced by the Black-Scholes
formula, (4.85). Stock prices, however, do not generally satisfy (10.55), and
all the problems of (and solution paths for) option pricing in a non-Gaussian
world outlined earlier, e.g. in Chap. 7, also apply to credit default risk val-
uation. Bonds/credits with regular interest payments correspond to nested
series of options, i.e. an option on an option on ..., etc., and can likely be
solved once the basic problem of valuing the option on the firm value has
been solved.

Much less work has been done on non-Gaussian price processes, asset cor-
relation and default correlation in the area of credit risk than for derivatives
on underlyings exposed to market risk.

10.4.3 Operational Risk

Operational risk is defined as the “risk of losses resulting from inadequate
or failed internal processes, people and systems or from external events”
and has been highlighted in the new Basel II Capital Accord [238], final-
ized during 2004. Banks will be required to hold a capital cushion as a
provision against operational losses in the future. Examples of operational
risk in banking include rogue traders, limit violations, insufficient control-
ling, fraud, IT-failures and attacks, system inavailability, catastrophies such
as fire, earthquakes, floods, etc. An important trigger for including opera-
tional risk into the regulatory framework for banking, and a prime example
for this category of risk, certainly was the ruin of Barings bank by the ac-
tivities of their Singapore-based trader Nick Leeson [240]. Initially, his losses
on derivatives in Osaka had been classified as a case of market risk. The case
was recognized as operational risk, however, when later it became clear later
that Leeson could build up his positions only because of the absence of sep-
aration of duties between front and back office on Barings’ Singapore desk,
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and because of the insufficient controlling at Barings in general. While the
perception of operational risk is new in banking, it is rather well known in
industry where often hazardous processes are involved in the production or
transport of goods, e.g. in the chemical industry.

The principal challenges faced when attempting to describe operational
risk are its latent character, the absence of data, and the rarity of high-
impact events. While for market risk, plenty of data are publicly available,
and for credit risk, sufficient data are available in banks internally, there are
very few data available on operational risk. Moreover, data on very large
losses which determine the tail of a loss distribution function, are even rarer.
Worse even, however, for a given bank, stationary data time series may be an
impossibility: Usually risk management is improved, in particular in response
to losses suffered.

The modeling of operational risk comprises two important aspects: (i)
the frequency with which operational losses occur, and (ii) the size (dollar
amount) of the loss suffered in the case of an event. Of course, both quantities
will be stochastic. One therefore is interested in determining their probability
density functions. Many operational risks can be insured. Some inspiration
can thus be gained from the standard model of actuarial science [242]. It
postulates that the frequency of events (insurance claims) in a given time
interval, e.g. one year, is random and drawn from a Poisson distribution. The
distribution of the time interval between two claims then follows an expo-
nential distribution with a well-defined life time. Also the size of insurance
claims is random and drawn from a log-normal distribution!

Data collection therefore is an important focus of operational risk con-
trolling. One typically would build up data bases of operational risk losses
across a bank. When loss data are collected by a single bank, such a data base
is of limited value, though, due to the infrequency of losses. E.g., a typical
number for small banks, say with a balance sheet of 3× 109 Euro as a proxy
for size, is 25 loss events per year in excess of 1,000 Euro. The frequency of
losses increases with the size of the bank, giving good statistics for the largest
banks. These organizations, in practice, are so complex, though, that a sta-
tistical analysis at the highest level of hierarchy is too crude to give reliable
information for risk management.

Data collection can be assisted by including data external to the bank.
There are one or two commercial databases which systematically gather de-
scriptions of those operational loss cases made public, e.g. in the press [241].
As an alternative, homogeneous groups of banks pool their loss data according
to well-defined rules, to increase the data base upon which statistical analyses
can be built, and the statistical significance of the results derived. Examples
known to the author are the ORX (Operational Risk EXchange) consortium
of European banks, the data pooling initiative of savings banks in Germany
led by the German Association of Savings Banks, or a data pooling project led
by the Italian Bankers’ Association. These data bases contain standardized
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information on the date of an operational risk loss and on the size of the loss
(gross, net, recoveries, etc.), a description of the scenario underlying the loss,
its categorization in terms of causes and event types, and possibly additional
information on various parameters characterizing the bank where the event
occurred. Frequency and loss distribution functions then are generated and
convoluted by Monte Carlo simulation and analyzed by standard statistical
methods. The goal is to derive the established risk measures such as value at
risk or expected shortfall, on a specified time horizon, e.g. one year.

An important unsolved problem in the inclusion of external loss data into
a bank’s risk model is the rescaling of the external information, to fit the
bank in question. Both the relevant parameters and the functional scaling
relations for the loss frequency and the loss amounts are largely unknown
today. However, as the size of the data pools increases with time, research
into these problems likely will lead to interesting results in the near future.
Also, data seem to indicate that the tails of the loss distributions are much
fatter than expected for a lognormal distribution. The frequency distribution,
on the other hand, apparently is quite well described by a Possonian although
evidence seems to be accumulating in favor of more complex two-parameter
distributions.

A good operational risk controlling programme will, however, not rely on
data alone. Apparently extreme views even would suggest not to rely pri-
marily on loss data at all. One problem is that data necessarily describe the
past whereas risk management would prefer to have a more dynamic picture
including the consequences of management action on future risks. More se-
rious, however, is the problem that there is risk even without data: a bank
may face significant operational risks but may not have suffered large losses
in the past – either because of sheer luck or due to the low event probabil-
ity of some scenarios. A data-based operational risk measure would grossly
underestimate the risk situation of the bank. Worse even, risk measures such
as value at risk are strongly affected by extreme losses which, hopefully, oc-
cur seldom enough to prevent good data quality in that range. A qualitative
self-assessment, i.e. expert workshops and interviews where the risk of cer-
tain scenarios is estimated by knowledgable members of staff, are a way out
of this problem. When optimized in view of psychometric evaluation, such
questionnaires may provide more realistic risk estimates than data-based ap-
proaches. Of course, methods such as fuzzy logic and Bayesian networks also
allow to integrate loss data with expert-based risk estimates for consolidated
risk measures.

Very recently, statistical models for operational risk management have
appeared in the physics-oriented literature [243, 244].
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10.4.4 Liquidity Risk

Liquidity risk is the risk that a bank is unable to satisfy all claims of pay-
ment against it, i.e. becomes illiquid. The bank thus would default on some
payments. Liquidity risk in essence appears very similar to credit default risk.

Market conditions often are drivers of liquidity risk for investors. When
a market participant wants to buy or sell an asset, situations may occur
where no counterparty is willing to settle the trade proposed. A standard
example are small cap stocks, either on their home markets or worse, on
foreign markets. Another example are liquid markets turning illiquid in stress
situations, e.g. the crashes discussed in the preceding chapter. Illiquid markets
arise when the complete market hypothesis fails.

Other drivers of liquidity risk may be massive (correlated) credit defaults,
the inability to liquidate collateral taken in to secure credits, etc.

10.5 Risk Management

Suppose that a speculator, or the trading desk of a financial institution, has
taken a position, resp. a set of positions in a market. However, the market
turns against the speculator, and the position looses in value. What should
he do?

As another example, assume that, as a part of its business activities, a
bank has extended a set of loans to its corporate customers, and/or written
a set of options for them. From that moment on, the bank carries a huge
risk: The customers may default on their loans. Or the options may increase
in value, i.e. the obligations of the bank at expiration increase. What action
must the bank take?

10.5.1 Risk Management Requires a Strategy

Ideally, every investment is the result of a strategy and involves opinions
on the evolution of the markets. This strategy should contain statements as
to why the asset was bought, the target value to be reached and time span
needed. Most importantly, an investor must fix the amount of loss he is willing
to accept on his investment when the asset does not follow his view of the
market. This is the starting point of risk management. For a single position,
the point of non-acceptance is a limit on the value of the asset. For a complex
portfolio of traded assets, it may be a limit on the value of the portfolio, or
on the value at risk of the portfolio, or on any other risk measure.

The situation is slightly different for positions in financial instruments
which are taken for business objectives, and not for speculative purposes. The
bank writes an option or extends a loan to satisfy the needs of its customers.
Its business objective is to make money on the fees charged for those services.
It does not intend to hold a risky position in those assets. Here, the strategy



10.5 Risk Management 315

is obvious at first: Eliminate as much risk as possible by a compensating
investment. However, a complete elimination of risk is rarely possible in real
market, and the bank needs a strategy for dealing with the residual risk it is
ready to accept.

10.5.2 Limit Systems

Limit systems provide a classical way to cope with these situations. Consider
the speculator who holds a single asset, e.g. in late 1996 a number of stocks
on Hoechst bought at 35 Euro. The chart of Hoechst corporation can be
found in Fig. 8.4. The stock rises to above 40 Euro during 1997 but, in late
1997 falls below 30 Euro. If the investor cannot accept more than 15% loss
on his position, it seems wise to place a stop-loss order at 30 Euro. The order
is triggered when the price quoted falls below 30 Euro and then acts as an
unlimited sell order.

There are two problems with this strategy of risk limitation. Firstly, it
is not guaranteed that the price at which the order is executed, is 30 Euro,
or even close to that value. This problem is not very serious, perhaps, in a
Gaussian market but can cause large unexpected losses in stress situations
in real markets where the tail of the return distribution is much closer to a
stable Lévy distribution. This point was made by Mandelbrot, cf. Sect. 5.3.3.

The second problem is: What to do next, in particular if an investment in
the Hoechst stock continues to appear promising on longer time scales? When
enter the position again? The straightforward strategy of placing a stop-
buy order at 30 Euro is dangerous, at least. The stop-buy order is triggered
when the stock price exceeds 30 Euro and then behaves as an unlimited buy
order. Again, it is uncertain if the order is executed at or close to 30 Euro.
The difference between the actual buy and sell prices, augmented by the
transaction fees, is a systematic loss due to the strategy.

The same problem arises with a näıve strategy to cover a short option
position [10]. However, the losses usually are bigger due to the leverage of
the options. Stop-loss and stop-buy limits are definitely not advised to cover
short positions in options.

For a complex portfolio, one faces similar limitations. The näıve limit
strategy outlined above would imply to liquidate several positions in the
portfolio which are the main drivers of the limit violation. Both objections
made above, apply here again.

Implementing limits on loan portfolios may be a difficult task because
loans cannot be traded easily. A bank has very few options when, e.g., the
value at risk of a credit portfolio exceeds a pre-set limit. The termination of
loans may be feasible in some instances when the contracts permit. In general,
tough, one can only resort to some of the methods outlined in the following
sections. Notice that a quick remedy to the problem is unlikely because very
often, litigation on contracts may be involved. On the other hand, credit risk
limits often are violated due correlation: A group of borrowers, e.g. from one
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industrial sector, is perceived as more risky in their ability to honor their
obligations. In such a case, a bank can stop extending new loans to any
member of that group of clients. Instead, it could increase lending to those
clients with zero or negative correlations with the risky cluster, and thereby
lower its value at risk back to acceptable levels.

Limit systems for operational risk are considered to be of speculative na-
ture, due to a variety of causes. The lack of reliable data makes any estimate
of risk measures, to be held against a limit, extremely imprecise. Conse-
quently, a limit violation most often is ambiguous. Secondly, operational risk
is driven by the processes in a bank, and the big “portfolio of processes” typ-
ically operating in any bank, renders difficult the assignment of a putative
limit violation to a single process which could be improved in the following.
On the other hand, if a sufficiently clear picture of a limit violation due to
operational risk can be obtained, remedy, even quick, may be available: As
mentioned before, many operational risks can be insured. When an insurance
is contracted, the bank transfers part of its operational risk to the insurance
company. The risk of the bank is reduced promptly.

Traffic light systems are a more flexible form of limit systems. When
the risk measure of a portfolio is far from its limit, the light is green, and
no action is required. When the risk measure approaches the limit, the light
switches to yellow. This is the time to closely monitor the portfolio, to analyse
which components are responsible for the increased risk, and to evaluate
various possible actions. Should the limit be violated, the light turns red,
and immediate action is required.

In spite of the shortcomings mentioned before, as a last line of defense,
every investor should fix a limit where he will liquidate his position or take
any other action suitable to avoid further losses on his portfolio.

10.5.3 Hedging

The Black–Scholes analysis of Sect. 4.5.1 was based on offsetting the sto-
chastic component in a short option position by a suitable long position in
the underlying. The price of the option could then be calculated because the
portfolio constructed was riskless, and its evolution deterministic.

For every option shorted, ∆ shares of the underlying were required to form
a riskless portfolio. This prescription (“∆-hedging”) precisely tells the bank
which has written options for its clients, how to eliminate the risk associated
with the option position. For such a “∆-neutral” portfolio, we have

∂Π

∂S
= −∂f

∂S
+ ∆ = 0 ,

∂Π

∂t
= rΠ . (10.56)

f is the value of the derivative. The portfolio is immune against small changes
of the price of the underlying and therefore riskless for short times.

∆, however, depends on the price of the underlying, and the hedge must
be adjusted as soon as the price changes. The dependence of ∆ on the price of
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the underlying has been discussed in Sect. 4.5.5. In the Black–Scholes analy-
sis, a continuous adjustment of the position in the underlying is assumed,
and the transaction costs associated with this adjustment are neglected. In
practice, only a periodic adjustment of the hedge is possible. During the ad-
justment period, the portfolio no longer is riskless. Bigger price changes in
the underlying may occur, and volatility and interest rates may change. The
time to maturity certainly changes.

A ∆-neutral portfolio can be hedged further against these risk factors. Γ
(Sect. 4.5.5) is the second derivative of the option value with respect to the
underlying. If a ∆-neutral portfolio is hedged to be Γ -neutral in addition, it
is made immune against bigger changes in the price of the underlying. For a
∆-neutral portfolio, we have [10]

Θ +
1
2
σ2S2Γ = rf , (10.57)

where Θ has been defined in (4.105). A portfolio with a certain Γ can be
made Γ -neutral by adding −Γ/ΓT traded options, where ΓT is the Γ of the
traded options. After these options have been added, the portfolio is no longer
∆-neutral. An iterative adjustment in the number of shares of the underlying
and in the traded options is necessary to achieve ∆- and Γ -neutrality at the
same time. Even then, the portfolio is ∆- and Γ -neutral only instantaneously.

