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Preface

This book provides an introduction to the theory and practice of Monte Carlo and
Simulation methods. It arises from a 20 hour course given simultaneously to two groups
of students. The first are final year Honours students in the School of Mathematics at the
University of Edinburgh and the second are students from Heriot Watt and Edinburgh
Universities taking the MSc in Financial Mathematics.

The intention is that this be a practical book that encourages readers to write and
experiment with actual simulation models. The choice of programming environment,
Maple, may seem strange, perhaps even perverse. It arises from the fact that at Edinburgh
all mathematics students are conversant with it from year 1. I believe this is true of many
other mathematics departments. The disadvantage of slow numerical processing in Maple
is neutralized by the wide range of probabilistic, statistical, plotting, and list processing
functions available. A large number of specially written Maple procedures are available
on the website accompanying this book (www.wiley.com/go/dagpunar_simulation). They
are also listed in the Appendices.!

The content of the book falls broadly into two halves, with Chapters 1 to 5 mostly
covering the theory and probabilistic aspects, while Chapters 6 to 8 cover three application
areas. Chapter 1 gives a brief overview of the breadth of simulation. All problems at the
end of this chapter involve the writing of Maple procedures, and full solutions are given
in Appendix 1. Chapter 2 concerns the generation and assessment of pseudo-random
numbers. Chapter 3 discusses three main approaches to the sampling (generation) of
random variates from distributions. These are: inversion of the distribution function, the
envelope rejection method, and the ratio of uniforms method. It is recognized that many
other methods are available, but these three seem to be the most frequently used, and
they have the advantage of leading to easily programmed algorithms. Readers interested
in the many other methods are directed to the excellent book by Devroye (1986) or an
earlier book of mine (Dagpunar, 1988a). Two short Maple procedures in Appendix 3
allow readers to quickly ascertain the efficiency of rejection type algorithms. Chapter 4
deals with the generation of variates from standard distributions. The emphasis is on
short, easily implemented algorithms. Where such an algorithm appears to be faster
than the corresponding one in the Maple statistics package, I have given a listing in
Appendix 4. Taken together, I hope that Chapters 3 and 4 enable readers to understand
how the generators available in various packages work and how to write algorithms for
distributions that either do not appear in such packages or appear to be slow in execution.
Chapter 5 introduces variance reduction methods. Without these, many simulations are
incapable of giving precise estimates within a reasonable amount of processing time.
Again, the emphasis is on an empirical approach and readers can use the procedures in

! The programs are provided for information only and may not be suitable for all purposes. Neither the author
nor the publisher is liable, to the fullest extent permitted by law, for any failure of the programs to meet the
user’s requirements or for any inaccuracies or defects in the programs.
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Preface

Appendix 5 to illustrate the efficacy of the various designs, including importance and
stratified sampling.

Chapters 6 and 8, on financial mathematics and Markov chain Monte Carlo methods
respectively, would not have been written 10 years ago. Their inclusion is a result of
the high-dimensional integrations to be found in the pricing of exotic derivatives and in
Bayesian estimation. In a stroke this has caused a renaissance in simulation. In Chapter 6, I
have been influenced by the work of Glasserman (2004), particularly his work combining
importance and stratified sampling. I hope in Sections 6.4.2 and 6.5 that I have provided a
more direct and accessible way of deriving and applying such variance reduction methods
to Asian and basket options. Another example of high-dimensional integrations arises
in stochastic volatility and Section 6.6 exposes the tip of this iceberg. Serious financial
engineers would not use Maple for simulations. Nevertheless, even with Maple, it is
apparent from the numerical examples in Chapter 6 that accurate results can be obtained
in a reasonable amount of time when effective variance reduction designs are employed.
I also hope that Maple can be seen as an effective way of experimenting with various
models, prior to the final construction of an efficient program in C++ or Java, say. The
Maple facility to generate code in, say, C++ or Fortran is useful in this respect.

Chapter 7 introduces discrete event simulation, which is perhaps best known to
operational researchers. It starts with methods of simulating various Markov processes,
both in discrete and continuous time. It includes a discussion of the regenerative method
of analysing autocorrelated simulation output. The simulation needs of the operational
researcher, the financial engineer, and the Bayesian statistician overlap to a certain extent,
but it is probably true to say that no single computing environment is ideal for all
application fields. An operational researcher might progress from Chapter 7 to make use
of one of the powerful purpose-built discrete event simulation languages such as Simscript
IL.5 or Witness. If so, I hope that the book provides a good grounding in the principles
of simulation.

Chapter 8 deals with the other burgeoning area of simulation, namely Markov chain
Monte Carlo and its use in Bayesian statistics. Here, I have been influenced by the
works of Robert and Casella (2004) and Gilks et al. (1996). I have also included several
examples from the reliability area since the repair and maintenance of systems is another
area that interests me. Maple has been quite adequate for the examples discussed in this
chapter. For larger hierarchical systems a purpose-built package such as BUGS is the
answer.

There are problems at the end of each chapter and solutions are given to selected
ones. A few harder problems have been designated accordingly. In the text and problems,
numerical answers are frequently given to more significant figures than the data would
warrant. This is done so that independent calculations may be compared with the ones
appearing here.

I am indebted to Professor Alastair Gillespie, head of the School of Mathematics,
Edinburgh University, for granting me sabbatical leave for the first semester of the
2005-2006 session. I should also like to acknowledge the several cohorts of simulation
students that provided an incentive to write this book. Finally, my thanks to Angie for
her encouragement and support, and for her forbearance when I was not there.



beta (e, B)'

binomial (n, p)
{B(1),t>0}
c.d.f.

C/

Cov, (X, Y)

c€.s.€.

Exp ()
E;(X)

fx (x)
Fy (x)

FX (x)
gamma (a, A)

gig (A, ¢, x)

i.i.d.
negbinom (&, p)

N (. 0?)
N(p, 2)
p.d.f.

p.m.f.
Poisson (u)
P(X <x)
P(X=x)
r.v.

s.e.

Glossary

A random variable that is beta distributed with p.d.f. f(x) =
I'(a+B)x* ' (1—x)!" /[T (@) T (B)],1 = x >0, where a > 0,
B> 0.

A binomially distributed random variable.

Standard Brownian motion.

Cumulative distribution function.

The transpose of a matrix C.

The covariance of X and Y where f (x,y) is the joint p.d.f./p.m.f.
of X and Y (the subscript is often dropped).

Estimated standard error.

A r.v. that has the p.d.f. f(x) = Ae™**, x>0, where A > 0.

The expectation of a random variable X that has the p.d.f. or p.m.f.
f (the subscript is often dropped).

The p.d.f. or p.m.f. of a random variable X (the subscript is often
dropped).

The c.d.f. of a random variable X.

Complementary cumulative distribution function [= 1 — Fy (x)].

A gamma distributed r.v. with the p.df. f(x) = A*x*le */
I'(a), x >0, where @ > 0, A > 0.

A r.v. distributed as a generalized inverse Gaussian distribution with
the p.d.f. f(x) ocx*'exp (=1 [x+ x/x]), x > 0.

Identically and independently distributed.

A negative binomial r.v. with the p.df. f(x) o« p*(1—p)*, x =
0,1,2,...,where 0 < p < 1.

A normal r.v. with expectation g and variance o2, or the density
itself.

A vector r.v. X distributed as multivariate normal with mean g and
covariance matrix 3.

Probability density function.

Probability mass function.

A r.v. distributed as a Poisson with the p.m.f. f (x) = w e ™ /x!, x =
0,1,..., where u > 0.

Probability that the random variable X is less than x.

Probability that a (discrete) random variable equals x.

Random variable.

Standard error.

!'This can also refer to the distribution itself. This applies to all corresponding random variable names in this list.



xiv Glossary

support (f)
U(0,1)
Var, (X)

V.I'.T.

Weibull («, A)

x+

gy (X)

¢ (2)
D(z)
X:

lp

~

{x:xeR, f(x)#£0}.

A continuous r.v. that is uniformly distributed in the interval (0, 1).
The variance of a random variable X that has the p.d.f. or p.m.f f
(the subscript is often dropped).

Variance reduction ratio.

A Weibull distributed random variable with the p.d.f. f(x) =
ad®x* e~ T (a), x > 0, where a > 0, A > 0.

max (x, 0).

The standard deviation of a random variable X that has the p.d.f. or
p-m.f. f (the subscript is often dropped).

The p.d.f. for the standard normal.

The c.d.f. for the standard normal.

An r.v. distributed as chi-squared with n degrees of freedom, n =
1,2,.... Therefore, x> = gamma (n/2, 1/2).

Equals 1 if P is true, otherwise equals O.

‘Is distributed as’. For example, X ~ Poisson (u) indicates that X
has a Poisson distribution.

In Maple or in pseudo-code this means ‘becomes equal to’. The
value of the expression to the right of := is assigned to the variable
or parameter to the left of :=.



Introduction to simulation and
Monte Carlo

A simulation is an experiment, usually conducted on a computer, involving the use of
random numbers. A random number stream is a sequence of statistically independent
random variables uniformly distributed in the interval [0,1). Examples of situations where
simulation has proved useful include:

(i) modelling the flow of patients through a hospital;
(i1)) modelling the evolution of an epidemic over space and time;
(iii) testing a statistical hypothesis;

(iv) pricing an option (derivative) on a financial asset.

A feature common to all these examples is that it is difficult to use purely analytical
methods to either model the real-life situation [examples (i) and (ii)] or to solve the
underlying mathematical problems [examples (iii) and (iv)]. In examples (i) and (ii) the
systems are stochastic, there may be complex interaction between resources and certain
parts of the system, and the difficulty may be compounded by the requirement to find an
‘optimal’ strategy. In example (iii), having obtained data from a statistical investigation,
the numerical value of some test statistic is calculated, but the distribution of such a
statistic under a null hypothesis may be impossibly difficult to derive. In example (iv), it
transpires that the problem often reduces to evaluating a multiple integral that is impossible
to solve by analytical or conventional numerical methods. However, such integrals can
be estimated by Monte Carlo methods. Dating from the 1940s, these methods were used
to evaluate definite multiple integrals in mathematical physics. There is now a resurgence
of interest in such methods, particularly in finance and statistical inference.

In general, simulation may be appropriate when there is a problem that is too difficult
to solve analytically. In a simulation a controlled sampling experiment is conducted on
a computer using random numbers. Statistics arising from the sampling experiments
(examples are sample mean, sample proportion) are used to estimate some parameters of
interest in the original problem, system, or population.

Simulation and Monte Carlo: With applications in finance and MCMC J. S. Dagpunar
© 2007 John Wiley & Sons, Ltd
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Introduction to simulation and Monte Carlo

Since simulations provide an estimate of a parameter of interest, there is always some
error, and so a quantification of the precision is essential, and forms an important part of
the design and analysis of the experiment.

1.1 Evaluating a definite integral

Suppose we wish to evaluate the integral
I = f X le~tdx (1.1)
0

for a specific value of a > 0. Consider a random variable X having the probability density
function (p.d.f.) f on support [0, o0) where

fx)y=e™.

Then from the definition of the expectation of a function of a random variable
Equation (1.1) leads to
a—1
I,=E;(X*").
It follows that a (statistical) estimate of /, may be obtained by conducting the following

controlled sampling experiment. Draw a random sample of observations X, X,, ..., X
from the probability density function f. Construct the statistic

n

~ 12
I,==Y X" (1.2)
nic

Then/I\a is an unbiased estimator of , and assuming the {X;} are independent, the variance
of I, is given by

~ \" X!
Varf (Ia> = M
n

Thus, the standard deviation of the sampling distribution of the statistic ’I\a is
N o, (X!
o, (1) = (X

This is the standard error (s.e.) of the statistic and varies as 1/./n. Therefore, to change
the standard error by a factor of K, say, requires the sample size to change by a factor of
1/K?. Thus, extra precision comes at a disproportionate extra cost.

By way of a numerical example let us estimate the value of the definite integral

o0
Il‘9=/ x%%e*dx.
0



Evaluating a definite integral

Firstly, we need to know how to generate values from the probability density function
f(x) =e~*. It will be seen in Chapter 3 that this is done by setting

X;=—InR, (1.3)

where {R;:i =0, 1,...} is a random number stream with R, ~ U (0, 1). From a built-in
calculator function the following random numbers were obtained:

R, =0.0078, R,=009352, R,=0.1080, R,=0.0063.

Using these in Equations (1.3) and (1.2) gives /1\1.9 =2.649. In fact, the true answer to
five significant figures (from tables of the gamma function) is 7, , = I" (1.9) = 0.96177.
Therefore, the estimate is an awful one. This is not surprising since only four values were
sampled. How large should the sample be in order to give a standard error of 0.001, say?
To answer this we need to know the standard error of I, ; when n = 4. This is unknown
as oy (Xo'g) is unknown. However, the sample standard deviation of X*° is s where

4 4 2
§= ﬁ Z[x9»9]2_{2x?‘9} /4| =1.992 (1.4)
- i=1

i=1

and {x,:i=1,...,4} is the set of four values sampled from f. Therefore, the estimated
standard error (e.s.e.) is s/+/4 = 0.9959. In order to reduce the standard error to 0.001,
an approximately 996-fold reduction in the standard error would be needed, or a sample
of approximate size 4 x 996 ~ 3.97 x 10°. We learn from this that an uncritical design
and analysis of a simulation will often lead to a vast consumption of computer time.

Is it possible to design the experiment in a more efficient way? The answer is ‘yes’.

Rewrite the integral as
o 1
11'92/ xe | -7 | dx (1.5)
0 xY-

There is a convenient method of generating variates {x} from the probability density
function

g(x)=xe™ (1.6)
with support [0, o0). It is to take two random numbers R, R,, ~ U (0, 1) and set
X =—1InR,R,.

Given this, Equation (1.5) can be written as

1
liy=E, (W)

where X has the density of Equation (1.6). Given the same four random numbers, two
random values (variates) can be generated from Equation (1.6). They are x, = —InR R, =
4.9206 and x, = —In R;R, = 7.2928. Therefore,

~ 1
Iig = 5(4.9206""" +7.20287"") = 0.8363. (1.7)

3
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Introduction to simulation and Monte Carlo

This is a great improvement on the previous estimate. A theoretical analysis shows that
o, (Zg (0, CF Xn)) is much smaller than o, (/1\19 (0, CF. X,,)), the reason being that
o, (1/X%1) << o, (X°9).

Now try to estimate I, 49 using both methods with the same random numbers as before.
It is found that when averaging 1/X°" sampled from g, 7, oo = 0.98226, which is very
close to the true value, I, oo = 0.99581. This is not the case when averaging X%% sampled
from f.

This simple change in the details of the sampling experiment is an example of a
variance reduction technique. In this case it is known as importance sampling, which is
explored in Chapter 5.

1.2 Monte Carlo is integral estimation

How is it that the Monte Carlo method evolved from its rather specialized use in integral
evaluation to its current status as a modelling aid is used to understand the behaviour of
complex stochastic systems? Let us take the example of some type of queue, for example
one encountered in a production process. We might be interested in the expectation of
the total amount of time spent waiting by the first n ‘customers’, given some initial state
So- In this case we wish to find

E (W, +---+W,[5}

where f is the multivariate probability density of W, ..., W, given S,. For most systems
of any practical interest it will be difficult, probably impossible, to write down the
density f. At first sight this might appear to rule out the idea of generating several, say m,

realizations { [wii), e, wﬂﬁ} :i=1,...,m;. However, it should not be too difficult to

generate a realization of the waiting time W, of the first customer. Given this, the known
structure of the system is then used to generate a realization of W, given a knowledge
of the state of the system at all times up to the departure of customer 1. Note that it is
often much easier to generate a realization of W, (given W, and the state of the system
up to the departure of customer 1) than it is to write down the conditional distribution
of W, given W,. This is because the value assumed by W, can be obtained by breaking
down the evolution of the system between the departures of customers 1 and 2 into easy
stages. In this way it is possible to obtain realizations of values of W,,..., W,.

The power of Monte Carlo lies in the ability to estimate the value of any definite
integral, no matter how complex the integrand. For example, it is just as easy to estimate
E;{Max (W,,...,W,)|S,} as it is to estimate E,{W,+---+W,|S,}. Here is another
example. Suppose we wish to estimate the expectation of the time average of queue length
in [0, T]. Monte Carlo is used to estimate E, {(I/T) fOT Q1) dt}, where {Q (1), 1> 0}
is a stochastic process giving the queue length and f is the probability density for the
paths {Q(¢),t > 0}. Again, a realization of {Q (), T >t > 0} is obtained by breaking
the ‘calculation’ down into easy stages. In practice it may be necessary to discretize the
time interval [0, T into a large number of small subintervals. A further example is given.
Suppose there is a directed acyclic graph in which the arc lengths represent random costs



An example 5

that are statistically dependent. We wish to find the probability that the shortest path
through the network has a length (cost) that does not exceed x, say. Write this probability
as P (X < x). It can be seen that

Px<x=[ f0-1.)d

where f is the probability density of the length of the shortest path and 1, , =1 if
x> t; else 1,., =0. Since the probability can be expressed as an integral and since
realizations of 1,_, can be simulated by breaking down the calculation into easier parts
using the structure of the network, the probability can be estimated using Monte Carlo.
In fact, if ‘minimum’ is replaced by ‘maximum’ we have a familiar problem in project
planning. This is the determination of the probability that the duration of a project does
not exceed some specified value, when the individual activity durations are random and
perhaps statistically dependent. Note that in all these examples the integration is over
many variables and would be impossible by conventional numerical methods, even when
the integrand can be written down.

The words ‘Monte Carlo’ and ‘simulation’ tend to be used interchangeably in the
literature. Here a simulation is defined as a controlled experiment, usually carried out on
a computer, that uses U(0, 1) random numbers that are statistically independent. A Monte
Carlo method is a method of estimating the value of an integral (or a sum) using the
realized values from a simulation. It exploits the connection between an integral (or a
sum) and the expectation of a function of a(some) random variable(s).

1.3 An example

Let us now examine how a Monte Carlo approach can be used in the following problem.
A company owns K skips that can be hired out. During the nth day (n=1,2,...)7,
people approach the company each wishing to rent a single skip. Y;,Y,,... are
independent random variables having a Poisson distribution with mean A. If skips are
available they are let as ‘new hires’; otherwise an individual takes his or her custom
elsewhere. An individual hire may last for several days. In fact, the probability that a skip
currently on hire to an individual is returned the next day is p. Skips are always returned
at the beginning of a day. Let X, (K) denote the total number of skips on hire at the end
of day n and let H, (K) be the number of new hires during day n. To simplify notation
the dependence upon K will be dropped for the moment.

The problem is to find the optimal value of K. It is known that each new hire generates
a fixed revenue of £¢; per skip and a variable revenue of £c, per skip per day or part-day.
The K skips have to be bought at the outset and have to be maintained irrespective of
how many are on hire on a particular day. This cost is equivalent to £¢,, per skip per day.

Firstly, the stochastic process {X,,n=0,1,...} is considered. Assuming skips are
returned at the beginning of a day before hiring out,

Y,=Poisson(A) (n=1,2,...),
X, =min{K, binomial (X,,,1—p)+7Y,,,} (=0,1,2,...),
H, ,=X,,, —binomial (X,,1-p) (n=0,1,2,...).

n



6 Introduction to simulation and Monte Carlo

Since X, depends on X, and Y, only, and since Y, ,, is independentof X, |, X, ,, ...,
it follows that {X,,n =0, 1, ...} is a discrete-state, discrete-time, homogeneous Markov
chain. The probability transition matrix is P = {p;:i,j=0,...,K} where p; =
P(X,,., = j|X, =1i) for all n. Given that i skips are on hire at the end of day n the
probability that r of them remain on hire at the beginning of day n+ 1 is the binomial

robabilit —p)" p"~". The probability that there are j — r people requesting new
pbb'l"y;l " p~". The probability that th people requesting

hires is the Poisson probability A/~"e */ (j — r)! Therefore, for 0 <i < K and 0 < j <

K—1,
min(i,j) /. j—r A—A
i . AN7Te
pij= (1-p)p~"— . (1.8)
! g (’) (j—r)!
For the case j =K,
K—1
pix=1- Z Pij- (1.9)
j=0

Since p;; > 0 for all i and j, the Markov chain is ergodic. Therefore, P (X, = j) —
P(X =j) = m, say, as n — oo. Similarly, P(H,=j) - P(H =j) as n — oo. Let
ar denote the row vector (7, ..., 7). o is the stationary distribution of the chain
{X,,n=0,1,...}. Suppose we wish to maximize the long-run average profit per day.
Then a K is found that maximizes Z (K) where

Z(K)=cE(H[K])+c,E(X[K])—coK (1.10)
and where the dependence upon K has been reintroduced. Now
E(H[K]) = lim (E (H, [K])}
= 1i_£r010 {E (X, [K])— E (binomial (X,_, [K],1—p))}
=E(X[K])-EXI[K])(1-p)
=pE(X[K])

This last equation expresses the obvious fact that in the long run the average number
of new hires per day must equal the average returns per day. Substituting back into
Equation (1.10) gives

Z(K)=E(XI[K]) (pc;+c,) — K
The first difference of Z (K) is
D(K)=Z(K+1)—Z(K)
={EX[K+1]) —EX[K]}[pe;+e,] = ¢

for K=0,1,.... Itis obvious that increasing K by one will increase the expected number
on hire, and it is reasonable to assume that E (X [K + 1]) — E (X [K]) is decreasing in K.
In that case Z (K) will have a unique maximum.
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To determine the optimal K we require E (X [K]) for successive integers K. If K is
large this will involve considerable computation. Firstly, the probability transition matrix
would have to be calculated using Equations (1.8) and (1.9). Then it is necessary to invert
a (K+1) x (K+1) matrix to find the stationary distribution 7 for each K, and finally
we must compute E (X [K]) for each K.

On the other hand, the following piece of pseudo-code will simulate
X, (K),...,X,(K):

Input K, X, (K), A, p, n
x:=X,(K)
Fori=1,...,n
y := Poisson (A)
r:= binomial (x, 1 — p)
x:=min(r+y, K)
Output x
Next i

Now E (X [K]) = XX, xm,. Therefore, if {X, (K),..., X, (K)} is a sample from a7, an
unbiased estimator of E (X [K]) is (1/n)>"_, X, (K). There is a minor inconvenience
in that unless X, (K) is selected randomly from 77, the stationary distribution, then
{X,(K),...,X,(K)} will not be precisely from 7, and therefore the estimate will be
slightly biased. However, this may be rectified by a burn-in period of b observations,
say, followed by a further n — b observations. We then estimate E (X[K]) using
[1/(n—=b)] 2,0 Xi (K).

In terms of programming effort it is probably much easier to use this last Monte Carlo
approach. However, it must be remembered that it gives an estimate while the method
involving matrix inversion gives the exact value, subject to the usual numerical roundoff
errors. Further, we may have to simulate for a considerable period of time. It is not
necessarily the burn-in time that will be particularly lengthy. The fact that the members of
{X;(K),i=0,1,2,...} are not independent (they are auto-correlated) will necessitate
long sample runs if a precise estimate is required.

Finding the optimal K involves determining E (X[K +1]) — E (X [K]) with some
precision. We can reduce the sampling variation in our estimate of this by inducing positive
correlation between our estimates of E (X [K + 1]) and E (X [K]). Therefore, we might
consider making Y, [K] = Y,[K+ 1] and making binomial (X, [K],1— p) positively
correlated with binomial (X, [K + 1], 1— p). Such issues require careful experimental
planning. The aim is that of variance reduction, as seen in Section 1.1.

1.4 A simulation using Maple

This section contains an almost exact reproduction of a Maple worksheet,
‘skipexample.mws’. It explores the problem considered in Section 1.3. It can also be
downloaded from the website accompanying the book.

It will now be shown how the algorithm for simulation of skip hires can be
programmed as a Maple procedure. Before considering the procedure we will start with
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a fresh worksheet by typing ‘restart’” and also load the statistics package by
typing ‘with(stats)’. These two lines of input plus the Maple generated response,
‘[anova, ..., transform]” form an execution group. In the downloadable file this is
delineated by an elongated left bracket, but this is not displayed here.

> restart;
with (stats); [ anova, describe, fit, importdata, random, statevalf,
statplots, transform]

A Maple procedure is simply a function constructed by the programmer. In this case
the name of the procedure is skip and the arguments of the function are A, p, K, x0 and
n, the number of days to be simulated. Subsequent calling of the procedure skip with
selected values for these parameters will create a sequence; hire[1], ..., hire[n] where
hire[i] = [i, x]. In Maple terminology hire[i] is itself a list of two items: i the day number
and x the total number of skips on hire at the end of that day. Note how a list is enclosed
by square brackets, while a sequence is not.

Each Maple procedure starts with the Maple prompt ‘>’. The procedure is written
within an execution group. Each line of code is terminated by a semicolon. However,
anything appearing after the ‘# symbol is not executed. This allows programmer
comments to be added. Use the ‘shift’ and ‘return’ keys to obtain a fresh line within
the procedure. The procedure terminates with a semicolon and successful entry of the
procedure results in the code being ‘echoed’ in blue type. The structure of this echoed
code is highlighted by appropriate automatic indentation.

> skip: =proc (lambda, p, K, x0, n) local x, i, y, r, hire;
randomize (5691443); # An arbitrary integer sets the ‘seed’
for the U(0, 1) random number generator.
x:=x0; # x is the total number on hire, initially set to x0
for i from1 to n do;
y:=stats[random, poisson[lambda]] (1, ‘default’,
‘inverse’); # Generates a random
Poisson variate; 1 is the number of variates generated,
‘default’ is MAPLE's default uniform generator, ‘inverse’
means that the variate is generated by inverting the
cumulative distribution function [see Chapter 3]
if x=0 then r:=0 else
r:=stats[random, binomiald[x,1—-p]] (1, ‘default’,
‘inverse’) end if; # Generates a random binomial variate
x:=min (r+y, K); # Updates the total number on hire
hire[i]: =[1, x];
end do;
seq(hire[i], i=1 . . n); #Assigns the sequence hire[1l], . . .,
hire[n] to procedure ‘SKIP';
end proc;

skip := proc(A, p, K, x0, n)
local x, i, y, r, hire;
randomize(5691443);
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x := x0;

for i to n do
y := stats[random, poisson[A]](1, ‘default’, ‘inverse’);
if x=0 then r:=0
else r:=stats[random, binomiald[x, 1 — p]](1, ‘default’, ‘inverse’)
end if;
x :=min(r+y, K);
hire[i] :=[i, x]

end do;

seq(hire[i],i=1..n)

end proc

The ‘echoed’ code is now examined. Local variables are those whose values cannot be
transmitted to and from the procedure. The ‘randomize’ statement uses an arbitrarily
chosen integer to set a seed for a U(0, 1) random number generator within Maple. More
will be said about such generators in Chapter 2. Initially, the total number of skips
x0 on hire in the current day (day 0) is assigned to the variable x. This is followed
by a “for i to...do...end do’ loop. The statements within this loop are executed for
i=1,...,n. Maple contains a ‘stats’ package and ‘random’ is a subpackage of this.
Note the use of the function ‘poisson’ within this subpackage. The generated Poisson
variate is assigned to the variable y. Following this is an example of a conditional
‘if...then...else...endif” statement. If the total number of skips on hire on the previous
day is zero, then the number remaining on hire today (r) must be zero; otherwise r equals
a random binomial variate with parameters x and 1 — p. Following this, the value of
the variable x is updated. Then the list [Z, x] is assigned to the variable hire[i]. The last
executable statement forms a sequence hire[l],. .., hire[n]. Maple procedures use the
convention that the result of the last statement that is executed is assigned to the name of
the procedure. So when skip is subsequently called it will output a random realization of
this sequence.

Some results will now be obtained when A =5 per day, p =0.2, K =30, x0 =0,
and n = 100 days. Calling ‘skip’ and assigning the results to a variable res gives the
sequence res.

> res :=skip (5, 0.2, 30, 0, 100);

res := [1, 6], [2, 6], [3, 13], [4, 17], [5, 16], [6, 19], [7, 25], [8, 25], [9, 24], [10, 27],
[11, 29], [12, 30], [13, 30], [14, 28], [15, 25], [16, 30], [17, 26], [18, 30], [19, 26],
[20, 23], [21. 25]. [22. 25], [23, 28], [24. 30]. [25. 24], [26, 24], [27. 28]. [28. 24].
[29, 21], [30, 22], [31, 21], [32, 20], [33, 22], [34, 25], [35, 23], [36, 29], [37, 29],
[38, 29], [39, 26], [40, 25], [41, 27], [42, 27], [43, 30], [44, 30], [45, 27], [46, 30],
[47, 25], [48, 23], [49, 21], [50, 16], [51, 20], [52. 20], [53, 18], [54, 22], [55, 23],
[56, 26], [57, 25], [58, 29], [59, 27], [60, 26], [61, 30], [62, 27], [63, 29], [64, 27],
[65, 25], [66, 26], [67, 30], [68, 30], [69, 27], [70, 28], [71, 23], [72, 25], [73. 21].
[74, 24], [75, 22], [76, 23], [77, 22], [78, 25]. [79, 22], [80, 22], [81, 25], [82, 25],
[83, 23], [84, 19], [85, 19], [86, 19], [87, 21], [88, 23], [89, 25], [90, 24], [91, 26],
[92, 24], [93, 27], [94, 24], [95, 27], [96, 29], [97, 29], [98, 29], [99. 30], [100, 30]
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Then the following can be plotted.

> PLOT (CURVES ([res]), TITLE (‘' ‘Plot of total number of
skips on hire against day’’), AXESLABELS (‘‘i=day’’,
‘+x=skips’’), AXESSTYLE (BOX));

Plot of total number of skips on hire against day

30 A
25 +
20
x = skips

15 1

10 A

0 20 40 60 80 100
i=day

Note how the argument of ‘CURVES’ is a list (res has been enclosed in square brackets)
of 100 points, each point expressed as a list of two values, its Cartesian coordinates. Now
observe in the plot that the starting state x = 0 is hardly representative of a state chosen
at random from the stationary distribution. However, by around day 10 the sequence {x,}
appears to reflect near-stationary behaviour. Therefore, the remainder of the sequence
will be used to estimate E(X). First a sequence x,, . . ., x;o, needs to be constructed.

> data := seq (op (2, res[i]), i=11 .. 100);

data := 29, 30, 30, 28, 25, 30, 26, 30, 26, 23, 25, 25, 28, 30, 24, 24, 28, 24, 21, 22, 21,
20, 22, 25, 23, 29, 29, 29, 26, 25, 27, 27, 30, 30, 27, 30, 25, 23, 21, 16, 20, 20, 18, 22,
23, 26, 25, 29, 27, 26, 30, 27, 29, 27, 25, 26, 30, 30, 27, 28, 23, 25, 21, 24, 22, 23, 22,
25, 22,22, 25, 25, 23, 19, 19, 19, 21, 23, 25, 24, 26, 24, 27, 24, 27, 29, 29, 29, 30, 30

Note how ‘op’ extracts the second element of res[i], and this is repeated for items 11
through 100 of the original sequence. Next the ‘describe’ function will be used within
the statistics package of Maple to compute the mean of the list, [data].

> describe[mean] ([data]);

455
18

The result is expressed as a rational number. To obtain the result in decimal form the
function ‘evalf’ is called. The ‘%’ argument is the last computed value.
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> evalf (%);
2527777778

Now the number of skips available will be changed from 30 to 28. The next execution
group will calculate the mean. Notice that there are colons at the end of the first two
statements. These suppress the respective outputs and only the result for the mean will
be seen. Also, note that in the execution group below there are no MAPLE prompts after
the first line. This is achieved by using ‘shift-return’ rather than ‘return’.

> resl :=skip (5, 0.2, 28, 0, 100) :
datal :=seq (op (2, resl[i]), i=11 .. 100):
evalf (describe [mean] ([datal]));

24.34444444

Suppose that the number of available skips is reduced further, this time from 28 to 26.

> res2 : =skip (5, 0.2, 26, 0, 100) :
data2 : =seq (op (2, res2 [i]), i=11 .. 100) :
evalf (described [mean] ([data2])) ;

23.44444444

It is pleasing that the estimates of the expected number of skips on hire, under stationarity,
decreases as the availability is decreased from 30 to 28 to 26. This must be the case
for the actual (as opposed to the estimated) expectations. However, it is not guaranteed
for the estimates. Had different seeds been used for the three experiments there would
be less likelihood of preserving the decreasing expectations in the estimates. At least by
using the same seed in each case we have (inadvertently?) ensured a reasonably good
experimental design that attempts to reduce the variance of the difference between any
two of these estimates.

Now the experiment will be repeated for various K in order to find the optimal value
for given cost parameters. Each realization is based upon a larger sample of 500 days,
the burn-in time being selected as 10 days. The procedure ‘skipprofit’ below will deliver
a sequence [K, pf[K]], K =20, ...,30, where pf[K] is the estimate of expected daily
profit when the availability is K skips.

> skipprofit : =proc (c0, cf, cv, p) local K, res, datab,
avprofit;
for K from 20 to 30 do:
res: =skip (5, 0.2, K, 0, 500):
datab: =seq (op (2, res[i]), i=10 .. 500):
avprofit [K]: = [K, (p*cf+cv) *evalf(describe[mean]
([datab])) —cO0*K]:
end do:
seq (avprofit [K], K=20 .. 30);
end proc;

11
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skipprofit : = proc(c0, cf, cv, p)
local K, res, datab, avprofit,
for K from 20 to 30 do
res = skip(5, 0.2, K, 0, 500);
datab = seq (op(2, res[i]), i = 10 .. 500);
avprofit|[K] :=[K, (p*cf +cv)*evalf(describe[mean]([datab)))

—c0* K]
end do;
seq(avprofit[K], K = 20 .. 30)
end proc

This will be called with a fixed cost of £40 per skip per day, a fixed rental price of
£100 per hire, and a variable rental price of £50 per skip per day, together with a 0.2
probability of return each day.

> profit :=skipprofit (40, 100, 50, 0.2);

profit == [20, 513.747454], [21, 523.217922], [22, 531.975560], [23, 536.741344], [24,
542.647658], [25, 548.696538], [26, 545.193483], [27, 535.417516], [28, 525.926680],
[29, 513.869654], [30, 499.246436]

Now these results will be plotted.

> PLOT (CURVES ([profit]), TITLE (‘‘Plot of Average
profit per day against number of skips’’), AXESLABELS
(‘“skips’’, ‘'profit per day’’), AXESSTYLE (BOX) ) ;

Plot of Average profit per day against number of skips
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The estimated optimal strategy is to have 25 skips and the estimated long-run profit
per day is approximately £549 per day. What sort of belief do we have in the proposed
optimal 25 skips? This set of experiments should really be repeated with a different
seed. The table below shows the seed, the optimal K, and the optimal profit for five sets
of experiments in all. The optimal is K = 25 in three cases and K = 24 in two cases.
Therefore, the optimal strategy is to select (with the aid of a single random number) 25
with probability 0.6 and 24 with probability 0.4. In the table below we should not be too
concerned that the optimal profit shows considerable variations between experiments. In
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Seed Optimal K Profit
5691443 25 548.7000
5691444 25 549.9800

21349109 24 536.6600

27111351 25 526.4600
3691254 24 503.8700

a decision problem such as this it is the change in the (unknown) expected profit resulting
from a move away from the optimal decision that is important. A typical profit versus K
plot (for example, the one shown above) reveals that there is a small reduction in profit
and therefore a small cost associated with incorrectly choosing K + 1 or K — 1 rather than
the optimal K.

1.5 Problems (see Appendix 1)

1. Use a Monte Carlo method, based upon 1000 random standard normal deviates, to find
a 95 % confidence interval for [ exp (—x?)|cosx|dx. Use the Maple ‘with(stats)’
command to load the stats package. The function ‘stats[random,normald](1)’ will
generate a single random standard normal deviate.

2. Use a Monte Carlo method to find a 95% confidence interval for

/:/:exp{—é[x2+<y—1>2—%“dx ay.

3. A machine tool is to be scrapped 4 years from now. The machine contains a part that has
just been replaced. It has a life distribution with a time-to-failure density f (x) = xe™
on support (0, c0). Management must decide upon one of two maintenance strategies.
The first is to replace the part whenever it fails until the scrapping time. The second is
to replace failures during the first two years and then to make a preventive replacement
two years from now. Following this preventive replacement, the part is replaced on
failures occurring during the second half of the 4 year span. Assume that replacements
are instantaneous and cost £¢; on failure and £¢, on a preventive basis. Simulate 5000
realizations of 4 years for each policy and find a condition on c,/c; for preventive
replacement to be the preferred option.

4. Two points A and B are selected randomly in the unit square [0, 1]>. Let D denote the
distance between them. Using Monte Carlo:

(a) Estimate E(D) and Var(D).
(b) Plot an empirical distribution function for D.

(c) Suggest a more efficient method for estimating P (D > 1.4), bearing in mind that
this probability is very small.

13
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5. An intoxicated beetle moves over a cardboard unit circle x?+y* < 1. The (x, y) plane

is horizontal and the cardboard is suspended above a wide open jar of treacle. In the
time interval [¢, 7+ 87) it moves by amounts 8x = Z,0,+/8¢ and 8y = Z,0,~/8t along
the x and y axes where Z, and Z, are independent standard normal random variables
and o, and o, are specified positive constants. The aim is to investigate the distribution
of time until the beetle arrives in the treacle pot starting from the point (x,, y,) on the
cardboard.

a) Write a procedure that simulates n independent times between starting at the point
p p g p
(x» ¥o) and landing in the treacle. The function ‘stats[random,normald](1)’ creates
a random standard normal deviate.

(b) Plot a histogram showing the distribution of 200 such times when o, = 0, = 1,
ot =0.01, and x, = y, = 0. To create a histogram, load the subpackage ‘statplots’
using ‘with(statplots)’ and use the function ‘histogram(a)’ where a is a list of the
200 times.

. The following binomial model is frequently used to mimic share price movements. Let

S; denote the price at time ih where i =0, 1,2, ... and & is a positive time increment.
Let i and o denote the growth rate and volatility respectively. Let

1 1 2
u=> (efuh + e(/urrrz)h) + E\/(efﬂh +e(M+U~)Iz)2 —4,

v= ,
et —y
p =
U—v
Then
S, = X8
where X;,i=0, 1, ..., are independent Bernoulli random variables with distribution

P(X;=u)=p, Prob(X;, =v)=1—p for all i.

(a) Simulate the price at the end of each week during the next year when S, = 100
pence, u = 0.2 per annum, o = 0.3 per annum, and & = 1/52 years.

(b) Now suppose there are 252 trading days in a year. Put 2 = 1/252. For any
realization let S, = max (S;:j=0,...,756). Let loss = S, — S;5. Loss
denotes the difference between selling the share at its peak value during the next
3 years and selling it after 3 years. Simulate 200 realizations of loss and construct
an empirical distribution function for it. You will need to sort the 200 values. Do
this by loading the ‘stats’ package and using the function ‘transform|[statsort](x)’
where x is a list of the data to be sorted. Note that if the order statistics for loss
are Xy, - - - » X,y then an unbiased estimate of P (X < x(i)) isi/(n+1).

7. Consider a single server queue. Let a; denote the interarrival time between customer

i — 1 and customer i, s; the service time of customer 7, and w; the waiting time in the
queue (i.e. the time between arrival and start of service) for customer i.
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(a) Show that w; = max (0, w;,_; —a; + s;_,).

(b) Now consider an M/M/1 queue (that is one in which arrivals follow a Poisson
process and service durations are exponentially distributed) in which the arrival
rate is A and the service rate is u. Write a procedure that simulates w,,...,w
given w,, A, and u.

n

(c) Experiment with different values for the traffic intensity A/u plotting w; against
i to demonstrate queues that achieve stationary behaviour (i) quickly, (ii) slowly,
and (iii) never. In cases (i) and (ii) provide point estimates of the expectation of
w; in the steady state.
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Uniform random numbers

All simulations work on a ‘raw material’ of random numbers. A sequence R, R,, ... is
said to be a random number sequence if R, ~ U (0, 1) for all i and R; is independent of R;
for all i # j. Some authors use the phrase ‘random numbers’ to include variates sampled
from any specified probability distribution. However, its use here will be reserved solely
for U (0, 1) variates.

How can such a sequence be generated? One approach is to use a physical randomizing
device such as a machine that picks lottery numbers in the UK, a roulette wheel, or
an electronic circuit that delivers ‘random noise’. There are two disadvantages to this.
Firstly, such devices are slow and do not interface naturally with a computer. Secondly,
and paradoxically, there is often a need to reproduce the random number stream (making
it nonrandom!). This need arises, for example, when we wish to control the input to a
simulation for the purpose of verifying the correctness of the programming code. It is
also required when we wish to compare the effect of two or more policies on a simulation
model. By using the same random number stream(s) for each of the experiments we
hope to reduce the variance of estimators of the difference in response between any two
policies.

One way to make a random number stream reproducible is to copy it to a peripheral
and to read the numbers as required. A peripheral could be the hard disc of a computer, a
CD ROM, or simply a book. In fact, the RAND corporation published ‘A million random
digits with 100000 random normal deviates’ (Rand Corporation, 1955), which, perhaps,
was not that year’s best seller. Accessing a peripheral several thousands or perhaps
millions of times can slow down a simulation. Therefore, the preferred approach is to
generate pseudo-random numbers at run-time, using a specified deterministic recurrence
equation on integers. This allows fast generation, eliminates the storage problem, and
gives a reproducible sequence. However, great care is needed in selecting an appropriate
recurrence, to make the sequence appear random.

Simulation and Monte Carlo: With applications in finance and MCMC J. S. Dagpunar
© 2007 John Wiley & Sons, Ltd
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2.1 Linear congruential generators

These deliver a sequence of non-negative integers {X;,i=1,2,...} where
X,=(@X,_+cymodm (i=1,2,...).

The recurrence uses four integer parameters set by the user. They are: a(> 0) a multiplier,
X,(=0) a seed, c(=0) an increment, and m(>0) a modulus. The first three parameter
values lie in the interval [0, m — 1]. The modulo m process returns the remainder after
dividing aX;_, 4+ ¢ by m. Therefore, X; € [0, m — 1] for all i. The pseudo-random number
is delivered as R, = X;/m and so R; € [0, 1). The idea is that if m is large enough,
the discrete values %, %, %, e, ’",;1 are so close together that R; can be treated as a
continuously distributed random variable. In practice we do not use X; =0(R; =0) in
order to avoid problems of division by zero and taking the logarithm of zero, etc. As an

example consider the generator

X, =(9X, ,+3)mod 2* (i=1,2,...). 2.1)

Choose X, € [0, 15], say X, =3. Then X, =30 mod 2* =14, X, =129 mod 2* =1, . . ..
The following sequence for {R;} is obtained:

3141 12151013 8 11 6 9 4 7 2 5 0 3 29
16716716167 16" 167 16" 16" 16" 16" 16" 16" 16" 16" 16" 16" 16"~~~ (22)
The period of a generator is the smallest integer A such that X, = X|,. Here the sequence
repeats itself on the seventeenth number and so A = 16. Clearly, we wish to make the
period as large as possible to avoid the possibility of reusing random numbers. Since
the period cannot exceed m, the modulus is often chosen to be close to the largest
representable integer on the computer.
There are some number theory results (Hull and Dobell, 1962) that assist in the choice
of a, ¢, and m. A full period (=m) is obtained if and only if

c and m are relatively prime (greatest common divisor of ¢ and mis 1);  (2.3)
a—1 is a multiple of g for every prime factor g ofm; (2.4)
a—1 is a multiple of 4 if m is. (2.5)

Linear congruential generators can be classified into mixed (¢ > 0) and multiplicative
(¢ =0) types.

2.1.1 Mixed linear congruential generators

In this case ¢ > 0. A good choice is m = 2° where b is the maximum number of bits
used to represent positive integers with a particular computer/language combination. For
example, many computers have a 32 bit word for integers. One bit may be reserved for the
sign, leaving b = 31. Such a computer can store integers in the interval [—2%!,23' —1].
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By choosing m = 2° the generator will have a full period (A = m) when c is chosen to be
odd-valued, satisfying condition (2.3), and @ — 1 to be a multiple of 4, satisfying conditions
(2.4) and (2.5). This explains why the generator (2.1) is a full period one with A = 16.

In Maple there is no danger that aX,_, + c exceeds N, the largest positive integer that
can be stored on the computer. This is because Maple performs arithmetic in which the
number of digits in N is essentially limited only by the memory available to Maple.
The Maple procedure ‘r1’ below uses parameter values m = 23!, a = 906185749, ¢ = 1.
Note the importance of declaring ‘seed’ as a global variable, so that the value of this
variable can be transmitted to and from the procedure. The period of the generator is
m = 2147483648, which is adequate for most simulations. This generator has been shown
to have good statistical properties (Borosh and Niederreiter, 1983). More will be stated
about statistical properties in Sections 2.2 and 2.4.

> 11 := proc() global seed,;
seed:= (906185749*seed 4+ 1) mod 2"31;
evalf(seed/2°31);
end proc:

The code below invokes the procedure five times starting with seed = 3456:

> seed := 3456;
for j from 1 to 5 do;
r1();

end do;

seed:= 3456
3477510815
2143113120
7410933147
4770359378
6231261701

The generator took about 12 microseconds per random number using a Pentium M 730
processor. The generator ‘r2’ below (L’Ecuyer, 1999) has a far more impressive period.
The parameter values are m = 2%, a = 2, 862,933,555, 777,941,757, ¢ = 1. The period
is 18, 446, 744, 073, 709, 551, 616 and the execution speed is not much slower at 16
microseconds per random number.

> 12:=proc() global seed;
seed := (2862933555777941757*seed + 1) mod 2°64;
evalf(seed/2°64);
end proc:

In most scientific languages (e.g. FORTRAN90, C + +) the finite value of N is an issue.
For example, N may be 23! — 1 when the word size is 32 bits. Explicit calculation of
aX,_, +c may cause a fatal error through overflow when aX,_, +c ¢ [-2,2%" —1].
However, in some implementations, the integer following N is stored as — (N +1)

19
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followed by —N, and so overflow never occurs. In that case, it is necessary only to take
the last 31 bits. In such cases the modulo m process is particularly simple to implement.
If this feature is not present, overflow can be avoided by working in double precision.
For example, with a 32 bit word size, double precision uses 64 bits. However, the random
number generator will be somewhat slower than with single precision.

Another way of dealing with potential overflow will now be described. It is based on
a method due to Schrage (1979). Let

m
u= L—J, w=m mod a.
a
Then
m=ua—+w.
Now,
Xi
X, = —J u+ X; mod u
u
and so
X;
aX;+c=|— |au+a(X;, mod u)+c
u
Xi
= {— (m—w)+a(X; mod u)+c.
u
Therefore,
Xi
(aX;+¢) modm:{—{—Jw+a(Xi mod u)+c}mod m. (2.6)
u
Now

providing that a is chosen such that
w < u. (2.7)
Similarly,
c<a(X;mod u)+c<a(u—1)+c
=m—-—w—a+c
<m-—1
providing a and c are chosen such that

m—a>w>c+1—a. (2.8)
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Therefore, subject to conditions (2.7) and (2.8)
—m+1l+c<—|—|w+a(X;, mod u)+c<m—1.

To perform the mod m process in Equation (2.6) simply set

Zi=— 7’ w+[a(X; mod u)]+c.
Then
X = Zi (Z,20),
Nz +m (Z,<0).

The Maple procedure below, named ‘schrage’, implements this for the full period
generator with m = 2%, a = 69069, and ¢ = 1. It is left as an exercise (see Problem 2.3) to
verify the correctness of the algorithm, and in particular that conditions (2.7) and (2.8) are
satisfied. It is easily recoded in any scientific language. In practice, it would not be used in
a Maple environment, since the algorithm is of most benefit when the maximum allowable
size of a positive integer is 2%2. The original generator with these parameter values, but
without the Schrage innovation, is a famous one, part of the ‘SUPER-DUPER’ random
number suite (Marsaglia, 1972; Marsaglia et al., 1972). Its statistical properties are quite
good and have been investigated by Anderson (1990) and Marsaglia and Zaman (1993).

> schrage :=proc() local s,r; global seed;
s:=seed mod 62183;r:= (seed-s)/62183;
seed :=—49669*r + 69069*s + 1;
if seed < O then seed:=seed +2"32 end if;
evalf(seed/2732);
end proc;

Many random number generators are proprietary ones that have been coded in a lower
level language where the individual bits can be manipulated. In this case there is a
definite advantage in using a modulus of m = 2°. The evaluation of (aX,_; + ¢) mod 2°
is particularly efficient since X; is returned as the last b bits of aX;_, 4 c¢. For example,
in the generator (2.1)

X; = (9% 13+3)(mod 16).

In binary arithmetic, X; = [(1001.) x (1101.)4 (11.)] mod 10000. . Now (1001.) x
(1101.) 4+ (11.) =

01101000.
00001101 + (2.9)
0000001 1.

01111000. (2.10)
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Note that the first row of (2.9) gives (1000.) x (1101.) by shifting the binary (as opposed
to the decimal) point of (1101.) 3 bits to the right. The second row gives (0001.) x
(1101.) and the third row is (11.). The sum of the three rows is shown in (2.10). Then
X, is the final 4 bits in this row, that is 1000., or X, = 8 in the decimal system.
In fact, it is unnecessary to perform any calculations beyond the fourth bit. With this
convention, and omitting bits other than the last four, Xg = {(1001.) x (1000.) + (11.)} mod
(10000.) =

0000.
1000. +
0011.

1011.

or Xy = 1011. (binary), or Xg = 11 (decimal). To obtain Ry we divide by 16. In binary,
this is done by moving the binary point four bits to the left, giving (0.1011) or 27! +
273 4+27% = 11/16. By manipulating the bits in this manner the issue of overflow does
not arise and the generator will be faster than one programmed in a high-level language.
This is of benefit if millions of numbers are to be generated.

2.1.2 Multiplicative linear congruential generators

In this case ¢ = 0. This gives
X, = (aX;_,) mod m.

We can never allow X; = 0, otherwise the subsequent sequence will be ..., 0,0,....
Therefore the period cannot exceed m — 1. Similarly, the case @ = 1 can be excluded. It
turns out that a maximum period of m — 1 is achievable if and only if

m is prime and (2.11)

a is a primitive root of m (2.12)

A multiplicative generator satisfying these two conditions is called a maximum period
prime modulus generator. Requirement (2.12) means that

m{aand m{a™ "4 —1 for every prime factor ¢ of m — 1. (2.13)

Since the multiplier a is always chosen such that a < m, the first part of this condition
can be ignored. The procedure ‘r3” shown below is a good (see Section 2.2) maximum
period prime modulus generator with multiplier a = 630360016. It takes approximately
11 microseconds to deliver one random number using a Pentium M 730 processor:

> r3:=proc() global seed;
seed:= (seed*630360016)mod (2731 — 1);
evalf(seed/(2°31 — 1));
end proc;
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At this point we will describe the in-built Maple random number generator, ‘rand()’
(Karian and Goyal, 1994). It is a maximum period prime modulus generator with
m =102 —11, a = 427419669081 (Entacher, 2000). To return a number in the interval
[0,1), we divide by 10'2 — 11, although it is excusable to simply divide by 10'2,
It is slightly slower than ‘rl’ (12 microseconds) and ‘r2’ (16 microseconds), taking
approximately 17 microseconds per random number. The seed is set using the command
‘randomize(integer)’ before invoking ‘rand()’. Maple also provides another U (0, 1)
generator. This is ‘stats[random,uniform](1)’. This is based upon ‘rand’ and so it is
surprising that its speed is approximately 1/17th of the speed of ‘rand()/10°12’. It is not
advised to use this.

For any prime modulus generator, m # 2°, so we cannot simply deliver the last b bits of
aX,_, expressed in binary. Suppose m = 2° — y where vy is the smallest integer that makes
m prime for given b. The following method (Fishman, 1978, pp. 357-358) emulates the
bit shifting process, previously described for the case m = 2°. The generator is

Xy = (aX;) mod(2” — ).

Let
Y, = (aX;)mod 2", K, , =|aX;/2"]. (2.14)
Then
aX;= Ki+12b +Yi.
Therefore,

X = (Ki+12h + Yi+l) mod(2h -7)
= {Ki+| (2b -y + Y +vKiy } mod(2b -7)
={Y 1 +vKi} mod(2h -7)

From (2.14),0<Y,,, <2’—land 0 <K, , < |_a(2h —y— 1)/2hJ < a—1. Therefore, 0 <
Yo +vKiy <2°—1+ay—7y. We would like Y;,, + YK, to be less than 2° — y so that it
may be assigned to X,,, without performing the troublesome mod(2” — ). Failing that, it
would be convenient if it was less than 2(2° — ), so that X,,, = {Y;,, + YK, } — (22— ),
again avoiding the mod(2’ — y) process. This will be the case if 2> —14+ay—7y <
2(2° —y) — 1, that is if

a<—-—1 (2.15)
Y
In that case, set Z,,, =Y, , +vK,,,. Then

Zig (Zin <20 =),

X
Zi,—Q2"—y (Zi+l >20+ 7)-

i+1 =

The case y = 1 is of practical importance. The condition (2.15) reduces to
a<?2"—1. Since m =2"— 7y =2"—1, the largest possible value that could
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be chosen for a is 2’ —2. Therefore, when y = 1 the condition (2.15) is
satisfied for all multipliers a. Prime numbers of the form 2% — 1 are called
Mersenne primes, the low-order ones being k = 2,3,5,7,13,17,19,31,61, 89,
107, ...

How do we find primitive roots of a prime, m? If a is a primitive root it turns out that
the others are

{a’ mod m:j<m—1,;and m—1 are relatively prime}. (2.16)

As an example we will construct all maximum period prime modulus generators of the
form

Xy = (aX;)mod 7.

We require all primitive roots of 7 and refer to the second part of condition (2.13).
The prime factors of m—1=6 are 2 and 3. If a =2 then 7=m | a%? —1=2%2—1.
Therefore, 2 is not a primitive root of 7. If a=3,7=m4{a®*—1=3%>—1 and 7=m+¢
a®? —1=23%3—1. Thus, @ =3 is a primitive root of 7. The only j (<m — 1) which is
relatively prime to m — 1 = 6 is j = 5. Therefore, by (2.16), the remaining primitive root
isa=3">mod m=9x9x3mod7=2x2x3mod 7=5. The corresponding sequences
are shown below. Each one is a reversed version of the other:

For larger moduli, finding primitive roots by hand is not very easy. However, it is
easier with Maple. Suppose we wish to construct a maximum period prime modulus
generator using the Mersenne prime m = 2*' — 1 and would like the multiplier a ~ m/2 =
1073741824.5. All primitive roots can be found within, say, 10 of this number using the
code below:

> with(numtheory):
a:=1073741814;
do;
a:=primroot(a, 2"31-1);
if a > 1073741834 then break end if;
end do;

:= 1073741814
:= 1073741815
:= 1073741816
:= 1073741817
= 1073741827
:= 1073741829
:= 1073741839

[ I IR VI )



Theoretical tests for random numbers 25

We have concentrated mainly on the maximum period prime modulus generator,
because of its almost ideal period. Another choice will briefly be mentioned where the
modulus is m = 2% and b is the usable word length of the computer. In this case the
maximum period achievable is A = m/4. This occurs when a =3 mod 8 or 5 mod 8,
and X, is odd. In each case the sequence consists of m/4 odd numbers, which does not
communicate with the other sequence comprising the remaining m/4 odd numbers. For
example, X; = (3X,_,) mod 2* gives either

or

11150 150 150
depending upon the choice of seed.

All Maple procedures in this book use ‘rand’ described previously. Appendix 2 contains
the other generators described in this section.

2.2 Theoretical tests for random numbers

Most linear congruential generators are one of the following three types, where A is the
period:

Type A: full period multiplicative, m = 2%, a = 1 mod 4, ¢ odd-valued, A = m;

Type B: maximum period multiplicative prime modulus, m a prime number, a = a
primitive root of m, c =0, A=m—1;

Type C: maximum period multiplicative, m = 2%, a =5 mod 8, A = m/4.

The output from type C generators is identical (apart from the subtraction of a specified
constant) to that of a corresponding type A generator, as the following theorem shows.

Theorem 2.1 Let m =2, a =5 mod 8, X, be odd-valued, X, , = (aX;)mod m,
R, = X;/m. Then R; = R} + (X,mod4)/m where R} = X[/(m/4) and X} K6 =
(aX;+[X, mod 4] {(a—1)/4}) mod (m/4).

Proof. First we show that X; — X, mod 4 is a multiple of 4. Assume that this is true for
i=k. Then X, — X, mod 4 = [a (X; — X, mod 4) 4 (a — 1) {X, mod 4}] mod m. Now,
4la—1s04|X,,,—X, mod 4. For the base case i =0, X; — X, mod 4 =0, and so by
the principle of induction 4 | X; — X, mod 4 Vi > 0. Now put X = (X; — X, mod 4)/4.
Then X; =4X}+ X, mod 4 and X,,; =4X},, + X, mod 4. Dividing the former equation
through by m gives R, = R} 4+ (Xymod4)/m where X, , —aX;, =4 (X;‘:rl —aX;k) —
(Xomod4) (a—1) =0 mod m. It follows that X} , —aX; —[X, mod 4][(a—1)/4] =
0 mod (m/4) since 4 | m. This completes the proof.

This result allows the investigation to be confined to the theoretical properties of type
A and B generators only. Theoretical tests use the values a, ¢, and m to assess the quality
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of the output of the generator over the entire period. It is easy to show (see Problem 5)
for both type A and B generators that for all but small values of the period A, the mean
and variance of {R;,i=0,...,A—1} are close to % and é, as must be the case for a
true U(0, 1) random variable.

Investigation of the lattice (Ripley, 1983a) of a generator affords a deeper insight into
the quality. Let {R;,i =0, ..., A — 1} be the entire sequence of the generator. In theory it
would be possible to plot the A overlapping pairs (Ry, R;), ..., (R,_, Ry). A necessary
condition that the sequence consists of independent U(0, 1) random variables is that R,
is independent of R, R, is independent of R, and so on. Therefore, the pairs should
be uniformly distributed over [0, 1)2. Figures 2.1 and 2.2 show plots of 256 such points
for the full period generators X;,, = (5X;+3) mod 256 and X, ,=(13X;+3) mod 256
respectively. Firstly, a disturbing feature of both plots is observed; all points can be
covered by a set of parallel lines. This detracts from the uniformity over [0, 1)?. However,
it is unavoidable (for all linear congruential generators) given the linearity (mod m) of
these recurrences. Secondly, Figure 2.2 is preferred in respect of uniformity over [0, 1)2.
The minimum number of lines required to cover all points is 13 in Figure 2.2 but only 5
in Figure 2.1, leading to a markedly nonuniform density of points in the latter case. The
separation between adjacent lines is wider in Figure 2.1 than it is in Figure 2.2. Finally,
each lattice can be constructed from a reduced basis consisting of vectors e, and e, which
define the smallest lattice cell. In Figure 2.1 this is long and thin, while in the more
favourable case of Figure 2.2 the sides have similar lengths. Let [, = |e;| and [, = |e,|
be the lengths of the smaller and longer sides respectively. The larger r, = [,/I; is, the
poorer the uniformity of pairs and the poorer the generator.

This idea can be extended to find the degree of uniformity of the set of overlapping
k-tuples {(R;, ..., Risi_1 mod m)si=0,...,A—1} through the hypercube [0, 1). Let
l,,...,1, be the lengths of the vectors in the reduced basis with /;, <--- </[,. Alternatively,
these are the side lengths of the smallest lattice cell. Then, generators for which r, =1, /[,
is large, at least for small values of k are to be regarded with suspicion. Given values
for a, c, and m, it is possible to devise an algorithm that will calculate either r, or an
upper bound for r, (Ripley, 1983a). It transpires that changing the value of ¢ in a type A
generator only translates the lattice as a whole; the relative positions of the lattice points
remain unchanged. As a result the choice of ¢ is immaterial to the quality of a type A
generator and the crucial decision is the choice of a.

Table 2.1 gives some random number generators that are thought to perform well. The
first four are from Ripley (1983b) and give good values for the lattice in low dimensions.
The last five are recommended by (Fishman and Moore 1986) from a search over all
multipliers for prime modulus generators with modulus 23! — 1. There are references to
many more random number generators with given parameter values together with the
results of theoretical tests in Entacher (2000).

2.2.1 Problems of increasing dimension

Consider a maximum period multiplicative generator with modulus m &~ 2” and period
m — 1. The random number sequence is a permutation of 1/m,...,(m —1)/m. The
distance between neighbouring values is constant and equals 1/m. For sufficiently
large m this is small enough to ignore the ‘graininess’ of the sequence. Consequently,
we are happy to use this discrete uniform as an approximation to a continuous
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Table 2.1 Some recommended linear congruential generators. (Data are
from Ripley, 1983b and Fishman and Moore, 1986)

m a c r, Ty Ty
2% 131 0 1.23 1.57 1.93
232 69069 Odd 1.06 1.29 1.30
23 —1 630360016 0 1.29 2.92 1.64
216 293 0Odd 1.20 1.07 1.45

2311 950,706,376
2311 742,938,285
231 —1 1,226,874,159
23— 62,089,911
23 —1 1,343,714,438

[l eNeleNe)

U(0, 1) whenever b-bit accuracy of a continuous U [0, 1) number suffices. In order
to generate a point uniformly distributed over [0, 1)2 we would usually take two
consecutive random numbers. There are m — 1 such 2-tuples or points. However, the
average distance of a 2-tuple to its nearest neighbour (assuming r, is close to 1) is
approximately 1/4/m. In k dimensions the corresponding distance is approximately
1/¢m = 27%*% again assuming an ideal generator in which r, does not differ too
much from 1. For example, with b = 32, an integral in eight dimensions will be
approximated by the expectation of a function of a random vector having a discrete
(rather than the desired continuous) distribution in which the average distance to
a nearest neighbour is of the order of 27* = 1—16 In that case the graininess of
the discrete approximation to the continuous uniform distribution might become an
issue. One way to mitigate this effect is to shuffle the output in order that the
number of possible k-tuples is much geater than the m — 1 that are available in
an unshuffled sequence. Such a method is described in Section 2.3. Another way
to make the period larger is to use Tauseworthe generators (Tauseworthe, 1965;
Toothill et al., 1971; Lewis and Payne, 1973; Toothill et al., 1973). Another way
is to combine generators. An example is given in Section 2.5. All these approaches
can produce sequences with very large periods. A drawback is that their theoretical
properties are not so well understood as the output from a standard unshuffled linear
congruential generator. This perhaps explains why the latter are in such common

usage.

2.3 Shuffled generator

One way to break up the lattice structure is to permute or shuffle the output from a
linear congruential generator. A shuffled generator works in the following way. Consider
a generator producing a sequence {U,,U,,...} of U(0,1) numbers. Fill an array
T(),T(1),...,T (k) with the first k+ 1 numbers U,, . . ., U,,. Use T (k) to determine
anumber N thatis U [0, k — 1]. Output T (k) as the next number in the shuffled sequence.
Replace T (k) by T (N) and then replace T (N) by the next random number Uy, in the
un-shuffled sequence. Repeat as necessary. An algorithm for this is:
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N:= |kT (k)]
Output T (k) (becomes the next number in the shuffled sequence)
T (k) := T(N)

Input U (the next number from the unshuffled sequence)
T(N):=U

Note that | x| denotes the floor of x. Since x is non-negative, it is the integer part of x.
An advantage of a shuffled generator is that the period is increased.

2.4 Empirical tests

Empirical tests take a segment of the output and subject it to statistical tests to determine
whether there are specific departures from randomness.

2.4.1 Frequency test

Here we test the hypothesis that R;,i =1,2,..., are uniformly distributed in (0,1).
The test assumes that R,,i = 1,2,..., are independently distributed. We take n
consecutive numbers, R, ..., R,, from the generator. Now divide the interval (0, 1)
into k subintervals (0, k), [h,2h), ..., [{k—1}h, kh) where kh = 1. Let f; denote the
observed frequency of observations in the ith subinterval. We test the null hypothesis
that the sample is from the U (0, 1) distribution against the alternative that it is not. Let
e; = n/k, which is the expected frequency assuming the null hypothesis is true. Under
the null hypothesis the test statistic

2
XZIXk:(fi_ei) :Zf_lz_n

i=1 e €;

i i=1

follows a chi-squared distribution with k — 1 degrees of freedom. Large values of
X? suggest nonuniformity. Therefore, the null hypothesis is rejected at the 100a %
significance level if X > xZ_, , where a = P (x}_, > X?_,..)-

As an example of this, 1000 random numbers were sampled using the Maple random
number generator, ‘rand()’. Table 2.2 gives the observed and expected frequencies based
upon k = 10 subintervals of width &2 =0.1. This gives

v 100676
100

— 1000 = 6.76.

From tables of the percentage points of the chi-squared distribution it is found that
Xo.0.05 = 16.92, indicating that the result is not significant. Therefore, there is insufficient
evidence to dispute the uniformity of the population, assuming that the observations are
independent.

The null chi-squared distribution is an asymptotic result, so the test can be applied
only when n is suitably large. A rule of thumb is that e; Z 5 for every interval. For a
really large sample we can afford to make k large. In that case tables for chi-squared are
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Table 2.2 Observed and expected frequencies

Interval [0, h) [h,2h) [2h,3h) [3h,4h) [4h,5h) [5h,6h) [6h,Th) [Th,8h) [8h,9h) [9h, 1)

fi 99 94 95 108 108 88 111 92 111 94

e 100 100 100 100 100 100 100 100 100 100

i

not available, but the asymptotic normality of the distribution can be used: as m — oo,

206, N (Vam=1.1).

A disadvantage of the chi-squared test is that it is first necessary to test for
the independence of the random variables, and, secondly, by dividing the domain
into intervals, we are essentially testing against a discrete rather than a continuous
uniform distribution. The test is adequate for a crude indication of uniformity.
The reader is referred to the Kolmogorov—Smirnov test for a more powerful
test.

2.4.2 Serial test

Consider a sequence of random numbers R,,R,,.... Assuming uniformity and
independence, the nonoverlapping pairs (R, R,), (Rs, R,), . . . should be uniformly and
independently distributed over (0, 1)2. If there is serial dependence between consecutive
numbers, this will be manifested as a clustering of points and the uniformity will be
lost. Therefore, to investigate the possibility of serial dependence the null hypothesis
that the pairs (R, ,,Ry).i=1,2,..., are uniformly distributed over (0, 1)* can be
tested against the alternative hypothesis that they are not. The chi-squared test can
be applied, this time with k? subsquares each of area 1/k>. Nonoverlapping pairs are
prescribed, as the chi-squared test demands independence. Let f; denote the observed

frequency in the ith subsquare, where i=1,2, ..., k2, with Zfil f; = n, that is 2n random

numbers in the sample. Under the null hypothesis, ¢; = n/k* and the null distribution is
2

X K2—1*

The assumption of independence between the n points in the sample is problematic, just
as the assumption of independence between random numbers was in the frequency test.
In both cases it may help to sample random numbers (points) that are not consecutive,
but are some (random) distance apart in the generation scheme. Clearly, this serial
correlation test is an empirical version of lattice tests. It can be extended to three
and higher dimensions, but then the sample size will have to increase exponentially
with the dimension to ensure that the expected frequency is at least five in each
cell.

2.4.3 Other empirical tests

There is no limit to the number and type of empirical tests that can be devised,
and it will always be possible to construct a test that will yield a statistically
significant result in respect of some aspect of dependence. This must be the case
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since, among other reasons, the stream is the result of a deterministic recurrence.
The important point is that ‘gross’ forms of nonrandomness are not present. It
may be asked what constitutes ‘gross’? It might be defined as those forms of
dependence (or nonuniformity) that are detrimental to a particular Monte Carlo
application. For example, in a k-dimensional definite integration, it is the uniformity
of k-tuples (R,,R,.\,...,Riy4_1),i =0,k 2k,..., that is important. In practice,
the user of random numbers rarely has the time or inclination to check these
aspects. Therefore, one must rely on random number generators that have been
thoroughly investigated in the literature and have passed a battery of theoretical
and empirical tests. Examples of empirical (statistical) tests are the gap test, poker
test, coupon collector’s test, collision test, runs test, and test of linear dependence.
These and a fuller description of generating and testing random numbers appear
in Knuth (1998) and Dagpunar (1988a). The Internet server ‘Plab’ is devoted to
research on random number generation at the Mathematics Department, Salzburg
University. It is a useful source of generation methods and tests and is located at
http://random.mat.sbg.ac.at/.

2.5 Combinations of generators

By combining the output from several independent generators it is hoped to (a) increase
the period and (b) improve the randomness of the output. Aspect (a) is of relevance when
working in high dimensions. A generator developed by Wichman and Hill (1982, 1984)
combines the output of three congruential generators:

X, = (171X;) mod 30269,
Y., = (172Y;) mod 30307,
Z;., = (170Z;) mod 30323.

Now define

XH—I YH—I Zi-H

R = <30269 30307 F 30323) mod 1 @17)
where y mod 1 denotes the fractional part of a positive real y. Thus R, represents the
fractional part of the sum of three uniform variates. It is not too difficult to show that
R, ~ U(0, 1) (see Problem 10).

Since the three generators are maximum period prime modulus, their periods are 30268,
30306, and 30322 respectively. The period of the combined generator is the least common
multiple of the individual periods, which is 30268 x 30306 x 30324/4 ~ 6.95 x 10'2.
The divisor of 4 arises as the greatest common divisor of the three periods is 2. This
is a reliable if rather slow generator. It is used, for example, in Microsoft Excel2003
(http://support.microsoft.com).
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2.6 The seed(s) in a random number generator

The seed X, of a generator provides the means of reproducing the random
number stream when this is required. This 1is essential when comparing
different experimental policies and also when debugging a program. This
reproducibility at run-time eliminates the need to store and access a long
list of random numbers, which would be both slow and take up substantial
memory.

In most cases, independent simulation runs (replications, realizations) are required
and therefore nonoverlapping sections of the random number sequence should be
used. This is most conveniently done by using, as a seed, the last value used in
the previous simulation run. If output observations within a simulation run are not
independent, then this is not sufficient and a buffer of random numbers should be
‘spent’ before starting a subsequent run. In practice, given the long cycle lengths
of many generators, an alternative to these strategies is simply to choose a seed
randomly (for example by using the computer’s internal clock) and hope that the
separate sections of the sequence do not overlap. In that case, results will not be
reproducible.

2.7 Problems

1. Generate by hand the complete cycle for the linear recurrences (a) to (f) below. State
the observed period and verify that it is in agreement with theory.

(a) X,,, = (5X;+3)mod 16, X, =5;
(b) X,,, = (5X,+3)mod 16, X, =7,
(¢) Xipy = (7X;+3)mod 16, X, = 5;
(d) X\, =(5X,+4)mod 16, X, =5;
(e) X, = (5X,)mod 64, X, = 3;
(f) X1, = (5X;)mod 64, X, = 4.

2. Modify the procedure ‘rl’ in Section 2.1.1 to generate numbers in [0,1) using

(a) Xi+1 = (7Xl)m0d 61, XO = 1,
(b) X;., = (49X,)mod 61, X, = 1.

In each case observe the period and verify that it agrees with theory.

3. Verify the correctness of the procedure ‘schrage’ listed in Section 2.1.1.
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4. Consider the maximum period prime modulus generator
X;,; = 1000101X; mod (1012 —11)

with X, = 53547507752. Compute by hand 1000101X, mod (10'?) and
|1000101X,/10'*]. Hence find X, by hand calculation.

5. (a) Consider the multiplicative prime modulus generator
X1 = (aX;)mod m
where a is a primitive root of m. Show that over the entire cycle
m
E(X) = —,
(X)=3

m(m—2)

12
[Hint. Use the standard results 3¢, i = k(k+1)/2 and YF_ | i = k(k+1)(2k +
1)/6.] Put R, = X,/m and show that E(R;) = %Vm and Var(R;) — 1/12 as

m — o0.

Var(X;) =

(b) Let f(r) denote the probability density function of R, a U(0, 1) random variable.
Then f(r) =1 when 0 < r <1 and is zero elsewhere. Let w and ¢ denote the
mean and standard deviation of R. Show that

! 1
p=[ frar=.

! 1
o= [ (r—pnyf) dr= 3.

thereby verifying that over the entire sequence the generator in (a) gives numbers
with the correct mean Vm, and with almost the correct variance when m is large.

6. Show that 2 is a primitive root of 13. Hence find all multiplicative linear congruential
generators with modulus 13 and period 12.

7. Consider the multiplicative generator
X, = (aX;)mod 2°

where a =5 mod 8. This has a cycle length m/4 = 2°~2, The random numbers may
be denoted by R; = X,/2°. Now consider the mixed full period generator

X7, = (aX; +c)mod 2"

where ¢ = (X, mod 4)[(a —1)/4]. Denote the random numbers by R} = X;/2°72. It
is shown in Theorem 2.1 that

. X, mod 4
R, =R+ —
Verify this result for b =5, a = 13, and X, = 3 by generating the entire cycles of
(R} and (R}).
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8.