The last important risk driver of a ∆-neutral portfolio is volatility. The
sensitivity of an option price to changes in volatility is measured by Vega,
(4.109). A ∆-neutral portfolio with V can be hedged against changes in
volatility by adding −V/VT traded options with VT . Again, the ∆- and Γ -
neutrality of the portfolio must be restored iteratively. Although Γ and V are
quite similar, a Γ -neutral portfolio, in general, in not V-neutral at the same
time. When a ∆-neutral portfolio is hedged against Γ and V at the same
time, two traded options must be added to the portfolio.

Θ is special among the Greeks as it measures the time decay of an option
value. Time is not a stochastic variable. Therefore, a hedge against Θ makes
no sense.

10.5.4 Portfolio Insurance

A portfolio manager may be interested in protecting his portfolio against
falling below a certain limit value X during a certain time span T . Holding a
long position in put options with strike X and maturity T gives the desired
protection.

When the portfolio is well-diversified and mirrors an index, put options on
the index should be bought. For other portfolios, one can determine the cor-
relation of the portfolio with an index or a benchmark asset (the β-parameter
introduced in the next section) on which traded options have been written.
Then a long position in β put options on the index provides the desired
insurance.
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When traded options suitable for the portfolio insurance desired are not
available or the options markets cannot absorb the trades required, the port-
folio manager can synthetically create the options required. The principle
of synthetic replication of options has been explained in Sect. 4.5.6. In the
specific case of insuring a portfolio worth Π against a drop below X, the port-
folio manager must invest, at any time, a fraction −∆(Π,X) of the portfolio
in a riskless asset. As the value of the stock portfolio declines, the fraction
invested in riskless assets increases. Conversely, when the value of the stocks
increases, part of the cash must be used to repurchase stocks.

Of course, portfolio insurance comes with a cost which is the higher the
smaller the amount of losses which the investor is ready to accept. E.g., when
insuring a portfolio representing the DAX (quoted 4343.6 on March 24, 2005)
against dropping below 4200 or 4000 points by year end 2005, the cost of the
put options required was the equivalent of 154 resp. 103 DAX points. Notice
that these options expire on December 8, 2005 already. When protection
against losses effective to December 30, 2005 is required, the put option must
be created synthetically. The cost of an option created synthetically is due to
the fact that the portfolio manager sells low and buys high, in this scheme.

This kind of portfolio insurance has also been implemented in “absolute
return” investment strategies and products which have become popular with
investors after the strong decline of the world stock markets in the years 2000–
2003. In a benchmark-related investment strategy, the portfolio manager, by
active management, tries to generate an outperformance of his portfolio with
respect to a benchmark. However, in bear markets, the portfolio still may
decline in value. The strategy was successful when the porfolio decline is
less than the decline in the benchmark. On the other hand, absolute return
strategies attempt to achieve a minimal absolute performance, independent
of the evolution of a benchmark. E.g., when the minimum return targeted is
zero, we have an investment where the protection of the capital invested is
attempted. The implementation of the absolute return strategy can be costly,
though, and lowers the performance of the investment.

Notice that the portfolio insurance scheme discussed in Sect. 8.3.1 also is
a rough way of creating an option synthetically.

10.5.5 Diversification

Correlation between assets is extremely important in risk management. The
hedging of option positions discussed before, relies on the negative correlation
between a short position in a call option and a long position in the underlying
asset. More specifically, ∆ measures the correlation between the option and
the underlying, and the sign of ∆ and of the option position (long/short)
determine how a riskless hedge can be constructed.

We have seen another important example of the influence of correlation.
For the special case of N time series of identically distributed uncorrelated
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assets (10.34) gives the evolution of the portfolio value at risk from the equiv-
alent risk measure of a single time series. The corresponding evolution for
identically distributed, perfectly correlated time series is given in (10.35). It
turns out that the value at risk of the perfectly correlated portfolio exceeds
that of the uncorrelated portfolio by a factor

√
N . Apparently then, a sys-

tematic optimization of the tradeoff between risk and return in a portfolio
should be feasible.

Markowitz was the first to show that in portfolios containing several as-
sets, one can optimize (within limits) a tradeoff between risk and return
[253]. His quanitative theory derives the essential parameters for this opti-
mization – not surprisingly correlation. Markowitz’ theory essentially relies
on Gaussian markets, and volatility as the measure of risk. The application
to non-Gaussian markets is taken from Bouchaud and Potters [17].

In the following, we consider a portfolio with value Π, constituted by M
risky assets with values Si and one riskless asset with value S0. pi denotes
the fraction of portfolio value contributed by the asset i, and pi < 0, i.e.,
short selling, is allowed. Then,

Π =
M∑
i=0

piSi ,

M∑
i=0

pi = 1 . (10.58)

Uncorrelated Gaussian Price Changes

Each of the assets has a return µi and a variance σ2
i . Then, the return of the

portfolio is

µ̄ =
M∑
i=0

qiµi , (10.59)

and its variance is

σ2 =
M∑
i=1

q2
i σ2

i , (10.60)

where qi = piSi/Π accounts for the different values of the assets in the
portfolio. One can now choose a return rate µ̄ of the portfolio and then
minimize its variance σ2 at fixed µ̄, using the method of Lagrange multipliers.
Taking the derivative

∂

∂qi
(σ2 − λµ̄)

∣∣∣∣
qi=q�

i

= 0 , (i 
= 0) , (10.61)

leads to

q�
i = λ

µi − µ0

2σ2
i

, λ =
2(µ̄ − µ0)∑M

j=1

(
µj−µ0

σj

)2 . (10.62)
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The riskless asset has q�
0 = 1 −∑M

i=1 q�
i , and the optimal p�

i are obtained
by solving the linear system of equations relating them to the qi through Si.
The minimal variance is then

σ2 =
(µ̄ − µ0)2∑M

j=1

(
µj−µ0

σj

)2 . (10.63)

The variance of the optimal portfolio therefore depends quadratically on
the excess return over a riskless asset. This is shown as the solid line in
Fig. 10.1. The optimization procedure may also be carried out with con-
straints (e.g., no short selling, pi > 0, etc.). This leads to more Lagrange
multipliers for equality constraints, or more complex problems for inequal-
ity constraints. Quite generally, the curve moves upward, say to the dashed
line, when more constraints are added. The region below the solid line (the
“efficient frontier”) cannot be accessed: there are no portfolios with less risk
than the optimal ones just calculated.
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Fig. 10.1. Risk-return diagram of a mixed portfolio. In the absence of constraints,
the optimal portfolios have a quadratic dependence of variance on return (solid
line). In the presence of constraints, or for non-Gaussian statistics, the curve moves
upward (dashed line). The region below the solid line is inaccessible. Reprinted
from J.-P. Bouchaud and M. Potters: Théorie des Risques Financiers, by courtesy
of J.-P. Bouchaud. c©1997 Diffusion Eyrolles (Aléa-Saclay)
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Uncorrelated Lévy Distributed Price Changes

We now assume that the price variations of the assets in our portfolio are
Lévy distributed (5.44), and follow Bouchaud and Potters [17]. In order to use
the generalized central limit theorem, Sect. 5.4, we must further assume that
all exponents are equal to µ, so that the main difference of the distributions
is the amplitude Aµ

i of their tails,

p(δSi) → µAµ
i

|δSi|1+µ
as δSi → −∞ . (10.64)

Then, we can rescale the asset variables as Xi = piSi, and these variables
are drawn from distributions p(δXi) = pµ

i p(δSi), and the convolution theorem
can be applied to a sum of these random variables. The value of the portfolio
is precisely such a sum (10.58). Then, its variations are distributed according
to

p(δΠ) ∼ µAµ
Π

|δΠ|1+µ
with Aµ

Π =
M∑
i=1

pµ
i Aµ

i . (10.65)

Minimal value at risk Λvar is equivalent to minimal amplitude Aµ
Π , at

fixed return µ̄, (10.59). The optimization condition is

∂

∂qi

(
M∑
i=1

qµ
i Aµ

i − λµ̄

)∣∣∣∣∣
qi=q�

i

= 0 . (10.66)

It follows that

q�
i =

[
λ

µi − µ0

µAµ
i

]1/(µ−1)

, λ =
µ(µ̄ − µ0)µ−1(∑M

j=1

[
µi−µ0

Ai

]µ/(µ−1)
)µ−1 . (10.67)

The effective amplitude Aµ
Π =

∑M
i=0(p

�
i )

µAµ
i , where p�

i is obtained from q�
i

by solving a linear system of equations, is then proportional to Λvar. Λvar vs.
µ̄ − µ0 behaves in a way similar to the dashed line in Fig. 10.1.

Correlated Gaussian Price Changes

Correlations between two or more time series, or between two or more sto-
chastic processes, are measured by the covariance matrices introduced in
Sect. 5.6.5. For two processes following geometric Brownian motion, (4.53),
and representing the returns of two financial assets, the covariance matrix is

Cij =
〈

δSi

Si

δSj

Sj

〉
− µiµj . (10.68)

The total variance of the processes is then
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σ2 =
M∑

i,j=1

qiqjCij . (10.69)

In order to optimize the portfolio of M correlated assets, one can now follow
the same strategy as in the absence of correlations, Sect. 10.5.5. The only
difference is the replacement of the variance by the covariance matrix. As
an example, the q�

i determining the optimal fractions of the assets in the
portfolio are given by

q�
i =

λ

2

M∑
j=1

C−1
ij (µj − µ0) , (10.70)

in analogy to (10.62).
This simplicity is due to the fact that the covariance matrix Cij can

be diagonalized [17]. One can therefore formulate, from the outset, a new
set of stochastic processes obtained by linear combination of the original
ones, so that they are uncorrelated. Their variances are the eigenvalues of
the covariance matrix, and the transformation from the original to the new
stochastic process is mediated by the matrix built from the eigenvectors, as in
any standard eigenvalue problem. In this way, a portfolio of correlated assets
is transformed into one of uncorrelated assets which, unfortunately, do not
exist on the market but are constructed with the only purpose of simplifying
the portfolio optimization problem. The procedure can also be generalized to
correlated Lévy distributed assets [17].

In a Gaussian world, all optimal portfolios are proportional so long as
they refer to the same market. Equation (10.62) shows why this is so. The
optimal asset fractions in the portfolio q�

i ∝ λ, and only λ depends (linearly)
on the required excess return of the portfolio over the risk-free investment
µ̄−µ0. Linear combinations of optimal portfolios are optimal, too. A market
portfolio which contains all assets according to their market capitalization,
is also an optimal portfolio. Of course, the returns and the risks of all these
optimal portfolios may be different – but they all have the same risk-return
relation, i.e. satisfy (10.63).

The practical definition of “the market” itself is not a trivial issue. In
the US, the S&P500 index is generally taken as a benchmark for portfolio
managers, indicating that it is taken as a proxy for “the market”. With 500
stock included, it certainly is well diversified. Some argue, however, that the
limitation to the 500 biggest stocks gives it a bias, and that small caps which
often generate the biggest returns, are ignored. They would advocate that the
Russell 1000 or Wilshire 5000 indices are much better representations of “the
US market” [3]. The Dow Jones Industrial Average with 30 blue chips only
certainly is not representative of the broader US market. In the same way,
the Dow Jones Stoxx 50, DAX, CAC40, etc. indices are not representatives of
the European, German, and French markets. For investors with world-wide
portfolios, the MSCI World index is virtually the only benchmark available.
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A market portfolio can therefore be taken to measure the performance of
an individual financial asset, or of entire portfolios, by relating their returns
µj to that of the market portfolio (value Π, return µ̄)

µj − µ0 = βj(µ̄ − µ0) , βj =

〈(
δSj

Sj
− µj

)(
δΠ
Π − µ̄

)〉
√〈(

δSj

Sj
− µj

)2
〉〈(

δΠ
Π − µ̄

)2
〉 , (10.71)

where βj is the covariance of the asset or portfolio j with the market portfolio.
This is the basis of the Capital Asset Pricing Model (CAPM) which relates
the returns of assets to their covariance with a market portfolio. It cannot be
generalized to non-Gaussian markets.

10.5.6 Strategic Risk Management

Risk management, in the first place, starts with a selection of those asset
classes whose risk is deemed acceptable given the risk appetite, resp. risk
tolerance, of an investor. There may be major differences, e.g., in the risk
tolerance of the trading operations of a universal bank, a focussed investment
bank, an insurance company or an industrial corporation. There is thus no
clear distinction between strategic risk management and asset management,
in general.

The different classes of assets: bonds, stocks, commodities, currencies,
real estate, private equity, etc. carry different risk and return expectations.
Strategic risk management will select those classes of assets which can be
used for investment, and those which are excluded. This selection usually is
followed by more detailed rules which may set limits on the fraction of assets
to be held as stocks (in the insurance business, this fraction may even be set
by a regulator), the use of derivatives for speculation, or their use for hedging
purposes. Strategic risk management may differ between the assets held for
trading purposes, and the positions entered for business purposes [254], i.e.
in the case of banks, between the trading book and the banking book.

In many industrial sectors, though not in banking, natural hedging of
foreign exchange risk is an important strategic consideration. Foreign ex-
change risk comes from buying goods in one currency and selling products
in another currency. The exposure to currency fluctuations for a corporation
is less when products are manufactured and sold in areas using the same
currency in which most of the raw materials bought are billed. For many
corporations deciding on the opening of new plants in foreign countries, the
opportunities for natural hedging are an important consideration.

Strategic risk management is all the more important the less tradable
products are available for use in risk management. Although credit deriva-
tives have been created and now are traded regularly, an important part of



324 10. Risk Management

credit risk management simply consists in defining how many loans can be ex-
tended to specific classes of clients, in order to optimize the risk-return profile.
Also the participation in credit pooling initiatives by which several financial
institutions swap parts of their credit risks, requires extensive preparation
and thus strategic decisions. As mentioned earlier, once the loans have been
given, there are only limited options for acting on the portfolio. In the area of
operational risk, the operational risk associated with all new products should
be assessed systematically, before the final decision on the introduction of the
product is taken.



11. Economic and Regulatory Capital
for Financial Institutions

Suppose that at time t, a speculator invests a capital amount of S(t) dollars
in the stock market. He expects a return 〈δSτ (t)〉 on a time scale τ . In the
preceding chapter, we discussed the risk associated with this position, i.e. to
what extent the actual return δSτ (t) may deviate from the expected outcome
〈δSτ (t)〉.

The present chapter is concerned with the inverse problem. Given a cer-
tain risk of a bank, how can the bank ensure that it can safely take this risk,
i.e. that the risk poses no threat to the prosperity or even the survivial of
the bank. This is all the more important as the risk may not necessarily arise
from speculative proprietary trading but simply from the bank’s day-to-day
business with its customers.

11.1 Important Questions

In this chapter, we discuss the following important questions:

• What is the relation between risk and capital requirements for a financial
institution?

• How much capital does a bank need?
• Which factors determine the capital requirement of a bank?
• How much capital does a business line in a bank need?
• What is the relation between the capital requirement of a bank and those

of its various business lines?
• Can capital be used as a tool for risk management?
• Are banks free in the determination of their capital requirements?
• What is the difference between economic and regulatory capital?
• What is the current framework for regulatory capital calculations?
• To what extent is regulatory capital risk-sensitive?
• What is “Basel II”, and how will it affect the determination of regulatory

capital in the future?
• What is to come after “Basel II”?
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11.2 Economic Capital

When Nick Leeson’s positions on the Japanese derviatives market blew up
Barings, the bank did not have enough money to cover the losses, and went
bankrupt. When Long Term Capital Management got out of control, more
than three billion US$ were provided by a consortium of banks to cover the
losses and unwind LTCM in an orderly fashion. These examples show that a
capital cushion is needed to protect a bank (or any other business) against
unexpected events – risk. Capital, or better economic capital, turns out to be
the central concept determining how much risk a bank can take. Capital allo-
cation, i.e. the attribution of certain fractions of the total capital available to
business units, is an important tool in bank management. Capital allocation
sets limits on how much risk individual business lines, departments, or trad-
ing desks can take. Here, we do not go into the subtleties of defining capital.
We take its existence for granted, and discuss its use in bank management.

11.2.1 What Determines Economic Capital?

Every time risk strikes, bank capital is used to cover up the losses. Both
the times of the losses and amounts lost, are stochastic variables. How much
capital should a bank put aside to cover its losses? A look at the Barings
case helps to give an answer. A bank needs enough capital to guarantee its
survival when the worst case within the management horizon hits. We opened
Sect. 10.3.4 with the observation that a good manager needs a clear definition
of the realm of his management activity, i.e. what is to be managed, and what
should not be managed. This boundary determines the capital requirement
of a bank, resp. an individual business line within a bank.

More formally, the economic capital requirements of a bank therefore are
determined by the survival probability which its management targets. In the
language of credit risk, the complement of the survival probability is the
default probability which, itself, is indicated by a bank’s creditworthiness
rating. If, e.g., a bank is rated by Moody’s as A1, its implied annual default
probability is estimated to be about 0.05% (cf. Table 11.2 below). Its survival
probability for the next year is 99.95%. It sets the confidence level on the
evaluation of the risks which must be covered by capital, and thus on the
amount of capital required. When senior management wants to conserve the
A1 rating, economic capital must equal at least the 0.05% value at risk of
the bank. If senior management wishes to improve further the bank’s rating,
an even higher confidence level should be set.

While individual realizations of losses are unpredictable, statistics on the
loss histories provides the expected losses defined in (10.37). In a statistical
sense, losses of this order of magnitude are predictable over the time horizon
used, and a prudent banker will build up loss provisions for these events.
These loss provisions are approximately constant in time and are better bal-
anced by the income generated by the bank’s operations, rather than taken
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out of the bank’s capital base regularly. Ultimately, the expected losses should
be included in the pricing of the bank’s products and services.

The actual losses differ almost always from their expectation values. When
they exceed the expected losses, capital indeed must be used to cover them.
However, if loss provisions and the pricing of products and services are made
correctly, economic capital is only used to cover the unexpected losses, defined
in (10.38) at the confidence level set by the bank. More capital than this value
may be held in practice, e.g., to take into account possible stress scenarios
(e.g. reduced liquidity) associated with catastrophic events.

11.2.2 How Calculate Economic Capital?

The principle of an economic capital calculation is simple: calculate the value
at risk at the chosen confidence level, and subtract the expected losses. The
practice of economic capital calculation, however, presents almost unsur-
mountable challenges. All risk types (market, credit, operational, etc.) for
all portfolios in all businesses of the bank must be aggregated to a single
number. Aside many other challenges, one important issue is the estima-
tion of the relevant correlation matrices between the various assets held. An
impression of the consequences of correlations can be gained by comparing
(10.34) and (10.35).

In practice, the problem is solved only partially, and at a very low level of
aggregation. Economic capital may be determined systematically for individ-
ual portfolios, and individual risk types. A variety of approximate techniques
is available to estimate the (mostly market) value at risk (or related risk
measures) for reasonably complex portfolios [245, 246, 255].

Current bank research is focussed on the integration of market risk and
credit risk into an overarching risk model, and thus capital framework. The
integration of operational risk has not been attempted to date. The impor-
tance of correlations is seen easily when thinking about an economic down-
turn: stock market prices fall, and at the same time, due to the bad economic
conditions, the number of credit defaults rises. Also, there may be correla-
tions between the variation of interest rates, and the number of defaulting
loans. These correlations are an important driver of economic capital needs.

Another fundamental challenge becomes apparent when attempting to in-
tegrate market and credit risk: the widely disparate time scales of the data
sets used. Market data are available at high frequency. Credit risk data are
certainly available on an annual basis, for large-volume credits perhaps quar-
terly. The standard time scale for an economic capital determination is one
year. On the other hand, the time scale of risk management non-defaulted
credits is somewhere between the quarter and a year, depending on the ex-
posure. The time scale of market risk management finally varies from the
intraday range to ten trading days, perhaps. Often, approximations such as
the

√
T -law, exact only for uncorrelated Gaussian assets, are used to relate

the different time scales involved. Similarly, in some instances capital figures
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may simply be added, implying perfect correlation between the assets in the
various classes, to produce the total economic capital. Much research still
needs to be done in order to develop accurate economic capital numbers for
realistic situations.

11.2.3 How Allocate Economic Capital?

The inverse problem to risk aggregation, capital allocation, is as important
from a practical point of view and as much unsolved from a fundamental
standpoint. Moreover, capital allocation is a problem in its own right, and
often a practical necessity even when the risk aggregation problem has not
been solved satisfactorily. Capital allocation can be understood as an invest-
ment or budgeting process. It is done in any industry, enterprise and even
private households more or less consciously. Business administration provides
concepts for capital allocation resp. budgeting from an investment perspec-
tive.

Risk-based capital allocation attempts to allocate the capital of the bank
to its businesses, portfolios and risk drivers. Let us first assume a stationary
environment. Then the capital for the next period can be allocated on the
basis of the present risk profile. The challenge is that capital is an additive
quantity whereas risk is a subadditive quantity.

Assume that risk has been aggregated over all portfolios, businesses, and
risk drivers. Unless all assets are perfectly correlated, subadditivity resp.
diversification will guarantee that the total risk is less than the sum of all
partial risks. This is independent of the risk measure used provided that it is
coherent. The total risk of the bank therefore is known, and we assume that
it is balanced by the bank’s capital. How much capital should be allocated
to each of the bank’s businesses?

To be more specific, we assume that there are three businesses only: A,
B, and C, and that the bank has fixed target rating of A1 with a 99.95%
confidence level. At that confidence level, the capital requirement (unexpected
losses) of business A is assumed to be 2 × 108$, that of business B is 108$,
and business C claims 5×108$. With the additional assumptions of vanishing
correlation and normal distribution, the total capital required by the bank is
5.48 × 108$. The effect of diversification is clearly visible. With this amount
of capital available, the bank as a whole can safely balance the risk of its
businesses. However, the capital is not sufficient to give every business the
amount required so that it could, on its own, balance its risk at the desired
confidence level. This would require 8 × 108$.

Several ways out of this dilemma are conceivable.

• Every business receives 68.5% (=5.48/8) of its initial capital request. In
this case, there are two options for proceeding:
– Every business reduces its operations by the amount necessary to make

the capital allocated appropriate for its risk at the 99.95% confidence
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level. While this makes the risk management of every individual business
safe, bank capital is wasted, as the aggregate reduced risk only requires
3.75 × 108$ of capital. With an assumed return on capital of 10%, the
bank wastes 1.73× 107$ of income – a disadvantageous strategy indeed.

– Business operations are not reduced following the reduced capital allo-
cation. The full amount of risk continues to be managed at the 99.95%
confidence level in every business. Each individual business is undercap-
italized but the bank as a whole is capitalized correctly. A system of risk
sharing agreements must be elaborated between the businesses because
in some years, one business may need more capital than it has to cover
its losses. However then, the other businesses are expected to have excess
capital with respect to their realized risks which can be transferred to
the suffering unit.

• Capital allocation is used as a book-keeping device only but capital is
not allocated physically. Each business unit must behave as if it had been
given the amount of capital requested. Business A, e.g., must follow its
management strategy based on a capital of 2 × 108$, include the cost of
this capital amount in its profit and loss statement, etc. However, the sum
rule on capital is no longer operational, and the risk is balanced against
physical capital only at the bank level, not on the business unit level.

• By extending this idea, one can set up a central “insurance” function which
takes over the unexpected losses of the various businesses against an insur-
ance premium. Operating within a bank, a fair price plus a profit margin
can be charged for such a service. Business A, e.g., can “sell” its unexpected
losses up to a cap set by the 99.95% confidence level to this insurance func-
tion. In exchange it pays a premium equal to the cost of this capital, say
5% + margin, to the insurance department. Here, all risks are aggregated
effectively, and balanced by capital.

• The rules of the risk management game can be changed so that risk mea-
sures become additive. Then a strict proportionality between risk and cap-
ital can be implemented. We discuss this path in the following.

The preceding discussion, and that in Chap. 10 started from the fixing
of a common confidence level for all businesses, portfolios, and risk drivers.
Then risk was aggregated bottom-up, referring at every aggregation layer to
the common confidence level. The rating of the bank, say A1, attached to
this confidence level, implicitly was transferred to all business units.

One can take a different approach, though, and not require the same con-
fidence level for each of the bank’s units. Instead, one can allocate capital
based only on the contribution made by each business unit to the aggregate
risk of the bank at the chosen confidence level. Here, the reference is made
to the numerical value of the the risk measure, e.g. value at risk or expected
shortfall, at the appropriate confidence level on the bank level. In the above
example, with an A1 target rating and a 99.95% confidence level, the unex-
pected losses of the bank are 5.48× 108$. The capital allocation scheme then
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is based on the contribution of the individual businesses to bank-wide losses
of precisely this order or magnitude.

In the following, we take expected shortfall (Sect. 10.3.6) as the risk mea-
sure of choice because the scheme can be implemented straightforwardly only
with a risk measure which can be represented as a mathematical expectation
value. Value at risk is not suitable for this purpose. Moreover, to keep the
discussion simple, we neglect expected losses. For a continuous distribution,
the expected shortfall for a portfolio Π, (10.52), simplifies to

ES(Pvar;Π) = − 1
Pvar

〈Π | Π ≤ −Λvar(Pvar)〉 . (11.1)

The specific expression appropriate to our example is

ES(0.05%;Π) = −2 × 103〈Π | Π ≤ −Λvar(5 × 10−4)〉 . (11.2)

In the present context, Π is taken to be the entire bank. In terms of its three
businesses A, B, and C, and their IA, JB , and KC respective subportfolios,
the bank portfolio is

Π(t) = ΠA(t) + ΠB(t) + ΠC(t) (11.3)

=
IA∑
i=1

ΠAi(t) +
JB∑
j=1

ΠBj(t) +
KC∑
k=1

ΠCk(t) . (11.4)

Now simulate a very large number of scenarios at least at the level of the
business units and determine the 0.05% value at risk Λvar(5 × 10−4) of the
bank. Next calculate the expected shortfall of the bank, ES(5 × 10−4;Π) by
summing over those scenarios whose losses exceed Λvar(5 × 10−4),

ES(5 × 10−4;Π) = 5.48 × 108$ = ES
[
Λvar(5 × 10−4);Π

]
. (11.5)

The first equality in (11.5) emphasises the definition of expected shortfall in
terms of a preselected default probability (resp. confidence level), whereas the
second equality relates it to the dollar value of the bank-wide 0.05% value at
risk. This relation to the bank-wide value at risk is important in the following.
Π(t) is additive over businesses, and the expectation value 〈...〉 is additive
over scenarios. We therefore can write

ES [Λvar(Pvar);Π] = − 1
Pvar

〈Π | Π ≤ −Λvar(Pvar)〉

= − 1
Pvar

〈ΠA + ΠB + ΠC | Π ≤ −Λvar(Pvar)〉

= − 1
Pvar

{〈ΠA | Π ≤ −Λvar(Pvar)〉
+ 〈ΠB | Π ≤ −Λvar(Pvar)〉
+ 〈ΠC | Π ≤ −Λvar(Pvar)〉} . (11.6)
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The three terms in (11.6) are sometimes called risk contributions and have
the desired property of being an additive decomposition of the bank’s risk,
as measured by expected shortfall. Based on these risk contributions, an easy
capital allocation is possible.

Notice, however, that

−2×103〈ΠA | Π ≤ −Λvar(5×10−4)〉 
= ES(5×10−4;ΠA) = 2×108$ , (11.7)

because Λvar(5×10−4) is the bank’s value at risk and not the 0.05% value at
risk of business A. The risk contribution sums the contributions of business
A to the most catastrophic scenarios for the bank as a whole, no matter what
their relevance for business A. For this same reason,

−2 × 103〈ΠA | Π ≤ −Λvar(5 × 10−4)〉 
= ES
[
Λvar(5 × 10−4);ΠA

]
, (11.8)

although, most likely, scenarios contributing to the right-hand side of the
inequality will also contribute on the left-hand side.

Quite generally, the risk contribution of business A to the bank-wide ex-
pected shortfall is different from the stand-alone expected shortfall of busi-
ness A, both when computed at the bank-wide confidence level of 99.95%,
and when computed at the bank-wide value at risk Λvar(5 × 10−4). Once
the risk contribution of business A has been determined, the process can be
iterated to reallocate business A’s capital to its IA subportfolios ΠAi.