10.

11.

The linear congruential generator obtains X, from X;. A Fibonacci generator obtains
X, from X; and X;_, in the following way:

X1 = (X;+X;_;)mod m

where X, and X, are specified.

(a) Without writing out a complete sequence, suggest a good upper bound for the
period of the generator in terms of m.

(b) Suppose m = 5. Only two cycles are possible. Find them and their respective
periods and compare with the bound in (a). [Note that an advantage of the
Fibonacci generator is that no multiplication is involved — just the addition
modulo m. However, the output from such a generator is not too random as all
the triples (X,_,, X;, X,,,) lie on just two planes, X;,, =X, +X,_, or X,,, = X, +
X;_, —m. Shuffling the output from such a generator can considerably improve
its properties. |

. (a) Obtain the full cycle of numbers from the generators X,,; = (7X,;)mod 13 and

Y., = (¥;+5)mod 16. Using suitable plots, compare the two generators in
respect of uniformity of the overlapping pairs {(X;, X,,,)} and {(Y;,Y,,,)} for
i=1,2,.... What are the periods of the two generators?

(b) Construct a combined U(0, 1) generator from the two generators in (a). The
combined generator should have a period greater than either of the two individual
generators. When X, = 1 and Y, = 0, use this generator to calculate the next two
U(0, 1) variates.

(a) If U and V are independently distributed random variables that are uniformly
distributed in [0,1) show that (U + V )mod 1 is also U[0, 1). Hence justify the
assertion that R, , ~ U[0, 1) in equation (2.17).

(b) A random number generator in [0, 1) is designed by putting

R X"+Y" d 1
=| — — | MO
" 8 7

where X, =0, ¥, =1, X,,, = (9X,+3)mod 8, and Y,,, = (3Y,)mod 7 for
n=20,1,.... Calculate R), R, ..., Rs. What is the period of the generator,
{R.}?

A U(0, 1) random sequence {U,,n=0,1,...}is

069 079 010 002 043 0.1 076 0.66 0.58

The pseudo-code below gives a method for shuffling the order of numbers in a
sequence, where the first five numbers are entered into the array {T {j}, j=0,...,4}.
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Output T (4) into shuffled sequence
N:=|4T(4)|

T(4) = T(N)

Input next U from unshuffled sequence

T(N):=U

Obtain the first six numbers in the shuffled sequence.

12. Consider the generator X, ; = (5X, 4+ 3)mod 16. Obtain the full cycle starting with
X, = 1. Shuffle the output using the method described in Section 2.3 with k = 6.
Find the first 20 integers in the shuffled sequence.

13. A frequency test of 10000 supposed U(0, 1) random numbers produced the following
frequency table:

Interval 0-0.1 0.1-02 02-03 03-04 04-05 0.5-06
Frequency 1023 1104 994 993 1072 930
Interval 0.6-0.7 0.7-0.8 0.8-0.9 0.9-1.0

Frequency 1104 969 961 850

What are your conclusions?






General methods for generating
random variates

In this chapter some general principles will be given for sampling from arbitrary univariate
continuous and discrete distributions. Specifically, a sequence is required of independent
realizations (random variates) x,, x,, ... of a random variable X. If X is continuous then it
will have a probability density function (p.d.f.) fy or simply f. In the discrete case X will
have a probability mass function (p.m.f.) p,. In either case the cumulative distribution
function is denoted by Fy or just F.

3.1 Inversion of the cumulative distribution function

If X is a continuous random variable with cumulative distribution function F and R ~
U (0, 1), then the random variable F~! (R) has a cumulative distribution function that is
F. To see this, let x denote any real value belonging to the support of f. Then
P[F'(R)=x]=P[0<R<F (x)]
since F is strictly monotonic increasing on the support of f. Since R ~ U (0, 1),
PO<R<F(x)]=F(x),

giving the required result.

Example 3.1 Derive a method based on inversion for generating variates from a
distribution with density

f ) =ae

on support [0, o).

Simulation and Monte Carlo: With applications in finance and MCMC J. S. Dagpunar
© 2007 John Wiley & Sons, Ltd



38 General methods for generating random variates
Solution. The distribution function is
F(x)= /Ox)\e—M du=1—e™
for x > 0. Therefore
l—e ™ =R
and so
X=F"' (R):—%ln(l—R). (3.1)
Equation (3.1) shows how to transform a uniform random number into a negative

exponentially distributed random variable. Since R has the same distribution as 1 — R we
could equally well use

X = —%ln (R). (3.2)

This result will be used frequently. For example, to sample a random variate x ~ Exp (A)
from a negative exponential distribution with A =

1
55

x=-3InR.
Therefore, if the next random number is R = 0.1367, the exponential variate is

x = —31n(0.1367) = 5.970.

Inversion is somewhat limited in that many standard distributions do not have closed
forms for F~!. For example, applying inversion to a standard normal density yields

/X ! e du=R.
—c0 A/ 27T

This cannot be inverted analytically. It is true that X can be solved numerically.
However, this approach is to be avoided if at all possible. It is likely to be much slower
computationally, compared with other methods that will be developed. This is important
as perhaps millions of such variates will be needed in a simulation. Table 3.1 shows the
common standard continuous distributions that do have a closed form for F~!.

Table 3.1 Continuous distributions

Name f(x) Parameters Support
Weibull aA®xe ! em ()" a>0,A>0 [0, o0)
.- Ne—M _
Logistic ey A>0 (=00, )
Cauchy : (—o0, )




Inversion of the cumulative distribution function

Turning now to discrete distributions, suppose that X is a discrete random variable
with support {0, 1, ...} and cumulative distribution function F. Let R ~ U (0, 1) and
W=min{x:R<F(x),x=0,1,...}. Then W has a cumulative distribution function
F. To see this, note that W =x (x=0,1,...) if and only if F (x—1) < R < F (x). This
happens with probability F (x) — F (x — 1) = p,, as required.

Example 3.2 Suppose p. = 61 (1—0),x=1,2,..., where 0 < 6 < 1. Derive a
method of generating variates from this (geometric) distribution.

Solution. Now
F(X)=Zpi= 1-6°
i=1

and so
X=min{x:R<1-6",x=1,2,...}
or

i In(1—R)
X=min{x:x>—=,x=1,2,...

In6
Replacing 1 — R by R as before gives

where | | is the floor function.

There are very few discrete distributions that can be inverted analytically like this.
In general, and particularly for empirical distributions, it is usually necessary to search
an array of cumulative probabilities, {F (0), F (1), ...}. The Maple procedure below
shows how to do this for any discrete distribution with a finite support, say {0, ..., k}.
Note how the parameter ‘cdf’ is specified to be of type list.

> discinvert:=proc(cdf::list)local R,x;
R:=evalf(rand()/10°12);
x:=1;
do;
if R<cdf[x] then return x — 1 else x:= x+ 1 end if;
end do;
end proc;

The parameter ‘cdf’ is a list of the cumulative probabilities. Thus, for example, with
F[0]=0.1,F[1] =0.3,...,F[7] = 1, invoking the procedure generates the random
variate 2 as shown below:

> discinvert([.1, .3, .5, .55, .8, .95, .99, 1.0]);
2

Note in the procedure listing that the value x — 1 is returned, since in Maple the smallest
subscript for any list is 1, yet the support of the distribution here is {0, ..., 7}.

39
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3.2 Envelope rejection

We wish to sample variates from the density f that is proportional to some non-negative
function A, that is

h (x)

O e

and it is supposed that there is no closed form for the inverse F~!. Choose another
(proposal) density,

)
fyesupport(g) 8 (y) dy

from which it is easy to sample variates. Additionally, choose g such that support(h) C
support(g) and g (x) > h(x) Vx € support(g). Now generate a prospective variate, y say,
from the proposal density. Then accept y with probability % (y) /g (y). If it is not accepted
it is rejected, in which case repeat the process until a prospective variate is accepted.
The idea of the method is to alter the relative frequency distribution of y values, through
the probabilistic rejection step, in such a way that the accepted ones have precisely the
required distribution f. Note how the function g majorizes A. If, in addition, the two
functions are equal at one or more points, then the graph of g envelopes that of h.
The following algorithm will generate a variate from a density proportional to 4.

Algorithm 3.1 [. Sample independent variates y ~ g(y)/ f) esuppori(e) 8 (yv)dy and
R~U@QO,1).IfR<h(y)/g(y) accept y, else goto 1.

Proof. To show the validity of the algorithm let ¥ have a density proportional to g.
Then

P(y<Y <y+dy|Y is accepted)
g(y)dy

o P (Y is accepted |y < ¥ < y+dy) (3.3)
fyesupport(g) 4 (y) dy
h
o P (R < ﬂ) g () dy. (3.4)
gy

Now h(y)/g(y) <1,s0 P(R < h(y)/g(y)) is just A (y) /g (y). Substituting into (3.4) it
is found that

P(y<Y <y+dy|Y is accepted) i (y)dy.
It follows that accepted y values have the density f, as required.

The algorithm is equally valid for discrete distributions, once the integrals are replaced
by sums. It is clear that the efficiency of the algorithm will be improved if the overall
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probability of accepting y values is large, and this is achieved by choosing g to be similar
in shape to h. Since

h
P (Y is accepted |y < Y <y+dy) = ﬁ,
g)
the overall probability of acceptance is
h (y) 8 (y) dy _ nysuppcrl(h) h (y) dy
/ = . (3.5)
st £ 0) Lonponte 8 88 [ o8 0) 4

One of the merits of the algorithm is that the density f is required to be known only up
to an arbitrary multiplicative constant. As we shall see in chapter 8 this is particularly
useful when dealing with Bayesian statistics.

Example 3.3 Devise an envelope rejection scheme for generating variates from a
standard normal density using a negative exponential envelope.

Solution. It will suffice to generate variates from a folded standard normal distribution

with density
2
f) =y e
™

on support [0, c0), and then to multiply the variate by —1 with probability % In the
notation introduced above let

h(x)=e""
on support [0, oo). Consider an envelope

g(x) =Ke™

on support [0, o), where K > 0 and A > 0. As g should majorize A, for given A we must
have

Ke M > e—x2/2
Vx € [0, 00). Efficiency is maximized by choosing
K = min [k ke ™ >e 2 Vx> O}
= min {k k> e_(x_’\)z/ze’\Z/2 Vx > 0}
— e/\2/2
Now, the overall probability of acceptance is, by Equation (3.5),

f,vesuvport(h) h(y)dy _ fooo e—y2/2dy _ N2 (3.6)

Sicsupporin § ) dy [T e 2ebdy  eV/2A-

41
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This is maximized when A = 1, showing that the best exponential envelope is
g(y)=e'%e™.

Figure 3.1 shows how g envelopes h.
It remains to generate variates from the proposal density that is proportional to g(y).
This is

g(y) o
—=e
fyesum)oﬂ(g) 8 (y ) dy

Given a random number R, ~ U (0, 1) we put
y=—In(R,).
Given a second random number R,, the acceptance condition is

2
hG) _ e " — e 012

R, < =
2T g(y) el

9’
which can be rewritten as

In(Ry) > 5 (= 1)’

Envelope rejection for a folded normal
density with an exponential proposal density

1.6

. y=9(x)=exp(0.5-x)

0 0.5 1 15 2 2.5 3
X

Figure 3.1 An exponential envelope for a folded standard normal density
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Now —In(R,) and y are independent Exp (1) variates (i.e. from a negative exponential
density with expectation 1). Writing these as E, and E, respectively, the condition is
to deliver E, if and only if E, > %(E1 — 1)2. The Maple procedure below shows an
implementation of the algorithm.

> stdnormal:=proc() local r1,r2,r3,E1,E2;
do;
rl:=evalf(rand()/10"12);
r2:=evalf(rand()/10"12);
El:=-In(rl);
E2:=-In(r2);
if E2 > 0.5*(E1-1)"2 then break end if;
end do;
r3:=evalf(rand()/10"12);
if r3 > 0.5 then E1:=-E1 end if;
E1;
end proc;

Note how a third random number, 13, is used to decide whether or not to negate the
folded variate. A seed can now be specified for Maple’s uniform generator ‘rand’. The
few lines of Maple below invoke the procedure ‘stdnormal’ to generate five variates:

> randomize(4765);
for j from 1 to 5 do;
stdnormal();
end do;

4765
4235427382
1856983287
6611634273
-.6739401269
-.9897380691

How good is this algorithm? From a probabilistic point of view it is fine. The accepted
variates will have the required standard normal density, providing the uniform random
number generator is probabilistically adequate. However, because a typical simulation
requires so many variates, we are also concerned with the speed at which they can be
generated. This depends upon various features of the algorithm. ‘Expensive’ calculations
such as evaluating a logarithm or exponential are time consuming. To a lesser extent,
so are multiplications and divisions. Also, the greater the number of uniform random
numbers required to generate a random variate, the larger the execution time. Finally, if
there are preliminary calculations associated with the parameters of the distribution, we
would prefer this ‘set-up’ time to be small, or at least that a large number of variates be
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generated to justify this. For this standard normal density there is no set-up time. From
Equation (3.6), the probability of acceptance is

Ja2
™/ = /X —0760.
A=l 2e

AT
Each prospective variate requires two random numbers and two logarithmic evaluations.
Therefore, the expected number of logarithmic evaluations required per accepted variate is
2/0.760 = 2.63 and the expected number of uniform random numbers is 2.63 41 =3.63,
since one is required for unfolding the variate. It can be seen that such a procedure
is rather inefficient compared with, for example, the inversion method for generating
exponential variates. In that case each variate requires exactly one random number and
one logarithmic evaluation. More efficient ways of generating standard normal variates
will be discussed in Chapter 4.

Appendix 3.1 contains a procedure ‘envelopeaccep’ which computes the overall
acceptance probability, given a target density (i.e. the density from which variates are to
be sampled) proportional to 4(x) and an envelope proportional to r(x).

3.3 Ratio of uniforms method

Suppose that there are two independent uniformly distributed random variables,
U~U,1) and V~U(—a, a), where a is a known positive constant. We can create
a new random variable, X = V/U , from the ratio of these two uniforms. What is the
distribution of X? The joint density of U and V is

1
fU,V(“? v) = z

over the support 0 < u < 1 and —a < v < a. Now v = xu, where x is a realized value of
X. Therefore the joint density of U and X is

fU,x(“’ x) = fX|U:u (x, u) fry (u)

0

- 8_v Tviw=u(xu, u) fy ()
X

= ufyy(u, xu)

_u

" 2a

over support —a < xu < a and 0 < u < 1. Integrating over u, the marginal density of X is

min(a/|x|,1) u e (|X| < Cl),
fx0 = | Zdu=1{ 4

2a a
2 (|x| = a).

Such a density is bell-shaped, except that the top of the bell has been sliced off by a line
that is parallel to the x axis.
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Can a ratio of uniforms be used to obtain variates from any chosen distribution?
The previous example selected a point (U, V) uniformly distributed over the rectangle
(0,1) x (—a, a). The following theorem due to Kinderman and Monahan (1977) modifies
this by selecting (U, V) to be uniformly distributed over a subset of a rectangle.

Theorem 3.1 Let h be any non-negative function with fxesuppo rl(h)h()c)d)c < oo. Let

C= {(u, v):0<u<./h(v/u),v/ue support(h)}. Let the point (U,V) be uniformly
distributed over C and let X = V/U. Then the probability density function of X is
h(x)/ f_oooo h(x)dx.

Proof. The joint density of U and V is

fU,V(u’ U) = A_l

on support C, where A= [ [ ¢ dudv. Now put X = V/U. Then the joint density of U and
X is

fU,X(M’ x) = uA™!

on support { (u,x):0 <u<./h(x), x € support(h) } It follows that the marginal density
of X is

£o) /\/’1(*) udu  h(x)
x) = —_— =

. 0 A 24
Since f is a density, we must have

* h(x)d

| = B (3.7)
2A
and
h(x)
fX('x) - /jooo h(x)dx,

as required.

The theorem leads directly to a method of generating random variates with the density
proportional to i. The only technical problem is how to generate points uniformly over
the region C. Usually, this is done by enclosing C within a rectangle D with sides
parallel to the # and v axes. Generating points uniformly within D is easy. If such a point
also falls in C it is accepted and V/U (a ratio of uniforms) is accepted; otherwise it is
rejected.
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Example 3.4 Devise a ratio of uniforms algorithm for sampling from the density
proportional to h(x) = exp(—x) on support [0, 00).

Solution. Let
vy v
C= {(u, v):0<u<_[exp (——), —€ support(h)}
u/ u

= {(u v):0<u<exp (—l) , E € support(h)}

2u
={(u,v):0<u<1,0<v=<—-2ulnu} (3.8)
Note how C is the closed region bounded by the curves v=0,v= —2ulnu. We will

enclose this region by the minimal rectangle D = (0, u*] x (0, v*], where u™ = 1 and
vt =max,_,,(—2ulnu) =2/e. This leads to the algorithm

1. generate R, R, ~ U(0, 1)
2 %
U=R,V:i=-R,, X :=—
e U

If —2InU > X then deliver X else goto 1

The algorithm generates a point (U, V) uniformly over D and accepts it only if it falls in
C, that is if 0 < U < exp[—V/(2U)]. The acceptance probability is

[fodudv A
[ [,dudv T outet’

From Equation (3.7) this is

17, h(x)dx B o sexp(—x)dx 12 e
vtut vtut 2/e 4

The following theorem allows a minimal enclosing rectangle to be found, given any
non-negative valued function 4.

Theorem 3.2 Define C as in Theorem 3.1. Let
ut = max /).
v =ma (V)
v =mip (</iG9).
Let D=0, ut] x[v™,v"]. Then C C D.
Proof. Suppose (u,v) € C.Put x=v/u. Then 0 < u < \/m <u't. Now suppose v > 0.

Then x > 0. Multiplying both sides of the inequality on u by v/u gives v < x/h (x) <v™.
Similarly, if v <0 then x <0 and v > x,/h(x) > v~. This shows that (u, v) € D.
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Example 3.5 Devise a ratio of uniforms method for the standard normal distribution.

Solution. Since f (x) o exp (—2x?) we will take / (x) = exp (—1x?). Therefore,

= max /exp ——x2
( ( 1 )
= max | x, [exp | — —x2
_ 1
= mm ex =
P72

Therefore the algorithm is

mll\)
Nll\)

[\

1. generate R, R, ~ U(0, 1).
U=:R,,V:=y2/e(2R,—1),X:=V/U.
If —InU > X*/4 deliver X else goto 1.

The acceptance probability is

e exp(—%xZ)dx 2 _ em
242/ 42 4

Figure 3.2 shows the region C in this case.

=0.731.

The region C in the ratio method for the standard normal

08 y=v+

v =2u*sqgrt(—In(u))

v =—2u*sqrt(—In(u))

Figure 3.2 Ratio of uniforms: standard normal density
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Note that any ratio algorithm requires knowledge only of the density up to a
multiplicative constant, as in envelope rejection. However, in order to calculate the
probability of acceptance, that constant must be known. Appendix 3.2 contains a procedure
‘ratioaccep’ which computes the overall acceptance probability for arbitrary p.d.f.s.

3.4 Adaptive rejection sampling

A feature of some simulations is that each time a random variate is required, it is from
a different distribution. In envelope rejection we have seen that in order to sample from
a density that is proportional to # an envelope function g must be found such that
g (x) = h(x)Vx € support (h). The (fixed) processing time to find such a function (it
often involves numerical maximization of a function) can be considerably more than the
extra time required to generate a successful proposal variate. In a sense, the ‘fixed cost’
of variate generation is high compared with the variable cost, and therefore the procedure
is economic only if sufficient variates are generated from the distribution in question.
Adaptive rejection sampling aims to make this fixed cost lower, which is of great benefit
if just one variate is to be generated from the distribution in question. The method was
derived by Gilks and Wild (1992) in response to variate generation in Gibbs sampling
(see Chapter 8), where a single variate is required from each of a vast number of different
nonstandard distributions.

The basic idea of adaptive rejection sampling is to use a piecewise exponential envelope
g (x) = exp[u, (x)], where u, (x) is a piecewise linear function based on k abscissae in
the domain of i. The adaptive element refers to the insertion of extra pieces (k:=k+1)
into the envelope, thereby making it a better fit to 4. The usual form of the algorithm is
applicable only to densities that are log-concave. Fortunately, many densities satisfy this
condition.

Let f(x) be a univariate probability density function from which we wish to sample
variates. Let & (x) o< f(x) and D, = support(h) where D, is connected. Let r(x) = In[A(x)]
where r(x) is concave, that is #’(x) < 0 Vx € D,. Then h (x) is said to be log-concave.
Let x,,...,x, € D, be a set of k abscissae such that x; <--- < x;.

Now construct an upper envelope to y = e’™ as follows. First derive an upper envelope

y=1u; (x) to y=r(x). The tangents to r at x; and x,,;, j =1, ..., k—1, are respectively
y= r(xj)—i—(x—xj) r'(x;) (3.9)

and
y=r(x;) + (x=x;)r (x)5)- (3.10)
Let these tangents intersect at x = z;. Then for given j € {1,...,k} Equation (3.9)

is an upper envelope to y = r (x)Vx € (zj-1 zj], where x, =z, = inf{x: x € D,} and
X =z =sup{x:x € D,} are defined. Therefore, an upper envelope to y = r(x) is
y = u,(x), where

e (x) = r(x;) + (x—x))r'(x;),  x€(z;_y. 2]
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for j=1,..., k. From Equations (3.9) and (3.10),

. r(xj) - r(xH_]) _xjr,(xj) +xj+lr/(xj+1)

r/(ijrl)_r/(xj)

for j=1,...,k— 1. Figure 3.3 shows a typical plot of y = u,(x) and y = r (x).

From this construction, u,(x) > r (x) Vx € D,, and it follows that e’™ <e“™ Vx e D,.
Now u,(x) is piecewise linear in x and so y =" is a piecewise exponential upper
envelope to y = & (x) =e’™ (see Figure 3.4).

A prospective variate Y is sampled from the density e®)/ fxf)“' e“Mdx, which is
accepted with probability e /e (< 1). Therefore, in the usual envelope rejection
manner

er()’) e”k(y)dy
e () ka“ e (¥ dx
Xo

P(y <Y< y+dyand Y is accepted) =

e’0dy
X0

showing that the density of accepted variates is proportional to e, as required, and that
the overall probability of acceptance is

f;;k+l er(y)dy B fx“:)kﬂ h (y) dy
[Eremdy [T em@dy

X0 X0

(3.11)

To illustrate, take a variate X ~ gamma (¢, 1) with a density proportional to
h(x) =x*""e™
Adaptive rejection for standard gamma, alpha=10:

Piecewise linear upper and lower envelopes to r(x)
with two abscissae at x1=4.5, x2=14.5

15
] _Yy=u2(0)
10 1 P —
y ] . p \
51
0 ] T T T T T T T T T T T T T T T T T T 1
0 5 10 15 20
] X
57 [y=rx)
] y=12(x)
-10-

Figure 3.3 Adaptive rejection with two abscissae : upper and lower envelopes to r(x)
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on support (0, o0). It is easily verified that this is log-concave when « > 1. Now,
r(x) =In[h(x)] = (¢—1)Inx—x.

Suppose « = 10. Take two abscissae, one on either side of the mode (x =9), say at x, = 4.5
and x, = 14.5. The upper envelope y = u,(x) is constructed as shown in Figure 3.3.

Figure 3.4 shows the piecewise exponential envelope. Note how the overall probability
of acceptance is given by a comparison of the areas under exp[u,(x)] and % (x) [see
Equation (3.11)]. Suppose the prospective variate is y = 11 and that it is accepted. Then
the procedure stops. Alternatively, if y =11 is rejected, then a third abscissa, is introduced
so that x, = 4.5, x, = 11, and x; = 14.5. To complete construction of the new envelope,
y = u; (x), we will need r(x,) = r(11), but note that this has already been calculated in
deciding to reject y = 11.

Figures 3.5 and 3.6 show the corresponding plots for the case of three abscissae.
Note how the probability of acceptance in Figure 3.6 is now higher than in Figure 3.4.
Experience with adaptive rejection algorithms shows that usually a variate is accepted with
four or fewer abscissae. By that time the upper envelope is usually much closer to A (x).

Note how the condition for acceptance is

exp[r(y)]
explu(y)]

Adaptive rejection for standard gamma, alpha=10:
Piecewise exponential upper and lower envelopes
to h(x) with x1=4.5, x2=14.5

ly=exp[u2(x)]

100000 -

Figure 3.4 Adaptive rejection with two abscissae : upper and lower envelopes to exp[r(x)]
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Adaptive rejection for standard gamma, alpha=10:
The effect of a third abscissa. Piecewise linear upper and
lower envelopes to r(x) with x1=4.5, x2=11, x3=14.5

=51 [ y=r(x)

1 y=12(x)

Figure 3.5 Adaptive rejection with three abscissae: upper and lower envelopes to r(x)

Adaptive rejection for standard gamma, alpha=10:
The effect of a third abscissa. Piecewise exponential upper
and lower envelopes to h(x) with x1=4.5, x2=11, x3=14.5

Figure 3.6 Adaptive rejection with three abscissae: upper and lower envelopes to exp[r(x)]
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where R ~ U(0, 1). This reduces to

E>u(y)—r(y)

where E ~ Exp (1).

A further refinement is to construct a piecewise linear lower envelope, y = [, (x), that
is itself enveloped by y = r(x). A convenient choice for y = /,(x) is formed by chords
joining (x;, r(x;)) to (x;4, r(x;;)) for j=1,...,k—1 with [, (x) = —oco when x < x; or
x> x. If

it follows that E > u,(y) — r(y) (as r envelopes [,), and therefore the variate is accepted.
This is computationally advantageous since [, (y) is often less expensive to evaluate than

E>u(y) —1.(y)

r(y). Only if the pre-test (3.13) is not satisfied is the full test (3.12) carried out.

3.5 Problems

1. Use inversion of the cumulative distribution function to develop methods for sampling

variates from each of the following probability density functions:

f(x) Support Name
(a) 2—10 [5, 25] Uniform
O e 6]
(c) —-e™s [0, 00) Exponential, mean 5
(dy =eM (—o0,00)  Double exponential
(e) ; exp |:—§ (x— 2)] [2, 00) Shifted negative exponential
H  4x(1-x?) 0,1)

za—x (Ob<x<a) _

(2) 2(11__ X) @sx<1) (0,1) Triangular
(h) % (—o0,0)  Logistic
(i) m (—o0,00)  Cauchy
G a(x)* Aexp[— (Ax)*] (0, 00) Weibull, A > 0, @ > 0
(k) xexp [—% (x> —6?) (6, ) 0>0
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2. Use inversion of the cumulative distribution function to develop a sampling method
for the following discrete distributions:

(a) p,=1/(n+1) on support {0, 1, . .., n}, where n is a specified positive integer;
®) . 0.1 0.2 0.4 0.2 0.1
X 1 2 3 4 5

(c) binomial (3,0.9).

3. Derive an envelope rejection procedure for sampling variates from the density
proportional to A(x) where

on support (—oo, 00). It may be assumed that there is access to a source of independent
variates from a standard normal distribution. Comment on the efficiency of your
method, given that [~ h(x)dx = 1.5413.

4. Derive envelope rejection algorithms for sampling from densities proportional to /(x)
below. In each case use an envelope y = g(x) to the curve y = h(x).

(a) h(x) = x(1 —x) on support (0,1) using g(x) = constant;
(b) h(x) =exp(—31x?) on support (—oo, o) using g(x) o (1 +x%)7";
0.5x%

(c) h(x) =exp(—3x?) /(1+x?) on support (—oo, 00) using g(x) oce 3

(d) h(x) = exp (—%x2 on support [f,00) where 6 > 0, using g(x)
xexp[—3 (x* — 6?)] as given in Problem 1, part (k).

5. A discrete random variable X has the probability mass function

1/x
Z_j:l 1/j
on support {1, ..., n}, where n is a known integer > 2.

(a) Show that X = |Y| where Y is a continuous random variable with density
proportional to 4 (y) on support [1,n+ 1) and

1
h(y)=-——:.
L]
(b) Use an envelope g to h where
()_1 [1=y<2),
sV = ﬁ 2=<y<n+1),

to establish the validity of the following Maple procedure for generating a value
of the discrete random variable X.
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> harmonic:=proc(n) local r1,12,x,ix;
do;
rl:=evalf(rand()/10°12);
ifrl <1/(14+1n(n*1.0))
then return 1
else
x:= 1+ (n*exp(1.0))r1/exp(1.0);
r2 := evalf(rand()/10°12);
ix := floor(x);
if r2 < (x —1)/ix then return ix end if;
end if;
end do;
end proc;

(c) Show that a lower bound on the overall probability of acceptance is

1+In[(n+1)/2]
1+1n(n)

6. An envelope rejection procedure is required for generating variates from a density
proportional to h(x), where h(x) = cos?(x)exp(—Ax) on support [0,c0) and
A>0.

(a) Show that the optimal exponential envelope is g(x) = exp(—Ax) and that the
overall probability of accepting a prospective variate is (A2 +2)/(A% +4).

(b) Write a procedure in Maple suitable for sampling with any specified value of A.

(c) If inversion is to be used, show that, given R ~ U(0, 1), it is necessary to solve
the equation

[A? cos(2x) —2Asin(2x) +A* 4] e
2(A242) '
for x. Which of the methods (b) or (c) do you prefer and why?

7. Envelope rejection can also be used with discrete distributions. Derive such a
method for generating variates {x} from a probability mass function proportional to
(1+x) (%)x using an envelope proportional to (Z)X, both on support {0,1,2,...}.

3
What is the probability of acceptance?

8. Devise ratio of uniforms algorithms for densities proportional to & below. In each
case calculate the overall acceptance probability.

(a) h(x) = x*(1 — x) on support (0,1). Can you suggest a method for improving the
acceptance probability?

(b) h(x) = +/xexp(—x) on support (0, 00).

© h()=(1+%)

2
on support (—oo, 00).
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(a) Derive a ratio of uniform variates method for generating random variates from a
density that is proportional to &(x) where h(x) = (1+x%)~1.

(b) Let U, and U, be independently distributed as a U(—1, 1) density. Show from
first principles that the density of U,/U, subject to U2 + U} < 1 is the Cauchy
distribution with density

1
(14 x2)

on support (—oo, 00).

(c) Let X and Y denote identically and independently distributed random variables
with an N(0, 1) density. Show from first principles that the density of Y/X is the
Cauchy distribution of (b).

(This is a more difficult problem.) Let X have a density that is proportional to /(x)
and let

C= {(u, v):0<u< h(Z), g € support(h)}.

Define a linear map,

) (0) = )
C,= {(r,s): (;) =A(';),(u,v)ec}.

(a) Show that if (R, S) is uniformly distributed over C, then the density of S/R is
proportional to % (s/r +tan #) and that consequently a variate x may be generated
by taking x =tan 0+ s/r.

and define

(b) Show that C, is obtained by rotating C through a clockwise angle 6 about the
origin and then applying a specified deformation.

(¢) Let m = mode(X) and max /h(x) = u™. Show that the line u = u™ touches the
boundary of C at (u*, utm).

(d) Why might it be better to use the ratio method on C, rather than C?

(e) If X has a symmetric distribution it may be conjectured that 6 = tan™' m will

maximize the overall probability of acceptance. However, for a nonsymmetric
distribution this will not be generally true.

If h(x) = x*(1 —x)" on support (0,1) use Maple to compare the probabilities
of acceptance using:
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11.

12.

(i) the standard ratio method,
(ii) the relocated method where Y =X —m = X — %,
(iii) a numerical approximation to the optimal choice of 6.

Consider the following approach to sampling from a symmetric beta distribution with
density

I'2a)
I*(a)

¥ 1-x)*" (0<x<l,a>1).

fx(x) =

Put Y = X — 1. Then the density of Y is proportional to h(y) where

1 N\ 1 1
=(-- ——<y<-= 1).
h(y) (4 y) < SSys5.a> )

Now show that the following algorithm will sample variates {x} from the density
fx(x). R, and R, are two independent U(0, 1) random variables.

1 a—1
Lu=(2) e

1
(1= )RR, = )
261 Ja

V=

\%4
Y=—
U

1 (a=1)/2 1
IfU< (Z - Y2> deliver Y + 7 else goto 1.

Using Maple to reduce the mathematical labour, show that the probability of
acceptance is
@)

7 Jmla—1 (l—a)/2aa/2
4F(a+%)f( )

Plot the probability of acceptance as a function of @ and comment upon the
efficiency of the algorithm. Show that for large « the acceptance probability is
approximately

—V;Te —0.731.

The adaptive rejection sampling method is applicable when the density function is
log-concave. Examine whether or not the following densities are log-concave:
(a) normal,

(b) f(x) oc x* e~ on support (0, o), a > 0;
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(c) Weibull: f(x) ox A%*ax®'exp[— (Ax)“] on support (0, 00), A > 0, @ > 0;

(d) lognormal: f(x) o 1/(ox)exp {—% [(lnx—u)/a]z} on support (0, 00), o > 0,
ume R.

. In adaptive rejection sampling from a density f o &, r(x) = In[k(x)] must be concave.
Given k ordered abscissae xo, . . . , X; € support(k), the tangents to y = r(x) at x = x;
and x = x;,, respectively, intersect at x =z;, for j=1, ..., k—1. Let x, =z, =
inf(x : x € support(h)) and x;,; = z; = sup(x : x € support(h)). Let u,(y), xy <y <
X4, be the piecewise linear hull formed from these tangents. Then u, is an upper
envelope to r. It is necessary to sample a prospective variate from the density

_explug(y)]
o) = St explug (y)]dy”

(a) Show that

o) = Zp,¢>,(y)

where
explu (y)] R
— , 124
¢;(v) =1 [/ explu ()] dy o
0, y & (Zj—l’ Z_,-],
and
S explu,()]dy
p' = X
T L explug ()]dy
forj=1,...,k.

(b) In (a), the density ¢ is represented as a probability mixture. This means that in
order to sample a variate from ¢ a variate from the density ¢; is sampled with
probability p,(j=1,..., k). Show that a variate Y from ¢; may be sampled by
setting

] J
Y=7 — In[1=R+R (zj=zj-)r (x))
Z’71+r’(xj) n|[ +Re ]
where R ~ U(0, 1).

(c) Describe how you would randomly select in (b) the value of j so that a sample
may be drawn from ¢ ;. Give an algorithm in pseudo-code.
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14. In a single server queue with Poisson arrivals at rate A(< ) and service durations
that are independently distributed as negative exponential with mean ™!, it can be
shown that the distribution of waiting time W in the queue, when it has reached a
steady state, is given by

A
P(W>w) = Zewhw
I

when w > 0. Write a short Maple procedure to generate variates from this distribution
(which is a mixture of discrete and continuous).



Generation of variates from
standard distributions

4.1 Standard normal distribution

The standard normal distribution is so frequently used that it has its own notation.
A random variable Z follows the standard normal distribution if its density is ¢, where

1
2

on support (—oo, o). The cumulative distribution is @ (z) = [~ ¢ (u)du. It is easy to
show that the expectation and variance of Z are 0 and 1 respectively.

Suppose X = u+0Z for any u € R and o > 0. Then X is said to be normally distributed
with mean u and variance 0. The density of X is

1
V2o

and for shorthand we write X ~ N (u, 02).

Just two short algorithms will be described for generating variates. These provide a
reasonable compromise between ease of implementation and speed of execution. The
reader is referred to Devroye (1986) or Dagpunar (1988a) for other methods that may be
faster in execution and more sophisticated in design.

6712/2

¢ (z)=

o L=w)/a/2

fx(x)=

4.1.1 Box-Miiller method

The Box—Miiller method is simple to implement and reasonably fast in execution. We
start by considering two independent standard normal random variables, X, and X,. The
joint density is

1 .
Fux, (), ) = —e (+3)/2
1-X2 -

Simulation and Monte Carlo: With applications in finance and MCMC J. S. Dagpunar
© 2007 John Wiley & Sons, Ltd
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on support R%. Now transform to polars by setting X, = Rcos 6 and X, = Rsin 6. Then
the joint density of R and 0 is given by

dx, ox,
1 20l ar 060
— | dr 00
fro(r,0)drdo= 2ﬂ_e ox, dx, drdo
ar 40
1
= 5-e " Prdrdo
™

on support r € (0, o) and 6 € [0, 277]. It follows that R and 6 are independently distributed
with 2R? ~Exp(1) and 6 ~ U [0, 27]. Therefore, given two random numbers R, and R,,
on using inversion, %Rz =—InR, or R=,/—2InR,, and 6 = 2mR,. Transforming back
to the original Cartesian coordinates gives

X, =+/—-2InR, cos (27R,),
X, =+/—2InR,sin (27R,).