11.2.4 Economic Capital as a Management Tool

Economic capital is an important management tool. In the preceding section,
a stationary environment was assumed for capital allocation, and capital al-
location was discussed with the focus of balancing actual risk by economic
capital. The argument can easily be turned around: When there is an im-
balance between allocated capital and current risk, a powerful incentive for
change is created. When capital allocated to a business is reduced, the busi-
ness is forced to either reduce its operations, or to engage in less risky or
better diversified operations. When economic capital is increased, a business
may take more risk, either from expansion, or from trading riskier products,
etc.

How can one come to a decision about increasing or decreasing the capital
cushion of individual businesses? The central question is: Which of the three
businesses A, B, or C of the bank generates the highest return from the
capital allocated? Models for bank performance can support such decisions.
One such model (among many others) is the RORAC system [256]. RORAC
is the abbreviation of Return Over Risk-Adjusted Capital, and is defined as

RORAC =
return

allocated risk capital
. (11.9)
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Table 11.1. Performance numbers of two regional divisions of a bank

Eastern Western

Assets 1,000 1,000

Income 10 11

Return on Assets 1.0 % 1.1 %

Economic Capital 75 51

RORAC 13.3% 21.6%

In our simplified framework where we deliberately neglect investment bud-
gets, risk-adjusted capital equals risk capital. There is a considerable flexibil-
ity in the definition of the terms in (11.9). Capital allocated for investments,
e.g. in infrastructure modernization, may be included in the denominator. In
the numerator, return may be corrected by expected losses from the risky
business, may be understood before or after taxes, etc. Basically, these sub-
tleties are quite irrelevant so long as a system is consistently rolled out in the
entire bank.

RORAC is a standard measure of bank performance. The kind of insight
it provides for senior management is best illustrated by an example [257].
Suppose that a bank has an Eastern and a Western Division, and that they
report the figures summarized in Table 11.1 to their board of directors.

Standard performance measures such as income, or the return on assets,
are pretty comparable for both divisions. Economic capital analysis changes
this simple picture. Economic capital reflects the different level of risk as-
sociated with both divisions, and leads to strikingly different numbers for
the return over risk-adjusted capital. The Western division earns an excel-
lent 21.6% RORAC while the Eastern division sticks at 13.3% not too far
above common values for the hurdle rate where senior management starts
wondering about the future of the business.

Given the difference in RORAC between the two divisions, one can (i)
inquire about its origins in terms of business, (ii) perform a similar analysis
within the Eastern division, perhaps in terms of districts, to understand if
there is a similar heterogeneity of performance, (iii) change the capital allo-
cation between the two divisions (and/or within the divisions), and (iv) give
guidelines for the managers of the badly performing division/districts on how
to improve their results.

From Table 11.1, it is clear that the Western division earns about 50%
more from each dollar of capital invested than the Eastern division. If the
primary aim of the bank is to maximize its return over risk-adjusted capital,
a transfer of capital from the Eastern to the Western division should be
considered. If additional capital is available for investment, it should only be
invested in the Western division.
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Assume that both divisions are only active in the credit sector. An analy-
sis of their portfolios might show that the Eastern division has a higher
fraction of commercial lending and a lower fraction of retail lending, a higher
average probability of default, and a higher average maturity than the West-
ern division. These observations shed light on the differing RORAC numbers.
Commercial lending is significantly more risky than retail lending, in general.
A commercial portfolio of the same size as a retail portfolio contains a smaller
number of loans with higher notional amounts, and thus higher exposures at
default. In addition, the risk is increased by the observed higher default fre-
quency, and the longer maturity. The longer the maturity of a loan, the more
likely is a default of the borrower, all other things being equal. This analysis
shows how the business of the Eastern division could be changed in order to
raise its performance numbers: more retail lending, shorter maturities, only
well-rated debtors acceptable.

The RORAC analysis can be taken one level deeper, in addition. If per-
formance differences similar to those between the divisions are uncovered at
the level of districts, too, similar measures (capital allocation changed, busi-
ness focus changed) can be set up by the managers of the Eastern division.
Ultimately, the system can be extended down the entire hierarchy of the
bank to the level of the individual transaction. Every transaction then can
be analyzed to check if is adds value to the bank.

Other performance measures are constructed using different formulae.
They may differ in details of emphasis on specific factors. However, they
all follow the basic principle of comparing risk and return in a single number,
illustrated by RORAC. Finally, they all serve the same purpose of quantita-
tively supporting management decisions.

11.3 The Regulatory Framework

11.3.1 Why Banking Regulation?

Banking is one of the most heavily regulated activies in the economy ri-
valled, perhaps, only by air traffic. From birth to death, a bank is subject
to a plethora of regulation acts. The founding of a bank is subject to reg-
ulation. Its operations are subject to regulation (One purpose of regulation
is to prevent the elimination, by competition, of badly performing banks
from the marketplace). When the “unthinkable” happens despite regulation,
regulation also governs the closing down of a banking operation.

It is not our task to discuss if regulation to the extent practised today
is reasonable. Banking regulation follows two main purposes. An immediate
purpose is to protect the deposits of customers, and thereby the stability
of the economy. Unlike other industries, an important part of the financial
resources of a bank is contributed by the deposits of a very large number of
people who mostly are inexperienced in financial matters. The depositors are
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unable both conceptually and economically, to supervise the bank in its role
as a borrower of money, and to protect themselves against business practices
of banks not in their interest. A regulatory institution thus steps in to ensure
that banks operate in the interest of their depositors.

A second purpose of banking regulation is to ensure the safety and stabil-
ity of the financial system by limiting the risks a bank can take. In fact, new
developments in banking regulation often have followed the breakdown of fi-
nancial institutions is the wake of excessive risk taking. While the regulatory
acts are decreed and enforced by national regulators, the globalization of the
financial industry has also led to an increasing international harmonization
of regulatory frameworks.

Banking regulation is imposed along two avenues. One is direct rule writ-
ing, describing what is permissible and what is not. The other is the setting
of certain capital requirements which, explicitly or implicitly, depend on the
riskiness of the banks’ businesses. The first avenue is the field of lawyers and
internal and external auditors. The second avenue is tightly related to risk
management, and we will discuss it in the following.

11.3.2 Risk-Based Capital Requirements

Capital plays a significant role in the risk-return tradeoff at banks. Increasing
capital reduces the risk of default of the bank by increasing its cushion against
losses or, more generally, earnings volatility. Firms with greater capital can
take more risk.

Capital also influences growth opportunities, profits, and the returns to
shareholders. Banks with more capital can borrow at lower interest rates and
can make larger loans. Both normally yield higher income. With more capital,
a bank can more easily invest in growth and acquisitions, creating the seeds
for increase future profits. On the other hand, the holding of greater capital
decreases the returns to shareholders. Finding the optimal capital level is
an important task of bank management. We will not pursue these topics
here. We also discard a number of further important questions on the use of
capital to cover risk, such as “What constitues capital?”, “How do capital
requirements impact a bank’s policies and business practices?”, or “What are
the advantages or disadvantages of various sources of external and internal
capital?”. These important topics are treated in the standard literature on
bank management [256].

Instead, we focus on the important quantitative problem of risk man-
agement: “How much capital is adequate given the exposure of the bank?”,
rephrased here as “How much capital do regulators require to hold given the
exposure of the bank?”. With reference to both the main body of this book
in general, and to the preceding chapter in particular, one quickly might
come up with the suggestion to tie regulatory capital requirements to the
unexpected losses of a bank at a certain confidence level. While economically
reasonable (cf. the discussion in the preceding section on economic capital),
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bank regulators apparently do not trust the ability of banks to accurately
and reliably determine the capital numbers in question. Consequently, the
internal determination of capital requirement (“internal models”) is allowed
only in the often less important domains of market and (in the future) oper-
ational risk. The procedures which regulators impose on banks for the most
important area of credit risk work according to a very different logic: divide
your assets into certain classes, and attach to them risk weights and capital
numbers fixed in advance by the regulators. These regulations have been in
practice for about two decades and are being loosened somewhat in the near
future with the arrival of the new Basel II Capital Accord. Abandoning them
completely in favor of an bank-wide internal model covering all risky assets
will certainly take another one or two decades.

Banking regulation by risk-based capital requirements is responsible for
many job openings in the financial industry. For this reason, a discussion
of these practices, though not comprehensively based on rigorous scientific
methods, is mandatory.

Historically, in many countries in the 1970s, national regulators imposed
capital requirements on certain assets held by a bank, resp. fixed limits on the
volume of assets a bank was allowed to hold, depending on its capital. Inter-
national harmonization of supervisory rules was one of the tasks of the Basel
Committee on Banking Supervision, located at the Bank of International
Settlements (BIS) in Basel, Switzerland. In 1988, a first international capital
accord (now dubbed “Basel I”) [258] was reached by the Committee which
represents members of the Group of Ten Countries’ (G 10) central banks (i.e.
the most important countries of western Europe plus the United States and
Canada) and and their regulatory authorities. Despite the limited represen-
tativity of the Basel Committee, in the years following its publication, the
accord has been implemented in the national legislation and rule making of
more than 100 countries worldwide, in particular in all countries members of
the Organization of Economic Cooperation and Development (OECD).

A second round of many years of negotiation by the Basel Committee has
led to the publication of a final version of a new international capital accord,
Basel II, in July 2004. Its purpose is to set rules for more a risk-sensitive
determination of regulatory capital and to create incentives for the imple-
mentation of better risk management procedures in banks. The rules agreed
upon in Basel II are scheduled to become effective on January 1, 2007, and
January 1, 2008, depending on the sophistication of the procedures adopted
by a bank. In the meanwhile, the accord must be transferred into national
legislation in the countries represented in the Basel Committee. Based on
the experience with Basel I, it is expected that Basel II will set the risk
management and capital standards for the financial industry worldwide, for
the one or two decades to come. By early 2005, more than 100 countries had
committed themselves to the implementation of Basel II in the years to come.
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11.3.3 Basel I: Regulation of Credit Risk

The first Basel Accord in 1988 marked the birth of risk-based capital stan-
dards in banking regulation [258]. The Basel I agreement only covers credit
risk. For many banks except investment banks, the biggest of their risks is
credit risk. The basic procedure to determine the bank’s capital involves four
steps.

1. Classify all your loans in one of five risk categories appropriate to the
obligor, the collateral, or the guarantor of the asset. These five asset
categories are described below and are distinguished according to the
order of magnitude of the default probability of the assets. A bank carries
a big risk from the default of a debtor, i.e. her failure to correctly deliver
all payments due, cf. Sect. 10.4.2 on credit risk. However, the notion of a
default probability has not been used in Basel I. It is introduced in Basel
II, and reverse engineering can be done to estimate the numerical default
probabilities of the five classes.

2. Convert off-balance sheet commitments to their on-balance sheet equiv-
alents, and proceed as in 1.
We will not dive into the practices of moving assets off the balance sheet
of a bank, nor into the conversion procedure required here. It is sufficient
to mention, at this point, that when a bank can generate income from
assets which are “expensive” to hold (e.g. in terms of risk capital), it
may be tempted to keep part of this income while avoiding the cost of
the risk. Securitization is one way of doing this. Assets, e.g. loans, may be
packaged into a new kind of security (e.g., collaterized debt obligations,
CDOs) and sold to the capital markets. The counterposition opened by
this security makes the loans disappear from the bank’s balance sheet. A
reader of the financial statement will not be able to correctly assess the
riskiness of the bank’s business practices based on that information alone.
Many derivative positions do not appear in a bank’s financial statement.
Long term loan commitments are another example of off-balance sheet
activities. When such a commitment is pending, the bank has not yet
given out a loan to be covered by capital. Nevertheless the bank carries
a risk because the obligor may take the loan, in particular when its cred-
itworthiness declines. Dramatic examples of these practices have been
given by Enron and Kmart in late 2001/early 2002, just before filing for
bankruptcy.

3. Multiply the amount of assets (in home currency) in each risk category
by an appropriate risk weight factor. The sum over all five risk categories
gives the risk-weighted assets.

4. Mulitply the risk-weighted assets by a minimum capital percentage to
obtain the capital required to hold against the assets. The capital ratio is
8%. (Here, this rule is simplified somewhat to avoid a discussion related
to subtleties of the definition of capital.)
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Asset category 1 contains assets of the best quality available: direct oblig-
ations from the US government or other OECD governments, currencies and
coins, gold, government securities, and unconditional government guaranteed
claims. These assets do not carry a default risk – the US government is not
considered to default, and neither are the other OECD governements. The
risk weight of this category is zero. No capital must be held against these
assets.

Category 2 contains claims on public sector entities excluding central
government, and loans guaranteed by such entities. At national discretion, a
risk weight of 0, 10, 20, or 50% is attached to these assets.

Category 3 consists of obligations of multilateral development banks or
guaranteed by these banks, obligations of banks incorporated in the OECD
and loans guaranteed by these banks, obgligations of banks incorporated out-
side the OECD with a residual maturity of less than one year and loans with
residual maturity up to one year guaranteed by these institutions, and oblig-
ations by non-domestic OECD public sector entities and loans guaranteed by
such entities. Assets in this category carry a risk weight of 20%. The capital
to be held against these assets is 1.6% of the asset value.

Category 4 contains loans fully secured by mortgage on residential prop-
erty. Its risk weight is 50%, implying a capital charge of 4% effectively.

Category 5 contains, among others, obligations of the private sector, of
banks outside the OECD with residual maturities of more than a year, real
estate loans other than first mortgages, premises and other fixed assets, cap-
ital instruments issued by other banks, etc. The risk weight of this category
is 100%, i.e. all assets carry a capital requirement of 8%. Off-balance sheet
activities are converted into on-balance sheet assets with conversion factors
similar to the risk weights, and then entered into category 5. Some national
supervisors chose more conservative risk weights for the five categories.

The main difference between the the five categories is the likelihood of
default of the assets. Category-1 assets are approximated as risk-free. Their
interest rates do not contain an adjustment to compensate for the possibility
of a default. When, e.g., in the Black–Scholes equation, (4.85), the risk-free
interest rate is sought, the interests paid by these Category-1 assets should
be used. Assets in the other categories are risky and can default. The capital
ratio of 8% on risk-weighted assets has not been derived from a model or a
theoretical framework. Most likely, it is a result of both good guessing and
political bargaining.