The method delivers ‘two for the price of one’. Although it is mathematically correct,
it is not generally used in that form since it can produce fewer than expected tail variates
(see Neave, 1973, and Problem 1). For example, using the sine form, an extreme tail
value of X, is impossible unless R, is close to zero and R, is not. However, using a
multiplicative linear congruential generator with a small multiplier will ensure that if R,
is small then so is the next random number R,. Of course, one way to avoid this problem
is to shuffle the output from the uniform generator.

Usually a variant known as ‘polar’ Box—Miiller is used without the problems concerning
tail variates. This is now described. We recall that X; = Rcos 6 and X, = Rsin 0, where
1R?> ~Exp(1) and 6 ~ U [0, 27]. Consider the point (U, V) uniformly distributed over
the unit circle C = {(u, v) : >4+ < 1}. Then it is obvious that tan~" (V/U) ~ U [0, 2]
and it is not difficult to show that U*>+ V? ~ U (0, 1). Further, it is intuitive that these two
random variables are independent (see Problem 2 for a derivation based on the Jacobian
of the transformation). Therefore, tan~! (V/U) = 2wR, and U*+ V? = R, where R, and
R, are random numbers. Accordingly, (U, V) can be taken to be uniformly distributed
over the square D = {(u,v): —1 <u <1,—1 <v < 1}. Subject to U>+ V? < 1 we return
two independent standard normal variates as

U
X, =/=2In(U>+V?)

NIZERTZY

14
X, =/ -2In (U + V2) ——e.
’ ( N

A Maple procedure ‘STDNORM’ appears in Appendix 4.1.
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4.1.2 An improved envelope rejection method

In Example 3.3 a rejection method was developed for sampling from a folded normal.
Let us now see whether the acceptance probability of that method can be improved. In
the usual notation for envelope rejection we let

h(x)=e "
on support (—oo, c0) and use a majorizing function

1 ([0,
g(x) = {e—m—c) (x| > ¢),

for suitable A > 0 and ¢ > 0. Now

8 _ fer” (12l <o),
h(x)  |e"2=Ax|+Ac (Jx| > o).

We require g to majorize h, so A and ¢ must be chosen such that x?/2 — A|x|+ Ac >
0 V|x| > c. The probability of acceptance is

[Lhwds i
[T ogx)dx  2(c+1/A)

Therefore, we must minimize ¢+ 1/\ subject to x>/2 — \|x|+\c > 0V |x| > c. Imagine
that ¢ is given. Then we must maximize A subject to x*/2 —N|x|+Ac >0V |[x| > c. If
A2 > 2\, that is if X > 2¢, then x?/2 — \|x|+\c < O for some |x| > ¢. Since x*/2 — \|x|+
Ac > 0V |x| when N\ < 2c¢, it follows that the maximizing value of \, given c, is A = 2c.
This means that we must minimize ¢+ 1/(2c¢), that is set ¢ = \/5/2 and A =2¢ = «/5,
giving an acceptance probability of

V2
T _ YT _ 88623,

eI VNGRS VNG B

Note that this is a modest improvement on the method due to Butcher (1961), where
¢ =1 and A =2 with an acceptance probability of «/ﬁ/ 3 =0.83554, and also on that
obtained in Example 3.3.

The prospective variate is generated by inversion from the proposal cumulative
distribution function,

W™ s (o Q)
N2Z+20/42D) +(1/V2)  ° 2 )
() = UV2+a+1/v2  V2x42 |x|<£
1/V242(1/4/2) +1/32 4 -2 )
Y- (De (x>£)
1V2+2(1/V2) 142 4 2 )

61
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Applying inversion, given a random number R, we have

2[In(4R,) — 1 1
V2lIn(4R,) ~ 1] kel).
2 4
1 3
X = \/E(ZRI—I) Z<R1§Z N
V2[1 —In{4(1 - R))}] <3 )
-<R/].
2 4
Given a second random number R,, a prospective variate x is accepted if
Ry <1 (Il < o),
2 < e—(x2/2—)\\)(|+/\c) (|x| - C),

or, on putting £ = —In(R,),

x2/2 x| < %),

V2 4.1

xX2/2—=2)x|+1=(x—+2)2)2 |x|>\/%

The acceptance probability is high, but there is still at least one (expensive) logarithmic

evaluation, E, for each prospective variate. Some of these can be avoided by noting the
bound

1
— —1>—InR,>1—-R,.
2

Let us denote the right-hand side of the inequality in (4.1) by W. Suppose that 1 — R, > W.
Then —InR, > W and the prospective variate is accepted. Suppose —InR, }» W but
1/R,—1 <W. Then —InR, < W and the prospective variate is rejected. Only if both
these (inexpensive) pre-tests fail is the decision to accept or reject inconclusive. On those

few occasions we test explicitly for —In R, > W. In the terminology of Marsaglia (1977),
the function —1In R, is squeezed between 1/R, —1 and 1 —R,.

4.2 Lognormal distribution

This is a much used distribution in financial mathematics. If X ~ N(u, 0?) and ¥ = e*
then Y is said to have a lognormal distribution. Note that Y is always positive. To sample
a Y value just sample an X value and set ¥ = e*. It is useful to know that the expectation
and standard deviation of Y are

py = e

and

oy =E(Y)Ver -1
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respectively. Clearly

P(Y<y)=P(X <Iny)

] _
zq)(ny M)
g

o= oo (M)

g

so that

L tonywyepn

V2moy

on support (0, o).

4.3 Bivariate normal density

Suppose X ~ N(u,, 0?) and Y ~ N(u,, 03), and the conditional distribution of ¥ given
that X = x is

N(u2+p§j(x—ul),o§<1—p2)) (42)

where —1 < p < 1. Then the correlation between X and Y is p and the conditional
distribution of X given Y is

ag
N (Ml Pty ma), 0i(1 —p2)> :
2

The vector (X, Y) is said to have a bivariate normal distribution. In order to generate
such a vector two independent standard normal variates are needed, Z,, Z, ~ N(0, 1). Set

x=u +0,Z
and (from 4.2)

Y=ty +poZ + 05/ 1—p* Z,.

G) N (ﬁ;) * (p(:;'z az\/?_—pz> (2) 4.3)

Later it will be seen how this lower triangular structure for the matrix in the right-hand
side of Equation (4.3) also features when generating n — variate normal vectors, where
n>2.

In matrix terms,
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4.4 Gamma distribution

The gamma distribution with shape parameter o and scale parameter A has the density

(/\Z)a_l /\e—Az

f2(z) = (@)

(z>0) (4.4)
where A > 0, a > 0 and I(«) is the gamma function given by

') =/ v* e vdw.
0
This has the property that I'(«a) = (e —1)I[{(a¢—1),a > 1, and I'(@) = (¢ — 1)! when «
is an integer. The notation Z ~ gamma («, A) will be used.

The density (4.4) may be reparameterized by setting X = AZ. Therefore,

a—1,—x

€

Fr) =" (45)

and X ~ gamma(ea, 1). Thus we concentrate on sampling from Equation (4.5) and set
Z = X/A to deliver a variate from Equation (4.4). The density (4.5) is monotonically
decreasing when a < 1, and has a single mode at x = a — 1 when « > 1. The case a =1
describes a negative exponential distribution. The density (4.5) therefore represents a
family of distributions and is frequently used when we wish to model a non-negative
random variable that is positively skewed.

When « is integer the distribution is known as the special Erlang and there is an
important connection between X and the negative exponential density with mean one. It
turns out that

X=E +E,+---+E, (4.6)

where Ey, . .., E, are independent random variables with density fz (x) =e™". Since the
mean and variance of such a negative exponential are both known to be unity, from (4.6)

E(X)=Var(X) =«
and therefore, in terms of the original gamma variate Z,
o
E(Z)=—
@=3

and
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It can easily be shown that these are also the moments for nonintegral . The representation
(4.6) allows variates (for the « integer) to be generated from unit negative exponentials.
From Equation (3.2),

X:Xa:—lnRi:—ln(ﬁRl). 4.7)

Result (4.7) is very convenient to implement for small integer «, but is clearly inefficient
for large «. Also, in that case, we must test that the product of random numbers does not
underflow; that is the result must not be less than the smallest real that can be represented
on the computer. However, that will not be a problem with Maple.

When « is noninteger a different method is required (which will also be suitable for
integer ).

4.41 Cheng’s log-logistic method
An algorithm will be constructed to sample from a density proportional to #(x) where
h(x) = x*'e™, x > 0. The envelope rejection method of Cheng (1977) will be used,

which samples prospective variates from a distribution with density proportional to g(x)
where

(4.8)

where = a*, A=+/2a — 1 when @ > 1, and A = @ when «a < 1. Since g must envelope
h, for the maximum probability of acceptance, K is chosen as

K= rilzag {x“lex |:(M):——x)‘)2i| } . (49)

It is easily verified that the right-hand side of Equation (4.9) is maximized at x = a.
Therefore K is chosen as

K — aaflefa(a/\ +aA)2aI—A — 4aa+)‘efa.
According to Equation (3.5) the acceptance probability is

/oooh()’)d)’: ) _ Aul(@) Z)tF(a)e“
[Tsdy K/ dahes . das

Figure 4.1 shows the acceptance probability as a function of a. It is increasing from
Yt a=0"%)to 2//m=0.88623 as & — oo (use Stirling’s approximation, I(a)e* ! ~
V27(a—1)*"1/2). Note that for a > 1 the efficiency is uniformly high. An advantage of
the method, not exhibited by many other gamma generators, is that it can still be used
when a < 1, even though the shape of the gamma distribution is quite different in such
cases (the density is unbounded as x — 0 and is decreasing in x).
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Probability of acceptance
in Cheng’s Method
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Figure 4.1 Gamma density: acceptance probability and shape parameter value

It remains to derive a method for sampling from the prospective distribution. From
Equation (4.8) the cumulative distribution function is

p—1/(u+x")  x

) = 1/u S optx

and so, given a random number R,, the prospective variate is obtained by solving G(x) =
1 — R, (this leads to a tidier algorithm than R,). Therefore,

1/A
x:a(l_R1> . (4.10)

Given a random number R,, the acceptance condition is

W) e (@ o)’ (2 e (LG
= = —_— e —_—

2 gx)  a* e (ar+at)? o 2

or, on using Equation (4.10),

X

In (4R?R2) < (a—)\)ln(a) +a—x.
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4.5 Beta distribution

A continuous random variable X is said to have a beta distribution on support (0,1) with
shape parameters a (> 0) and B8 (> 0) if its probability density function is
HNa+B)xe1(1—x)F!
fx) =
He)I(B)

A shorthand is X ~ beta(a, B). A method of generating variates {x} that is easy to
remember and to implement is to set

O=<x<l).

w
X=—"
w+y

where w ~ gamma(e, 1) and y ~ gamma(3, 1) with w and y independent. To show this,
we note that the joint density of w and y is proportional to

e—(w+y) wa—ly,B—l )

Therefore the joint density of W and X is proportional to

B-1
w(l—x d —w

e/ ( ) Yi_ e W HB2 (] — y)B-l 1B ’ 2l

X ox X

Integrating over w, the marginal density of X is proportional to
(1 _x)B—lxlfﬁ—2/ e Wt dyy = (1 — x)P 1A / e (ax)**'x da

0 0

o (1 —x)P 1y,

that is X has the required beta density. Providing an efficient gamma generator is available
(e.g. that described in Section 4.4.1), the method will be reasonably efficient.

4.5.1 Beta log-logistic method

This method was derived by Cheng (1978). Let p = /B and let Y be a random variable
with a density proportional to i(y) where

h(y)=y'A+py) P (y=0). (4.11)
Then it is easy to show that

py

X=—"" 4.12
Tt py (4.12)

has the required beta density. To sample from Equation (4.11) envelope rejection with a
majorizing function g is used where

Ky)\—l

- < >0 ,
ity 00

g(y) =
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w=p*A=min (a,B) if mn (a,B) <1, and A = \/QaB—a—B)/(a+B-2)
otherwise. Now choose the smallest K such that g(y) > h(y) Yy € [0, 00). Thus

K [y‘“(1+py)“5 }
=0 [y (A [oy]M)?

The maximum occurs at y = 1, and so given a random number R, the acceptance condition
is
(U +py) P

/(L yh)

Yy (1+py) P
AL

e 2
_aa1Epy P+
N 2 )

Now, to generate a prospective variate from a (log-logistic) density proportional to g, we
first obtain the associated cumulative distribution function as

R, <

Yo M ldo
o [p+ (p)'J
GW)ZW

0 [+ (pv)
- —[M+(pv)A]_l‘:
= [r+ T

= 1— (1 +yA)_1 .

Setting 1 — R, = G(y) gives

Therefore the acceptance condition becomes
1 wrp
4RIR, < y* (ﬂ) .
1+py

The method is unusual in that the probability of acceptance is bounded from below by
i for all & > 0 and B > 0. When both parameters are at least one the probability of
acceptance is at least e/4. A Maple procedure ‘beta’ appears in Appendix 4.2.
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4.6 Chi-squared distribution

A random variable y? has a chi-squared distribution with n degrees of freedom if its
p.d.f. is

e—x/an/Z—l

1= 2mr )

(x=0)

where n is a positive integer. It is apparent that x> ~ gamma (n/2, 1/2). It is well known
that

Xo =27}
i=1

where Z,,...,Z, are ii.d. N (0, 1). However, that is unlikely to be an efficient way
of generation unless n is small and odd-valued. When n is small and even-valued
X:=-2In (Rl ---R, /2) could be used. For all other cases a gamma variate generator is
recommended.

A non-central chi-squared random variable arises in the following manner. Suppose
X, ~N (u;,1) fori=1,...,n, and these random variables are independent. Let ¥ =
3", X?. By obtaining the moment generating function of Y it is found that the density
depends only upon n and 6 = Y7, u?. For given 6, one parameter set is u; = 0 for
i=1,...,n—1 and u, = /6, but then ¥ = 7! 72 + X2, Therefore, a convenient
way of generating )(i(,, a chi-squared random variable with n degrees of freedom and a
noncentrality parameter 6, is to set

2
oo =1+ (2+0)

where x> | and Z ~ N (0, 1) are independent.

4.7 Student’s t distribution

This is a family of continuous symmetric distributions. They are similar in shape to a
standard normal density, but have fatter tails. The density of a random variable, T,, having
a Student’s ¢ distribution with n (n =1, 2,...) degrees of freedom is proportional to
h,,(t) where

2\ D2
h,(f) = (1 +—)
n

on support (—oo, c0). It is a standard result that 7, = Z/,/ x2/n where Z is independently
N (0, 1). This provides a convenient but perhaps rather slow method of generation.
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A faster method utilizes the connection between a t-variate and a variate from a
shifted symmetric beta density (see, for example, Devroye 1996). Suppose X has such a
distribution with density proportional to r(x) where

o= () (L)

) where n=1,2,.... Let

JnX

1 )
Vi— X

Then Y is monotonic in X and therefore the density of Y is proportional to

on support (—31, 2

Y = (4.13)

dx

G| e,

Now, |dx/dy| = (n/2)(n+y*)™** and r (x[y]) is proportional to (1+y2/n)1_"/2,

Therefore, the density of Y is proportional to 4,(y), showing that Y has the same
distribution as T,.

It only remains to generate a variate x from the density proportional to r(x). This
is done by subtracting % from a beta (n/2,n/2) variate. The log-logistic method of
Section 4.5.1 leads to an efficient algorithm. Alternatively, for n > 1, given two uniform
random numbers R, and R,, we can use a result due to Ulrich (1984) and set

1— RV cos(2mR,)
3 :

X =

(4.14)

On using Equation (4.13) it follows that
/ncos(2mR,)
_1 :
\/(1 - Rf/(”_l)) —cos?(2mR,)

The case n =1 is a Cauchy distribution, which of course can be sampled from via
inversion. A Maple procedure, ‘tdistn’, using Equation (4.15) and the Cauchy appears in
Appendix 4.3.

A noncentral Student’s t random variable with n degrees of freedom and noncentrality
parameter 6 is defined by

T =

n

(4.15)

X
T s=

where X ~ N (8, 1), independent of y?2.
A doubly noncentral Student’s ¢ random variable with n degrees of freedom and
noncentrality parameters 0 and 6 is defined by
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Since x; = X;,; With probability e %/ (6/2)’ /j! (see, for example, Johnson ef al., 1995,
pp- 435-6) it follows that

X
T —

ns0 = T T———
\/Xﬁ+2j/”
_ Xyn/(n+2))
\/X:%+2j/(n+2j)

with the same probability, and therefore

n
T = |——T,
n,0,0 n+2] n+2J,8

where J ~ Poisson (0/2).

4.8 Generalized inverse Gaussian distribution

Atkinson (1982) has described this as an enriched family of gamma distributions.
The random variable Y ~ gig (A, ¢, x¥) (where gig is a generalized inverse gaussian
distribution) if it has a p.d.f. proportional to

e =5 ()] o=0 @16

where Y >0,y >0if A <0, x>0,y>0if A=0,and y >0, >0 if A >0. It is
necessary to consider only the case A > 0, since gig (—A, ¢, x) = 1/gig(A, x, ¢). Special
cases of note are

gig (A, ¢, 0) = gamma ()\, %) (A>0)
gig (—% ¥, X) =ig (¥, x)

where ig is an inverse Gaussian distribution. If W ~ N (,u+q§0'2,0'2) where o2 ~
gig (/\, 0> — ¢?, )(), where 6 > |¢| > 0, then the resulting mixture distribution for W
belongs to the generalized hyperbolic family (Barndorff-Nielson, 1977). Empirical
evidence suggests that this provides a better fit than a normal distribution to the return
(see Section 6.5) on an asset (see, for example, Eberlein, 2001).

Atkinson (1982) and Dagpunar (1989b) devised sampling methods for the generalized
inverse Gaussian. However, the following method is extremely simple to implement and
gives good acceptance probabilities over a wide range of parameter values. We exclude
the cases y =0 or ¢y =0, which are gamma and reciprocal gamma variates respectively.
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Reparameterizing (4.16), we set & = /i//x and B = /¢y and define X = aY. Then the
p.d.f. of X is proportional to % (x) where

h(x) =x"""exp [—g <x+ £>j| (x>0).

Now select an envelope g(x) o r(x) where

r(x)=x""exp [—g] (x=0)

and y < B. A suitable envelope is g(x) = Kr(x) where

= fexp |5 (5 1) + 5]
e[ VBB

Therefore an algorithm is:

1. Sample X ~ gamma (A, ), R~ U(0, 1)
If —InR > M + % —/B(B— 1) then deliver X else goto 1

It follows from Equation (3.5) that the overall acceptance probability is
Jo h(x)dx B o XM exp[—(B/2)(x+1/x)]dx
Jog(x)dx K [T x*exp(—yx/2)dx
_ Jo ¥ exp[=(B/2) (x+1/x)]dx

exp| —VBB—7| 1) 2/9)

exp[VBB— ] (12" ;7 5 exp[~(B/2) (x+1/x)] dx
- )

This is maximized, subject to y < 3 when

22 (Jm - 1)
B

A Maple procedure, ‘geninvgaussian’, using this optimized envelope appears in
Appendix 4.4. Using this value of vy, the acceptance probabilities for specimen values
of A and B are shown in Table 4.1. Given the simplicity of the algorithm, these are
adequate apart from when A is quite small or 3 is quite large. Fortunately, complementary
behaviour is exhibited in Dagpunar (1989b), where the ratio of uniforms method leads to
an algorithm that is also not computer intensive.

’y:
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Table 4.1 Acceptance probabilities for sampling from generalized inverse Gaussian

distributions

ANB 0.2 0.4 1 5 10 20
0.1 0.319 0.250 0.173 0.083 0.060 0.042
0.5 0.835 0.722 0.537 0.264 0.189 0.135
1 0.965 0.909 0.754 0.400 0.287 0.205
5 0.9995 0.998 0.988 0.824 0.653 0.482
20 0.99997 0.9999 0.9993 0.984 0.943 0.837

4.9 Poisson distribution

The random variable X ~ Poisson (u) if its p.d.f. is
pre
x!

f)=

(x=0,1,2,...)

where u > 0. For all but large values of w, unstored inversion of the c.d.f. is reasonably
fast. This means that a partial c.d.f. is computed each time the generator is called, using
the recurrence

pf (x—1)
f)=
X
for x=1,2,...where f(0) =e*. A variant using chop-down search, a term conceived

of by Kemp (1981), eliminates the need for a variable in which to store a cumulative
probability. The algorithm below uses such a method.

Wi=e*
Sample R~ U (0, 1)
X:=0
While R > W do
R:=R-W
X =X+1
W:.= @
X
End do
Deliver X

A Maple procedure, ‘ipoisl’ appears in Appendix 4.5. For large values of u a rejection
method with a logistic envelope due to Atkinson (1979), as modified by Dagpunar
(1989a), is faster. The exact switching point for w at which this becomes faster than
inversion depends upon the computing environment, but is roughly 15/20 if w is fixed
between successive calls of the generator and 20/30 if u is reset.
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4.10 Binomial distribution

A random variable X ~ binomial (n, p) if its p.m.f. is

f(x)= <n>pxq”"‘ (x=0,1,...,n)
X

where n is a positive integer, 0 < p < 1, and p+ ¢ = 1. Using unstored inversion a
generation algorithm is

Ifp>05thenp:=1—p

W:=q"

Sample R~ U (0, 1)

X:=0

While R > W do

R:=R-W

X=X+1
_Wh-X+1)p

X
End do 1

If p <0.5 deliver X else deliver n — X

The expected number of comparisons to sample one variate is E (X + 1) = 1 +np. That
is why the algorithm returns n — binomial (n, g) if p > 0.5. A Maple procedure, ‘ibinom’,
appears in Appendix 4.6. Methods that have a bounded execution time as nmin (p, g) —
oo include those of Fishman (1979) and Ahrens and Dieter (1980). However, such methods
require significant set-up time and therefore are not suitable if the parameters of the
binomial are reset between calls, as, for example, in Gibbs sampling (Chapter 8).

4.11 Negative binomial distribution

A discrete random variable X ~ negbinom (k, p) if its p.m.f. is f where

INx+k)p*q*

m (x=(),1,2,...)

f(x)=
and where 0 < p <1, p+qg =1, and k > 0. If k is an integer then X + k represents the
number of Bernoulli trials to the kth ‘success’ where g is the probability of success on
any trial. Therefore, X is the sum of k independent geometric random variables, and so
could be generated using

X — . \‘ln (Ri)J
oL Inp

where R; ~ U (0, 1). However, this is likely to be slow for all but small k. When £ is
real valued then unstored inversion is fast unless the expectation of X, kp/q, is large.
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A procedure, ‘negbinom’, appears in Appendix 4.7. An extremely convenient, but not
necessarily fast, method uses the result that

negbinom (k, p) = Poisson |:£gamma (k, 1)] .
q

A merit of this is that since versions of both Poisson and gamma generators exist with
bounded execution times, the method is robust for all values of k and p.

4.12 Problems

1. (This is a more difficult problem.) Consider the Box—Miiller generator using the sine
formula only, that is

x=+/—2InR,sin(27R,).

Further, suppose that R, and R, are obtained through a maximum period prime
modulus generator

R ="
m
aj)mod m
RZZ(J)

m

for any j € [1,m — 1], where @ = 131 and m = 23! — 1. Show that the largest positive
value of X that can be generated is approximately +/21In524 = 3.54 and that the
largest negative value is approximately —,/21In[(4 x 131)/3] = —3.21. In a random
sample of 2% such variates, corresponding to the number of variates produced over
the entire period of such a generator, calculate the expected frequency of random
variates that take values (i) greater than 3.54 and (ii) less than —3.21 respectively.
Note the deficiency of such large variates in the Box—Miiller sample, when used with
a linear congruential generator having a small multiplier. This can be rectified by
increasing the multiplier.

2. Let (U, V) be uniformly distributed over the unit circle C = {(u, v):ul+v? < 1}.
Let Y =U?+V? and ® = tan~! (V/U). Find the joint density of ¥ and @. Show that
these two random variables are independent. What are the marginal densities?

3. Write a Maple procedure for the method described in Section 4.1.2.

4. Under standard assumptions, the price of a share at time ¢ is given by
1
X(r) =X(0)exp |:<,u — 50'2) t+ U\/;Zi|

where X(0) is known, w and o are the known growth rates and volatility, and
Z ~ N0, 1).
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(a) Use the standard results for the mean and variance of a lognormally distributed
random variable to show that the mean and standard deviation of X(¢) are given
by

E[X(1)] = X(0)e"
and

o [X(1)] = X(0)e*"\/exp (021) — 1.

(b) Write a Maple procedure that samples 1000 values of X(0.5) when X(0) =
100 pence, w = 0.1, and o = 0.3. Suppose a payoff of max [0, 110 — X(0.5)] is
received at t = 0.5. Estimate the expected payoff.

(c) Suppose the prices of two shares A and B are given by
X, (1) = 100exp [(0.1 — %0.09) t+0.31 ZA}
and
Xy (1) = 100exp [(0.08 — %0.09> t+0.3V1 ZBi|

where Z, and Z; are standard normal variates with correlation 0.8. A payoff
at time 0.5 is max [0, 320 — X, (0.5) —2X(0.5)]. Estimate the expected payoff,
using randomly sampled values of the payoff.

5. Derive an envelope rejection procedure for a gamma («, 1) distribution using a
negative exponential envelope. What is the best exponential envelope and how does
the efficiency depend upon a? Is the method suitable for large a? Why can the
method not be used when @ < 1?

6. To generate variates {x} from a standard gamma density where the shape parameter
a is less than one, put W = X% Show that the density of W is proportional to
exp (—wl/ “) on support (0, 00). Design a Maple algorithm for generating variates
{w} using the minimal enclosing rectangle. Show that the probability of acceptance
is [e/Qa)]*[I" (a+1) /2]. How good a method is it? Could it be used for shape
parameters of value at least one?

7. Let a > 0 and 8 > 0. Given two random numbers R, and R,, show that conditional
upon R}* 4+ RY? < 1, the random variable R}*/ (R}/a +R;/B) has a beta density

with parameters « and (. This method is due to Johnk (1964).

8. Suppose that 0 < o < 1 and X = WY where W and Y are independent random variables
that have a negative exponential density with expectation one and a beta density
with shape parameters o and 1 — & respectively. Show that X ~ gamma («, 1). This
method is also due to Johnk (1964).
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Leta>0,8>0, p=a/B, and Y be a random variable with a density proportional
to i (y) where

h(y) =y (1+py) "

on support (0, c0). Prove the result in Equation (4.12), namely that the random
variable X = py/(1+ py) has a beta density with parameters « and .

. (This is a more difficult problem.) Let @ and R be two independent random variables

distributed respectively as U (0, 277) and density f on domain (0, o0). Let X = Rcos @
and Y = Rsin @. Derive the joint density of X and Y and hence or otherwise show
that the marginal densities of X and Y are

- (VEF) <1 (V7T
/o N A and /0 Ty +x? &

respectively. This leads to a generalization of the Box—Miiller method (Devroye,
1996).

(a) Hence show that if f (r) = rexp (—r2 /2) on support (0, c0) then X and Y are
independent standard normal random variables.

(b) Show thatif f (r) o r (1 — rz)ﬁ1 on support (0, 1), then the marginal densities of
X and Y are proportional to (1 — xz)c_l/2 and (1— yz)c_l/2 respectively on support
(=1,1). Now put ¢ = (n—1)/2 where n is a positive integer. Show that the
random variables /nX/+1—X? and \/nY/+/1—Y? are distributed as Student’s
t with n degrees of freedom. Are these two random variables independent? Given
two random numbers R, and R, derive the result (4.15).

Refer to Problem 8(b) in Chapter 3. Derive a method of sampling variates from a
density proportional to & (x) where

h(x)=+xe™

on support (0, o0). The method should not involve a rejection step.
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Variance reduction

It is a basic fact of life that in any sampling experiment (including Monte Carlo) the
standard error is proportional to 1/./n where #n is the sample size. If precision is defined
as the reciprocal of standard deviation, it follows that the amount of computational
work required varies as the square of the desired precision. Therefore, design methods
that alter the constant of proportionality in such a way as to increase the precision
for a given amount of computation are well worth exploring. These are referred to as
variance reduction methods. Among the methods that are in common use and are to be
discussed here are those involving antithetic variates, importance sampling, stratified
sampling, control variates, and conditional Monte Carlo. Several books contain a chapter
or more on variance reduction and the reader may find the following useful: Gentle
(2003), Hammersley and Handscomb (1964), Law and Kelton (2000), Ross (2002), and
Rubinstein (1981).

5.1 Antithetic variates

Suppose that 51 is an unbiased estimator of some parameter § where 51 is some function
of a known number m of random numbers R;,...,R,. Since 1 —R; has the same
distribution as R; (both U (0, 1) ) another unbiased estimator can be constructed simply
by replacing R; by 1 —R; in 01 to give a second estimator 62 Call the two simulation
runs giving these estimators the primary and antithetic runs respectively. Now take the
very particular case that 0, is a linear function of R, ..., R,. Then

0, =ay+> R, (5.1)
i=1
and

0,= ag+_a;(1-R)).

i=1

Simulation and Monte Carlo: With applications in finance and MCMC J. S. Dagpunar
© 2007 John Wiley & Sons, Ltd
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Now consider the combined estimator

o~ o~

0,+0,
o

0=

Then

m

O=ay+=Y a, (5.2)
2
i=1

which is clearly the value of 6 and does not depend upon {R;}. The variance of the
estimator has been reduced to zero!

In practice, of course, the estimator is unlikely to be linear (and, if it were, simulation
would be unnecessary), but the above shows that if the response from a simulation is
approximately linear in the random numbers, then some good variance reduction can
be expected. For any function (not just linear ones) the combined estimator 6 is clearly
unbiased and has variance

~ 1
var(0) = 4—1(02 + 0% +2pa?)

- %Uz(l—i-p) (5.3)

where ¢? is the common variance of 51 and 52 and p is the correlation between them.
Putting p = 0 in Equation (5.3), the variance of the average of two independent estimators
is simply %0'2. The variance ratio of ‘naive’ Monte Carlo to one employing this variance
reduction device is therefore 1: (1+ p), and the corresponding quotient will be referred
to as the variance reduction ratio (v.r.r.). Therefore,

1
VIr. = ——.
I+p

The hope is that the use of antithetic variates will induce negative correlation between
the responses in primary and antithetic runs, leading to a variance reduction ratio greater
than 1. A correlation of —1 gives a variance reduction ratio of infinity, and clearly this
is the case for linear response functions, as in Equation (5.1).

By way of an example, let us return to the Monte Carlo estimate of 6 where

0= /Ooo x*%e ™ dx

previously met in Section 1.1. Given a random number R; ~ U(0, 1), an unbiased estimator
of 0 is

[ In(R)]™. (5.4)
An antithetic estimator is

[—In(1—R)]*’, (5.5)
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so an unbiased combined estimator is
1
S{Em@®) + = - R} (5.6)

In Appendix 5.1 the Maple procedure ‘thetal_2’ samples m independent values of (5.4).
By replacing R; by 1 — R, in the procedure and using the same seed, m further values
of (5.5) are sampled. Alternatively, procedure ‘theta_combined’ samples m independent
values of (5.6), performing the two sets of sampling in one simulation run. Each procedure
returns the sample mean (i.e. an estimate of 6) and the estimated standard error (e.s.e.)
of the estimate. With m = 1000, using the same random number stream (note the use of
‘randomize( )’) it is found that

9, = 0.9260
es.e. (51) —0.0280

0, = 1.0092

=0.9676

e.s.e. (5) —0.0107

The true value of 6 obtained through numerical integration is 0.9618 (el in the Maple
worksheet), so the antithetic design has improved the estimate of both the primary and
antithetic runs. Using the individual values within the primary and antithetic runs, the
Maple command ‘describe[linearcorrelation]” shows the sample correlation coefficient
to be p = —0.70353, giving an estimated variance reduction ratio of (1—0.7035)"" =
3.373. Another way to estimate the v.r.r. is to note that an estimate of (1+p)~" from
Equation (5.3) is

! {V;a) —i—V;(\éT])}
V.r.r. = — (5.7)
Var (5)

=3.373 (5.8)

The numerator in (5.7) is merely an unbiased estimate of ¢/2, the variance using a
single naive simulation of 2000 variates (note that (5.8) will be slightly biased as it is a
ratio estimate). Finally, using numerical integration, the worksheet shows the exact value
of p to be —0.71061 and hence the true v.r.r. = 3.4555. Using this value, the efficiency
of the method of antithetic variates is

vrr. Xt 1.047 x 3.4555

- =5.79
t 0.625

where ¢, is the time to generate 2000 variates using naive Monte Carlo and ¢, the time
using the combined method. This means that using this variance reduction device, on
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average, provides similar precision answers to those obtained using naive Monte Carlo
in approximately one-sixth of the time.

How effective is the method of antithetic variates in more complicated simulations?
To answer, we should note the factors that are associated with a failure to induce large
negative correlation. These are:

(i) Several sampling activities. For example, in a queueing system it is important to reserve
one random number stream for interarrival times and another one for service durations.
If this is not done, then a particular random number used for sampling interarrival
times on the primary run might be used for a service duration on the antithetic run.
The contribution of these variates to the primary and antithetic responses (e.g. waiting
times) would then be positively correlated, which would tend to increase variance!

(ii) Use of rejection sampling rather than inversion of the cumulative distribution
function. If rejection sampling is employed, then the one-to-one mapping of a random
number to a variate is lost and the variance reduction will be attenuated.

(iii) The primary and antithetic runs use a random number of uniform numbers. This will
certainly be the case in rejection sampling, and can also be the case where the end
of the simulation run is marked by the passage of a predetermined amount of time
(e.g. in estimating the total waiting time of all customers arriving during the next 10
hours, rather than the total waiting time for the next 25 customers, say).

(iv) More complicated systems with more interacting component parts are more likely to
generate nonlinear responses.

Finally, it should be noted that it is always easy to generate antithetic variates from
a symmetric distribution. For example, if X ~ N(u, 0?) then the antithetic variate is
2u — X. If the antithetic variate is generated at the same time as the primary variate
(as in the procedure ‘theta_combined’) this saves computation time. If it is generated
within a separate run, then providing one-to-one correspondence between uniform random
numbers and variates can be maintained, the variate generated will be 2u — X. If the
response is a linear function of symmetrically distributed random variables then use of
antithetic variates will result in a zero variance estimator. Of course, simulation would
not be used in such a situation as the expectation of response could be written down as a
linear combination of the expectations of the random variables. However, if the response
function is near-linear, good variance reduction can still be expected.

5.2 Importance sampling

Suppose we wish to evaluate the multiple integral

ezéﬂuyumx

where x' = (x,,...,x,) is a vector, f(x) is a multivariate probability density function,
and h(x) is any function such that the integral exists. Then

0=E,[h(X)]. (5.9)
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Now let g(x) be any probability density function such that support (2f) S support (g).
(Recall that the support of a function is the set of those x values for which the function
value is nonzero.) Then

h(x)f(x)

6= / g(x) dx
xesupport(s)  8(¥)
h(X)f(X
—E, [M} (5.10)
8(X)
Using Equation (5.9), an unbiased estimator of 6 is
~ 17
0=— h(Xi)
m i
where X, ...,X,, are identically and independently distributed with density f. From

Equation (5.10) an alternative unbiased estimator is

5= l - h(Xz)f(Xt)
m i=1 g(Xz)

where this time the variates are distributed with density g. The variance of this second
estimator is

Var, (/0\) = %Varg (%) .

It is clear that if h(x) > 0 Vx € support (hf), and we choose g(x) o h(x)f(x), then
h(x)f(x)/g(x) is constant and so Var, (0) = 0. In this case

o(x) = ; h(x) f(x) (5.11)

uesupport(hf) h(u)f(u) du .

However, the denominator in Equation (5.11) is just 6, which is what we require to find,
so this ideal is not achievable in practice. Nevertheless, this observation does indicate that
a good choice of importance sampling distribution, g(x), is one that is similar in shape
to h(x)f(x). A good choice will sample heavily from those values x for which h(x) f(x)
is large, and only infrequently where h(x)f(x) is small — hence the name ‘importance
sampling’.

Suppose the choice of g(x) is restricted to members of a family of distributions
{g(x, @)} parameterized on & which of course is not necessarily of the same dimension
as x. Then we wish to minimize with respect to e, the function

h(x) £ (x) )
= — 2 dx— 6 5.12
/xssupport(g) g(x, a) ( 1 )
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Note that if 4(x) > 0 Vx € support (hf) then

/ h*(x) f(x) dr
xesupport(e)  &(X, @)

h(x) f(x)
XGSI'-‘II};)T(‘(K) { m } /xesuppon(g) h(x)f(x) dx.