There is no direct relation of the capital numbers determined to the risk
of a bank’s credit portfolio. This, in fact, has been the main criticism of the
Basel I framework: The capital charge levied on a portfolio is independent of
its risk.

It is not permissible to estimate a default probability of the assets in the
five categories from their risk weights and the overall capital ratio. Strictly
speaking, capital is used only to cover unexpected losses in the sense of
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(10.37). Expected losses should be contained in the credit spread, the dif-
ference in interest earned by the asset and the risk-free rate. Notice that, in
the Basel I framework, capital scales linearly with asset volume. This is not a
usual property of risk measures which, except in special circumstances, scale
sublinearly with asset volume. In an uncorrelated Gaussian world, risk scales
as the square root of asset volume, cf. Sect. 10.3. The failure of the regulatory
capital requirement to scale sublinearly with asset volume points to its two
major shortcomings: (i) the lack of a scientific basis for its determination,
and (ii) the love of regulators to assume worst-case scenarios. When perfect
correlation is assumed, i.e. all assets in a portfolio default at the same time,
a linear dependence of risk on asset volume is expected. Apparently, such a
scenario is at the origin of the regulatory credit risk capital determination.

The capital determination process in the Basel I Accord appears rudi-
mentary and gross. Apparently, it ignores all the fine statistics and physics-
inspired analysis presented in the main body of this book. It has been pre-
sented here to give an impression of the current state of banking regulation,
and of the kind of details risk management and accounting experts in banks
have to go into.

Basel I should not be blamed, though, for its rudimentary character in
terms scientific credit risk modeling. Market risk modeling using advanced
statistics was well developed at the time Basel I was negotiated. Advanced
credit risk modeling, on the other hand, only developed during the 1990s. To-
day, sophisticated financial institutions are able to manage their credit risk
according to an internal (statistical) model. However, even in developed coun-
tries, many banks limit their formal treatment of credit risk to a framework
such as that set out by Basel I.

11.3.4 Internal Models

Market risk has not been regulated by Basel I. A 1996 paper by the Basel
Committee defines market risk and both sets up a standardized framework for
regulatory capital requirements for market risk and allows the recognition of
an internal model for the determination of market risk capital [259]. Market
risk is subdivided into interest rate risk, equity position risk, foreign exchange
risk, and commodities risk and includes the risk from derivative positions
with these assets as underlyings. The standardized measurement method for
market risk follows a philosophy similar to the Basel I treatment of credit risk
discussed in the preceding section, and is not covered here. A capital charge
is imposed only on the market risk in the trading book, i.e. for those assets
which the bank holds for short-term trading purposes. There is no capital
charge for market risk in the banking book.

Instead of the standardized risk-weighting procedure, a bank can elect
to use an internal model to determine its regulatory capital requirement
[249, 255, 259]. In some countries, depending on the size of its trading book,
it may be obliged to do so. An internal model is an internally built risk
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measurement model which has received supervisory approval. Banks with
important trading activities will develop such a model for their risk manage-
ment and economic capital allocation, anyway. The point here is that, when
implementing regulatory restrictions and parameter settings, this model may
be used to determine the regulatory capital. It is expected that the capital
numbers based on such an internal model will come out lower than those
from the standardized risk-weighting procedure. As some of the regulatory
settings for the internal model may be overly conservative, banks often run
two structurally similar models, one with the regulatory settings to determine
regulatory capital, and one for economic capital and risk management with
the settings which internally are deemed most appropriate.

A bank’s capital charge for market risk essentially is the value at risk
of its trading assets as well as foreign exchange and commodity positions,
whether or not they are in the trading book. The regulators do not prescribe
a particular type of model nor a specific computational methodology. The
internal model must, however, satisfy a number of general requirements:

1. Value at risk should be computed on each business day and should be
based on a one-sided 99% confidence level.

2. The holding period underlying the value-at-risk calculation is fixed to ten
days.

3. The model must measure all material risks of the institution.
4. The model may utilize historical correlations within broad categories

of risk factors (equity and commodity prices, foreign exchange, interest
rates), but not among these categories. The consolidated value at risk
is the sum of the value-at-risk numbers of the categories, i.e. a perfect
correlation is assumed between the categories.

5. The nonlinear price characteristics of options must be adequately ad-
dressed.

6. The historical observation period used to estimate future price and rate
changes must have a minimum length of one year.

7. The data history must be updated at least once every three months, and
more frequently if market conditions require.

8. Each yield curve in a major currency must be modeled using at least
six risk factors appropriate to the interest-rate sensitivity of the traded
assets. The model must also include spread risk.

The modeling is further complicated by the distinction made between
general and specific market risk, and event risk. General market risk refers to
all changes in the market value of assets resulting from broad market move-
ments. It is approximated, e.g., by the variation of a representative market
index. Specific market risk is the residual risk associated with individual se-
curities, not reflected by broader market moves. It is related to the β-factors
(10.71) of the Capital Asset Pricing Model discussed in Sect. 10.5.5 and
measured the return dynamics of an asset relative to a broad market index.
Event risk denotes rare events affecting an individual security. An example
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often cited is the rating downgrade of a bond issuer. The distinction of gen-
eral and specific market risk and event risk certainly is somewhat arbitrary
(just think about the reflection of a rating downgrade of a listed company in
its share price and the ramifications this may have on the stock market as a
whole). It may become important, though, when approximations are used in
the model-building process.

In summary, the value at risk Λvar(0.01, 10d) as defined in (10.25) must
be calculated every business day based on the preceding prescriptions. Reg-
ulatory capital for market risk is related to this value at risk by a number
of add-ons [259]. Firstly, the capital to be held on day t is the higher of the
value at risk on the preceding business day t − 1, and the moving average
of the value at risk over the last 60 business days. Secondly, a multiplication
factor smaller than 5 is applied to this number based on the regulator’s “as-
sessement of the bank’s risk management system” (i.e. a somewhat subjective
quantity), and the model’s performance in backtesting. To be specific, in the
implementation of internal models in Germany, the multiplication factor is
decomposed into a fixed basic value of 3, and two add-ons for backtesting
and the subjective evaluation by the supervisors which both vary between 0
and 1 [249]. Moreover, additional add-on charges are implemented for banks
which do not include explicitly specific risks and event risks into their internal
model [249, 259].

Notice that regulatory capital is determined with reference to value at risk,
and not with reference to the unexpected losses (10.38), as economic capital
would be. Likely, for a financial institution with a good pricing framework,
where expected losses (10.37) are included in the prices of products and
services, there is some double counting of the expected losses in capital and
in the prices.

Stress testing and backtesting are important steps in the introduction of
an internal model. Stress testing makes a model using parameters estimated
from historical time series, more forward-looking. Stress testing is the study
of model behavior under extreme scenarios which have not been realized in
that past time used for estimating the model’s parameters. To formulate
these scenarios, one may recur to past events such as the crashes described
in Chap. 9. Such scenarios are either given by the supervisors or developed
by the bank itself. In the end, the sufficiency of the bank capital with respect
to the losses incurred is evaluated.

Backtesting is the process of running a completed model on long historical
time series, before going live. In this way, one can check that the model
performs according to expectation before it is actually used in day-to-day risk
management. E.g., when the value at risk of the entire bank is determined at
the 99% confidence level, the actual frequency of losses bigger than the 99%
value at risk is expected be 0.01. The time series must be long enough that
this frequency, as well as its uncertainty can be estimated with acceptable
precision.
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One may only speculate on the reasons why internal models have not been
recognized for the credit risk capital determination in Basel I (and continue
not to be recognized under Basel II). Credit risk by far needs most capital in
almost all banks. Moreover, the data situation in credit risk is not as good
as for market risk: no bank would reevaluate their credit portfolio on a daily
basis (there is simply not enough new information to warrant such an action).
In addition, the 8% capital ratio has been determined quite arbitrarily. Most
likely, in view of these uncertainties, regulators did not, and still do not have
enough confidence in these models to allow banks to determine the biggest
portion of their capital requirements by an internal model, independently of
the quality and intensity of the regulatory examination.

11.3.5 Basel II: The New International Capital
Adequacy Framework

The financial world has changed enormously during the 15 years since the im-
plementation of the Basel I Accord. Financial instruments have become more
complex, perhaps more so in the important area of credit risk than in mar-
ket risk. Financial operations and technology have increased in complexity.
In parallel, methods in risk management have become more sophisticated.
Consequently, a new, more risk-sensistive framework for regulatory capital
is called for. Moreover, it has been realized that important risks or aspects
of risk had been left out of Basel I. Thus at the same time, such a new
framework could be formulated to include broader risk categories into the
regulatory capital calculation.

After more than five years of negotiation, the second Basel Capital Accord
(“Basel II”) was finalized in summer 2004. It is scheduled to be implemented
in the G10 countries by 2007 (some of the more sophisiticated approaches by
2008 only) and will be adopted by many other countries subsequently. Basel II
essentially refines the treatement of credit risk and introduces operational risk
as a new risk type to be covered by a capital charge. Moreover, it formalizes
criteria for the supervisory review process of banks as well as criteria for the
disclosure of risk information towards the capital markets.

There are a few common principles underlying the Basel II accord.

• Basel II has been conceived as a compensation approach, i.e., on the aver-
age, banks should hold the same regulatory capital after the implementa-
tion of Basel II as before, when they use capital determination methods of
comparable sophistication.

• Good risk management processes are most important in a bank, perhaps
more important than the actual amount of risk taken by a bank.

• There should be incentives for banks to improve their risk management sys-
tems despite the investments necessary. Good risk management therefore
should be rewarded by a significant capital reduction.
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• The board of directors and the senior management are directly responsible
for the risk management processes, and for the risk taken by a bank.

• Basel II rests on three pillars necessary to implement these objectives. The
first pillar establishes quantitative minimum capital charges for the mar-
ket, credit, and operational risks of a bank. The second pillar contains
the criteria and guidelines for the supervisory evaluation of a bank’s risk
management systems. The third pillar is the requirement of formalized
disclosure of information on a bank’s risk management system and risk po-
sition towards the capital markets. Disclosure is meant to lead to “market
discipline”, i.e. it is expected that markets react unfavorably to informa-
tion on substandard risk management procedures, thus providing a strong
incentive for the banks.

• A “level playing field” should be established both between different nations
and between different financial institutions. The regulation of financial in-
stitutions should be equitable and should not distort competition.

Pillar 1: Market Risk

In the area of market risk, no fundamental changes have been made with
respect to the market risk amendment to Basel I [259]. The topic of interest
rate risk in the banking book is raised though no formal capital charge is
imposed. The banking book contains all positions in credits and deposits
which are not held for trading purposes. The topic was transferred to Pillar
2, i.e. the supervisors should check that the bank has in place a sound system
to measure these risks. The national supervisors may also impose a capital
charge.

Pillar 1: Credit Risk

Credit risk by far is the most significant part of Basel II. It is in this area where
the progress in financial risk management methods has led to the biggest
changes in the regulatory framework. For the regulatory treatment of credit
risk, a bank can choose between two fundamentally different approaches.

The Standardized Approach is directly derived from the Basel I frame-
work. The philosophy of the approach is exactly the same as in Basel I:
Classify your assets in terms of the originator of bonds resp. debtor in loans,
in terms of collateral or guarantor. Then multiply the dollar values of the
assets with risk weights preset by the regulator, and multiply the sum of all
risk-weighted assets by 8% to obtain the capital charge for credit risk. What
has changed considerably with respect to Basel I is the number of the spe-
cial cases, the level of detail of the rules and the implementation issues. Also
credit risk mitigation, i.e. the transfer of credit risk to the capital markets,
has received much attention.

As an alternative, a bank can opt for an Internal Rating Based (IRB) Ap-
proach [238], provided it possesses an internal rating system approved by the
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regulators. In the IRB Approach, a bank classifies its assets resp. customers
according to their internal rating, estimates statistical parameters character-
izing different rating classes, and uses these internal parameter estimates in
a set of formulae given by Basel II in order to calculate the regulatory capital
for credit risk. In a true internal model, both the model and the parame-
ters are set by the bank. In the IRB Approach, the “model” still is set by
the supervisors but banks are allowed to use internally generated parameter
values.

Rating is a statistical procedure to estimate, perhaps in terms of classes
or marks, the creditworthiness of a borrower. An external rating is performed
by a rating agency. The best known rating agencies are Standard & Poor’s,
Moody’s and Fitch. The rating describes the likelyhood of payment, i.e. the
capacity and willingness of the obligor to meet its financial commitments as
they com due. The rating agencies express the results of their rating as a
score, such as AAA, BB, or C for Standard & Poor’s, or Aaa, A1, or Ba for
Moody’s. The agencies interpret the meaning of their rating scores in words.
E.g., the Standard & Poors descriptions of A and B issuer credit ratings are
“An obligor rated ‘A’ has strong capacity and willingness to meet its financial
commitments but is somewhat more susceptible to the adverse effects of cir-
cumstances and changes than obligors in higher-rated categories”, resp. “An
obligor rated ‘B’ is more vulnerable than the obligors rated ‘BB’ but cur-
rently has the capacity to meet its financial commitments. Adverse business,
financial or economic conditions will likely impair the obligor’s capacity or
willingness to meet its financial commitments” [260]. To a large extent, rat-
ing thus is relative information. Bonds rated BBB (Baa) or higher are called
investment grade. Those rated BB (Ba) or lower are called junk bonds. The
rating of a company often is not stable in time: It may improve or deterio-
rate. The migration from one rating grade to another is formalized by rating
matrices. Their entries give the probability of migration of, e.g., AAA-rated
borrowers to AA+, or to A−, etc.

External ratings can be made comparable through the quantitative infor-
mation they imply. Rating scores, in fact, are indicative of an expected default
probability. If sufficiently large numbers of default events are analyzed sta-
tistically, the average default probabilities implied by rating scores can be
estimated. E.g., the S&P AAA rating seems to imply a default probability
of 0.01% per year, or less, AA apparently implies a default probability of
0.03% per year. Table 11.2 compares the rating scores of Standard & Poor’s
and Moody’s, and provides estimates of implied default probabilities PDimp.
Notice that these estimates are based on independent research and have not
been supplied by the rating agencies. Moreover, there are examples where
two different agencies gave scores implying different default probabilities for
the same institution. The process of rating by one of the big rating agencies
is both formal and costly. Only big companies active on the capital markets
usually undergo an external rating.
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Table 11.2. List of the rating scores of Standard & Poor’s and Moody’s. Their im-
plied one-year default probabilities PDimp were derived from independent statistical
analysis of default events

S&P Moody’s Implied PD

AAA Aaa ≤0.01%

AA+ Aa1 0.02%

AA Aa2 0.03%

AA- Aa3 0.04%

A+ A1 0.05%

A A2 0.07%

A- A3 0.08%

BBB+ Baa1 0.12%

Baa2 0.17%

BBB 0.30%

BBB- Baa3 0.40%

BB+ 0.60%

Ba1 0.90%

BB Ba2 1.3%

BB- 2.0%

B+ Ba3 3.0%

B1 4.4%

B B2 6.7%

B- B3 10.0%

CCC 20.0%

D defaulted

Internal rating refers to a rating system built internally by a bank with
the purpose of rating its customers and assets. For most companies and for all
private individuals, a standardized and transferable rating process is neither
practical, nor economical, nor possible. There are several reasons why a bank
may want to possess information on the default probability of a client. One,
of course, is for the decision of acceptance or rejection of a credit demand.
Another one is for the correct pricing of a loan. Losses from a higher default
probability should be compensated by income from a higher interest rate
charged. A third reason is that more (economic and) regulatory capital must
be held against risker loans. We shall come to that point below.

The description of an actual rating system is beyond the scope of this
book. In addition, much information is classified. The principle of an internal
rating can be illustrated based on public information on the system developed
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by the German Savings Banks’ Association (DSGV) which, at present, is used
by most Savings Banks (Sparkassen) in Germany [261]. The core of the rating
is the analysis of the financial statement of the client company. It produces
a small number of key figures characterizing the profitability, the financial
situation and the equity value of the company which are aggregated to a
financial rating score. Secondly, a variety of qualitative factors ranging from
an evaluation of client accounts with the bank, the history of the banking
relationship, formal decisions on management succession in the company, to a
more subjective assessment of management quality and business prospects are
condensed into a qualitative client score. This qualitative score is aggregated
with the financial rating to a bare customer rating. Should there be any major
irregularity in the business relation with the customer such as a violation of
important agreements, returned checks or debit entries, or account seizure,
the final stand-alone client rating is obtained by a downgrade by one notch
(out of 15-20) with respect to the bare rating. Finally, should the client be
part of a major conglomerate or holding structure, guarantees of a parent may
change the rating mark once more, giving the final integrated client rating
mark. Quite generally when building a rating system, the main challenge
is the valid identification and aggregation of a sufficiently small number of
discriminating factors. (As a side remark, notice that the development of this
system has profited enourmously from the participation of several physicists
in the project.)

Subject to certain minimum conditions and after supervisory approval,
banks may use the IRB Approach and rely on their own internal estimates
of risk components for capital calculation. The risk components to be esti-
mated internally include the probability of default (PD), the loss given default
(LGD), the exposure at default (EAD), and an effective maturity (M) of the
assets [238]. Exposure at default is what can be lost at default, i.e. the entire
amount outstanding. Loss given default includes the utilization of collateral
and other receivables, i.e. what actually has been lost when in the default of
the counterparty. In practice, LGD is given as a fraction of EAD. Exposures
are categorized into five asset classes: (a) corporate, (b) sovereign, (c) bank,
(d) retail, and (e) equity, all of which are defined in quite some detail.

In the IRB Approach, only unexpected losses are to be covered by capital.
Expected losses are treated in a different manner, depending on the volume
of general loan loss provisions set aside by the bank. There are two variants of
the IRB Approach: a foundation and an advanced approach. In the advanced
approach, a bank can use internal estimates for the entire list of parameters
given above. In the foundation approach, it can only use internal estimates
for the default probability PD, and must recur to supervisory values for the
remaining parameters. In both cases, the parameters must be injected into
asset-class specific risk-weight functions to determine the risk-weighted assets
which, in the end, are multiplied by 8% to determine the capital requirement
for credit risk. The unexpected losses to be covered by capital under Basel
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II therefore are not the specific unexpected losses of a bank credit portfolio
but those of a standard supervisory portfolio used to determine the risk-
weight functions. We do not discuss further the foundation IRB Approach,
as the general principles are better illustrated by the advanced IRB Approach.
Practical reasons for preferring the IRB foundation approach to an advanced
approach include the cost of implementation and the amount of data available
for a reliable estimations of LGD, EAD, etc. Compared with PD-estimation
where all loans extended contribute to the statistics, EAD and LGD are
estimated on the defaulted loans only. Samples for these quantities typically
are one to two orders of magnitude smaller than for PD.

To give an impression of the world of Basel II formulae, we give the
basic expression for the capital Knon−def

B II to be held against a non-defaulted
exposure in the classes of corporates, sovereigns, and banks,

Knon−def
B II = EAD × LGD

×
{

N

[√
1

1 − R
G(PD) +

√
R

1 − R
G(0.999)

]
− PD

}

× 1 − 3
2b + b(M − 1)

1 − 3
2b

. (11.10)

In (11.10), N(x) is the cumulative normal distribution with zero mean and
unit variance

N(x) =
∫ x

−∞
dx′ p(x′) =

1
2

[
1 + erfc

(x

2

)]
, (11.11)

where p(x) was defined in (4.24), and the second equality gives the relation
to the complementary error function, erfc(x). G(x) is the inverse cumulated
normal distribution,

G(x) = N−1(x) , i.e. G [N(x)] = x , (11.12)

and may be understood as the quantile function. N(x) measures the proba-
bility weight below x. When N is assigned a value N(x) = P , G(P ) returns
the P -quantile x = Λ(P ). E.g., the second G-term in the argument of the
cumulative normal distribution in (11.10) is the 99.9%-quantile of the normal
distribution.

The capital formula depends on the correlation parameter R, defined as

R = 0.12
1 − e−50PD

1 − e−50
+ 0.24

(
1 − 1 − e−50PD

1 − e−50

)
. (11.13)

The weight of the maturity adjustment is determined as

b = [0.11852 − 0.05478 ln(PD)]2 (11.14)
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M is a cash-flow averaged effective loan or portfolio maturity,

M =
∑∞

t=0 t CF(t)∑∞
t=0 CF(t)

, (11.15)

where CF(t) denotes the cash flow (interest payments, principal repayments,
fees) at time t.

The capital requirement for a defaulted exposure is

Kdef
B II = EAD × max (0, LGDdef − ELest) . (11.16)

LGDdef is the loss given default estimated for the specific defaulted exposure,
and ELest is the bank’s best estimate for the expected loss of the portfolio to
which the exposure belonged before default.

Details as to how the expressions (11.10)–(11.16) and their numerous
counterparts were derived by the Basel Committee, are not available. Crazy
as they appear (but notice that in earlier consultative documents of the Basel
II Accord, equations were decorated by funny exponents such as 0.44), the
following derivation procedure for the formulae can be guessed, though. (i)
Compose one or several model portfolios of loans corresponding to the asset
class in question. (b) Simulate the evolution of losses from these portfolios
using some assumptions about factors which are known to affect credit port-
folios. (c) Determine both expected losses and unexpected losses for each
portfolio and each set of parameter values. (d) Try to fit the unexpected
losses against the various parameters, and change the fitting function until a
good-looking fit is achieved. (e) Try to combine the individual fits into a mul-
tidimensional fit by suitably changing parameters. (f) Bring the final result
into the political arena and declare it open for negotiation. (g) Write down
the result of the negotiations and publish it.

Despite the cynical tone in the description, it approximately corresponds
to the generation and evolution of the Basel II formula world. While one may
have a critical opinion about the numbers used and the specific dependences
implemented in Basel II, there is an important background to each driving
factor.

First set R = 0, i.e. assume uncorrelated counterparty defaults. Then,
(11.10) becomes Knon−def

B II = 0. In the absence of counterparty default corre-
lation, there is no capital to be held against a portfolio of corporate, sovereign,
or bank obligations. The formal reason for the vanishing of regulatory capital
when R = 0 is that capital is used only to cover unexpected losses. Of course,
it is an idealization to assume that the loss amount of a loan portfolio is
a sharp variable. On the other hand, this assumption may become a valid
approximation for a highly diversified portfolio of many credits with small
denominations. Then, the law of large numbers works, as it does, e.g., for
the credit card business in the retail sector. Basel II precisely assumes well-
diversified portfolios in its models. For less granular portfolios, unexpected
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losses certainly are bigger. In the intermediate stages of Basel II consulta-
tion, this effect was caught by a “granularity adjustment factor”. This factor,
however, was dropped later on during the political negotiations.

The next important message which emerges from the limit R → 0 is that
counterparty default correlation is the main driving factor of unexpected
losses in a sufficiently granular loan portfolio. Intuitively, this is easy to un-
derstand. With large default correlation, the number of independent loans is
reduced considerably, the portfolio effectively behaves as one with a few very
large loans, and fluctuations become appreciable.

In principle, the correlation coefficient R should be measured in a port-
folio, or for the entire banking book. Instead, in Basel II, it is fixed to the
value implied by (11.13) by the regulators. It decreases from 0.24 to 0.12
as PD increases from zero to one. The value R = 0 used in our argument,
is not permissible in Basel II! While the interpolation proposed certainly is
largly guesswork, the important message is that the default correlation of
very good loans is higher than that of badly rated loans. A simple-minded
picture where risky loans are likely to default due to obligor-specific factors,
e.g. bad management, but rather riskless loans would default mainly as a
collective phenomenon, e.g. due to economic downturn, is consistent with the
trend contained in (11.13).

Next, set the maturity, (11.15), M = 1. For a moment, ignore the exact
definition of M as a cash-flow averaged maturity, and think about it simply as
the lifetime of a loan. For M = 1, the maturity adjustment factor in (11.10)
reduces to unity, i.e. the Basel II capital charge has been calibrated on a
one-year lifetime of a loan (portfolio). It turns out that for a given one-year
default probability, the unexpected losses of a portfolio depend on its effective
maturity. The higher the maturity, i.e. the longer the lifetime of the loans,
the bigger the unexpected losses, i.e. the default risk. More capital thus is
required. However, the squared logarithmic dependence on default probability
and the five-digit figures in the maturity adjustment factor (11.15) certainly
are not to be taken too serious from a scientific point of view.

The regulatory capital requirement (11.10) is linear in the remaining open
parameters, EAD and LGD. The exposure at default, EAD, is the total
amount of loan outstanding at the time of default. Notice that even the
definition of “default” is not unique in banking. The standard is a “90 days
past due”-rule, i.e. the debtor is past due more than 90 days on a major
credit obligation. The sum of all payments outstanding and expected until
the maturity of the loan then is the exposure at default. EAD is measured in
real currency, e.g. dollars.

LGD is the loss given default. It is less than EAD because usually, the
bank is able to utilize collateral or other receivables, leading to a recovery.
LGD is measured as a fraction.

In the advanced IRB Approach, banks may estimate internally all three
open parameters of (11.10), PD, LGD, and EAD. M can be calculated from
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the cash flows. In the foundation approach, only PD may be estimated. The
true challenge in Basel II is the estimation of these data. A rating system pro-
vides information on PD. LGD and EAD can only be estimated by analyzing
a sufficiently large number of default events, and by extracting the parame-
ters from the credit files. The length of the time series used to estimate the
parameters must be five years, at minimum.

This paragraph was intended to summarize the basic logic of thought
underlying Basel II. The main body of the documents, however, is filled with
detailed instructions on the treatment of many particular cases and products.
These details are beyond the scope of this book.

Pillar 1: Operational Risk

Basel II defines operational risk as the risk of loss resulting from inadequate
or failed internal processes, people and systems, or from external events [238].
It includes legal risk but excludes reputational, business and strategic risk.

Operational risk is widespread, a fact which is obvious from the definition.
Almost every industry is subject to operational risk, and private individuals
are, too. Insurance companies make their living from operational risk. In
fact, many operational risks can be insured. The financial services industry
has been woken up on operational risk by Basel II only.

The attitude towards operational risk depends on the industry concerned.
In a hospital, e.g., operational risk often is a matter of life and death. Con-
sequently, every control possible is implemented to avoid any operational
risk, if possible. Air traffic, or the chemical and nuclear industries, are other
examples of extreme operational risk aversion. Many other industries can af-
ford to have a more differentiated attitude as the consequences of operational
risks striking are less dramatic. Controls may become a matter of cost con-
siderations, and there may be trade-offs between implementing controls and
subscribing to an insurance policy. In banks, controls help to avoid opera-
tional risk striking, and insurance may help to cover losses once a risk event
happened. Moreover, in the future world of Basel II, banks will be required
to hold regulatory capital against their operational risks.

Basel II provides three approaches to determine the regulatory capital
charge for operational risk, a Basic Indicator Approach (BIA), a Standardized
Approach (SA), and the Advanced Measurement Approaches (AMA). Both
the Basic Indicator and Standardized Approaches are not risk sensitive, in
analogy to the Standardized Approaches of Basel I and Basel II in credit
risk. The Advanced Measurement Approaches, on the other hand, are risk
sensitive and amount to building an internal model for operational risk.

In the Basic Indicator Approach, the regulatory capital for operational
risk is given by [238]

KBIA = α GI , α = 0.15 . (11.17)
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GI denotes gross income, and includes net interest income plus net non-
interest income. These quantities are determined by accounting standards.

The Basic Indicator Approach is very easy to use. All quantities required
to calculate gross income are available from the annual financial statement
of the bank. The prefactor α = 0.15 was not calibrated on loss histories of
banks but from two general requirements. Firstly, the average regulatory cap-
ital of an ensemble of banks should be left unchanged when banks use the
Standardized Approach for credit risk and the Basic Indicator Approach for
operational risk. Secondly, it was decided that about 12% of the total regula-
tory capital should be set aside for operational risk. This figure reflects some
loss history by banks (collected in so-called “quantitative impact studies”)
but also much political bargaining (initially, the fraction of operational risk
capital had been set to 20% of total capital).