Therefore an upper bound on the variance is given by

hx) f(x)
var, ( 5(x. @)

<

) < 0{M (a)— 0} (5.13)
where

M(a)= max {

xesupport(g)

h@ﬂﬂ}
gx, @) |

This upper bound is minimized when M (&) is minimized with respect to a. The resulting
density g happens to be the optimal envelope were an envelope rejection algorithm for
generating variates sought from a probability density proportional to A f. Although this
g is unlikely to be the best importance sampling density (parameterized on «), this
observation does indicate that g is providing a good fit to Af, albeit with a different
objective to the one of minimizing variance.

To fix ideas, let us evaluate by Monte Carlo

0= / x e dx

where « > 1 and a > 0. A naive sampling design identifies f(x) = g(x) =e~* on support
(0, 00) and h(x) = x*'1 where 1,_, =1, 0 according to whether x > a or otherwise.
Then

x>a’

0 =E, (h(X))
=E, (X" '1x.,)

and the associated estimator is

1 m
— ZX[CV—I lX[>a
i=1

where X,, ..., X,, are sampled from f. This will be very inefficient for large a, since
the density g(x) = e~ on support (0, c0) is quite dissimilar in shape to the function
h(0) f(x) = e 2071,

It would be better to choose an importance sampling distribution that has support
[a, 00), just as h(x) f(x) does. We might choose

g(x) = Ae™H (5.14)
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on support [a, o) where A is to be determined. Since Equation (5.14) is just a shifted
exponential density, the random variable X = @ — A~'InR where R ~ U(0,1). An
importance sampling estimator based on a single realization of X is

h(X) f(X)
8(X)
Xa7167X

0=

From Equation (5.12),
200—2 ,—2x

= [T X 2
Varg<0>—/a md)«f 6-.

Minimization of this with respect to A requires an evaluation of an integral, which is of
a similar type to the one we are trying to evaluate. However, we might try minimizing
the bound in (5.13). In that case we must find

a—1,—x
X c
i _— 5.15
il e e (5.15)

(A < 1, otherwise the inner maximization yields infinity). Therefore, we seek the unique
saddle point in (a, 00) x (0, 1) of the function in (5.15). This occurs at (x*, A*) where

a—1

—1+A"=0,
x*
1+ . 0
—— +x"—a=0,
/\*
that is at
a—a+/(a—a) +4a
A=
2a
X=a+—.
A

For example, when ¢ =3 and a =5,

1+6
5

x* =446,

A=

=0.690,

and

Var, (8) <0.0050159.

The actual variance (rather than an upper bound) for this value of A is 0.00028119. The
minimum variance (rather than the minimum value of this upper bound on variance) is

85
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achieved when A = 0.72344, giving a variance of 0.00015739. Using A* as computed
above, the variance reduction ratio is

f:o x2a—26—x dx — 02

= 37376,
0.00028119

showing that the method is highly effective.

5.2.1 Exceedance probabilities for sums of i.i.d. random
variables

Suppose X;,i=1,...,n, are identically and independently distributed random variables
with the probability density function f (x). We wish to estimate the exceedance probability

0:P(iX,- > a) (5.16)

i=1

for values of a that make 6 small. For example, X; might represent the wear (a non-
negative random variable) that a component receives in week i. Suppose the component is
replaced at the first week end for which the cumulative wear exceeds a specified threshold,
a. Let T represent the time between replacements. Then, for any positive integer n,

P(TSn):P(iX,->a):9.

i=1

For some densities f (x), an easily computed distribution for ", X; is not available
(normal, gamma, binomial, and negative binomial are exceptions), so Monte Carlo is an
option. However, when 6 is small the precision will be low as the coefficient of variation
of an estimate based on a sample of size m, say, is

Jo(l—60)/m 1
0 T

This motivates a design using an importance sampling distribution that samples more
heavily from large values of X,.

In another example, this time drawn from project management, suppose that a project
consists of n similar activities in series. Let ¥; denote the duration of the ith activity.
Further, suppose that the {Y;} are identically distributed as a beta density with shape
parameters « and (3, but on support (A, B) rather than (0, 1) as described in Section 4.5.
Then Y, = A+ (B— A) X; where X, is beta distributed on support (0, 1). Consequently,
the problem of finding the (perhaps small) probability that the project duration exceeds a
target duration d (< nB) is given by Equation (5.16) where a = (d —nA)/(B— A) < n.
Now define

fE)=T1f(x)
i=1
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and an importance sampling n variate density
g =Tz (x)
i=1
where
g (x) = yx!
on support (0, 1) and where y > 1. Then

0=E, (lzz;lxiw)

where 1, =1 if P is true; otherwise 1, = 0. It follows that

_ T (e B) Xe! (1= X!
O‘Eg<12f”-""‘>“ﬂ L@ ()X )

Using the upper bound on variance (5.13), we hope to find a good value of y by
minimizing M (y), where

M (y) = max (12?1x;>a ﬁ I'(a+B)xe'(1 —x[)51)

xe(0.1)" m o T@T @)y
C o t T (a+B) X7 (1—x)P!
_xe(O,l)", 1 Xi>a i=1 F(a)F(B)'Y .

To determine M (7y) note that x; " (1 —x;)#~! is decreasing in (0, 1) when @ —y < 0 and
B—1>0. In such cases, the constraint ) ;_, x; > a is active and so the maximum is at
x;=a/n,i=1,...,n. Consequently,

where K is a constant independent of y. M (7y) is minimized when

1

Y (n/a)

and so this minimizes the upper bound on variance, providing 8 > 1 and y > «. The latter

condition gives
1
n>a>nexp|——|.
o

The following algorithm estimates 6 based upon a sample of size m:
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Input a, a, B, n, m
1

yi=

In(n/a)
1
If a <nexp (——) or B < 1 then stop
o
For j=1,...,mdo
s5:=0
p=1

Fori=1,...,ndo

X := R"” where R~ U (0, 1)
s:=s+X
pi=pX*r(1-X)F!

end do

r
If s > a then 0j:=p< (@+h)

W) else 01 :=0end if

end d(l)
0:= Z Z;‘nzl 0/

e.s.e. = \/ﬁ 2 (91 _§>2

A procedure, ‘impbeta’, appears in Appendix 5.2. For given a, B3, n, and a, a simulation
sampled {Oj, j=1,..., 5000}. Table 5.1 shows the resulting # and e.s.e. (6) The standard

error for anaive Monte Carlo simulationis /6 (1 — 6) /5000 and this may be estimated using
0 obtained from ‘impbeta’. The resulting estimated variance reduction ratio is therefore

N _5(1 ~9) /5000
[e.s.e. (/0\)]2

In all cases, comparison with a normal approximation using a central limit approximation
is interesting. None of these lie within two standard deviations of the Monte Carlo
estimate. Clearly, such an approximation needs to be used with caution when estimating
small tail probabilities.

Table 5.1 Exceedance probability estimates for the sum of beta random variables

Parameter values impbeta Tilted

a B n a 0 e.s.e. (@) VIT. 0 e.s.e. (5) VI.T.
1.5 25 12 62 0.01382 0.00092 3 0.01399 0.00031 29
1.5 25 12 65 0.00474 0.00032 9 0.00498 0.00012 70

25 15 12 9 001937 0.00057 12 0.01872 0.00039 24
25 1.5 24 18  0.00176 0.00008 50  0.00156 0.00004 214
15 25 12 55 a<nexp(—l/a)  —  0.09503 0.00178 5
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Figure 5.1 Beta and tilted beta densities

Another approach to this estimation is to use a tilted importance sampling distribution.
This modifies the original beta density f to give an importance sampling density

e"f (x)
M, (1)

where M, (¢) is the moment generating function of f. By making ¢ positive, g samples
more heavily from large values of x than does f. Of course, this is what is required
in estimating exceedance probabilities. Further, a good value of ¢ can be determined by
minimizing the bound in (5.13). Figure 5.1 shows f and g for the case a =2.5,8 =
1.5,n=12,a =9, and ¢t = 3.192. This is discussed in more detail in problem 4(b) at the
end of this chapter. The reader is encouraged to carry out the computations suggested
there and to verify the conclusion to be drawn from Table 5.1, namely that this provides
even better variance reduction. In the table, tllg two sets of estimated standard errors under
naive Monte Carlo are calculated using the 6 obtained from the corresponding variance
reduction experiment.

g(x) =

5.3 Stratified sampling

The idea of stratified sampling is borrowed from a theory developed in the design of
sample surveys. Suppose Monte Carlo is used to estimate a scalar parameter 6. A scalar
statistic Y is simulated where it is known that § = E(Y). Y is a function of random
variables {W;}. Often {W,} might be a set of uniform random numbers {R;}. A stratified
design works as follows. Select a stratification variable X which is another statistic
realized during the simulation and which is also a function of the driving variables {W}

J
A good stratification variable is one for which:

(i) There is a strong dependence (not necessarily linear) between X and Y.
(ii) The density of X is known analytically and is easy to sample from.

(iii) It is easy to sample from the conditional distribution of Y given X = x.
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First the range of X is split into disjoint strata {S(i), i=1,..M } Then we fix in
advance the number, n,, of pairs (X, Y) for which X € S@ i=1,..., M. The required
sample size from each stratum is then simulated. Of course, one way to do this is to
sample {Wj}, calculate X and Y, and throw away those for which X ¢ S®. Repeat this for
all i. This would be hopelessly inefficient. A better way is to sample n; values of X from
the density of X subject to X € S©” and then sample from the conditional distribution of
{W;} for each such X (= x, say). Finally, calculate Y given {W,}.

Let 6, and o?(i=1,. .., M) denote the ith stratum mean and variance respectively of
Y, that is

0,=E(Y|X eSS,
o? =Var(Y |X € SV,

fori=1,..., M. Let

pi=P(Xes?),
o? = Var(Y),
and let (X;;,Y;) denote the jth sample in the ith stratum, where j=1,...,n,. The

stratum sample means for the statistic of interest are

Y =— Y.
1 nl lzzl 1]
and a natural stratified estimator for 0 is
—~ M —_—
Osr = Zpiyi'
i=1
This is clearly unbiased and since Y,...,Y;, are identically and independently

distributed then

(5.17)

o~ Mo g2
Var (95T) = Zplzn—’
i1

i

A common scheme is proportional stratified sampling where we set n, = Np;, and N
is the total sample size. In that case Equation (5.17) becomes

~ 1M
Var (gps) =— > pol. (5.18)
N i=1
How does this compare with a naive estimator? In that case

var (9) =

— w (5.19)

o

B

== =z|5,

pE(Y’|XesV)— 02] (5.20)
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1

=]
—

M
5 «<af+ef>—ez}
i=1

1

2

Z o7+ — Zp,(e (5.21)

Comparing Equations (5.18) and (5.21) gives

Var (/é) — Var (Eps) = % {:pi (6, —6)°
i=1

which is the amount of variance that has been removed through proportional stratified
sampling.
In theory we can do better than this. If Equation (5.17) is minimized subject to

M
> n; =N, it is found that the optimum number to select from the ith stratum is
i=1
* Np,o;
=i e
D iz Pi0;
in which case the variance becomes
e 1 M 2 EZ
Var (0 ) - — o) =2, 5.2
OPT N ;P N ( )
say. However,
M M
ZP;‘ (o _6)2 = Zpia-iz -7 (5.23)
i=1 i=1

Therefore, from Equations (5.18) and (5.22),

Var (gps) — Var <5OPT) = % épi (0,— 7).

Now the various components of the variance of the naive estimator can be shown:

Var( ) |:Zpl (6, —0) +Zp, (0,—7)° +0':| (5.24)

The right-hand side of Equation (5.24) contains the variance removed due to use of the
proportional {n;} rather than the naive estimator, the variance removed due to use of
the optimal {n,} rather than the proportional {n;}, and the residual variance respectively.
Now imagine that very fine stratification is employed (i.e. M — o0). Then the outcome,
X € S, is replaced by the actual value of X and so from Equation (5.21)

Var (@) - % [Var, [E(Y |X)]+ Ex [02(Y |X)]) (5.25)
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0 0.2 0.4 0.6 0.8
X

Figure 5.2 An example where X is a good stratification but poor control variable

The first term on the right-hand side of Equation (5.25) is the amount of variance removed
from the naive estimator using proportional sampling. The second term is the residual
variance after doing so. If proportional sampling is used (it is often more convenient than
optimum sampling which requires estimation of the stratum variances {aiz} through some
pilot runs), then we choose a stratification variable that tends to minimize the residual
variance or equivalently one that tends to maximize Vary [E(Y |X)].

Equation (5.25) shows that with a fine enough proportional stratification, all the
variation in Y that is due to the variation in E(Y |X) can be removed, leaving only the
residual variation Ey [¢?(Y |X)]. This is shown in Figure 5.2 where a scatter plot of
500 realizations of (X, Y) demonstrates that most of the variability in ¥ will be removed
through fine stratification. It is important to note that it is not just variation in the linear
part of E(Y |X) that is removed, but all of it.

5.3.1 A stratification example
Suppose we wish to estimate

0 =E(W,+W,)"*
where W, and W, are independently distributed Weibull variates with density

3
f) = 337 exp(=x"%)

on support (0, 00). Given two uniform random numbers R, and R,,

W, =(—InR))"*,

W, =(—In Rz)Z/3 )
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and so a naive Monte Carlo estimate of 6 is
5/4
Y = [(— R, +(~1In R2)2/3]

A naive simulation procedure, ‘weibullnostrat’ in Appendix 5.3.1, was called to generate
20000 independent realizations of Y (seed = 639 156) with the result

9 =12.15843
and

e.s.c. (5) —0.00913. (5.26)

For a stratified Monte Carlo, note that Y is monotonic in both R, and R,, so a reasonable
choice for a stratification variable is

X =R,R,.

This is confirmed by the scatter plot (Figure 5.2) of 500 random pairs of (X, Y). The
joint density of X and R, is

X ar,
Ix.r, (x, 1) = fr.x, ”_2’ r 0x
1
=
on support 0 < x < r, < 1. Therefore
Ldr,
fx(x) = —
x I
=—Inux,
and the cumulative distribution is
Fy(x)=x—xInx. (5.27)
on (0,1). The conditional density of R, given X is
fX,Rz (x,73) 1
fRz\X (r2’x)_ fX (.X) __rzlnx

on support 0 < x < r, < 1, and the cumulative conditional distribution function is

2 du Inr
Fage (mx) = [ =1-—2 5.8
lx (122 %) x —ulnx Inx (5.28)
N realizations of (X, Y) will be generated with N strata where p;, = 1/N fori=1,...,N.

With this design and under proportional stratified sampling there is exactly one pair
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(X, Y) for which X € S® for each i. Let U,, V, be independently distributed as U (0, 1).
Using Equation (5.27) we generate X, from the ith stratum through

i— 14U,
X, —XInx, = —+Y% (5.29)
N
Using Equation (5.28),
In R;i) _
Inx, "
that is
RY =x.
Therefore
=
RY

Note that Equation (5.29) will need to be solved numerically, but this can be made more
efficient by observing that X; € (X,_,, 1). The ith response is

0\*? T
Y, = (—1an) ~|—<—lnR2)

and the estimate is
N
9Ps Z pY, = Z Y.
NI

To estimate Var <0PS) we cannot simply use [1/(N —1)] X", (Y GPS /N as the {V;}
are from different strata and are therefore not identically distributed. One approach is to
simulate K independent realizations of 9 as in the algorithm below:

Forj:l,...,Kdo

Fori=1,...,N do

generate u, v~ U(0, 1)

i—14u
N

solve: x —Inx =

r, = )gc

roi=—
r, M

y; = [(—ln r1)2/3 +(—Inr )2/3]

end do

y_j = % Zf\; Vi

;c\nd do

Ops 1= %25{21 yi
= ~\2
Var (gps> = m Z;‘(:l <)7]_ 9PS)
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Using procedure ‘weibullstrat’ in Appendix 5.3.2 with N = 100 and K = 200 (and with
the same seed as in the naive simulation), the results were

Bps = 2.16644
and

es.e. (?51,5) —0.00132.

Comparing this with Equation (5.26), stratification produces an estimated variance
reduction ratio,

VI, = 48. (5.30)

The efficiency must take account of both the variance reduction ratio and the relative
computer processing times. In this case stratified sampling took 110 seconds and naive
sampling 21 seconds, so

. 21 x47.71
Efficiency = ———
110

~9
Three points from this example are worthy of comment:

(i) The efficiency would be higher were it not for the time consuming numerical solution
of Equation (5.29). Problem 5 addresses this.

(ii) A more obvious design is to employ two stratification variables, R, and R,.
Accordingly, the procedure ‘grid’ in Appendix 5.3.3 uses 100 equiprobable strata
on a 10 x 10 grid on (0, 1)2, with exactly one observation in each stratum. Using
N = 200 replications (total sample size = 20000 as before) and the same random
number stream as before, this gave

9 =2.16710,

e.s.e. (5 —0.00251,

and
Efficiency ~ 13.

Compared with the improved stratification method suggested in point (i), this would
not be competitive. Moreover, this approach is very limited, as the number of strata
increases exponentially with the dimension of an integral.

(iii) In the example it was fortuitous that it was easy to sample from both the distribution
of the stratification variable X and from the conditional distribution of Y given X.
In fact, this is rarely the case. However, the following method of post stratification
avoids these problems.

95
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5.3.2 Post stratification

This refers to a design in which the number of observations in each stratum is counted
after naive sampling has been performed. In this case {n;} will be replaced by {N;} to
emphasize that { N;} are now random variables (with expectation { Np;}). A naive estimator is

i=1

but this takes no account of the useful information available in the {p;}. Post (after)
stratification uses

- M —
Ops = ZpiYi’
i=1

conditional on no empty strata. The latter is easy to arrange with sufficiently large {Np,}.
The naive estimator assigns equal weight (1/N) to each realization of the response Y,
whereas §AS assigns more weight (p;/N;) to those observations in strata that have been
undersampled (N; < Np;) and less to those that have been oversampled (N, > Np;).
Cochran (1977, p. 134) suggests that if £ (N;) > 20 or so for all i, then the variance of
HAS differs little from that of GPS obtained through proportional stratification with fixed
n; = Np;. Of course, the advantage of post stratification is that there is no need to sample
from the conditional distribution of Y given X, nor indeed from the marginal distribution
of X. Implementing post stratification requires only that cumulative probabilities for X
can be calculated. Given there are M equiprobable strata, this is needed to calculate
J = |MFy (x)+ 1], which is the stratum number in which a pair (x, y) falls.
This will now be illustrated by estimating

0 =E (W, +W,+ W, +W,)"?

where W, ..., W, are independent Weibull random variables with cumulative distribution
functions 1 —exp(—x2), 1 —exp(—x*), 1 —exp(—x*), and 1 — exp(—x>) respectively on
support (0, 00). Bearing in mind that a stratification variable is a function of other
random variables, that it should have a high degree of dependence upon the response
Y=W, +W,+W;+ W,)*’* and should have easily computed cumulative probabilities,
it will be made a linear combination of standard normal random variables. Accordingly,
define {z;} by

FW,- (w;) = P(z;)

fori=1,...,4 where ® is the cumulative normal distribution function. Then

32,
o=/, (zw) [T, (w)du,
°° i=1

4 3/2 4
- /(_m » (ZF‘;I_I [ (zi)]) [Té()dz

IS

3/2
Z-N@O.D) (Z Fy![® (Z)])

i=1



Stratified sampling 97

where ¢ is the standard normal density. Note that an unbiased estimator is

(Xy? @@))m

where the {Z,} are independently N(0O, 1), that is the vector Z ~ N (0,I), where the
covariance matrix is the identity matrix I. Now

4

YR @ (Z)]= Z{—ln 1—®(Z)}" (5.31)

i=1 i=1

where o, =2,a, = 3,03 = 4,4, = 5. Using Maple a linear approximation to
Equation (5.31) is found by expanding as a Taylor series about z = 0. It is

4
X' =a,+ Z a;z;
i=1
where a, =3.5593, a; =0.4792, a, = 0.3396, a, = 0.2626, and a, = 0.2140. Let

X —
Xx=—2"% _N@,1).

v Z?:l a;

Since X is monotonic in X’ the same variance reduction will be achieved with X as with
X'. An algorithm sunulatlng K independent realizations, each comprising N samples of
(Z, V! P (Z )]) on M equiprobable strata, is shown below:

Fork=1,...,K do

For j=1,...,M dos;:=0and n;:=0 end do
Forn=1,...,N
generate z,, 2,, 23, 24 ~ N(0, 1)
. Z?:] a;%;
Z?:l a;

vi= (T8 Fy' [@()])
ji= [M® (x)+1)

nj:=nj+1
s;=S;+y

end do

Vi = ﬁij:l,sle
end do
03:%2/{{:1%

—

Var (@) = m P (ﬁ—ay
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F12

X

Figure 5.3 An example where X is both a good stratification and control variable

Using K =50, N =400, M = 20 (seed = 566309) it is found that

0,5 = 6.93055 (5.32)
and

e.s.e. (EAS) — 0.00223.
Using naive Monte Carlo with the same random number stream,
e.s.e. (0) =0.01093
and so the estimated variance reduction ratio is
VL. =24, (5.33)

A scatter plot of 500 random pairs of (X, Y) shown in Figure 5.3 illustrates the small

variation about the regression curve E(Y|X). This explains the effectiveness of the
method.

5.4 Control variates

Whereas stratified sampling exploits the dependence between a response Y and a
stratification variable X, the method of control variates exploits the correlation between
a response and one or more control variables. As before, there is a response Y from a
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simulation and we wish to estimate § = E(Y) where o = Var(Y). Now suppose that in

the same simulation we collect additional statistics X' = (X, ..., X)) having known
mean py = (", ..., u@) and that the covariance matrix for (X,Y) is
(EXX 2XY>
e
3y O
The variables X1, ..., X are control variables. A control variate estimator

O, =Y —b (X—py)
is considered for any known vector ' = (b,, . .., b,). Now, @b is unbiased and
Var (5,,) = 0% +b'Syxb —2b'3y,.
This is minimized when
b=b" =3xSy (5.34)
leading to a variance of
Var (8. ) = 0* = 3 Sk Syy = (1 - B o

where R? is the proportion of variance removed from the naive estimator 9=Y.In
practice the information will not be available to calculate Equation (5.34) so it may be
estimated as follows. Typically, there will be a sample of independent realizations of
(X,,Y,),k=1,..,N. Then

_ 1 X
Y=Y=—YY
N,;k’

_ 1 X
X:XZNZX"’

k

1

Let X, denote the ith element of column vector X,. Then an unbiased estimator of b* is
b* = S)_Ql(SXY
where the ijth element of Sxy is

Y (X = X) (X = X))
N-—-1

and the ith element of Sy, is

Now the estimator

0;. =Y —b* (X—puy) (5.35)
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can be used. Since b* is a function of the data, E (I;;/ (i — ,LLX)) # 0, and so the estimator

is biased. Fortunately, the bias is O (1/N). Given that the standard error is O (1/+/N ),
the bias can be neglected providing N is large enough. If this method is not suitable,
another approach is to obtain b* from a shorter pilot run (it is not critical that it deviates
slightly from the unknown b*) and then to use this in a longer independent simulation
run to obtain 6. This is unbiased for all N. It is worth noting that if E (Y |X) is linear
then there is no question of any bias when there is no separate pilot run, even for small
sample sizes.

A nice feature of the control variate method is its connection with linear regression. A
regression of ¥ upon X takes the form

Yo =By +BX,+¢,

where {g,} are identically and independently distributed with zero mean. The predicted
value (in regression terminology) at X* is the (unbiased) estimate of E (Y |X*) and is
given by

Y =Y+ (X*-X) (5.36)
where
B= S;Ql(sxy-

However, this is just b*. This means that variance reduction can be implemented using
multiple controls with standard regression packages. Given (X, Y,),k=1,..., N, the
control variate estimator is obtained by comparing Equations (5.35) and (5.36). It follows
that 6 is the predicted value Y* at X* = uy.

Let us investigate how the theory may be applied to the simple case where there is just
one control variable X (d = 1). In this case

b= ZkN:l (= %) (0 =)
Zszl (% — 7)2

b}

X* = uy, and
qu =?+E"(/.Lx—m.

An obvious instance where d = 1 is when a stratification variable X is used as a control
variable. In the example considered in Section 5.3.1 a response was defined as

5/4
Y = [(—le)z/3 n (—lnR2)2/3]
and a stratification variable as

X =R,R,.
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Accordingly, a control variate estimator is
9 =T+5 (-
b* - 4 .

The effectiveness of this is given by R?, which is simply the squared correlation between
X and Y. A sample of 500 pairs {(X, Y)} produced the scatter plot in Figure 5.2 and gave
a sample correlation of —0.8369. So R = (—0.8369)* = 0.700. Therefore, the proportion
of variance that is removed through the use of this control variable is approximately
0.7 and the variance reduction ratio is approximately (1 —0.7)"! = 3.3. Although this
is a useful reduction in variance, it does not compare well with the estimated variance
reduction ratio of 48 given in result (5.30), obtained through fine stratification of X.
The reason for this lies in the scatter plot (Figure 5.2), which shows that the regression
E (Y |X) is highly nonlinear. A control variable removes only the linear part of the
variation in Y.

In contrast, using the stratification variable X as a control variate in the post
stratification example considered in Section 5.3.2 will produce a variance reduction ratio
of approximately (1 - 0.98722)71 =40, 0.9872 being the sample correlation of 500 pairs
of (X, Y). Now compare this with the estimated variance reduction ratio of 24 given in
result (5.33) using stratification. The control variate method is expected to perform well
in view of the near linear dependence of Y upon X (Figure 5.3). However, the apparently
superior performance of the control variate seems anomalous, given that fine stratification
of X will always be better than using it as a control variate. Possible reasons for this are
that M =20 may not equate to fine stratification. Another is that K = 50 is a small sample
as far as estimating the standard error is concerned, which induces a large estimated
standard error on the variance reduction ratio. This does not detract from the main point
emerging from this example. It is that if there is strong linear dependence between Y
and X, little efficiency is likely to be lost in using a control variate in preference to
stratification.

5.5 Conditional Monte Carlo

Conditional Monte Carlo works by performing as much as possible of a multivariate
integration by analytical means, before resorting to actual sampling. Suppose we wish to
estimate 6 where

0= Eg(x,y) {f (x’y)}

where g is a multivariate probability density function for a random vector that can be
partioned as the row vector (X', Y’). Suppose, in addition, that by analytical means the
value of

E, vy {f .y}

is known where r is the conditional density of X given that Y =y. Then if 4 (y) is the
marginal density of Y,

0= Eyp) [Evuy {f &2}
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Accordingly, a conditional Monte Carlo estimate of 6 is given by sampling n variates y
from 4 in the algorithm below:

Fori=1,...,n
Sample y; ~ h (y)

0; := E,xy, {f ey}
end do
=130,

i=1"i

For example, suppose a construction project has duration X where X ~ N (,u, 0'2)
and where the distribution of the parameters u and ¢ are independently N(100,16) and
exponential, mean 4, respectively. The company undertaking the project must pay £1000
for each day (and pro rata for part days) that the project duration exceeds K days. What
is the expected cost C of delay? A naive simulation would follow the algorithm (note
that (X — K)™ = max(0, X — K)):

Fori=1,...,ndo

Sample R~ U (0,1) and Z ~ N (0, 1)
o:=—4In(R)

w:=100+4Z,

Sample X ~ N (p, 02)

C,:=1000(X —K)"

end do

C:i=1 Xia G

_I’L

ese. (€) =

Alternatively, using conditional Monte Carlo gives

s (c-e)
n(n—1)

0= EUNEXp(l/4),p,~N(100,16) [EvaN(y,,a'z) [1000 (X — Kﬁ]} .

Let

C (1. 0%) = Ey (o) [1000 (X —K)"]
o 1 1 /x—pu\2
=1OOO/K (x—K)mUexp[—E( p )]dx
1

= IOOO/Do (ov+u—K) exp —lv2 dv
(K—w)/o V2T 2
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—gev2|”

VI e

= 1000 |:0'¢> (%:“) +(u—K)d (%)]

Accordingly, an algorithm for conditional Monte Carlo is

K
— 1000 +1000 (M—K)qb(“—)
g

Fori=1,...,n
Sample R~ U (0,1) and Z ~ N (0, 1)

o:=—4In(R)

p:=10044Z,

G =10000 [¢ (5#) — (5#) @ (£55)]
end do

C:= le Y, G

€.8.C. (6

This should give a good variance reduction. The reader is directed to Problem 8.

5.6 Problems

1. Consider the following single server queue. The interarrival times for customers are
independently distributed as U(0, 1). On arrival, a customer either commences service
if the server is free or waits in the queue until the server is free and then commences
service. Service times are independently distributed as U(0, 1). Let A,, S; denote the
interarrival times between the (i — 1)zh and ith customers and the service time of the
ith customer respectively. Let W, denote the waiting time (excluding service time) in
the queue for the ith customer. The initial condition is that the first customer in the
system has just arrived at time zero. Then

W; =max(0, W,_; + S;_; — A;)

for i=2,...,5 where W, =0. Write a procedure to simulate 5000 realizations of
the total waiting time in the queue for the first five customers, together with 5000
antithetic realizations.

(a) Using a combined estimator from the primary and antithetic realizations, estimate
the expectation of the waiting time of the five customers and its estimated standard
error. Estimate the variance reduction ratio.

(b) Now repeat the experiment when the service duration is U(0,2). Why is the
variance reduction achieved here much better than that in (a)?
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2. Inorder to estimate 6 = |, b°° x*'e=*dx where @ < 1 and b > 0, an importance sampling
density g(x) =e~“?1__, isused. (The case a > 1is considered in Section 5.2). Given
R~ U(0, 1), show that an unbiased estimator is § = X*~'e~® where X = b —In R and
that Var (5) <0(b*'e"—0).

3. (This is a more difficult problem.) If X ~ N (p,, 0'2) then Y = exp(X) is lognormally
distributed with mean exp(u + 0/2) and variance exp (2u+ 0?) [exp (0?) —1].
It is required to estimate the probability that the sum of n such identically and
independently lognormal distributed random variables exceeds a. A similar type
of problem arises when considering Asian financial options (see Chapter 6). Use
an importance sampling density that shifts the lognormal such that X ~ N (A, 0'2)
where A > w. (Refer to Section 5.2.1 which describes the i.i.d. beta distributed
case.)

(a) Show that when a > nexp (u) the upper bound on variance developed in result
(5.13) is minimized when A =1n (a/n).

(b) Now suppose the problem is to estimate
. +
0=E, (Zex" —a)
i=1

where f is the multivariate normal density N (u, 0I) and x* = max (0, x). Show
that the corresponding value of A (> 4 0?/n) satisfies

A:ln(g)—ln[l—n(z—im]

Run some simulations using this value of A (solve numerically using Maple).
Does the suboptimal use of A =1n(a/n) decrease the variance reduction ratio
appreciably?

4. (This is a more difficult problem.) Where it exists, the moment generating function
of a random variable having probability density function f(x) is given by

M(1) = / e £(x) dx.
support(f)
In such cases a tilted density

e"f(x)

g(x) = M)

can be constructed. For 7 > 0 g may be used as an importance sampling distribution
that samples more frequently from larger values of X than f.

(a) Consider the estimation of 6 = P (3., exp(X;) > a) where the {X;} are
independently N (u, o). Show that the tilted distribution is N (u+ o?t, 0?).
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Show that when a > nexp () the value of ¢ that minimizes the bound on variance
given in result (5.13) is

In(a/n) —u
IZT

and that therefore the method is identical to that described in Problem 3(a).

(b) Consider the estimation of 6§ = P (3_/_, X; > a) where the {X;} are independent
and follow a beta distribution with shape parameters a (> 1) and B(> 1) on
support (0, 1). Show that the corresponding value of 7 here is the one that
minimizes

e /" M(1)

(i) Use symbolic integration and differentiation within Maple to find this value
of t whenn=12,a=6.2, a =1.5,and B =2.5.

(ii) Write a Maple procedure that estimates 6 for any « (> 1), B(> 1), n, and
a (> 0). Run your simulation for the parameter values shown in Table 5.1 of
Section 5.2.1 and verify that the variance reduction achieved is of the same
order as shown there.

. In Section 5.3.1, Equation (5.29) shows how to generate, from a cumulative
distribution function, x — x In(x) on support (0, 1), subject to x lying in the ith of N
equiprobable strata. This equation has to be solved numerically, which accounts for
the stratified version taking approximately four times longer than the naive Monte
Carlo version. Derive an efficient envelope rejection method that is faster than this
inversion of the distribution function. Use this to modify the procedure ‘weibullstrat’
in Appendix 5.3.2. Run the program to determine the improvement in efficiency.

. Write a Maple procedure for the post stratification algorithm in Section 5.3.2.
Compare your estimate with the one obtained in result (5.32).

. Suggest a suitable stratification variable for the queue simulation in Problem 1.
Write a Maple program and investigate the variance reduction achieved for different
parameter values.

. Write procedures for naive and conditional Monte Carlo simulations to estimate the
expected cost for the example in Section 5.5. How good is the variance reduction?

. Revisit Problem 4(b). Suggest and implement a variance reduction scheme that
combines the tilted importance sampling with post stratification.

. Use Monte Carlo to estimate [*--- [, [3"_ (m — j+1)x;] dx where m is a positive
integer and

D:{x»

j=1....om0<x <... <xm<1}.

For the case m = 10, simulate 10000 points lying in D, and hence find a 95%
confidence interval for the integral.
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A derivative is a tradeable asset whose price depends upon other underlying variables. The
variables include the prices of other assets. Monte Carlo methods are now used routinely
in the pricing of financial derivatives. The reason for this is that apart from a few ‘vanilla’
options, most calculations involve the evaluation of high-dimensional definite integrals.
To see why Monte Carlo may be better than standard numerical methods, suppose we
wish to evaluate

I=/[0’l]f(x) dx

where f (x) is integrable. Using the composite trapezium rule a subinterval length of A
is chosen such that (m—1)h =1 and then f is evaluated at m equally spaced points
in [0, 1]. The error in this method is O (hz) =0 (l/mz). Now compare this with Monte
Carlo where f is evaluated at m values of X where X ~ U (0, 1). Here, the standard
error is a measure of the accuracy, so if o = Vary_y ;) [f (X)], the error in the estimate
of Iis o//m= 0(1 /ﬂ) Therefore, for large sample sizes, it is better to use the
trapezium rule. Now suppose that the integration is over the unit cube in d dimensions.
The trapezium rule will require m function evaluations to be made over a regular lattice
covering the cube. If & is again the subinterval length along any of the d axes, then
mh? = 1. The resulting error is O (hz) =0 (1 Jm? d). However, using Monte Carlo, the
error is still O (l / \/ﬁ) Therefore, for d > 4 and for sufficiently large m, Monte Carlo will
be better than the trapezium rule. This advantage increases exponentially with increasing
dimension. As will be seen, in financial applications a value of d = 100 is not unusual,
so Monte Carlo is the obvious choice.

This chapter provides an introduction to the use of Monte Carlo in financial applications.
For more details on the financial aspects there are many books that can be consulted,
including those by Hull (2006) and Wilmott (1998). For a state-of-the-art description of
Monte Carlo applications Glasserman (2004) is recommended.

The basic mathematical models that have been developed in finance assume an
underlying geometric Brownian motion. First the main features of a Brownian motion,
also known as a Wiener process, will be described.

Simulation and Monte Carlo: With applications in finance and MCMC J. S. Dagpunar
© 2007 John Wiley & Sons, Ltd
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6.1 Brownian motion

Consider a continuous state, continuous time stochastic process {B (f), t > 0} where
dB=B(dr) = B(t+dt)— B(r) ~ N (0,dr) = Z,, 4y d1 (6.1)

for all . Here Z,,q, ~ N (0,1). Suppose further that the process has independent

increments. This means that if («, v) and (¢, s) are nonoverlapping intervals then B (v) —

B (u) and B (t) — B (s) are independently distributed. Further assume that B (0) = 0. Then
the solution to Equation (6.1) is

B(t)~N(0,1)
or
B(1)=+1W,
where W, ~ N (0, 1). The process {B(t),t > 0, B(0) = 0} is called a standard Brownian

motion.
Since the process has independent increments, for any ¢ > s >0

B(t)=/sW,+t—sW, (6.2)
where W, and W, are independently N (0, 1). Therefore, such a process may be simulated

in the interval [0, T'] by dividing it into a large number, n, of subintervals, each of length
h so that T = nh. Then according to Equation (6.2),

B(jh)y=B([j—11h)+Z~h

forj=1,...,nwhere Z,, ..., Z, are independently distributed as N (0, 1). This provides
a realization that is a discrete approximation to the continuous time process. It is exact
at times j =0, h, ..., nh. If a choice is made to interpolate at intermediate times it is an

approximation. By choosing n large enough the resulting error can be made arbitrarily
small. Now refer to Appendix 6.1. There is a procedure ‘STDNORM’ for a Box—Miiller
standard normal generator (it is used in preference to ‘STATS[random,normald](1)’ as it
is somewhat faster), together with a Maple procedure, ‘Brownian’. These are used to plot
three such discrete approximations (rn = 10000) to {B (¢), 100 > ¢t > 0, B (0) = 0}.

Now suppose that

dX (1) =pdt+odB(1). (6.3)

The parameter u gives the Brownian motion a drift and the parameter o (> 0) scales
B(?). Given that X (0) = x (0) the solution to this is obviously

X()=x0)+ut+0oB(1).
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The process {X (), t > 0} is called a Brownian motion (or Wiener process) with drift u
and variance parameter 2. It also has independent increments. For any ¢ > s,

X(I)—X(S)’VN(/.L[I—S],O'Z[Z‘—S])

and the probability density of X (¢), ¢ > 0, given that X (0) = x (0) is

_ 1 1[x—x(0)—pur7?
R i v

which is a solution to a diffusion equation

du du +1 28214
—=—u—+-0"—.
o Mox 27 o

6.2 Asset price movements

Suppose we wish to model the price movements over time of an asset such as a share,
interest rate, or commodity. If X (¢) represents the price at time ¢, the most frequently
used model in finance is

dx
~ =wdi+odB (6.4)

where o > 0. Note that the left-hand side represents the proportional change in the price
in the interval (z, t +dz). If o = 0 then the solution to this is X (f) = x (s)exp [ (t —5)],
for t > s, where x (s) is the known asset price at time s. In that case it is said that the
return in (t, s) is p (¢t —s) and that the growth rate is p.

Equation (6.4) is an example of an Ité stochastic differential equation of the form

dX=a(X,1)dt+b(X,t)dB. (6.5)

For t > 0,

X(t)—X(O)=fo,a(X(u),u)du—i—/otb(X(u),u) dB (u) (6.6)

where the second integral is known as an [t0 stochastic integral. For more details on
this, see, for example, Allen (2003, Chapter 8). Now suppose that G [X (¢), t] is some
function of X (¢) and ¢, where dG/dX, dG/dt, and *G/dX* all exist. Then It6’s lemma
states that the change in G in (¢, ¢ +dt) is given by

G G 1 ,39G
dG = —dX + —dr + —b*—dr. 6.7
X + ot + 27 9X? (6.7)

An easy way to remember this is to imagine a Taylor series expansion about (X (7), ),

G G 1°G
8G = —8X + — 8t + ——— (8X)*
ax T T axe )y +

19*°G G
——— (81 + ——08t 8X +.... 6.8
2 0t (31) +azax + (6.8)
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From Equation (6.5),

dX~adt+bdB~adt+bZ, 5Vt

where Z(,,.) ~ N (0,1). So E | (9X)?| = 1?o1E [zgt .

] +0(81) = b2t + 0 (81), and
similarly Var ((8X)2) = 0(81). So, in the limit, (6X)” is nonstochastic and equals b? dr.
Similarly, the last two terms on the right-hand side of Equation (6.8) are o (6¢). Putting
these together gives Equation (6.7).

To solve Equation (6.4), rewrite as (6.5) where a (X, t) = uX and b (X, 1) = 0X. Let
G =InX. Then dG/3X = 1/X, *G/0X* = —1/X?, and G /3t = 0. Using Itd’s lemma,

G G 1 ,9G
dG——d +—d+ b —d¢

27 0x?
dx 2dez
~ X axe
wXdt+oXdB  o?dt
- X )

2
— (u— %) dr+ odB.

Comparing this with Equation (6.3), it can be seen that {G (¢), t > 0} is a Wiener process
with drift g — 0?/2 and variance parameter o2. Therefore, because any Wiener process
has independent increments, then for ¢ > s,

G()—G(s)=InX(r) —InX(s)

-[56)

(1= 50) =90 00| (69)

Suppose now that the asset price is known to be x(s) at time s. Then at a later time ¢, the
price will be, from Equation (6.9),

X (6) = x(s)e” (6.10)
where Y ~ N [(u—10?) (t—s), 0 (1 —5)]. Y is the return during (s, r). Therefore, given

X (s) =x(s), X (¢) is lognormally distributed. Using standard results for the expectation
of a lognormal random variable,

EIX ()X () = x(9)] = x(5) E ¢")
—x@ewp| (1= 50°) =9+ 307 0-)]

=x(s) et
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Therefore w can be interpreted as the expected growth rate, as in the deterministic model.

It is fortuitous that the model (6.4) can be solved analytically. Frequently, stochastic
differential equations cannot. In such cases, one remedy is to simulate a sample of
paths {{X;(t),T >t >0},i=1,...,n} for Equation (6.5) and make inferences about
the distribution of X (), or perhaps other functionals of {X (¢), T > ¢ > 0}, from such a
sample. A discrete approximation to one such path is obtained using Euler’s method. The
resulting difference equation is

X ([j+11h) = X (jh) + ha (X (jh), jh) +b (X (jh), jh) Z;, b (6.11)

for j=0,...,m—1, where mh =T, and {Z;} are independently N (0, 1). In addition
to errors resulting from the Euler method, it is also an approximation in the sense that it
gives the behaviour of the path at discrete times only, whereas the model is in continuous
time.

For model (6.4), an Euler approximation is unnecessary, and if we wish to see the
entire path (rather than just the terminal value X (7)) Equation (6.10) would be used,
giving the difference equation

X ([j+1]h) :X(jh)exp[(y—%O'z) h+m/ﬁzj+l]

The stochastic process (6.4) is called a geometric Brownian motion. In Appendix 6.2
there is a procedure, ‘GeometricBrownian’, which is used to plot three independent
realizations of {X (¢), 10 > ¢ > 0} where m = 2000, X (0) = 100, u = 0.1, and o =0.3.
Each realization shows how the price of an asset subject to geometric Brownian motion,
and initially costing £100, changes over the next 10 years. The asset has an expected
growth rate of 10 % per annum and a volatility (i.e. the standard deviation of return in
a year) of 30 %. In the second part of Appendix 6.2 three further plots are shown for a
similar asset, but with volatilities of 2 %, 4 %, and 8 % respectively.

6.3 Pricing simple derivatives and options

A derivative is a contract that depends in some way on the price of one or more underlying
assets. For example, a forward contract is a derivative where one party promises to pay
the other a specified amount for underlying assets at some specified time. An option
is a derivative where the two parties have certain rights, which they are not obliged to
enforce. The simplest type of options are European call and put options.

A European call option gives the holder the right (but not the obligation) to buy an
asset at a specified time T (the expiration or exercise date) for a specified price K (the
exercise or strike price). Let X be the asset price at expiry. The payoff for a European call
is therefore max (0, X — K) which is written as (X — K)™. This follows, since if X > K
then it pays the holder of the call to enforce the right to buy the asset at K and immediately
sell it in the market for X, making a profit of X — K. If X < K then exercising the option
would result in a loss of K — X. In that case the holder of the call option does nothing,
giving zero profit. A put option gives the holder the right to sell the asset at the exercise
price and the payoff is therefore (K — X)*.
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Let V(X (2),t) be the price at time ¢ of a derivative (what type has not yet been
specified) on an underlying asset with price X (¢), where dX (¢) /X (t) = wdt + o dB.
V(X (t),t) is derived by constructing a portfolio, whose composition will be changed
dynamically with time by the holder of the portfolio in such a way that its return is
equal to the return on a risk-free investment. Consider such a portfolio consisting of one
derivative and — A units of the asset (i.e. ‘short’ in the asset). The value of the portfolio
is therefore 7 where

m(X (), ) =V(X(t),t)—AX (1).
The change in portfolio value during (z, t +dt) is
dm=d (V- AX).
Using Equations (6.4) and (6.7),
a(V—AX a(V—AX 10*(V—AX
= gd}( + gd; + _¥

dm a’X* dt
X ot 2 0X?
W a)ax+Yary ! il *X*dt
=|—=- — ——0 .
X ot 2 0X?
By setting A = dV/3X the risky component of d7 can be removed! In that case
av 19*V
dm = —dr+-——o’X dr. 6.12
T=w (612

However, this must equal the interest on a riskless asset otherwise investors could make
a risk-free profit (an arbitrage). One of the key assumptions in derivative pricing models
is that arbitrage is not possible. The argument is that if it were possible, then market
prices would immediately adapt to eliminate such possibilities. Let r denote the risk-free
growth rate. Then

dr =rmdt=r(V-AX)dr. (6.13)

Equating (6.12) and (6.13) gives the Black—Scholes differential equation

v 1PV v
Y e (v-Zx). 6.14
o Taax” r( X ) ©.14)

It is an understatement to say that a nice feature of this equation is that it does not
contain w, the expected growth rate of the asset. This is excellent since w is unknown.
The theory was developed by Black, Merton, and Scholes (Black and Scholes, 1973;
Merton, 1973), and earned Merton and Scholes a Nobel prize in 1997 (Black died in
1993). The equation has to be solved subject to the boundary conditions specific to the
derivative. Note that since the derivative price will change with ¢, in response to changes
in the asset price, the hedging parameter A will have to be updated continuously. This
balances the portfolio to produce a riskless return.

The major assumptions in the Black—Scholes model are that no arbitrage is possible,
that the asset price follows a geometric Brownian motion, that there are no transaction
costs, that the portfolio can be continually rebalanced, that the risk-free interest rate is
known during the life of the option, and that the underlying asset does not generate an
income such as a dividend (this last one is easily relaxed).
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6.3.1 European call

Suppose we are dealing with a European call with exercise time 7 and exercise price K,
and that the price of the asset at time ¢ is known to be x (¢). Then the terminal condition
is V(X(T),T) = (X (T)—K)™. The solution of Equation (6.14) subject to this boundary
condition turns out to be

V(x (1), 1)=e""" [:(x —K)* fx ryx(y=xny (%> x (£))dx (6.15)

where fy ). 1s the density of the asset price X at expiration time 7', given that the
current price is known to be x(¢) and taking the expected growth rate to be r, the
risk-free interest rate. This can be verified by direct substitution into Equation (6.14).
It is worth noting that fy 7 x)=xr) (X, X (T)) = 8 (x —x(T)), a delta function, and so
from Equation (6.15) V(X (T),T) = (X(T) — K)*, as expected (at time T the option
will be exercised if and only if X (7) > K, making the value of the option at that time
(X(T)—=K)"). For t < T it is known that the density is lognormal (see result (6.10)).
Also, note the discount factor e =", which makes the right-hand side of Equation (6.15)
equal to the present value of the expected payoff at expiration, assuming the asset has an
expected growth rate of r. This can be referred to as the present value of the expected
value of the payoff in a risk-neutral world.

Fortunately, Equation (6.15) can be obtained in closed form as follows. From
Equation (6.10), given that X () = x (¢),

X (T) = x (1) (A T-0+z0T=1
Therefore,
+
V(x(1), 1) =e"E, (x (1) (=2 2) T 420 VT _ K) 6.16)

where ¢ is the standard normal density. Let

In[K/x ()] = (r—0?/2) (T —1) .

= ovT —t
Then
7= [T r—a? —1)+ZoT— e
V(x (1), f) =7 ’>f (x (1) elr=o?2)T=n+2oVT=1 _ K) o
_/ e ( T dz—K e "7 d (—z,)
—x(® (U\/T_—t + zo) —K e T (—z,)
—x()P(d)—K e TV (d - (r«/ﬁ)
where

(r4+02/2) (T —1)+1In(x(¢) /K)
oNT —t '
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V(x(t),t) (or just c(¢) for short) is the price of a call option at time ¢ when the
current price is known to be x (f). Now refer to Appendix 6.3. The built-in ‘blackscholes’
procedure (part of the Maple finance package) is used to calculate the price of a European
call on a share that currently at time ¢t = 23/252 years (there are 252 trading days in a
year) has a price of £100. The original life of the option is 6 months, so T = 126/252
years. The risk-free interest rate is 5 % per annum, the volatility is 20 % per annum, and
the strike price is £97. The solution is

14 <100, ﬁ) =£7.84 (6.17)
252
In practice, no one uses simulation to price simple (vanilla) options such as a European
call. Nevertheless, it will be instructive to write a procedure that does this, as a prelude
to simulating more complex (exotic) options, where closed-form expressions are not
available. From Equation (6.16) it is clear that

¢= T (x(r) oIV g) (6.18)

is an unbiased estimator of the call price at time ¢, ¢ (¢). Given that {Z,,i =1, ..., m} are
independently N (0, 1), let ¢ and s denote the sample mean and sample standard deviation
of {¢;,i=1,...,m}. Then, for m sufficiently large, a 95% confidence interval is
(’5— 1.965//m,c+1.96 s/ﬂ). In Appendix 6.4, the procedure ‘BS’ provides just such
an estimate, (7.75, 7.92), which happily includes the exact value from Equation (6.17).
Note how ‘BS’ uses antithetic variates as a variance reduction device. In this case
replacing Z; by —Z, in Equation (6.18) also gives an unbiased estimator of ¢ (¢). How
effective is the use of antithetic variates here? The correlation with the primary estimate

, +
r=o2)(T-0+2ZoVT=1 _ g\ is well approximated by

will be large and negative if (x (1) el
a linear function of Z. This is the case if its value is usually positive (that is true when
x (1) e/ _ g is sufficiently large, in which case the option is said to be deep
in the money) and when o+/T —t, the standard deviation of return in [¢, 7] is small. An
example is shown in Appendix 6.4.

6.3.2 European put

For a European put, let p(¢) denote the price of the option at time ¢. Now consider a
portfolio consisting at time ¢ of one put plus one unit of the underlying asset. The value
of this at time 7 is max(X (7'), K). This is the same as the value at time 7 of a portfolio
that at time ¢ consisted of one call option (value ¢ (#)) plus an amount of cash equal to
Kexp (—r[T —t]). Therefore, the values of the two portfolios at time # must be equal
otherwise arbitrage would be possible. It follows that

c()+Ke "D =p()+X (1)

This result is known as put-call parity.
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6.3.3 Continuous income

How are these results modified when the underlying asset earns a continuous known
income at rate r,? Recall that the dynamically hedged portfolio consists of —dV/dX units
of the underlying asset. Therefore the interest earned in (t,¢ + dt) is —XrdV/dX dt.
Therefore Equation (6.12) becomes

% 19*V 1%
dr=— dt+-—0c*X*dr— —=Xrp dt
ot 2 0X? X
%
=r|{V—-X—)dt
X
and the corresponding Black—Scholes equation is
8V+182V 252 v ( )Xav
—t—-—0 =rV—(r—r;) X—.
ar - 20X2 )

For a European call, the boundary condition is

c(T)=V(X(T),T)

=X(T)-K)"
and the solution is
O =" [T K i (53 (1) dy (6.19)
= TE, (x(1) el ARz T k) (6.20)

—x(1) e TP (d,.f) —Ke T (d,/ - aJT_—z) (6.21)

where

. (r—r+0%/2) (T —1)+1In(x (1) /K) (6.22)
1 oT —t

Use of put-call parity gives a put price as

c()+Ke T D =p(t)+x(r) e 7T

6.3.4 Delta hedging

Now imagine a UK bank that sells a call option on a foreign currency that costs x () at
time 7 (for example x (¢) is the cost in pounds sterling of a block of 1000 euros). K, r, and
o represent the strike price, risk-free interest rate on pounds sterling, and the volatility
of the block of currency respectively, while r, is the risk-free interest rate earned by the
foreign currency. By selling the call for R, say, the bank is now exposed to risk arising
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from the unknown price X (T) at the exercise time, 7. Its net position (discounted back
to time ) on expiry will be R —e """ (X (T) — K)*. Its expected net position will be
R—V(X(t),1), so of course taking into account the risk and transaction costs, it will
certainly want to make R greater than the Black—Scholes price, V(X (¢), t). Theoretically,
it can eliminate all the risk by continuous hedging, that is by holding a portfolio of not
only —1 call options, but also A blocks of the currency. Here,

Ao V(x(2),1) _ dc(1)
o ax(n) ax(n)

= _ax o |:er(Tt) /_w(x — K)*fx,,f,.f(r)\x(,):x(,) (x, x (1)) dxi|

nT—p O 0
=e [)r(t) /K (x—K) fX,,,.f(T)\X(Z):x(t) (x, x (1)) dx
J e 2
_—HT—P) / ( (r=ry=0212)(T—1)+z0VT—1 _ )
=e —_— x(1) e K 7) dz
9x (1) J-d, +oyT=1 ® @)

=e 700 (d, )

6.3.5 Discrete hedging

Of course, continuous hedging is not physically possible in practice, and in any case, the
transaction costs associated with changing the position in the currency would preclude
excessively frequent hedging. With discrete hedging at intervals of length A, say, two
things will happen. Firstly, recalling that the actual price of the currency follows the
stochastic differential equation

dX dt+odB
—_— a ,
% 1

unless the expected growth rate w of the currency equals r, then the expected cost of
writing and hedging the option will exceed c¢(X (7), f), the Black—Scholes cost, since the
discrete hedging policy is no longer optimal. Secondly, the actual cost of writing and
hedging the option will no longer be known with certainty (and equal to c(X (t), 1)),
but will be a random variable. The larger its standard deviation, the greater is the bank’s
exposure to risk.

Simulation can be used to see these effects of discrete time hedging. For convenience,
let + = 0. At time zero, the bank must borrow £A (0) X (0) to finance the purchase of
euros for the initial hedge. Let 7 = mh. The call option that has been sold will be
hedged at times {jh, j=0,...,m}. Let A;, X;, and C; denote the delta, currency price,
and cumulative amount borrowed respectively at time jh. Let u denote the expected
growth rate (assumed constant) of the price of the currency. During [jh, (j+ 1) h) the
amount borrowed has grown to £Cj e due to interest, while the amount of currency
held has effectively grown from A; to A; e”’/" due to the interest earned on that
holding. Therefore, at time (j+ 1) & the required holding in currency must be changed
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by A, — A", at a cost of X, (Aj+1 — Ajerfh). Therefore, this gives the difference
equations

Crri=Ce" + X1 (A7 — 4",

X, = Xeluot /)i (6.23)
where
A= e—rm=h g ((r_ ry+0?/2) (m _j') h+1n (Xj/K)) ’
ay/(m=j)h
for j=0,...,m—1, subject to C, = A,X,. Of course, A,, will be either 1 or 0, according

to whether X,, > K, or otherwise. This may be verified from Equation (6.22) where d,f
is either co or —oo. Note the presence of the expected growth rate w, rather than r, in
Equation (6.23). The cost (discounted back to time zero) of writing and hedging the option
is (C,—Kly _x)e'", and as h — O this becomes V(X (0),0), which is independent
of w.

In Appendix 6.5 the Maple procedure ‘hedge’ evaluates this cost for a single realization
where the option is hedged nn + 1 times. This procedure is called by another procedure
‘effic’, which samples 10 000 such paths to estimate the expectation and standard deviation
of the cost of writing and hedging the option. The sample mean value (sample size =
10000) is compared with the Black—Scholes price (result (6.21)) computed through the
procedure ‘bscurrency’. Table 6.1 shows that the mean and standard deviation increase as
the frequency of hedging decreases. In this case it is supposed that the risk-free interest
rate is 5 % per annum, that the euros earn interest continuously at 3 % per annum, and the
expected growth rate of the euros (unknown in reality) is 15 % per annum. The worksheet
can be used to verify that, if u is changed from 0.15 to 0.05, then the expected cost
reverts to the Black—Scholes cost (subject to sampling error) of £13.34 for all hedging
frequencies. Of course, in this case, there is still variability in the actual hedging cost
which reflects the risk of not hedging continuously.

Table 6.1 Cost of writing and discrete hedging on call option: r = 0.05 p.a., r, = 0.03 p.a.,
p=0.15p.a,t=0,T =0.5 years, 0 =0.1 p.a., X(0) =£680, K =£700

Sample standard

Estimate of deviation of cost
Times hedged expected cost (£) e.s.e. (£) ®)
o0 13.34 0 0
127 13.41 0.15 1.45
13 14.00 0.05 4.75
5 15.30 0.09 8.67
3 17.27 0.13 13.2

2 21.54 0.22 22.18
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6.4 Asian options

6.4.1 Naive simulation

Result (6.15) showed that the price of a European call is the present value of the expected
value of the payoff at time T in a risk-neutral world. This applies quite generally to
other options as well, and this property will be used to price one of a well-known set of
derivatives, known as Asian options.

An Asian option is one where the payoff depends upon the average price of the
underlying asset during the option life. The payoff for an average price call, with strike
price K is

X(1) - K)* (6.24)

where X(7) is the average asset price during [0, T]. The average price put has payoff

(K—-X(T)*, (6.25)
an average strike call has payoff
(X(1) = X(D)*,
and an average strike put has payoff
(X(T) - X(D)*.

In all these cases the average is an arithmetic mean taken over the lifetime [0, T'] of the
option. Therefore the price of the option at time ¢ will depend upon the current asset price
X (1) and the quantity [ (1) = f(; X (u) du. To simplify matters we will take ¢t = 0, so the
price depends just on X (0). (If we wish to price an option some time during its life (that
is T> t > 0) it is a simple matter to convert this to the case t = 0. In practice, the average
is a discrete time one, taken at times h, 2h, . .., nh where T =nh. Let X; = X (jh).

We will concentrate on the average price call. Let ¢ denote the price of this option (at
time 0). Then, assuming a risk-neutral world,

1
X;=X; exp[(r— 502)h+ ow/ﬁZj]

for j=1,..,n where {Z_/-} are independent N (0, 1) random variables. Therefore

+
. 1o
cC=¢ TEZNN(O,I) [(Z ZXJ> — K} (6.26)
Jj=1

This option is a path-dependent option. Such options usually have no closed-form solution
as they involve evaluation of a definite multiple integral (of dimension 7 in this case).
However, a simulation is easy to program and appears in Appendix 6.6.1 as the procedure
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‘asiannaive’. This simulates npath paths, each one producing an independent payoff. The

estimator is
. eT "%h 1 ix X i
Cc = —_ ‘s _
npath * ni= Y

i=1

where
1
Xij=X; j1expl(r— EUZ)h + U\/ZZU]

for i=1,...,npath,j=1,...,n, and where X,, =X (0) and {Z,;} are independent
N (0, 1) random variables. If P; denotes the discounted payoff for the ith path and P the
average of the {P,}, then

V;(\?) - ! npzmh (P,—P)’. (6.27)

npath(npath—1) =

In the specimen example considered in the worksheet, npath = 25000, and therefore
Equation (6.27) can be taken to be the population variance, Var (¢), with negligible
error. This will be useful when we come to estimate a confidence interval for a variance
reduction ratio in the next section. For the moment we will note that in view of the large
sample size a 95 % confidence interval for c is

(’5— 1.96 Var (¢),c+1.96 Var (’5)) .

6.4.2 Importance and stratified version

An attempt will now be made to improve the efficiency of the previous procedure by
incorporating importance and stratified sampling. The method used is motivated by a
paper by Glasserman et al. (1999). There are some differences, however. The derivation
of the importance sampling distribution is simplified, the connection between arithmetic
and geometric averages is exploited, and the use of post stratification simplifies the
implementation.

From Equation (6.26) let the discounted payoff be P (Z) where

P(Z)y=e"" [(% ixj) —K:|

and where Z' = (Z,,...,Z,). Then

c=Ez noy[P(Z)].

Now suppose that the importance sampling distribution is N (8, I) for some row vector

B =(B,,....B,). Then

. P(Z) exp{—Z/Z/z}
c=Ez ng) [exp (—(Z—-B) (Z—-B)/2} ]

=Ez np) [P (Z) exp { # - ﬁ’Z” . (6.28)
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Recall from result (5.13) that a bound on the variance of P(Z)exp{B'B/2—B'Z} is

obtained by choosing the optimal envelope for a rejection algorithm that generates variates

from a density proportional to P (Z)exp{—Z'Z/2}. Accordingly, we hope to find a good

choice for B by finding z* and B* that solves

B*/B*
2

_ B*’z*} = Irgn max [P (z) exp { @ - B’ZH

P (z")exp {

. B ,
=min max |e InP —_— = .
p p@i‘o[ xp{ @) +=—-—B2
There is a stationary point of this function at B =z and B = VP (z) /P (z). It is conjectured
that this is a saddle point and therefore that

g VB
P(B)
It is possible to solve this numerically (Glasserman et al., 1999), but a simplification
will be made by noting that empirical evidence suggests that for all P (z) > 0, it is often
the case that P (z) is approximately equal to the value it would take if the average over
time was taken to be a geometric average, rather than an arithmetic one. Accordingly, a 3*
is now found that solves B* = VP, (B*) /P, (B*) where P, (z), the discounted geometric
average payoff, is given by

(6.29)

+

— . 1/n
n 1 J
P,(z)y=e"" (]_[ X, exp[(r — Eaz)jh + U\/ZZ zj]> —-K
j=1 i=1

- +
1 1 h
=e 7| X, exp |:(r—§0'2> <n;— )h+0—2(n—i+l)zjj|—Ki| (6.30)
nie

where X, = X (0). A solution is

P, * K —rT h
B = [ s (I;)(;*)e } (”n )(n—i+1) (631)
fori=1,...,n. Therefore
Bi=A(n—i+1) (6.32)

for some A > 0. Substituting into Equation (6.30) it can be seen that P, () is now a
function of A. When P, (8*) > 0 call this function e =" Q, (1). Then

0, M) +K (ovh
A=
s ()

(6.33)
n

where

Qg()\)zxoexp[(r—%aJ) <H;1>h+)\0;/ﬁ§(n—i+l)2i| -K

:Xoexp|:<r—%a'2) (”“) h+é)\ax/z(n+1)(2n+l):| ~K.

[\
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Since the search is over those A for which Q, (A) > 0, the search can be restricted to

(6.34)

+
Lo [ K/X) = =22+ 1) 200

ovh(n+1)(2n+1)/6 '

Since Q,(A) is increasing in A, it is clear from Equation (6.33) that there is

exactly one root. In summary, instead of sampling Z, ~ N (0, 1) we will sample from
N (A[n—i+1]), 1) where A is obtained from a one-dimensional search.

We now turn to a good stratification strategy. The price, ¢,, of a geometric average

price Asian call is given by

¢ =Ez g [exp{lnPg(Z)—i—ﬁ QB —3*’2”.

where P, (Z) is the discounted payoff. Observe from Equation (6.30) and (6.32) that
P, (Z) is a function of B*'Z only. Consequently, the estimator

BB
2

exp {ln P, (Z)+ — ﬁ*’Z}

is also a function of B*Z only, and therefore a stratification variable based upon B*Z
will, with ‘infinitely fine’ stratification, give ¢, with no error at all! Accordingly, a
stratification variable is defined as

X= B'Z—Esnpy (B'Z)
_BZ-BP
YL A =i+ 1) Z— N Y (n—i+ 1)
Sy i1y
Y =i+ 1) Z—An(n+1)2n+1) /6
B Yn(n+1)(2n+1)/6 :

Clearly, X ~ N (0, 1). In fact, simulation would not be used for a geometric average price
Asian call option, since a closed-form expression for c, is available (see Problem 6).
However, given the similarity between arithmetic and geometric averages, it is hoped
that the optimal stratification variable for the geometric will yield a good stratification
for the arithmetic. Employing the standard stratification algorithm with m strata, it is
then necessary, for each path generated in stratum j to sample X ~ N (0, 1) subject to
X e[@'[(j—1)/m], @' (j/m)]. One way is to set X = @' [(j— 1+ U)/m] where
U ~ N (0, 1). There are accurate and efficient approximations to the inverse cumulative
normal; see, for example, the Beasley—Springer (1977) approximation as modified by
Moro (1995). The Maple one is particularly slow. This fact motivates another approach,
whereby @~ (j/m) is evaluated just once for each j=1, ..., m—1 at the beginning of a
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simulation. Then for a path in the jth stratum, generate X using rejection with a uniform
envelope if j =2,...,m—1, and with an envelope proportional to xexp (—x2 /2) for
j =1 and m (see Problem 7). The remaining problem is to sample from the conditional
distribution of Z ~ N (B*,I) given that X = x. This is a standard problem concerning
a multivariate normal distribution. One way that is efficient and requires only O (n)
multiplications is suggested by Glasserman et al. (1999), who setv = g*/./B* B*, samples
W ~ N (0,1), and then put

Z=B"+W+(x—vVW)y,

Alternatively, we can, as described in Chapter 5, avoid sampling from the conditional
distribution by employing post stratification. This leads to a somewhat shorter procedure,
which gives comparable precision and efficiency providing the expected number in each
stratum is of the order of 20 or above (Cochran, 1977, p. 134). A Maple procedure that
does this, ‘asianimppoststrat’, is shown in Appendix 6.6.2. Now numerical results for
the procedures ‘asiannaive’ and ‘asianimppoststrat’ will be compared in Table 6.2. The
parameter values are x, =50, =0.05,T =1, and n = 16.

Note that an approximate 95% confidence interval is given for the variance reduction
ratio. This is obtained as follows. For naive sampling there are npath, (/:\ 25000)
independent payoffs, and so without too much error we may take Var (¢;) = Var (¢, ), that
is the point estimate of variance of ¢,. For the importance plus post stratified estimator, ¢,,
there are p (=number of replications= 100) independent estimates of the price. Each one
is made up of an average of m (=number of strata = 100) stratum sample means, where
the expected number of payoffs in each sample mean is npath,/m = 2500/100 = 25.
This latter number is probably sufficient to justify a near-normal distribution for the
stratum sample means, and therefore of the individual replication estimates. Therefore
if Var (¢,) is a point estimate of Var (¢,), an approximate 95 % confidence interval for

. —

[Var (/C\z)]_l is E’ar (/C\z):| (X,il,oms/(l’ -1, X,%71,0A975/(P - 1)) The sample sizes for

Table 6.2 A comparison of naive Monte Carlo (asiannaive) with combined importance and
post stratification (asianimppoststrat) for an Asian average price call

asiannaive* asianimppoststrat?

o K @ VVar (c)) , VVar (c,) V.I.LC
0.3 55 2.2149 0.0300 2.2116 0.000313 (681,1192)
0.3 50 4.1666 0.0399 4.1708 0.000374 (843,1476)
0.3 45 7.1452 0.0486 7.1521 0.000483 (750,1313)
0.1 55 0.2012 0.00462 0.2024 0.0000235 (2864,5014)
0.1 50 1.9178 0.0140 1.9195 0.0000657 (3365,5890)
0.1 45 6.0482 0.0186 6.0553 0.000191 (703,1230)

“25000 paths.
%100 replications, each consisting of 2500 paths over 100 equiprobable strata.
¢ An approximate 95 % confidence interval for the variance reduction ratio.



Basket options

the two simulations are npath, and p x npath, respectively. Therefore, an approximate
95 % confidence interval for the variance reduction ratio is

npath, xVar (c;) X,2,—1,0.025 )(,%—1,0.975
— \"p=1 oot )

p X npath, xVar (¢,)

The last column of Table 6.2 shows that the combination of importance sampling
and post stratification is highly effective. Similar results and variance reductions are
achievable with a standard stratified sampling algorithm in which exactly one path is
generated in each stratum. The wide confidence intervals in Table 6.2 are to be expected
when estimating variances with a small number of replications.

6.5 Basket options

Consider a basket (or portfolio) consisting of n assets. The basket contains a quantity g; of
asset i where i = 1,...,n. Let u;, 0;, and X,(¢) denote the mean growth rate, volatility,
and price of one unit of the ith asset at time ¢ respectively, where

dX.
—i — u,dt +o,/dr dB,,

i

and where {B, (¢)} are standard Brownian motions that are not necessarily independent.
Suppose the current time is s and that X;(s) = x;(s) and X;(s) = x;(s). Choose any ¢ > s.
Then

In X;(¢) = Inx;(s) + <r— %o’f) (t—s)+ot—sZ,

and
1
In X, () =Inx;(s) + (r— Eaf) (t—s)+ot—sZ,. (6.35)
where Z = (Z,,...,Z,) ~ N (0, p) and In X,(#) — In x;(s) and In X,(r) — In x;(s) are the

returns in [s, t] from assets i and j respectively in a risk-neutral world. Therefore, the
variance of return on the assets are o7 (f — s) and a'j2 (¢t — s) respectively, and the covariance
between the returns is o,0; (t —s) cov (Zi, Zj) = p;;0;0;(t—s). It follows that p;; is the
correlation between the returns for all s and 7 > s. The value of the basket at time 7 (the
spot price) is Y _»_, ¢;X;(#) and the price of a European call option at time ¢, with strike price
K and exercise time 7, is the discounted expected payoff in a risk-neutral world, that is

+
n
c= e_r(T_r)EZNN(O,p) |:Z %xi(t)e(r_g"z/z)a_t)w" = K:| . (6.36)
i=1
The matrix p, being positive definite, can be decomposed as

p =bb'
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where b is the unique lower triangular matrix. This is known as a Cholesky decomposition.
If Y ~ N(0,I) then the density of Y is proportional to exp (—%y’y). Let Z =bY and
let J denote the Jacobian of the transformation from y to z. Then J is independent of

z. The density of Z is proportional to exp (—% [b"z]/b"z) |J| which is proportional to
exp (— 7 [bb/]71 z) = exp (—12'p~'z). Therefore

Z =bY ~ N(O, p).
For example, suppose

1.0 07 05 03

07 1.0 0.6 02
p= (6.37)
05 06 1.0 04

03 02 04 1.0

Then Maple computes b as follows:

with(LinearAlgebra):
> rho := Matrix([[1,0.7,0.5,0.3],[0.7,1,0.6,0.2],[0.5,0.6,1,0.4],{0.3,0.2,0.4,1]]):
> b := LUDecomposition(A, method="Cholesky’);
(1]
[0.699999999999999954 , 0.714142842854284976 , 0. , 0.]
[0.500000000000000000 , 0.350070021007002463 , 0.792118034381339431 , 0.]
[0.299999999999999988 , -0.0140028008402800531 , 0.321797951467419185 ,

0.897914249803398512]
and so
Z, 1 Y,
Z,| 107 0.714143 Y,
Z,1 |05 0.350070 0.792118 Y,
Z, 0.3 —0.014003 0.321798 0.897914 Y,

In Appendix 6.7.1 the procedure ‘basket’ uses a naive Monte Carlo to estimate c.
In order to improve the estimate, importance sampling will now be employed with post
stratification. Referring to Equation (6.36), define a set of weights using

Qixi(t)e(r_a’?/z)(T_t)

w. = B
p qixi(t)e(r_01 /2)(T=0)

4

fori=1,...,n, and put x, = Y1, g:x,(1)e 2T Then

+

" K

c= e—r(Tft)onZNN(O’p) |:Z wie(T[V T—1Z; _
i=1 %o

+
" = K
= eir(T?t)onZNN(o’I) |: E w,-e”' T—10Z); _ —:|

i=1
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Now, instead of sampling from N(0, I), an importance sampling distribution N(83,I) is
used. Thus

+
c=e """ xEy ngn { [Z w,e ™ TL); _ —} BB Z} . (6.38)

i=1 Xo
A good B and stratification variable is now chosen. Observe that if "}, w,o;v/ T —t (bZ),
is small, then

Z wiem\/ﬁ(bl)f ~ exp |:Z w,oNT —t (bZ)i:| s
i=1 i=1

since ), w; = 1. Therefore, the aim is to find a good B and stratification variable for
an option with price c,, where

n
n K , ’

Ce = eﬁ(Tit)onZ~N(ﬁ.I) [ |:exp (Z w,oNT —1t (bZ),) - —:| B Bﬁz}
i=1 X0

Now define c¢; = w;o;. Then

K" 1w
c, =" "I XE; np { |:exp (v T— tc’bZ) - —:| erh 332} (6.39)

Xo

Following the same approach as for the Asian option, a good choice of 8 is 3* where

B =Vin |:exp (\/T_—tc’bﬁ*) - £:|

Xo

Therefore,
VT —texp (\/ T - tc’bﬂ*)

pr=be exp («/ﬁc’bﬁ*) —K/x,

where exp (Zle VT — tc’bﬁ’*) — K/x, > 0. Therefore

B =Abc (6.40)
where
T —texp ()\\/ T - tc’pc)
A (6.41)

B exp (A«/ﬁc’pc) —K/x,

and where A > In(K/x,) /(v T —tc'pc). With this choice of A, and therefore B*, we
obtain from Equation (6.39)

K" ipoppo
co =" Ey g { [exp (A*'«/ T— tﬁ*/Z) - —} S Z} :

X0
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Table 6.3 Results for basket option, using naive Monte Carlo (basket) and importance
sampling with post stratification (basketimppostratv2)

basket? basketimppostratv2®

o K T Var (¢) T Var (¢) V.ILS
o, 600 84.03 0.881 85.18 0.0645 (96,306)
o, 660 47.21 0.707 48.03 0.0492 (107,338)
o, 720 23.49 0.514 24.04 0.0282 (171,544)
o, 600 71.68 0.390 72.25 0.0390 (51,164)
o, 660 22.74 0.283 23.09 0.0096 (447,1420)
o, 720 2.74 0.100 2.87 0.00297 (585,1869)

“ 10000 paths.
525 replications, each consisting of 400 paths over 20 equiprobable strata.
¢ Approximate 95 % confidence interval for the variance reduction ratio.