Gross income, a priori, is not a risk-sensitive quantity. Its use also leads
to perverse consequences: Banks with high income will have to hold much
capital, those with low income need much less capital. Standard reasoning,
however, suggests that high income only can be achieved by few risks striking
while low income may be the consequence of a big exposure to all kinds of
risks, operational risk among them. Life has shown, though, that abnormally
high income often may be the consequence of too much operational risk tak-
ing. This was the case with Nick Leeson who ruined Barings bank. This rule
is also confirmed on the failures or near-failures of smaller banks around the
world.

The Standardized Approach follows the same philosophy. However, it at-
tempts to introduce a minimum of risk-sensitivity by dividing the bank into
eight business lines and by modulating the multipliers of gross income ac-
cording to the riskiness of the business lines, as perceived by the regulators.
The capital requirement under the standardized approach then is given by
[238]

KSA =
8∑

j=1

βj GIj . (11.18)

The eight business lines, and their multipliers βj , are summarized in Table
11.3. A bank which wants to determine its capital according to the stan-
dardized approach, must fulfill a list of qualitative requirements, and get a
supervisory approval. When its main sources of income belong to the business
lines with βj = 0.12, it may expect a lower capital charge. On the contrary,
the capital requirement increases when important income is generated in the
βj = 0.18-business lines. When conducting the third quantitative impact
study among the German Savings Banks it turned out, however, that there
is no systematic advantage or disadvantage in capital charge, of the Stan-
dardized Approach with respect to the Basic Indicator Approach. However,
mapping the organizational structure of a bank onto the standard Basel-II
business lines introduces a significant degree of complexity into the Standard-
ized Approach.
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Table 11.3. Business lines of the Standardized Approach and the Advanced Mea-
surement Approaches to operational risk, and the gross-income multipliers β used
in the Standardized Approach

Business Line βj

Corporate finance 0.18

Trading and sales 0.18

Retail banking 0.12

Commercial banking 0.15

Payment and settlement 0.18

Agency services 0.15

Asset management 0.12

Retail brokerage 0.12

Basel II also discusses an Alternative Standardized Approach (ASA)
whose applicability, however, depends on the national supervisors. Under
this approach, banks may calculate their capital charge for retail banking
not based on the gross income but rather based on the total volume of out-
standing retail loans and advances, LARB. The capital for retail banking then
is

KRB
ASA = βRB m LARB . (11.19)

m = 0.035 is a multiplier calibrated to make the capital charge grossly com-
parable to a gross-income based calculation. βRB = 0.12 is the standard
multiplier for retail banking. Banks may also aggregate their retail banking
and commercial banking credit portfolio if they use a common multiplier of
0.15 for both. If the gross income in the remaining internal business lines
cannot be separated clearly and mapped on the Basel business lines, they
may also be taken as one cluster, at the expense of a prefactor of 0.18. Con-
ceptually, the Alternative Standardized Approach is as questionable as is the
Standardized Approach. However, it may be implemented more easily and
more cost-effectively, if allowed.

Finally, the Advanced Measurement Approaches (AMA) do not set up
a formula framework for capital calculation, but rather give the bank the
freedom to construct an internal model for operational risk. Of course, there
is a long list of qualifying criteria which a bank must satisfy, and it must get
the approval of its regulators after a trial period which, at the start of Basel
II, has been set to two years.

There are some regulatory constraints to the construction of an AMA
which we now discuss. The main challenge of operational risk measurement
lies in the scarceness of data. A measurement system for operational risk in
line with an internal model in market risk would record actual loss events
which happened in the bank. These are the equivalent of the (negative) price
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changes of securities recorded for market risk measurements. Prices for secu-
rities are available with frequencies of at least once daily down to one tick
every couple of seconds for the high-frequency data used, e.g., in Chap. 5 for
stock index quotes, and Chap. 6 for foreign exchange. On the other hand,
loss events from operational risk happen quite seldom. A major public sector
bank in Germany with size measured by a balance sheet of 3 × 1011 Euro,
e.g., possesses a loss data collection with a few thousand entries, collected
in more than five years. Typical numbers for German savings banks with a
balance sheet of 3− 5× 109 Euro, are about 25–50 loss events per year with
losses exceeding 1,000 Euro. However, capital for operational risk is not held
to cover 1,000 Euro losses but large events, potentially threatening the sur-
vival of the bank. A broad distinction between such events is provided by the
notions of “high-frequency low-impact events” (e.g., cash differences, typing
errors on the trading desks, retail customer complaints, credit card fraud,
etc.) and “low-frequency high-impact events” (e.g., kidnapping of the chair-
man, fire caused by lightning, rogue traders, unlawful business practices).
In 2004/2005, some banks considered “Spitzer risk”, the risk of New York
federal attorney Elliot Spitzer investigating against them, to be their most
severe operational risk exposure. Given the low probability of large losses,
many more data (or complementary methods of risk estimation) are needed
to capture this range of risk reliably. Regulators indeed require that the ap-
proach of a bank must cover these potentially severe “tail” events, and that
the risk measure is based on a 99.9% confidence level.

The operational risk measurement system of a bank must be granular
enough to determine the risk separately for the eight business lines listed in
Table 11.3, and for seven event categories. These risk categories are listed in
Table 11.4. Basel II also defines a second and third level of both the business
lines and the risk categories, to make them more granular and more specific.
They can be found in the Basel document [238]. Banks are free to use their
internal categories for their risk measurement system but must be able to
map their losses onto the Basel categories. Also, a bank may use an internal

Table 11.4. Event-based risk categories of Basel II

Risk Category

Internal Fraud

External Fraud

Employment Practices and Workplace Safety

Clients, Products & Business Practices

Damage to Physical Assets

Business Disruption and Systems Failure

Execution, Delivery & Process Management



11.3 The Regulatory Framework 353

definition of operational risk but, at the same time, must guarantee that it
covers the same scope as the definition set forward by the Basel Committee.

At variance with credit risk and best practice in risk management in
general, Basel II requires to hold regulatory capital both against the expected
and unexpected losses from operational risk. Only when it is demonstrated
explicitly that expected losses are included in product pricing, a reduction
of capital to cover solely unexpected losses can be allowed. Unless a bank
has reliable estimates for correlations, based on methodologies approved by
the supervisors, it must add the exposure estimates across business lines and
risk categories. This implies that a perfect correlation is assumed between
events in different business lines and risk categories. Several quantitative
models indicate that the capital requirement is essentially determined by
the “low-frequency high-impact” scenarios. For those, the perfect-correlation
assumption certainly leads to a significant overestimate of the actual risk
incurred.

The modeling of operational risk must use internal loss data, relevant
external loss data, scenario analysis and factors reflecting the business envi-
ronment and internal control systems. Let us discuss the various data types
in some more detail.

An internal loss database certainly is the anchor of every operational risk
management system. It records in detail and in a standardized format every
loss event due to operational risk. From such a loss database, a time series
of losses can be constructed. In principle, this time series can be used for
a risk estimate, in analogy to market risk. One problem with this approach
has been discussed above: usually, there are not enough data available. Sec-
ondly, only for extremely long time series, i.e. when the “low-frequency high-
impact” events have realized sufficiently frequently, can such a risk estimate
be trusted. Otherwise, one must be concerned about the modeling of these
tail events, i.e. the difference between loss history and actual risk. Thirdly,
even when such long times series are available, the hypothesis of stationary
environment underlying their use in a risk model, can rarely be justified in
view of the dynamics of change in the financial industry. Fourthly, there is
no forward-looking element in this extrapolation of the past into the future.
On the other hand, after severe loss events, management will usually take the
appropriate measures to prevent a repetition of the event. For these reasons,
the Basel Committee requires the inclusion of additional data types into the
operational risk model.

External loss data can complement internal data. They can help with the
second problem noted before, the capture of “low-frequency high-impact”
events. To the extent that time and ensemble sampling are equivalent, loss
events materialized in another bank are indicative of risk incurred in the own
institute, even though nothing has happened yet. However, the important
challenge with external loss data is to determine the extent to which they are
relevant for the own institute, resp. they can be made relevant by suitable
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rescaling. At the time of writing, no standard scaling model for operational
risk losses was available. External loss data can be bought from commercial
operational risk databases, or be collected in data consortia. In a commer-
cial database, public information, mostly from the financial press, is collected
and analyzed. In a data consortium, a group of banks agrees to contribute
anonymized information on all operational loss events to a central collection
facility. This information is grouped and then reflected back to the participat-
ing banks for use in their internal risk models. The importance attached to
such external data in the risk models can be gauged from the fact that even
banks directly competing with each other jointly have set up such data con-
sortia. Without going into details, we add that there is no unique procedure
for blending the internal and external loss data. Hence, a certain element of
subjectivity is introduced in the model.

When performing scenario analysis, experts subjectively evaluate the fre-
quency of a certain scenario, and the losses associated, based on their business
experience and the knowledge of changes which have been introduced as a
reaction to past loss events. The scenarios may either be formulated by the
experts themselves, or be taken from a central scenario pool. Scenario analysis
is a suitable tool to address the all-important “low-frequency high-impact”
events which may have catastrophic consequences for a bank. In scenario
analysis, one deliberately relies on the subjective information provided by
the experts. The aim, though, is to derive almost objective information to be
fed into a risk model. There are several approaches to limit the subjectivity
of the estimates. One is to ask a group of experts, and to require consensus
in the answer. The other one is the Delphi method (named after the famous
greek oracle): Ask the same question to a number of people, then drop the
highest and the lowest answer, and take the average of the rest. Finally, in so-
cial sciences, there is a branch called psychometrics which specifically deals
with designing and evaluating questionnaires. Scenario analysis is valuable
because it also possesses that forward-looking view which loss data collection
misses. Changes in processes can be incorporated in the estimates a long time
before they show up in changed parameters of a loss history.

The data type of factors reflecting the business environment and internal
control systems is rather ill-defined, and is subject of controversy and confu-
sion in the financial industry at the time of writing. There are several ways
to evaluate the internal control system of a bank. One way, again, is to ask
experts for an evaluation, e.g., in terms of school marks. While subjective, it
quickly gives valuable information on the state of the controls. Another op-
tion is to systematically record the failure of processes, or process elements.
It is only applicable with highly standardized processes, and economical at
best when both the processes and the failure recording are automated. It is
obvious that such information should be included in a management infor-
mation system. What is less obvious is if and how it could be included in a
quantiative risk model.
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The same can be said about the business environment factors. Several in-
terpretations have been discussed. One is to search for correlations between
operational risk and certain high-frequency business variables such as the
daily number of customer orders to be transmitted to the stock exchange,
the work load of the IT systems, the fluctuation rate of staff, or the number
of excess working hours. Such factors are correlated to operational risk by a
hypothesis about their influence on the bank’s processes. E.g., the number
of typing errors in the transmission of customer orders could be proportional
to the number of orders. The cost/loss associated with one typing error is N
dollars, on the average. Risk thus could be calculated from these risk indica-
tors, and capital could vary accordingly. The problem with this approach is
that no significant correlation between these risk indicators and actual loss
histories could be uncovered to date. Another, perhaps more promising in-
terpretation is in terms of discriminating factors when considering a larger
pool of banks. Such discriminating factors could be the real estate holdings of
a bank (high/low), geographic spread (international/national/regional/city),
the business lines supported, production depth (outsourcing significant or
not), etc. While it is not clear how such factors determine the risk model of
an individual bank, they can be used to form peer groups within a pool of
banks, where external data are taken only from institutes of the same peer
group.

It will be interesting to see how these data types are combined in actual
AMA during the next years. At the time of writing, many banks worldwide
were in the process of setting up the quantitative models for their AMA. None
of them has a definite model yet, and none of them had obtained approval
from its supervisors. Experience with the introduction of internal models in
the area of market risk suggests that initially, the regulators could indeed give
considerable freedom in the model construction and focus primarily on issues
of data quality and completeness. If true, only when a broader experience on
the performance of the various models has become available, stricter guidance
on the structure of the models is expected.

Finally, many credit defaults may be due to operational risk. Examples
are credits obtained in a fraudulent manner, breach of controls in the internal
credit approval process, inappropriate use of the internal rating system with
inappropriate credit pricing as a consequence. Basel II requires these events
to be recorded as operational risk events, but to exclude them from the
operational risk capital calculation. Instead, they should be flagged, and be
included in the credit risk capital charge. This is mainly done to ensure
continuity of the established credit default records.

Pillar 2: Supervisory Review

The first pillar of the Basel II regulatory framework requires banks to hold
enough capital to cover that part of their risks which can be quantified, per-
haps only approximately. The second pillar of banking regulation focusses on
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the risk management processes and their assessment by supervisory authori-
ties [238]. Some regulators have made the point that it is the risk management
processes that matter, more than the risks themselves.

The supervisory review is based on four key principles. Principle 1 states
that banks should have a process for assessing their overall capital adequacy
in relation to their risk profile, and a strategy for maintaining their cap-
ital levels. The paper also specifies the five main elements, according to
the Basel Committee, of a rigorous Internal Capital Adequacy Assessment
Process (ICAAP):

• Board and senior management oversight. Basel II emphasizes that the bank
management is responsible for developing the internal capital adequacy as-
sessment process, and for the bank taking only so much risk as the capital
available can support. Conversely, bank management must ensure that the
capital is adequate for the risk taken. Bank management must formulate
a strategy with objectives for capital and risk, including capital needs, an-
ticipated capital expenditures, desirable capital levels, and external capital
sources. Moreover, the board of directors must set the bank’s tolerance for
risk.

• Sound capital assessment. Here, policies and processes must be designed to
ensure that the bank identifies, measures, and reports all materials risks.
Capital requirements must then be derived from the risk to which the bank
is exposed, and a formal statement of capital (in)adequacy must be made.
Notice that no reference is made to regulatory capital or any of the cal-
culation schemes introduced under pillar 1. What is required is the bank’s
own assessment of its capital needs. ICAAP targets economic capital, al-
though this is not spelled out explicitly. The next element requires banks
to quantify or estimate all important risks they are exposed to. To deter-
mine the economic capital, these risks must be aggregated either using a
quantitative (internal) model or by rough estimation. It must be guaran-
teed that the bank operates at sufficient levels of capital to support these
aggregated risks. Finally, internal controls, reviews, and audits must ensure
the integrity of the entire management process.

• Comprehensive assessment of risks. The bank must ensure that all signif-
icant risks are known to its management. The notion of risk here is not
limited to those types of risk for which pillar 1 imposes capital charges, and
may include reputational risk, strategic risk, liquidity risk, and finer details
of market, credit, and operational risk which are not covered by pillar 1.
Moreover, this element also requires risk identification when a bank uses
one of the standardized, non-risk-sensitive approaches for the determina-
tion of its regulatory capital. When risk cannot be quantified, risk should
be estimated.

• Monitoring and reporting. The bank should establish a regular reporting
process and ensure that its management is informed in a timely manner
about changes in the bank’s risk profile. The reports should enable the
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senior management to determine the capital adequacy against all major
risks taken, and assess the bank’s future capital requirements based on the
changed risk profile.

• Internal control review. The bank should conduct periodic reviews of its
control structure to ensure its integrity, accuracy, and reasonableness.
Apart the review of the general ICAAP, this process should identify large
risk concentrations and exposures, verify the accuracy and completeness of
the data fed into the risk measurement system, ensure that the scenarios
used in the assessment process are reasonable, and include stress tests.

The second principle asks supervisors to review and evaluate the bank’s
internal capital adequacy assessments and strategies, as well as their ability
to monitor and ensure their compliance with regulatory capital ratios. Su-
pervisors should take appropriate action if they are not satisfied with the
results of this process. Again, four elements give more specific instructions to
supervisors as to how implement this principle.

• Review of adequacy of risk assessment. Supervisors should assess the degree
to which internal targets and processes incorporate all material risks faced
by the bank. The adequacy of risk measures used and the extent to which
they are used operationally to set limits, evaluate performance, and to
control risks, should be evaluated.

• Assessment of the control environment. Supervisors are instructed to eval-
uate the quality of the bank’s management information and reporting sys-
tems, the quality of aggregation of risks in these systems, and the manage-
ments record in responding to changing risks.

• Supervisory review of compliance with minimum standards. In order to
apply certain advanced methodologies such as the IRB approach or the
AMA, banks must satisfy a list of qualifying criteria. Here, supervisors
are instructed to review the continuous compliance with these minimum
standards for the approaches chosen.

• Supervisory response. Supervisors should take appropriate action if they
are not satisfied with the bank’s capital assessment and risk management
processes.

According to the third principle, supervisors should expect banks to oper-
ate above the minimum regulatory capital ratios and should have the ability
to require banks to hold capital in excess of the minimum. Here, it is recog-
nized that the pillar 1 capital charges, conservative as they may appear, were
calibrated on the average of an ensemble of banks. The individual capital re-
quirements of a specific bank may be different and are treated under pillar 2.
In particular, regulators may set capital levels higher than the pillar-1 capital
when they deem appropriate for the situation of a bank.

In the fourth principle, supervisors are requested to intervene at an early
stage to prevent capital from falling below the minimum levels required to
support the risk characteristics of a particular bank, and should require rapid
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remedial action if capital is not maintained or restored. Supervisors have
some options at their disposal to enforce appropriate capital levels. These
may include intensifying the monitoring of the bank, restricting the payment
of dividends, requiring the bank to prepare and implement a satisfactory
capital restoration plan, and requiring the bank to raise capital immediately.
The ultimate threat, of course, is the closure of the bank by the supervisory
authority.

Pillar 3: Disclosure

Banks are required to disclose certain information on their risk management
processes, the risks they face, and the capital they hold to cover it [238]. This
requirement is established to complement pillars 1 and 2.

By pillar-3 disclosure, investors should be enabled to monitor the risk
management of a bank and thus provide incentives for continuous improve-
ment. Investors are assumed to prefer the shares of a bank with good risk
management over one with poor risk management. Rating agencies will more
highly value a bank with good risk management – according to Table 11.2,
the rating score is directly related to the bank’s default probability, and its
creditworthiness. It determines its credit spread on the markets. Pillar 3 thus
is designed to leverage the self-interest of the bank in good risk management.

The Basel II paper has detailed tables with the disclosure requirements
for banks.

11.3.6 Outlook: Basel III and Basel IV

We have not touched upon the definition of bank capital and the different
types of capital existing because this book is focused on the statistical aspects
of banking and risk management. Capital has been defined and classified in
the Basel I Accord [256, 258]. The capital definition was left unchanged by
Basel II. It is expected that the next round of Basel negotiations leading to
a Basel III, will provide new definitions of what constitutes bank capital.

At present, it is not expected that Basel III will fundamentally change the
modeling of banking risks. Only a Basel IV agreement may bring the long-
expected recognition of internal models for credit risk capital determination.

Both the volume of the Basel documents and the length of the negotiation
rounds have increased strongly from Basel I to Basel II. If this trend continues,
the time until the next fundamental innovations in international banking
regulation will likely be measured in decades rather than in years. For the
time being, the preceding sections give a brief though valid introduction.



Appendix: Information Sources

This appendix gives tables of some important information sources relevant
for the topic of this book. Naturally, this list is extremely incomplete. They
were up to date at the time of writing but may become outdated at any
time thereafter. Moreover, they are somewhat biased towards European and
more specifically German sources. This both reflects my own background and
interests but also the fact that much of the research in financial markets with
methods from physics actually takes place in the old world. I apologize for
any inconvenience which this bias may cause.

Publications

These basically follow from statistics on the Reference section of this book.

Physics Publications

• Physica A
http://www.elsevier.nl/inca/publications/store/5/0/5/7/0/2/

• European Physical Journal B
http://www.edpsciences.com/docinfos/EPJB/OnlineEPJB.html

• Physical Review E
http://pre.aps.org/

• Europhsics Letters
http://www.edpsciences.com/docinfos/EURO/OnlineEURO.html

• International Journal of Theoretical Physics C
http://www.wspc.com.sg/journals/ijmpc/ijmpc.html

• Nature
www.nature.com

• Physical Review Letters
http://prl.aps.org/

Physics–Finance Interface

• International Journal of Theoretical and Applied Finance
http://www.wspc.com.sg/journals/ijtaf/ijtaf.html
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• Quantitative Finance
http://www.iop.org/Journals/qf

Finance

• Journal of Finance
www.afajof.org/jofihome.shtml

• Journal of Banking and Finance
http://www.elsevier.nl/inca/publications/store/5/0/5/5/5/8/

• Journal of Empirical Finance
http://www.elsevier.nl/homepage/sae/econbase/empfin/menu.sht

• Finance and Stochastics
http://link.springer.de/link/service/journals/00780/index.htm

• RISK Magazine
http://www.riskpublications.com/risk/index.htm

• Applied Mathematical Finance
www.tandf.co.uk/journals/routledge/1350486X.html

• Econometrica
http://www.jstor.org/journals/00129682.html

Preprint Servers

• http://xxx.lanl.gov/archive/cond-mat located at Los Alamos Natio-
nal Laboratory is the central preprint server for condensed matter and sta-
tistical physics. Many of the papers published in the physics journals listed
above have appeared on this server before publication, and can be retrieved
there. Some other papers were listed on related servers, such as chao-dyn,
adap-org, or physics. To access these, just replace cond-mat in the
URL above by the appropriate server label.

• http://netec.wustl.edu/, located at Washington University, is a set of
servers with economics related information. BibEc contains information
on printed working papers, WoPEc data about electronic working papers,
WebEc lists World Wide Web resources in economics, and JokEc is a list
of jokes about economists and economics.

Computational Resources

• http://finance.bi.no/~bernt/gcc_prog/algoritms/algoritms/algo-
ritms.html features Financial Numerical Recipes, by Bernt Arne Øde-
gaard. The intentions of this site are clear from its title: To provide an
exhaustive discussion of important algorithms and computer code for ad-
vanced financial calculations, in a format that is similar to its big brother:
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Numerical Recipes: The Art of Scientific Computing [174]. It contains algo-
rithms, both basic and advanced, for option pricing, and some algorithms
dealing with term structure modeling and pricing of fixed income secu-
rities. All computer code is in the C++ language, and implemented as
self-contained subroutines that can be compiled on any standard C++
compiler.

• More links to computational resources can be found on the web sites listed
in the following section.

Internet Sites

The central internet sites at the crossroads of physics and finance are:

• http://www.ge.infm.it/econophysics/, located at the University of
Genova, provides extensive lists of research papers, conferences and schools,
courses, job advertisements, and links to research institutes and companies.

• http://www.unifr.ch/econophysics/ contains news, meeting announce-
ment, book reviews, lists of recent preprints, a “paper of the month”, opin-
ions, and discussions. There is also a page with data sources and access to
financial data and links to financial institutions. This site is host to the
minority game web site, where plenty of useful information on this game
can be found. There is also an interactive minority game where a visitor
can play against the computer.

• http://www.quantnotes.com is a high-quality (though not always imme-
diately responsive) web site providing selected publications. It features in-
troductory articles where you will learn about various financial instruments
and how mathematics you may be familiar with, is applied daily by banks
to fairly price these instruments. In addition, there are book reviews, links
to software and data sites, job and event listings, etc.

• http://www.mailbase.ac.uk/lists/finance-and-physics/ contains a
mailbase for discussion and information exchange.

• Finance-and-Physics-Services at http://l3www.cern.ch/homepages/su-
sinnog/finance/ is another site providing many links, papers, and data
to the public. They have a list of preprints, many of them from the finance
community, structured along topics. This distinguishes this site from the
three sites above which are more physics oriented. I found particularly
useful the link to http://www.probability.net/ placed on this site in
summer 2000.

I list a few more institutions where further links, working papers on subjects
of interest, etc., can be found:

• www.gloriamundi.org is a site containing a wealth of material on value
at risk and related topics. Many important papers on value at risk are
available for download, and there is a good list of books covering this
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topic. The site also includes papers containing criticism of value at risk as
well as work on coherent risk measures, expected shortfall, etc. In terms
of types of risk, most material naturally covers market risk. Credit risk is
less prominent, perhaps due to regulators’ reluctance to recognize internal
models, and a few papers address operational risk.

• Institut für Entscheidungstheorie und Unternehmensforschung at Karls-
ruhe university
http://finance.wiwi.uni-karlsruhe.de/Hotlist/index.html

• Freiburger Institut für Datenanalyse und Modellbildung
http://paracelsus.fdm.uni-freiburg.de/

• RiskLab, Zurich
http://www.risklab.ch/

• The Santa Fe Institute
http://www.santafe.edu/

Companies

• The Prediction Company, Santa Fe
www.predict.com

• Science & Finance, Paris
www.science-finance.fr

• Olsen & Associates, Zurich
www.olsen.ch

• J. P. Morgan’s RiskMetrics
http://www.riskmetrics.com/

• Deutsche Bank Research
http://www.dbresearch.de/

• Algorithmics, Inc.
http://www.algorithmics.com

References on Banking Topics

For the readers who want to learn more on bank management and current
topics in banking, I recommend

• T. W. Koch and S. S. MacDonald: Bank Management (Thomson South-
Western, Mason 2004), and

• G. H. Hempel and D. G. Simonson: Bank Management: Text and Cases
(Wiley 1998).

For those readers who have to dive into the Basel Capital Accord after reading
this book, I recommend to start their reading with the 1996 Amendment to
the Capital Accord to Incorporate Market Risks [259]. This makes easiest for
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the scientific mind the transition from a scientific text to regulatory prose.
Then read the brief Basel I Accord [258] before struggling with the 250-page
Basel II monster [238].

Nonscientific Books

These are a few nonscientific books which I liked reading:

• B. G. Malkiel: A Random Walk Down Wall Street (W. W. Norton, New
York 1999) basically is an investment guide but contains a wealth of in-
formation of financial markets, and a good list of references to important
papers in finance. The basic thesis of this book is that very few (profes-
sional!) investors succeed in consistently beating a reference index over long
periods of time. Consequently, the author’s best advice would be to invest
in broadly structured low-load index funds.

• Nick Leeson: Rogue Trader (Little, Brown, London 1996) has the story of
Nick Leeson, the Singapore based derivatives trader who ruined Barings
Bank.

• Frank Partnoy: FIASCO (Penguin Books, New York 1999) is the inside
story of a Wall Street Trader.

• Nicholas Dunbar: Inventing Money (Wiley, Chichester 2000) gives a non-
scientific story of derivatives and derivatives trading, and the academic re-
searchers involved in the modeling of derivatives, culminating in the break-
down of Long Term Capital Management, a hedge fund whose partners
were, among others, Robert Merton and Myron Scholes.

• Ron S. Dembo and Andrew Freeman: Seeing Tomorrow (Wiley, New York
1998) promote forward-looking risk management including, in addition to
concepts discussed in this book, scenario analysis, risk–return assessment,
and the notion of “regret”. Regret is a measure of the subjective pain or
objective consequences of worst-case scenarios. Ron Dembo is president
and CEO of Algorithmics, Inc., a Toronto-based firm for high-end risk
management software.

• Peter L. Bernstein: Against the Gods: the Remarkable Story of Risk (Wiley,
New York 1998) retraces the history of risk management from the times
of the ancient Greeks to the present days of derivative trading. This book
contains a lot of biographical information on the principal drivers of this
development.
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Hall, London 1972); P. Lévy: Processus Stochastiques et Mouvement Brownien
(Gauthier-Villars, Paris 1965); D. Revuz and M. Yor: Continuous Martingales
and Brownian Motion (Springer-Verlag, Berlin 1994)

33. B. B. Mandelbrot: The Fractal Geometry of Nature (Freeman, New York 1983)
34. K. V. Roberts: in [7]
35. J. Perrin: Les Atomes (Presses Universitaires de France, Paris 1948)
36. E. Kappler, Ann. Phys. (Leipzig), 5th series 11, 233 (1931). I am indebted to

an anonymous referee for pointing out Kappler’s work which was unkown to
me

37. H. Risken: The Fokker–Planck Equation (Springer- Verlag, Berlin 1984)
38. P. Gaspard, M. E. Briggs, M. K. Francis, J. V. Sengers, R. W. Gammon, J.

R. Dorfman, and R. V. Calabrese: Nature 394, 865 (1998)
39. W. A. Little: Phys. Rev. 134, A1416 (1964)
40. D. Jérome and L. G. Caron (eds.): Low-Dimensional Conductors and Super-

conductors (Plenum Press, New York 1987)
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