Since this is the expectation of a function of B*Z only, the ideal stratification variable
for the option with price c, is

B*/Z _ B*/B*
X=—————~N(0,1). (6.42)
N
From Equation (6.38), for the original option with price ¢ the estimator
. +
ey, [Z w,eWT102), _ 5} 1B B B2 (6.43)
i=1 Xo

is used, where Z ~ N(B*,I), B* is determined from Equations (6.40) and (6.41), and
Equation (6.42) defines the stratification variable.

The procedure ‘basketimppoststratv2’ in Appendix 6.7.2 implements this using post
stratified sampling. Table 6.3 compares results using this and the naive method for
a call option on an underlying basket of four assets. The data are r = 0.04,x" =
(5,2.5,4,3),4' = (20,80,60,40), T = 0.5,t =0, and p as given in Equation (6.37).
Two sets of cases were considered, one with o0 = o, = (0.3, 0.2, 0.3, 0.4)', the other with
o =0,=(0.05,0.1,0.15,0.05)". The spot price is g'x = 660.

6.6 Stochastic volatility

Although the Black—Scholes model is remarkably good, one of its shortcomings is that it
assumes a constant volatility. What happens if the parameter o is replaced by a known
function of time o (#)? Then

dx
a =pdt+o(r)dB, (1),



Stochastic volatility

so using It6’s lemma

dx o?(nXx?

d(InX) = dr
(InX) =+ ~-"x

=udt+o(1)dB (1) — %0’2 (t)dt
= |:[.,L— %0’2 (t):| dt+ o (¢t)dB, (¢). (6.44)

Now define an average squared volatility, V (z) = (1/t) fot o? (u)/2 du. Given that X (0) =
Xy, Equation (6.44) can be integrated to give

X (1) =xoexp{|:,u—%V(t):|t—i—/ofa(u)dBl (u)}
:xoexp{l:,u—%\/(t)}t—i—\/v_(t)B, (t)}.

Using the principle that the price at time zero of a European call with exercise time T
and strike K is the discounted (present) value of the payoff in a risk-neutral world, the
price is given by

.
c=e"E; von [x (0) elr—V /AT TV(T)Z _ K] . (6.45)

Therefore, the usual Black—Scholes equation may be used by replacing the constant
volatility with the average squared volatility.

A more realistic model is one that models the variable o () as a function of a stochastic
process Y (t). An example is given in Figure 6.1. For example, Fouque and Tullie (2002)
suggested using an Ornstein—Uhlenbeck process (see, for example, Cox and Miller, 1965,
pp- 225-9),

dY = a(m—Y)dt+BdB, (1) (6.46)

where the correlation between the two standard Brownian motions {B, (¢)} and {B, (¢)}
is p, and where «, 8 > 0. A possible choice ensuring that o (¢) > 0 is

o(t)=e'®.

A rationale for Equation (6.46) is that the further Y strays from m the larger the drift
towards m. For this reason, {¥(¢)} is an example of a mean reverting random walk. To
solve Equation (6.46), 1t6’s lemma is used to give
d[(m—Y)e*] = —e“dY +ae* (m—Y)dt
=—e“[a(m—Y)dr+BdB, (1)]+ae* (m—Y)dr
= —e“BdB, (1)
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A faster mean reverting volatility process
(alpha=5) with the expected volatility

0.2 4
0.18 1

0.16 1

0.14 4 I | T

sigma(t)

0.12 1

0.1+

0.08 -

t

Figure 6.1 An exponential Ornstein—Uhlenbeck volatility process

Integrating between s and 7 (> s) gives

=Y (] == ()] == [ e dB, (0

,/f B, () - B, (5))

B2 (eZat _ eZas)

2a(i—s) {B,(t) =B, ()} .

Now define v* = 82/2«. Then

62 _ eZas

[m—Y (0)]e* =[m=Y(s)]e* = —v\/ ———— {B, (1) = B, (5)} (6.47)
or
Y (1) =e Y (5)+ (1 —e ) m v/l —e- 20097

where {Z(S,,)} are independent N (0, 1) random variables for disjoint intervals {(s, 7)}.
Putting s = 0 and letting r — oo, it is apparent that the stationary distribution of the
process is N (m, vz), so if o (1) =e?®, then for large t, E[o ()] ~ exp (m+ V2/2). To
simulate an Ornstein—Uhlenbeck (OU) process in [0, T] put 7 = nh and Y; = Y (jh).
Then

Y=e Y, +(1—e")m+vvV1—e2Z,
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where Z; are independent N(0, 1) random variables for j =1, ..., n. Note that there is
no Euler approximation here. The generated discrete time process is an exact copy at
times O, 4, . . ., nh of a randomly generated continuous time OU process. The procedure
‘meanreverting’ in Appendix 6.8 simulates the volatility process {ey(”}. Additional plots
in the Appendix show the effect of changing «. As « increases the process reverts to the
mean more quickly.

Now we turn to the pricing of a European call option subject to a stochastic volatility.
The dynamics of this are

dyX =upudr+o(Y)dB,, (6.48)
dY:a(m—Y)dt—l—ﬁ[del—i-\/l—pdez}, (6.49)
o(Y)=exp(Y), (6.50)

where B, and B, are independent standard Brownian motions. Note the correlation of
p between the instantaneous return on the asset and dY that drives the volatility o (Y).
There are now two sources of randomness and perfect hedging would be impossible
unless there were another traded asset that is driven by B,. As it stands, in order to price
a derivative of X and Y, theory shows that the drift in Equations (6.48) and (6.49) should
be reduced by the corresponding market price of risk multiplied by the volatility of X
and Y respectively. The resulting drift is called the risk-neutral drift. Call the two market
prices Ay and A,. A market price of risk can be thought of in the following way. For the
process X, say, there are an infinite variety of derivatives. Suppose d”? and s© are the
instantaneous drift and volatility respectively of the ith one. To compensate for the risk,
an investor demands that d) = r+ As® for all i, where Ay is a function of the process
{X} only, and not of any derivative of it. Remembering that a derivative is a tradeable
asset, we notice that one derivative of X is the asset itself, so . = r+ Ay (Y). Therefore
the risk-neutral drift for Equation (6.48) is w — Ayo (Y) = r, which is consistent with
what has been used previously. In the case of Y, volatility is not a tradeable asset so we
cannot reason similarly; and can only say that the risk-neutral drift for Equation (6.49) is
a(m—Y)—A,B. It turns out that

Ay =pry+y1=p>y(Y)
o (B35 ) Ty

oY)

(Hobson, 1998) where pAy and /1—p?y(Y) are the components arising from
randomness in B, and B,. The fact that both Ay and y(Y) are unknown is unfortunate
and accounts for the fact that there is no unique pricing formula for stochastic volatility.
Given some view on what A, should be, a derivative is priced by solving

dx
5a =rdt+o(Y)dB,,

dY:[a(m—Y)—)\yB]dt+B{p dB,+s/1—p2de}, 6.51)
ag(Y)=exp(Y). (6.52)
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The call option price is the present value of the expected payoff in a risk-neutral world.
It is now a simple matter to modify the procedure ‘meanreverting’ to find the payoff,
[X(T) — K], for a realized path

{(X(1),Y(1).0=<1=T}

(see Problem 10).
If the X and Y processes are independent then the valuation is much simplified. Let ¢
denote the call price at time zero for such an option expiring at time 7. Then

c= ffrTIEzzz,JE1 [X(T)—K]"
where X is sampled in a risk-neutral world as described above. Therefore
€= eil‘TEBz {EBl\Bz ([X (T) - K]+)} :

Since B, is independent of B,, it follows that Ej 5, ([X (T)—-K ]+) is simply the Black—
Scholes price for a call option, with average squared volatility

1
Vi, (0= - fo 5%, () du

where {0'152;2 (u)} is a realization of the volatility path. Therefore, an unbiased estimate of
¢ is obtained by sampling such a volatility path using Equations (6.51) and (6.52) with
p = 0. This is an example of conditional Monte Carlo. If T = nh, there are usually 2n
variables in the integration. However, with independence, p = 0. This design integrates
out n of the variables analytically. The remaining n variables are integrated using Monte
Carlo.

6.7 Problems

1. Show that the delta for a European put, at time f, on an asset earning
interest continuously at rate ry, is —e"f(T‘f)(P(—d,,/) where d,/ is as given in
Equation (6.22).

2. Use the procedure ‘bscurrency’ in Appendix 6.5 to price European put options on a
block of 1000 shares offering no dividends, where the current price is 345 pence per
share, the volatility is 30 % per annum, the risk-free interest rate is 4.5 % per annum,
and the strike prices are (a) 330, (b) 345, and (c) 360 pence respectively. The options
expire in 3 months time. If you have just sold these puts to a client and you wish to
hedge the risk in each case, how many shares should you ‘short’ (i.e. borrow and sell)
initially in each case?

3. A bank offers investors a bond with a life of 4 years on the following terms. At
maturity the bond is guaranteed to return £1. In addition if the FTSE index at maturity
is higher than it was when the bond was purchased, interest on £1 equal to one-half of
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the % rise in the index is added. However, this interest is capped at £0.30. The risk-free
interest rate is 4 % per annum and the volatility of the FTSE is 0.2 per annum. The
aim is to find a fair (arbitrage-free) price for the bond V (x(¢), t) for 0 < <4 where
x(1) is the index value at time #, using the principle that the price of any derivative of
the FTSE is the present value of the expected payoff at + =4 years, in a risk neutral
world.

(a) Deduce a definite integral whose value equals V (x(¢), 7). The integrand should
contain the standard normal density ¢(z).

(b) Since integration is over one variable only, Monte Carlo is not justified providing
numerical integration is convenient. Therefore, use numerical integration with
Maple to find V(x(0), 0).

(c) After 2 years the index is standing at 1.8x(0). What is the value of the bond now?

. The holder of a call option has the right to buy a share at time T for price K. However,
the holder of a forward contract has the obligation to do so. The derivation of the
price of such a derivative is easier than that for a call option:

(a) Consider a portfolio A consisting at time zero of one forward contract on the share
and an amount of cash Ke™'T. Consider another portfolio B comprising one share.
Show that the two portfolios always have equal values in [0, 7]. Hence show that
if a forward contract is made at time zero, its value at time ¢ when the price of the
share is x (1) is given by

V(x(t), 1) = x (1) — Ke T,

(b) Show that V (X (¢), t) satisfies the Black—Scholes differential equation (6.14).

C at 1s the hedging strate or a forward contract that results 1n a riskless
What is the hedging gy f f d h Its i iskl
portfolio?

(d) What happens if K = x (0)e'” ?

. A bank has sold a European call option to a customer, with exercise time 7 from now,
for a (divisible) share. The price of one share (which does not yield a dividend) is
determined by

dX dt+odB
—_— = g .
X 12

The risk-free interest rate is » and the volatility is o. The following policy is used by
the bank to hedge its exposure to risk (recall that it will have a payoff of [X (T) — K|*
at time 7T): at time ¢ = 0 it borrows A (0) X (0) to purchase A (0) shares, while at
time 7 = T it purchases an additional [A (1) — A (0)] shares. Therefore, it is employing
an extreme form of discrete hedging, changing its position in the shares only at the
beginning and end of the option’s life. At these times the bank has decided it will use
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the deltas calculated for continuous hedging. Let C denote the total cost of writing the
option and hedging it. Show that

E(C)=c+X(0)e* " [d(d,)—P(d)]
+Kke T [@(d=oVT) - (d,~oVT)]

where c is the Black—Scholes price of the option at time zero,

g (+02/2) T+1n(x(0)/K)
©n O'ﬁ ’

and

(r+0%/2) T +1n(x(0) /K)
o T '

Plot E(C) — ¢ when r =0.05,0 = 0.1, X (0) =680, K =700, and T = 0.5 for u €
[-0.3,0.3].

6. Consider an average price Asian call with expiry time 7. The average is a geometric
one sampled at discrete times h, 24, ..., nh=T. Let c, denote the price of the option
at time zero. Show that

+
1 1 vahZ
cg:e_’TEzw(m) |:Xoexp |:(r——g-2) <”+ )h+‘7 a :|_K:|
, 2 2 "

where a =n(n+1) (2n+1) /6. By taking the limit as n — oo, show that the price for
the continuously sampled geometric average is the same as the price of a European
call where the volatility is o/ V/3 and where the asset earns a continuous income at
rate r/24o?/12.

7. When stratifying a standard normal variate, as, for example, in Section 6.4.2, an
algorithm for sampling from N (0, 1) subject to X € [@~! ((j—1)/m), @' (j/m)] for
j=1,...,mis required. Write a Maple procedure for this. Use a uniform envelope
for j=2,...,m—1 and one proportional to xexp (—x2/2) for j =1 and m. Derive
expressions for the probability of acceptance for each of the m strata. Such a procedure
can be used for sampling from N (0, 1) by sampling from stratum j, j=1,...,m,
with probability 1/m. What is the overall probability of acceptance in that case? For
an alternative method for sampling from intervals j = 1 and m (the tails of a normal)
see Dagpunar (1988b).



8.

11.

Problems

Using the result in Problem 6, obtain the prices of continuous time geometric average
price Asian call options. Use the parameter values given in Table 6.2. Obtain results
for the corresponding arithmetic average price Asian call options when the number
of sampling points in the average are 50, 200, and 500 respectively. Compare the last
of these with the continuous time geometric average price Asian call option prices.

. Let ¢ denote the price at t = 0 of a European arithmetic average price call with expiry

time 7. The risk-free interest rate is r, the strike price is K, and the asset price at
time ¢ is X (). The average is computed at times &, 2h, . .., nh where nh=T.

(a) Make the substitutions x; = x (0)exp[r (jh—T)] and o; = o\/jh/T for j =
1,. .., n. Hence show that c is also the price of a basket option on n assets, where
there are 1/n units of asset j which has a price of x ;at time zero, j=1,...,n,
and where the correlation between the returns on assets j and m is /j/m for
I<j<m<n.

(b) Refer to the results in Table 6.2. Verify any of these by estimating the price of
the equivalent basket option.

. (a) Modify the procedure ‘meanreverting’ in Appendix 6.8 so that it prices a European

call option on an asset subject to stochastic volatility, assuming A, = 0.
(b) Suggest how the precision may be improved by variance reduction techniques.

Use the modified procedure referred to in Problem 10(a) to evaluate options when the
Brownian motions driving the asset price and volatility processes are independent.
Then repeat using conditional Monte Carlo. Estimate the variance reduction achieved.
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Discrete event simulation

A discrete event system will be defined as one in which the time variable is discrete
and the state variables may be discrete or continuous. Correspondingly, a continuous
event system is one in which the time variable is continuous and all state variables are
continuous. This leaves one remaining type of system, one where the time variable is
continuous and the state variables are discrete. In that case, the process can be embedded
at those points in time at which a state change occurs. Thus such a system can be reduced
to a discrete event system.

Of course a system may be a mixture of discrete and continuous events. The essential
feature of a pure discrete event system is that the state remains unchanged between
consecutive discrete time points (events). In simulating such a process, it is necessary only
to advance time from one event to the next without worrying about intermediate times. A
continuous event system can always be approximated by a discrete event system through
an appropriate discretization of the time variable. In fact, if the (stochastic) differential
equations cannot be solved to give a closed form solution, this is a sensible way to
proceed.

In this chapter we will show how to simulate some standard discrete event stochastic
processes and then move on to examples of nonstandard processes. We do not deal with
the simulation of large scale systems such as complex manufacturing processes where it is
an advantage to use one of the dedicated simulation languages/packages. There are a large
number of these available, many of them incorporating visual interactive components.
Examples of these are Simscript II.5, Witness, Simul8, Microsaint, and Extend. From a
historical viewpoint the book by Tocher (1963) is interesting. Other books emphasizing
practical aspects of building discrete event simulation models include those by Banks
et al. (2005), Fishman (1978), Law and Kelton (2000), and Pidd (1998).

Simulation and Monte Carlo: With applications in finance and MCMC J. S. Dagpunar
© 2007 John Wiley & Sons, Ltd
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7.1 Poisson process

Consider the following situation. You are waiting for a taxi on a street corner and
have been told that these pass by in a ‘completely random’ fashion. More precisely,
in a small time interval of duration &, the chance that a taxi arrives is approximately
proportional to &, and does not depend upon the previous history. Let N (¢) denote the
number of taxis passing during the interval [0, f]. Suppose there is a positive constant
A, the arrival rate, such that for any small time interval (¢, 7+ k], the probability of
a single arrival is approximately Ak and the probability of no arrival is approximately
1 — Ah. These probabilities are assumed to be independent of occurrences in [0, f].
Specifically,

P[N(@+h)=n+1|N(t)=n]=Ah+o0(h)
and
P[N(t+h)=n|N(t)=n]=1—Ah+o(h).
Note that the two conditions ensure that
P[N (t+h) > n+1|N () = n] = o(h).
Such a process is a Poisson process. It has the following important properties:

(1) Independent increments. The numbers arriving in nonoverlapping intervals are
independently distributed. This is the Markov or ‘loss of memory’ property.

(ii) The chance of two or more arrivals in a small time interval may be neglected.

(iii) Stationary increments. The distribution of the number of arrivals in an interval
depends only on the duration of the interval.

The probability distribution of N (f) is now derived. Define p,(f) = P (N (¢) = n).
Conditioning on the number of arrivals in [0, ¢] gives

P (14 1) = p, (D[N +0 ()] 4 p, (D1 — A+ 0 ()] + o). (7.1)

Note that the first term on the right-hand side of Equation (7.1) is the probability that
there are n— 1 arrivals in [0, f] and one arrival in (#, 7+ h]. The second term is the
probability that there are n arrivals in [0, ¢] and no arrivals in (¢, t + h]. There is no need
to consider any other possibilities as the Poisson axioms allow the occurrence of two or
more arrivals to be neglected in a small time interval. Equation (7.1) is valid for n > 1
and also for n = 0 if the convention is adopted that p_,(#) = 0 V¢. Now rewrite as

=D )= ap, )+ 2



Poisson process
and take the limit as 2 — 0. Then

Py (D) =Ap,_ (1) = Ap, (7). (7.2)

To solve this, multiply through by e and rewrite as

@] = AP )]. (13)
Solving this for n =0 gives d/dz [e* p, ()] = 0, which gives " py(r) = A, say. However,
po(0) =1, so " py(r) = 1. Therefore, d/d[e*p, ()] = A, which gives e p, (1) — At =
B, say. However, p,(0) =0 for n > 0, so ep,(t) = At. At this stage it is guessed
that the solution is e*p,(f) = (At)"/n! ¥n > 0. Suppose it is true for n = k. Then
from Equation (7.3), d/dt[e* p,,,(t)] = A(A1)"/k!, so, on integrating, e"p,,(r) —
(A / (k+1)! = C, say. However, p,,,(0) =0, so e"p,, (1) = (A" /(k + D).
Therefore, since it is true for n = 0, it must, by the principle of induction, be true for
Vn > 0. Therefore

pa( = A0 (1.4

and so N (¢) follows a Poisson distribution with mean and variance both equal to Az.

We now determine the distribution of the time between consecutive events in a Poisson
process. Let T, denote the time between the (n — 1) th and nth arrivals forn=1,2,....
Then

i=1 i=1

n—1 n—1
P(T,>t|T,_,=t, ..., T, =1,)=P (0 events in (Zti, t—i—Zti))
= P (0 events in (0, t))

by the stationarity property. Since this is independent of ¢,_, ..., t,, it follows that the
interarrival times are independent. Now from Equation (7.4),

P (0 events in (0, 1)) =e™
so
P(T,>1t)=e™.

Therefore, the interarrival times are i.i.d. with density

F)=— ™)

=Ae M. (7.5)
The mean and standard deviation of the interarrival times are both A~!.

Note that a Poisson process {N (¢),7>0} is a discrete state stochastic process
in continuous time. By embedding the process at arrival times we can construct a
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discrete state, discrete time process, {N (t),t= T(l), T(2), ... }, where T(n) is the time
of the nth arrival. All the information in any realization of the original process
is captured in the corresponding realization of {N @), t=Tu, Ty - - } Using the
definition at the start of this chapter, the latter is a discrete event system. It may be
simulated using result (7.5), recalling that Exp (A) := —(1/A)In R, where R ~ U (0, 1).
Thus

1
T(n) = T(n—l) - X lan

forn=1,2,..., where T(O) =0.
This immediately leads to a method for generating a Poisson variate from the
distribution

e—mmn

P(X=n)= P (n=0,1,...).

Here X is also the number of events in [0, 1] in a Poisson process of rate m. So X = n if
and only if T,y <1 and T, > 1. This occurs if and only if }__, (—=(1/A)InR;) <1 and
S (—=(1/A)InR,) > 1, that is if [T R, <e™ <[], R,. Since []~, R, is decreasing
in n,

n+l1
X = min (n: [1R: <e_)‘).

i=1

The expected number of uniform variates required in such a method is E(X+1) = A+ 1.
This method becomes quite expensive in computer time if m is large. Other methods are
discussed in Chapter 4.

Another way of simulating a Poisson process in [0, T] is first to sample N (T') using an
efficient Poisson variate generator and then to sample the arrival times conditional on the
Poisson variate. Using this method, suppose that N (¢) = n. It turns out that the conditional

joint density of the arrival times, 7(;), ..., T{,), is the same as the joint density of the
uniform order statistics from the U (0, T') density, as now shown. For any x € (0, T'] and
i€[l,...,n],

2 P(N(x)=jand N(T —x) =n—j)
B P(N(T)=n)

X [ e MR [A(T = )] e N0 (n— ).
- (AT)" e~ /n!

£0)G 07 &

Now let X(y), ..., X, denote the n uniform order statistics from U[0, T]. The number of
these falling in the interval [0, x] is a binom(n, x/T) random variable. So

P == (1) (3) (1-3)"" .7

j=i

P(T, <x|N(T)=n)
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which is the same distribution as Equation (7.6), which proves the result. Using this
property, the following Maple code and results show five random realizations of a Poisson
process in [0,3.5], each of rate 2. Note the use of the Maple ‘sort” command:

> randomize(75321):

lambda := 2;T := 3.5;m := lambda*T;

for u from 1 to 5 do;
n := stats[random,poisson[m]](1):
for j from 1 to n do:

t[j] := evalf (T*rand()/10"12):

end do:
d :=[seq(t[j],j=1..n)]:
arrival_times:= sort(d):
print(arrival_times);

end do:

lambda :=2

T:=3.5

m:=7.0

[0.4683920028, 0.8584469999, 1.324848195, 1.564463956, 2.342103589, 2.753604757,
3.161013255, 3.355203918]

[0.3105425825, 0.6851910142, 1.025506152, 1.036301499, 1.247404803, 1.370810129,
2.376811957, 2.377386193, 2.564390192, 3.436339776]

[0.8816330302, 0.9995187699, 1.733006037, 1.926557959, 1.926642493, 2.803064014]
[1.596872439, 2.036243709, 2.042999552, 2.341445360, 2.513656874, 2.987985832,
3.185727007, 3.370120432]

[0.9566889486, 1.358244739, 2.998496576]

Another way to obtain the uniform order statistics avoids sorting. Let U, ..., U,
be the n-order statistics from U (0, 1). Then

P(U(l) > ul) = (1 _ul)n

and
L=up\"™
P (Ugsny > 41 |Uy = ;) = < 1 ! )
—u,
forj=1,...,n—1.LetR,,..., R, be n uniform random numbers in U (0, 1). Inverting

the complementary cumulative distribution functions gives

1 - U(l) = Ri/”
and
1/(n—j)
L= Ujeny = {1= Uy} R/
for j=1,...,n—1. Whether or not this is quicker than the sort method depends upon the

nature of the sorting algorithm. The Maple one appears to have a sort time of O (nlnn),
and for any reasonable AT, the sort method seems to be faster.
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140 Discrete event simulation
7.2 Time-dependent Poisson process

This is an important generalization of the (simple) Poisson process considered above.
If there is time-dependence then A is replaced by a known non-negative function A(z7).
This gives a heterogeneous or nonhomogeneous Poisson process. Replacing A by A(t) in
Equation (7.1) gives

P, =AM p, () =A()p, (1) (n=0,1,...). (7.8)

The solution to this is obtained by replacing A in Equation (7.4) by

t
A1) =/ Au) du.
0
Noting that A’ (t) = A () it can be verified that

= S IAOF

satisfies Equation (7.8) and the initial condition that p,(0) = 1. A number of methods of
simulating {T(i), i=1,2,... } are discussed in Lewis and Shedler (1976, 1979a, 1979b).

One such method uses a time scale transformation. Define 7 = A (¢). Since A is
increasing in ¢, the order of arrivals is preserved in the transformed time units and the
ith such arrival occurs at time 7, = A (T(i)). Let M (1) denote the number of arrivals in
[0, 7] in the transformed time units and let g, (1) = P (M () = n). Then p, (t) = g, (7),
so p!, (1) = ¢, (17)d7/dt = A (1) g} (7). Substituting these into Equation (7.8) gives

4,(7) = q,-1 (1) — 4, (7).

It follows that the process {M (7)} is a simple (or homogeneous) Poisson process of rate 1.
Therefore, 7,) = 7,_;, —InR, where {R,} are uniform random numbers. Arrival times
are obtained in the original process using T, = A~ (7). If {N (1),0 <7 < 1,} is to be
simulated, then the simulation is stopped at arrival number max,_q, [i Ty <A (to)].
An exponential polynomial intensity, A (f) = exp (Yo, A;'), often proves to be a useful
model, since the parameters {A;} may be fitted to data, without the need to specify
constraints to ensure A (¢) > 0. The efficiency of the method depends upon how easily A
may be inverted.

Another method involves thinning. In order to simulate in the interval [0, #,], an
attempt is made to find A such that A > A (¢) for all ¢ € [0, #,]. A realization comprising
prospective events is then generated from a simple Poisson process with rate A. Suppose
this realization is {S(i), i=1,...,N (to)}. Then the process is thinned so that the
prospective event at S, is accepted with probability )\(S(,.)) /A. The thinned process
comprising accepted events is then a realization from the desired time-dependent Poisson
process. This is because, in the thinned process, the probability of one event in (¢, ¢ + k]
is {Ah+o0(W)}A(t)/A = A(t) h+ o (h), while the probability of no such event is
{f1—=Ah+o(W)}+{Ah+0(h)} {1 —A(t) /A} =1—=A(t) h+ o0 (h). These probabilities are
independent of the history of the thinned process in [0, z]. The ith event is accepted if
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and only if R, < A (S(i)) /A where R; ~ U (0, 1). Clearly, the efficiency of the process
is determined by the expected proportion of prospective events that are accepted, and
this is A (z,) /At,. The method is most suited when A (¢) varies little. Otherwise, some
improvement can be made by splitting [0, #,] into disjoint subintervals, each subinterval
having its own A bound.

It was noted from results (7.6) and (7.7) that the conditional joint density of the arrival
times Ty, ..., T(, in [0, 7] in a homogeneous Poisson process is the joint density of n
uniform order statistics. In the case of a heterogeneous Poisson process, a similar result
holds. Here, the joint density is that of the n-order statistics from the density

A(D)
A(ty)

where 0 < ¢ < t,. This has the distribution function

f(n=

A1)
Alty)
Frequently, analytical inversion of F will not be possible. One possibility then is to use

envelope rejection. If A (¢) varies considerably, a nonuniform envelope will be needed
for an efficient implementation. The general algorithm is

F(t)=

Sample N (t) ~ Poisson (A (¢,))
Sample T, ..., Ty, independently from f (1) = A () /A (t,)
Sort into ascending order and deliver Ty, . . ., Ty

As mentioned previously, Maple’s sort procedure is relatively efficient.

7.3 Poisson processes in the plane

Consider a two-dimensional domain, D. Let C € D and E C D where CNE = ¢ and ¢
is the empty set. Let N (C) and N (E) denote the number of randomly occuring points in
C and E respectively. Suppose there exists a positive constant A, such that, for all such C
and E, N (C) and N (E) are independent Poisson random variables with means A [..dx dy
and A [, »dx dy respectively. Then the point process {N (H) : H C D} is defined to be a
two-dimensional Poisson process. We can think of A as being the density of points, that
is the expected number of points per unit area.

Suppose D is a circle of radius a. Let Ry, ..., Ryp), denote the ranked distances
from the centre of the circle in the two-dimensional Poisson process, {N (H) : H € D},

with rate A. Let Ay = (RS~ R%_,)) fori=1,..., N (D) with R, = 0. Then

P(Ay>x iR(l) =r,...,R;_;y=r,_;) =P (0 points in a region of area x)

— ef)u(.

141



142 Discrete event simulation

This is independent of r,...,r_,. Therefore, {W(R%I.)—R%FIO} are independently

distributed as negative exponentials with mean A~'. Therefore, while R, < a, the
following may be set:

1
2 2
7 (RGy — Ri_y) = - InU,
where {U,} are uniform random numbers. Since the process is homogeneous, the angular
component is independent of the radial one and @; ~ U (0, 21r). Therefore,

0, =27V,

where {V;} are uniform random numbers.

Suppose now that D = {(x, y) : 0 < x < x,, h (x) <y < g (x)} where x,, & (x), and g (x)
are all given, and g (x) > h (x) for all x € [0, x,]. Without loss of generality we can take
h(x) =0 and g(x) > 0. Observe that the projection of the process on to the x axis is
a one-dimensional heterogeneous process of rate A (x) = Ag(x). Accordingly, use any
method from Section 7.2 to generate the N (D) abscissae for the points. For example, if
it is not convenient to invert A, then use the algorithm at the end of section 7.2, where

_ A
f) =+ )
N 1C))
Jo' g (w)du’

together with rejection with an envelope that is similar in shape to g (x). Suppose the ith
such abscissa is X; (it is not necessary to generate these in increasing order). Then the
homogeneity of the two-dimensional process means that ¥; ~ U (0, g (X,)).

7.4 Markov chains

7.4.1 Discrete-time Markov chains

Let X, be the state at the nth step in a homogeneous discrete-time, discrete-state Markov
chain with state space S and probability transition matrix P. Given that X, , =i and
given a random number R,, inversion of the cumulative distribution function may be
used to obtain

X,,:min:j:R,,< > pik}.
jes ’

keS.k<j

This method can be inefficient if there is a large proportion of transitions where the
transition is from a state to itself. In such cases a better method is to identify those steps
that lead to a change of state. In the terminology of discrete event systems these steps
are events. Let the state immediately after the kth event be X® and let M* denote
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the number of steps between the (k — 1)th and kth events. Then {M (k)} are independent
geometric random variables and may be generated, given that X*~V =, using inversion
of the c.d.f. to yield

(k)
MO = |14 InR
In p;;

where R® ~ U (0, 1). Now observe that for j # i,

Pij

0 — j|x%D =) =
P(xW=j|x _1)_1_1)”.

Therefore, given U ~ U (0, 1),

X = min {j: v U-p)< X p,-,m} :
je

meS,m#i,m<j

7.4.2 Continuous-time Markov chains

Consider a discrete state, continuous-time Markov chain with state space S and stationary
infinitesimal generator Q. Then

P[X(t+h)=j|X (1) =i]=q;h+o(h)
for j # i where 3, gq;; =0 for all i € § and

The simulation method used here is analogous to that described for discrete-time Markov
chains. Let T, be the time of the kth event (state change) and let X (T(k_ 1)) be the state
immediately after the (k — 1)th event. Given X (T,_;)) =i and Tj,_,, = f(_y, it is found
that 7(;) — 7y, is exponentially distributed with mean (—g;)”" (the ‘leaving rate’ for
state i is —g;;). Therefore,

InR,

Ty = tg—y = —
where R, ~ U (0, 1). Given X (T(kfl)) =i, the conditional probability that the next state is
J(F#1) is —gq;;/q; (this is the ijth element of the probability transition matrix for a chain
embedded at state changes only). Therefore, given another random number U, ~ U (0, 1),

X (Ty) = fflelsn Ji=a:Ui< Y Gy - (7.9)

meS,m#i,m<j

A birth—death process is one in which g; = — (A, +u;), ¢;;yy = A, and g, ;| = p; for
all i € S. This means that it is impossible to move to a nonadjacent state. Therefore, in
performing the inversion implicit in Equation (7.9), for a state space S ={0,1,2,...},
say, X (T(k)) =i—1, i+ 1 with probabilities w,/(A; +u;) and A,/(A; +u;) respectively.
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7.5 Regenerative analysis

First the definition of a renewal reward process will be recalled. Let 7, denote the
time between the (i — 1)th and ith events in a renewal process. We can think of 7; as
being the duration of the ith ‘cycle’. Since it is a renewal process, {7;} are identically
and independently distributed. Let R (¢) denote the cumulative ‘reward’ earned by the
process in [0, 7] and let R; denote the reward earned during the ith cycle. Suppose {R;} are
identically and independently distributed. We allow R; and 7; to be statistically dependent.
The presence of rewards allows such a process to be called a renewal reward process.
Frequently, in simulation, we wish to estimate 6 where 6 is the long-run reward per unit
time, where this exists. Thus
0 = lim R—(t)

t—00 t
For example, we may wish to estimate the long-run occupancy of beds in a hospital ward,
and here R (¢) = fot O (1) du would be identified, where O (u) is the bed occupancy at
time u. The renewal reward theorem states that

R(t) E(R)
P Tt E(1)’

Therefore one method of estimating 6 is to use

0=

_l| Xl

where R and 7 are the sample mean cycle rewards and durations respectively, over a
ﬁxed number, n, of cycles. To determine the variance of 9 consider the random variable
— 07. This has expectation zero and variance

1
ol =-— [0,23, +6° f —26 Cov (R,, Ti)] .
n LR :

Let S%, S2, and Sy , denote the sample, variances of {R,}, {7}, and covariance between
them respectively. Let

§? =2+ 0257 —20S,, (7.10)
Then as n — oo, §2/n — o2, and so0

R—07
S//n

— N(0,1).
Therefore,

—0
W_nv(o, 1. (7.11)
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It follows that a coy\fidence interval can be found when n is large. However, it should
be noted that since 6 is a ratio estimator, it is biased. The bias is O (1/n). A number of
estimators that reduce this to O (1 / n2) have been proposed. We will use

5:5[1+1<SR’7_S_;’;)} (7.12)

n\RT 7

due to Tin (1965). Now

—5/19(?_\/0%) ~N(0,1) (7.13)

as n — oo, where 6 has replaced 9 in Equation (7.10). For large n it is safe to use (7.13)
as an improvement on (7.11).

The regenerative method for analysing simulation output data seeks to exploit the
theory described in the previous paragraph by attempting to find renewal or regeneration
points. It is an elegant mode of analysis developed in a series of papers by P. Heidelberger,
D. Iglehart, S. Lavenberg, and G. Shedler. For more details on the method refer to Shedler
(1993).

As an example of the method consider an M/G/1 queueing system where the continuous
time system is embedded at departure times. Let the state of the system be the current
number of customers in the system (including any customer being served) immediately
after a departure. Assume that the mean service duration is less than the mean interarrival
time, so that if the system is in state i it is certain to return to that state in a finite period of
time, for all i. Assume that the reward per unit time is a function of the current state only.
Regeneration points can be defined as being those times at which the system enters state i
(following a departure) for any predetermined i. To understand why this is so let E; denote
the event ‘system enters state i’ (following a departure). Let 7; denote the time between
the (j—1)th and jth occurences of E; and let T{,,_;, = Z_’;:ll 7;. Given 7y,..., 7, 4, it
is noted that 7,, is independent of 7,,...,7,_,. This is so because the arrival process
is Poisson, since service durations are independent and since at time 7,,_;, there is no
partially completed service. Therefore {'r_,-} are independently distributed and obviously
identically distributed since the return is always to state i. It can similarly be shown that
{R j} are i.i.d., which completes the requirements for a renewal reward process.

For a G/G/1 system, that is a single server system with i.i.d distributed interarrival
times from an arbitrary distribution and service durations also i.i.d. from an arbitrary
distribution, the only regeneration points are at those instants when the system leaves
the empty and idle state. The event E, (following a departure) is not (unless arrivals are
Poisson) a regeneration point when i > 1 since the distribution of time until the next
arrival depends upon the state of the system prior to E,.

One of the advantages of regenerative analysis is that there is no need to allow for
a ‘burn-in’ period at the beginning of any realization in order to reach a point in the
sample record at which it is believed the behaviour is stationary (assuming, of course,
that it is the stationary behaviour that is to be investigated). Another advantage is that
only one realization is required. If regenerative analysis is not used, the usual approach
(bearing in mind that observations within a sample realization are often highly dependent)
is to perform several independent realizations (replications) and to use the independent
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responses from these to make an inference about parameter values. A major disadvantage
of the regenerative approach is that for many systems the cycle length (time between
successive regeneration points) is very large. For example, in a G/G/1 system, if the
arrival rate is only slightly less than the service rate, stationarity is assured, but the system
returns very infrequently to the empty and idle state.

7.6 Simulating a G/G/1 queueing system using the
three-phase method

There is a method of writing programs for discrete event systems known as the three-
phase method. 1t has gathered favour since the 1970s in the UK, while the process and
event based methods are perhaps more prominent in the US. The three-phase method is
not the most efficient and can involve some redundancy in the program logic. It does,
however, have the advantage of being an easy way of programming and of visualizing
the structure of a discrete event system, and so it will be used here.

First some terms are introduced that are fairly standard in discrete event simulation. An
entity is a component part of a system. Entities can be permanent (for example a machine
or a bus) or temporary (for example a customer who will eventually leave the system).
An attribute describes some aspect of an entity. It may be static or dynamic. For example,
an aircraft will have a number of seats (static) but the number of passengers occupying
them (dynamic) may vary during the simulation. A particular attribute that an entity may
have is a time attribute. This may represent, for example, the time at which something is
next known to happen to the entity. An event is an instant of time at which one or more
state changes takes place. At an event an entity may finish one activity and start another.
For example, a customer may finish the activity ‘queuing’ and start ‘service’. Note that
an event is instantaneous, while an activity generally has a duration. A [ist is an array
used for storing entities and their attributes. An example is a queue of customers waiting
for some facility to become available.

The three-phase method involves steps A, B, and C at each event. A represents the
time advance from one discrete event to the next. It is performed by keeping a list of
scheduled or bound state changes. B stands for execution of bound state changes. C
stands for execution of conditional state changes. The simulation program keeps a list of
bound (scheduled state changes). One way to do this is to keep a set of time attributes
for the entities. In phase A, a timing routine scans the list to find the smallest time, and
then advances the variable representing the present simulation time (clock, say) to this
smallest time. In phase B those state changes that are bound to occur at this new time are
executed. They are bound to occur in the sense that their occurrence is not conditional
upon the state of the system but merely upon the passage of the correct amount of time.
An example of a bound event is an arrival. Once an arrival has occurred at an event,
the time of the next arrival can be scheduled by generating an interarrival time and
adding it to the present value of clock. One of the entities in such a simulation could be
an ‘arrival generator’, and the time attribute for it is just the scheduled or bound time
of the next arrival. Once all the bound state changes have been made at an event, the
simulation program checks in phase C for every possible conditional state change that
could occur at this event. An example of a conditional state change is ‘start service for a
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customer’. It is conditional since its execution depends upon the state of the queue being
nonempty and on at least one server being idle. To ease construction of the program every
conditional state change is checked, even though logic might indicate that a particular
one is impossible given that a certain bound state change has occurred at this event. This
redundancy is deemed worthwhile to save programming effort. Once every conditional
state change has been checked and if necessary executed, a further pass is made through
phase C. This is because, as a result of state changes executed during the first pass, it
may then be possible for further conditional state changes being executed at this event.
At the current event this is done repeatedly until a pass through phase C results in no
additional state changes being executed at this event. At that stage the work done at this
event is completed and control is then passed back to phase A.

Turning now to the simulation of a G/G/1 queue, an arrival generator, a server, and
individual customers can be identified as entities. The time attribute for the server will
be the time at which the next departure is scheduled. If the server is currently busy this
will have been calculated by adding a service duration to the time at which this service
started. If not, then the time attribute will be set to oo until the server next moves to
the busy state. Suppose the number of customers in the system (line length) at time ¢ is
L () and that L () has a limit distribution as r — co. The latter will exist if the expected
interarrival time is greater than the expected service duration. We wish to estimate w,,
the long-run average number of customers in the system, and u, the expected waiting
time for a customer under steady state behaviour. Now,

where R (1) = fOtL(u) du is the cumulative ‘reward’ in [0, ¢]. Also, y = papm, Where
ML, is the mean interarrival time. This is is an application of Little’s formula (see, for
example, Tijms, 2003, pp. 50-3). Little’s formula means that it is possible to dispense with
a list holding joining times for each customer. However, such a list would be needed if the
individual customer waiting times in the line or queue were required. The bound events
are (i) customer arrival and (ii) customer departure. There is only one conditional event,
which is (iii) customer starts service. A regenerative analysis will be performed of the
simulation output data (which will consist of the times at which events take place and the
line length immediately after each event) and the regeneration points are recognized, which
are those times at which the system enters the busy state from the empty and idle
state.

An algorithm for simulating one cycle of the regenerative process is:

Il
[

sample A and D
thi=T+A th:=7+D
do

Tprev :: T

T:=min (¢,, tp)

o =T7—1

prev
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R:=R+06xL

if =1, and L = 0 then break end if

if r=t, then L:=L+1, sample A, ¢, :=7+A, end if
if =ty then L:=L—1,t;:=00, end if

if L > 0 and #, = oo then sample D, t, := 7+ D, end if
end do

Store R, 7.

where

T = partial length of the current cycle

Torey = partial length of the current cycle at a previous event
t, = time of next arrival

tp = time of next departure

L = number of customers in the system

A = interarrival time

D = service duration

R= fOT L (u)du

0 = time since the last event

The data collected are used to estimate w; and uy, but it is a simple matter to modify
the above to estimate other quantities such as the long-run proportion of time that the line
length exceeds a specified threshold. In this system simultaneous ‘starts of service’ are
impossible, so it is unnecessary to make repeated passes through phase C at an event. The
procedure ‘ggl’ in Appendix 7.1 is written to estimate u; when the interarrival times are
ii.d. with complementary cumulative density F (x) = exp[(—Ax)"] on support [0, c0),
and service durations are ii.d. with complementary cumulative distribution G (x) =
exp [( — /wx)ﬁ ] These are Weibull distributions. If y = 1 then the arrival process is Poisson.
Other distributions can be used by making suitable modifications to ‘ggl’. For example,
if arrivals are based upon appointments, as in a doctor’s surgery, then the interarrival time
could be modelled as a constant plus a random variable representing the lateness/earliness
of customer arrival times. In the procedure, the algorithm shown above is nested within
a loop that executes n regenerative cycles. The n cycle rewards {R} and durations {7}
are stored in arrays. These data are then used to compute a confidence interval for u,
using (7.13). In Appendix 7.1, some example runs are shown for n = 10000, A = 1,
for the case of M/M/1. This refers to a single server system with Poisson arrivals and
exponential service durations. Let p = A/w. This is the traffic intensity. For this queue,
standard theory shows that a stationary (steady state) distribution exists if and only if
0 <p<1andthen u, = p/(1—p) and the expected cycle length, u. = [(1 —p) A]"". The
results are summarized in Table 7.1, where the superscripts p and a refer to the primary
and antithetic realizations respectively.

Note how the expected length of a regenerative cycle increases as the traffic intensity
approaches 1 from below. This means that for fixed n, the simulation run length increases
as p increases, demonstrating that as p — 1 it is even harder to obtain a precise estimate
for u, than the confidence intervals might suggest. The reason for this is that as p — 1
the stochastic process {L (¢) , t > 0} is highly autocorrelated, so a simulation run of given
length (measured in simulated time) yields less information than it would for smaller
values of p. The situation can be improved by replicating the runs using antithetic random
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Table 7.1 Regenerative analysis of the M/M/1 queue

95% confidence interval

A “», @
@ w4 g

— —

pw ow, M > mp g (primary) w, (antithetic)
1
5 20038 2 09994 1.0068  1.0031 1 (0.950,1048) (0.960,1.054)
2
3 30150 3 20302 19524 19913 2 (1.903,2.157) (1.839,2.066)
10

1 11.449 11 10.3273 10.1597 10.2435 10 (9.087,11.568) (8.897,11.422)

numbers. For best effect a given random number and its antithetic counterpart should be
used for sampling the primary variate and its exact antithetic variate counterpart. Therefore
two random number streams are used, one for interarrival times and another for service
durations. This is achieved by using the Maple ‘randomize’ function with an argument
equal to ‘seeda’ or ‘seedb’, these being the previous U [0, 10'2 — 11] seeds used for
interarrival and service durations respectively. The fact that Weibull variates are generated
by the inversion method ensures that there is a one-to-one correspondence between
uniform random numbers and variates. This would not be the case for distributions where
a rejection method was employed. The table does not show a single confidence interval for

M, constructed from both the primary and antithetic point estimates ,ug’) and p,(L“). A little

reflection should convince the reader that the estimation of the variance of (,u,g‘") + ,U,(L“)) /2
from a single primary and antithetic realization is not straightforward. However, in two
of the three cases the point estimates for the average appear to indicate that the antithetic
method is worthwhile with respect to the cost of implementation, which is almost zero
extra programming cost and a doubling of processing time.

For more adventurous variance reduction schemes, the reader should refer to the control
variate methods suggested by Lavenberg et al. (1979).

7.7 Simulating a hospital ward

Now a simulation of a hospital ward comprising » beds will be designed. Suppose arrivals
are Poisson rate A. This might be appropriate for a ward dealing solely with emergency
admissions. Patient occupancy durations are assumed to be Weibull distributed with the
complementary cumulative distribution function G (x) = exp [(—Mx)ﬁ ] If an arriving
patient finds all beds occupied, the following protocol applies. If the time until the next
‘scheduled’ departure is less than a specified threshold, «, then that patient leaves now
(early departure) and the arriving patient is admitted to the momentarily vacant bed.
Otherwise, the arriving patient cannot be admitted and is referred elsewhere. Using the
‘three-phase’ terminology, the bound events are (i) an arrival and (ii) a normal (scheduled)
departure. The conditional events are (iii) normal admission of patient, (iv) early departure
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of patient followed by admission of patient, and (v) referral elsewhere of arriving patient.
The following variables are used:

simtim = duration of simulation
n = number of beds in unit
t0[j] = ranked (ascending) scheduled departure times at start of simulation, with t0[ j] =
infinity indicating bed is currently unoccupied, j=1,...,n
a = threshold early departure parameter
seeda = seed for random number stream generating arrivals
seedb = seed for random number stream generating (nonreduced) patient length of
stay
clock = present time
clockprev = time of previous event
6 = time since last event
t[j] = ranked (ascending) scheduled departure times at current time, with #[ j] = infinity
indicating bed is currently unoccupied, j=1,...,n
a = time of next arrival
nocc = number of occupied beds
g =1, 0 according to whether or not there is a patient momentarily requiring admission
na = cumulative number of arrivals
noutl = cumulative number of normal departures
nout2 = cumulative number of early departures
na = cumulative number of admissions
nrefer = cumulative number of referrals
cum|j] = cumulative time for which occupancy is j beds, j=1,...,n

The simulation will be used to determine the proportion of patients referred and the
long-run utilization of beds for given arrival and service parameters and given a. We
wish to visualize the stationary (steady state) distribution of bed occupancy. A stationary
distribution will exist for arbitrary stationary arrival and service processes because the
admission and discharge protocols ensure that there is never a queue. For small wards
(n small) there will occasionally be times when all the beds are unoccupied and so
regenerative analysis based upon this empty and idle state would be possible. However,
for larger values of n, even though return to the empty and idle state is certain, it may
be so infrequent as to never occur within even a lengthy simulation. It is worth noting
that if a ward were to be modelled subject to, say, Poisson closures due to infection, then
these would provide convenient regeneration points. This is not included in this case so
simulation is for a given period of time rather than for a specified number of regeneration
cycles. Appendix 7.2.1 shows a Maple procedure ‘hospital_ward’ with the main sections
of code dealing with bound and conditional state changes duly flagged. Note the sorting
of scheduled departure times after each state change, and the collection and updating of
essential information needed to produce summary statistics at the end of the simulation.
Maple’s ‘sort’ function is particularly useful in discrete event simulation.

Any opportunity to verify the correctness of the logic in a simulation program should
be taken. If service durations are exponentially distributed and no early departures are
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allowed (a = 0) then this model reduces to an M/M/n/n queueing system, for which the
stationary distribution of number of occupied beds is

= DA
T/ (A

for j=0,...,n. A 10 bedded example in Appendix 7.2.2 compares these probabilities
with the sample proportions of time spent in state j(j =0, ..., n), when the simulation
is run for 100000 days. The agreement is close enough to verify the correctness of the
program for this special case without any formal test of hypothesis.

In Appendix 7.2.3 the assumption of exponentially distributed lengths of stay is relaxed.
Here, n=20 A = 2.5 per day, u = 0.15 per day, and 8 = 2.5, giving a mean and standard
deviation of length of stay of 5.92 and 2.53 days respectively. Early departures are not
possible (a = 0).

Appendix 7.2.4 shows some point estimates for a 20 bedded ward when A = 2.5 per day
and the mean and standard deviation of a patient’s length of stay are 5.92 days and 2.53
days respectively. Early departures are possible up to one day (a = 1) prior to scheduled
departure times. If interval estimates are required then independent replications should be
made in the usual way. The initial state of the ward is determined by the scheduled
departure times for beds occupied at time zero, and this forms part of the input data.
This might reflect the true state of the ward now, in which case performing several
replications of the simulation could show the variability in bed occupancy in 10 days
time, say. This could be used for short-term planning purposes. Alternatively, we may
be interested in steady state (stationary) behaviour only. In that case it would certainly be
inappropriate to specify an initial state in which all beds were unoccupied. That would
incur a burn-in period that is longer than necessary. It is better to guess an initial state
that might be thought typical under steady state behaviour. For these data with a lengthy
10000 day simulation, the long-run utilization is approximately 0.7. With a ward of 20
beds this corresponds to a typical occupancy of 14 beds, so the initial state chosen (18
beds occupied) is not atypical and therefore the burn-in can effectively be ignored for
estimating long-run measures of performance. Finally, Appendix 7.2.5 shows the effect
of altering « (the number of days in advance of scheduled departure that a patient may
be discharged) upon the utilization and the proportion of patients referred.

7.8 Problems

1. Classify the following stochastic processes, first according to discrete/continuous
state and discrete/continuous time, then as discrete/continuous event systems:

(a) dX=uX dt+0X dB,t > 0;

b) X; =X, exp[(p—oz/Z) h+0'B(h)] ,j=1,2,..., where h is a positive
known constant;

(c) {X(#),t >0} where X (r) denotes the cumulative amount of alcohol consumed
by an individual in (0, ).
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2. Consider a heterogeneous Poisson process with intensity A (f) = exp (a4 Bt). Write
Maple procedures for simulating events in [0, #,] using

(a) thinning;
(b) time scale transformation.

3. Write a Maple procedure to generate events according to a two-dimensional Poisson
process of rate A per unit area, over the ellipse

4. Customers arrive at a bank requiring one of three services: private banking, business
banking, and travel and securities. These form three independent Poisson processes
of rate 40, 20, and 10 per hour respectively.

(a) Write a procedure to simulate the arrival times and type of customer for the
first n arrivals. (Hint: the sum of independent Poisson processes is a Poisson
process.)

(b) Use the procedure ‘ipoisl’ in Appendix 4.5 and the Maple ‘sort’ function
to simulate the times of arrival and type of customer in a 2 hour
period.

5. Let T; denote the time of the ith event in a nonhomogeneous Poisson process of
intensity A (¢). Let A (f) = [ A (u) du. Show that

P[Ty = t|T_yy=s] =exp[A(s) = A(r)]

fori=1,2,... and for all > s. Use this to show that {T(,-)} may be generated by
solving

A(T) = A(Toy) —InR;

where {R;} are U (0, 1) random numbers. Hence show that this method will give
exactly the same realization as time scale transformation.

6. Consider a two-dimensional Poisson process of rate A over the circle D =
{(r,0):re]0,r,],0 €[0,27]}. Let N (1) denote the number of events for which
r < u. Show that {N (r) : r € [0, ry]} is a nonhomogeneous Poisson process in one
dimension that has rate A(r) = 2mrA. Hence show that the following algorithm
generates events over D.

Sample N ~ Poisson (A7)
Fori=1,...,N do

Generate U, V, W ~ U (0, 1) random numbers
R, :=rymax (U, V)

0, :=2mW

End do;
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7. At the beginning of each day a piece of equipment is inspected and classified as one
of the working conditions i =1, ...,5. State 1 corresponds to ‘new’ and state 5 to
‘equipment needs replacing’. State i is always better than state i 4+ 1. The transition
matrix is

0.8 0.15 0.03 0.02 0

0 07 02 01 O
P=]0 0 0.6 035 0.05

0 0 0 0.9 0.1

0 0 0 0 1

Starting in state 1, simulate the times at which the machine changes state until the
Markov chain is absorbed into state 5. Perform 1000 replications of this and find a
95 % confidence interval for the mean lifetime of the equipment. Compare this with
the theoretical result.

8. Suppose there are k infected and n noninfected individuals in a population. During
an interval (¢,7+ 0¢) the probability that a specified noninfected individual will
contact any infected is k86t + o (6t), independent of the previous history of the
system. Therefore the probability that one contact takes place in the entire population
is nkfB &t + 0 (8t). There is a probability p that such contact results in infection.
Therefore, the probability that the number infected increases by one is nkfBp ot +
0 (8t). The probability that the number infected increases by more than one is o (61).
Once infected the time to death for the individual is negative exponential, mean
1/, and this is independent of corresponding times for other individuals. During the
interval (t, t 4 0t), for each noninfected individual there is an independent probability,
M, Ot + 0 (61), that the individual will die.

Let N (t), K (t), and D (t) denote the number of noninfected, infected, and deceased
individuals at time ¢. The duration of an epidemic is min {¢: K (t) = 0}. The size of
an epidemic is the total number of individuals who were infected over the duration.
Simulate realizations of an epidemic for chosen values of A, u,,u, and initial
conditions to demonstrate the features of such a system.

9. The price of a share follows a geometric Brownian motion {X(¢), t > 0} with expected
growth rate w and volatility o. In addition, there is a Poisson process, {N(¢) : t > 0},
of rate A that produces ‘jumps’ in the price. Suppose the jumps occur at times
t,ty,.... Then

X(tj_) = X(t;.“_l) exp {(p, — 0'2/2) (tj — tj,,) +o [B(tj) — B(tj,,)]}
forj=1,2,...,where t/*(t/‘) is the time immediately after (before) the jth jump, ¢, =
0, X(t]*) =Y, X(#;), and where {Yj, j=12,... } are identically and independently
distributed positive random variables. The sets {Y;} and {B(z;)} and the process
{N(¢) : t > 0} are mutually independent.

(a) Show that

N(1)

X(1) = X(0)exp[(w—0/2)1+0B(N)] [ Y,

Jj=0

where Y, =1 and B(¢) is a standard Brownian motion.
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10.

11.

12.

13.

14.

(b) A plausible distribution for {YJ} is lognormal. Recall that Y is lognormal when
Y =exp(W) and W ~ N (a, B?). Now, E(Y) =exp(a+B2/2) and o (Y) =
E(Y)/exp(B?)— 1. Find @ and B when E(Y) = 1.2 and Var(Y) =0.1. Use
Maple to simulate realizations of X(1) when u = 0.08, 0 = 0.3, A = 0.5 per
annum and X (0) = 100 pence.

(c) By conditioning on N(t) or otherwise, show that
E{X(1)} = X(0)exp {ut+ A [E(Y) — 1]}

Estimate E {X(1)} from your simulation in (b) and compare with the theoretical
answer.

Consider an M/M/1 queueing system with arrival rate A and service rate u >
A. Determine all possible sets of regeneration points (events). Do you have any
preference for the set you would choose for estimating the expected line length in
the steady state?

Modify the procedure ‘ggl’ in Appendix 7.1 so that arrivals are still Poisson but
service durations are constant. Compare the results with those in Table 7.1 and
comment.

A hospital has five ambulances for emergencies. The catchment area may be
approximated by a circle of radius 5 miles, the hospital being at the centre. The
physical distribution of accidents is a two-dimensional Poisson process, with a rate
M per hour. If an ambulance is not available the patient must wait until one becomes
free. An ambulance always takes a straight-line route to the scene of the emergency
and returns to the hospital. Assume that ambulances travel at a constant speed of v
miles per hour and that one ambulance only is required for each emergency.

(a) Show that the return travel time (x hours) may be sampled by setting x = 10/U /v
where U ~ U(0, 1).

(b) Simulate the system to print out for each patient the time between the occurrence
of the emergency and arrival at hospital.

A maintenance department responsible for m machines having identical characteristics
consists of n repairmen and p testers. Machines break down after a random running
time with known distribution. If no repairman is free it enters the repair queue.
Once a repair is completed it is ready for testing. If no tester is free it is put in a
testing queue. The test includes rectifying any faults found and the testing time has
a known distribution. Simulate the system with the aim of estimating the long-run
average proportion of time that machines are working. Under what conditions would
regenerative analysis be possible?

A drive-in burger bar has two windows, each manned by an assistant, and each with a
separate drive-in lane. The drive-in lanes are adjacent. Customer arrivals are Poisson,
with rate 0.4 per minute. The service duration follows a known distribution which
is not negative exponential and has a mean which is less than 5 minutes. Arriving
customers choose the shortest lane. The last customer in a longer queue will change
queues (‘queue hop’) once the difference in queue lengths becomes 2.
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(a) Simulate this system in order to estimate, under steady state conditions, the mean
time a customer has to wait between arriving and leaving.

(b) If customers cannot queue hop, estimate the difference in this time for your
selected parameter values.

(c) When is a regenerative analysis feasible?

A job shop has two machines, A and B. Arriving items are processed first by machine
A and then by machine B. The queue discipline is first come, first served. Each
machine processes one job at a time and g, and gy are the queue lengths at A
and B. Simulate this process for arbitrary interarrival and service time distributions,
subject to them leading to steady state behaviour in the long run. Use this to
produce a histogram of distribution of time between arriving at and leaving the job
shop.

Patients present themselves at ward A (six beds) according to a Poisson process
of rate 1.5 per day. Other patients arrive at a ward B (three beds) according to a
Poisson process of rate 0.5 per day. The lengths of stay in each ward are gamma
distributed with means of 3.4 and 3.8 days respectively and standard deviations of
3.5 and 1.6 days respectively. At the end of their stay patients are transferred, if
room is available, to a convalescent home C (14 beds), where the length of stay is
gamma with mean 5 days and standard deviation 4 days. If room is not available
a patient stays in their original ward until a bed becomes available in C. This
means that the A or B beds are sometimes blocked for incoming patients and these
patients have to be directed to other units. The objective is to find the proportion
of patients to whom this happens. Assume that the strategy for admitting patients
to the home C is on the basis of longest wait since a scheduled departure gets first
priority.

. Records arrive in a buffer according to a Poisson process of rate A per second. The

buffer can hold a maximum of M records. Any arrival when the buffer is full is
lost. The buffer is emptied at times 0, 7, 7, + 75, . . . , where {7;} are independently
distributed with density f, (x), x > 0.

(a) Show that the long-run average number of records lost per unit time is

E; (Cniys (n=M) (A7)" e /n)
E; (1) '

(b) Show that the long-run proportion of time, p;, that there are i records
in the buffer is

(1/ME, (Z;’l":prl (A7)" e‘“/n!)
E;(7)

fori=0,..., M—1.

(c) Hence derive an expression for the long-run average over time of the number of
records in the buffer.
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(d) Show that if {r;} are exponentially distributed with E (1) = u ™', then the answers
to previous parts of this question are:

(a) A (ﬁ)M

)\ i+1
o E(—2—) Li=o,...,M—1,
A\A+pu

w e . A i+1
(c) M_XZi:O M —i) (m) .

e) Write a Maple simulation procedure to estimate at least one of the quantities in
p p q
(a) to (c) for arbitrary f (not exponential), A, and M.
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Markov chain Monte Carlo (MCMC) refers to a class of methods for sampling random
vectors X XM (generally, they are not independent) from a multivariate distribution
f. Note that in this chapter the convention will be dropped of using bold face type to
indicate that a quantity is a vector or matrix. Vectors will be assumed to be column
vectors. MCMC works by simulating a Markov chain in discrete time. An appropriate
(it is not unique) Markov chain is chosen so that it has a limit (and therefore unique
stationary) distribution which is f. MCMC is therefore useful for Monte Carlo based
integration. In particular, since the early 1990s it has transformed the practice of Bayesian
statistics. Only the bare bones of MCMC are described in this chapter. For a more in-depth
treatment there are many excellent books including those by Gamerman (1997), Gilks
et al. (1996), Morgan (2000, chapter 7), and Robert (2001, chapter 6), Robert and Casella
(2004). It will be seen that one popular MCMC approach is Gibbs sampling. For this type
of sampling, a purpose-built package, under the name of BUGS (Bayesian inference using
Gibbs sampling), is available from http://www.mrc-bsu.cam.ac/bugs/welcome.shtml. This
software includes “WINBUGS’, which has a graphical user interface. In addition to the
sampling, it performs Bayesian inference and also includes facilities for assessing when
the sample output has converged in distribution to f.

8.1 Bayesian statistics

Suppose we wish to perform inference on a vector of model parameters, § =
(0,,...,6,) €S <R’ Let P(6) denote the prior distribution of 6, that is the distribution
of 6 before observing the values of certain random variables in the model. Suppose we
now observe those values and let D denote these data. Let P (D|6) denote the likelihood
of the data and let P (D) = [, P (D|6) P(6)d6. Using Bayes’ theorem, the conditional
probability distribution of € given the observed data is

P(DI|6) P(9)

POID) ==

(8.1)

Simulation and Monte Carlo: With applications in finance and MCMC J. S. Dagpunar
© 2007 John Wiley & Sons, Ltd
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P (6| D) is known as the posterior distribution. It is often useful to write this as
P(0|D) o< L(6|D) P (6)

where L (0|D) (or simply L (6) for short) is the likelihood function. Typically,

s = Epy [ (0)] = [ () P (0D) a6 (8.2)

where % (0) is a known function of 6. For example, the posterior marginal expectation of
0,i=1,...,d,1is

Epgp) (6) = /s 6.P (6|D)d6, ---db,.

The expectation (8.2) can be estimated by simulating {G(i), i=1,..., n} from P (6|D).
Then an unbiased estimator of w, is

SR [
o= Y h(67). (8.3)
i=1

Note that 81, ..., 0™ are identically distributed but do not have to be independent. In
Bayesian analysis P (0|D) is usually multivariate and it is often very difficult to sample
independent values from it. One possibility is to sample from the posterior marginal
distribution of 6, then to sample from the posterior conditional distribution of 6, given 0,,
and so on. The difficulty with this approach is that to obtain the posterior marginal density
of 6, requires the evaluation of a (d — 1)-dimensional integral, and this is unlikely to be

known theoretically. That is why the requirement for the random variables 1, . . ., ™ to
be independent is relaxed. There is usually a price to be paid for this lack of independence
since

1 12 ,~ |
Varpp) (1) = ;Varf’(em) [7(6)]+ o > Y Covpgm [1(69), 1 (6Y)].

j=1i=1,i#j

Certainly, if all the covariances are positive, the variance of the estimator might be
orders of magnitude larger than what it would be if the sample comprised independent
observations. On the other hand, the variance would be smaller than the independence
case if the net covariance could be arranged to be negative, but the MCMC methods
developed so far tend to fall into the first category. One further comment concerns the
denominator P (D) in Equation (8.1). It might be thought that in order to sample from
P (6]|D) it is necessary to evaluate P (D) which involves a d-dimensional integration.
However, P (D) is just a multiplicative constant in the distribution and methods will now
be used that require the sampling distribution to be known only up to a multiplicative
constant.
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8.2 Markov chains and the Metropolis—Hastings (MH)
algorithm

The ideas can be traced back to Metropolis et al. (1953). This was then generalized
by Hastings (1970). In the previous section it was seen that the central issue in using
Monte Carlo for Bayesian inference is to sample vectors from a multivariate probability
density P (0|D). Now think of f(x), with support S C R?, as replacing P (6|D). Here,
x = (x;,...,x,). A sequence of random vectors X, X is generated from a
homogeneous discrete time Markov chain on state space S, with transition kernel P (y|x).
This means that

P(ylx) =P (X" <y[X"V=x,..., X0 =x)
=P (X" <y|x"V =)

and
P(XV <yx"V=x)=P XV <y|X? =x)
forall x,ye Sandforr=1,2,.... Note that X <y denotes that X; <y, fori=1,...,d.
The associated conditional probability density is p (y|x) where
_ 0P (y|x)
p(ylx) = oy
Y

The chain is chosen to be ergodic. Consequently, it has a unique stationary probability
density f. It follows that after a suitable burn-in time (m steps, say, of the chain), the
random vectors X"V X"+ have a marginal distribution which is approximately
f. Of course they are not independent. We can now estimate u, where

/w=@M@H=LMﬂﬂ@M (84)
by
o =% Z h(X9) (8.5)

where n is large enough to make the variance of f, small enough.

The basic Metropolis—Hastings algorithm works as follows. Given X = x, the state
at the next step, XUV, is y with probability « (x,y), or remains unchanged at x with
probability 1 — « (x, y). Here, y is a candidate point from a proposal density q (y|x). The
acceptance probability is

f™a (XIy)] _ (8.6)

““”:mmpvumwm
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Subject to certain regularity conditions ¢ (.|.) can take any form (providing the resulting
Markov chain is ergodic), which is a mixed blessing in that it affords great flexibility in
design. It follows that the sequence X©, XV, . . . is a homogeneous Markov chain with

px) =a(x,y)q(ylx)

for all x, y € S, with x # y. Note that the conditional probability of remaining in state x
at a step in this chain is a mass of probability equal to

[ 1-a a0l dy.

Suppose «(x,y) < 1. Then according to Equation (8.6), a(y,x) = 1. Similarly, if
a(x,y) =1 then a(y, x) < 1. It follows from Equation (8.6) that for all x # y

a(x,y) f(x)q(yx) =a(y,x)f()qxly).

This shows that the chain is time reversible in equilibrium with

fFx)pOlx)=f)p(xly)

for all x, y € S. Summing over y gives

fx) = / £ ) p(xly)dy,

showing that f is indeed a stationary distribution of the Markov chain. Providing the
chain is ergodic, then the stationary distribution of this chain is unique and is also its limit
distribution. This means that after a suitable burn-in time, m, the marginal distribution of
each X, ¢ > m, is almost f, and the estimator (8.5) can be used.

To estimate u,, the Markov chain is replicated K times, with widely dispersed starting
values. Let X,-(') denote the rth equilibrium observation (i.e. the rth observation following
burn-in) on the ith replication. Let

a =y (x1)
n =1
and
1&g
My = X El““h .

Then [, is unbiased and its estimated standard error is

() —\?

L 1 X (Mh _Mh)

€.8.€. (,uh) = E Z T
i=1

There remains the question of how to assess when a realization has burned in. This
can be a difficult issue, particularly with high-dimensional state spaces. One possibility
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is to plot a (several) component(s) of the sequence {X(’)}. Another is to plot some
function of X for t+ =0,1,2,.... For example, it might be appropriate to plot
{h (X f”) ,t=1,2,... } Whatever choice is made, repeat for each of the K independent
replications. Given that the initial state for each of these chains is different, equilibrium
is perhaps indicated when ¢ is of a size that makes all K plots similar, in the sense
that they fluctuate about a common central value and explore the same region of the
state space. A further issue is how many equilibrium observations, 7, there should be
in each realization. If the chain has strong positive dependence then the realization
will move slowly through the states (slow mixing) and n will need to be large in
order that the entire state space is explored within a realization. A final and positive
observation relates to the calculation of « (x,y) in Equation (8.6). Since f appears in
both the numerator and denominator of the right-hand side it need be known only up
to an arbitrary multiplicative constant. Therefore it is unnecessary to calculate P (D) in
Equation (8.1).

The original Metropolis (Metropolis e al., 1953) algorithm took ¢ (y|x) = g (x]y).

Therefore,
a(x,y) = min (1, %) .

A suitable choice for g might be

q(ylx) cexp[— (y—x) 27" (y—x)]: (8.7)

that is, given x, Y ~ N (x, %). How should 2, which controls the average step length, be
chosen? Large step lengths potentially encourage good mixing and exploration of the state
space, but will frequently be rejected, particularly if the current point x is near the mode
of a unimodal density f. Small step lengths are usually accepted but give slow mixing,
long burn-in times, and poor exploration of the state space. Clearly, a compromise value
for 3 is called for.

Hastings (1970) suggested a random walk sampler; that is, given that the current point
is x, the candidate point is ¥ = x + W where W has density g. Therefore

gOlx) =g —x).

This appears to be the most popular sampler at present. If g is an even function then such
a sampler is also a Metropolis sampler. The sampler (8.7) is a random walk algorithm
with

Y=x+3"27

where 32312 = 3 and Z is a column of i.i.d. standard normal random variables.
An independence sampler takes q (y|x) = q(y), so the distribution of the candidate
point is independent of the current point. Therefore,

ﬂwﬁn}

““”:mﬁLﬂmaw
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In this case, a good strategy is to choose ¢ to be similar to f. This results in an acceptance
probability close to 1, with successive variates nearly independent, which of course is
good from the point of view of reducing the variance of an estimator. In a Bayesian
context ¢ might be chosen to be the prior distribution of the parameters. This is a good
choice if the posterior differs little from the prior.

Let us return to the random walk sampler. To illustrate the effect of various step
lengths refer to the procedure ‘mcmc’ in Appendix 8.1. This samples values from f (x)
exp (—x?/2) using

Y=x4+W

where W ~ (a, —a). This is also a Metropolis sampler since the density of W is symmetric
about zero. The acceptance probability is

a(x,y) =min [l, %}

=min (1, e_(yz_"z)/Z)

To illustrate the phenomenon of burn-in initialization with XO = —2 will take place,
which is a relatively rare state in the equilibrium distribution of N (0, 1). Figure 8.1(a)
(a =0.5) shows that after 200 iterations the sampler has not yet reached equilibrium
status. With a = 3 in Figure 8.1(b) it is possible to assess that equilibrium has been
achieved after somewhere between 50 and 100 iterations. Figures 8.1(c) to (e) are for
an initial value of X® = 0 (no burn-in is required, as knowledge has been used about

(a) 200 variates, a=0.5, x(0)=-2
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Figure 8.1 The x value against iteration number for N(0, 1) samplers
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the most likely state under equilibrium conditions) for N (0, 1) over 1000 iterations with
a=0.1, 1, and 3 respectively. Note how, with a = 0.1, the chain is very slow mixing
and that after as many as 1000 iterations it has still not explored the tails of the normal
distribution. In Figure 8.1(d) (a = 1), the support of N (0, 1) is explored far better and the
mixing of states is generally better. In Figure 8.1(e) (a = 3) there is rapid mixing, frequent
rejections, and perhaps evidence that the extreme tails are not as well represented as in
Figure 8.1(d). Figure 8.1(f) is of 200 independent N (0, 1) variates. In effect, this shows an
ideal mixing of states and should be compared in this respect with Figures 8.1(a) and (b).

8.3 Reliability inference using an independence sampler

The Weibull distribution is frequently used to model the time to failure of equipment or
components. Suppose the times to failure, {X,}, of identically manufactured components
are identically and independently distributed with the survivor function

F(x)=P(X>x) (8.8)

o3

where x, a, B > 0. It follows that the probability density function is

f(x)=aB™*x* "exp [— (%)a} )

The failure rate at age x,r(x), given that the component is still working at age x,
is defined to be the conditional probability density of failure at age x, given that the
component has survived to age x. Therefore,

ERACON

r (.X) = m = a,B_“x“_ . (89)

For some components the failure rate is independent of age (o = 1) but for many the
failure rate is increasing with age (@ > 1) due to wear and tear or other effects of ageing.
Consider a set of components where no data on failure times is available. Engineers
believed that the failure rate is increasing with age (« > 1), with the worst case scenario
being a linear dependence (a = 2). Moreover, the most likely value of « was felt to be
approximately 1.5, with the prior probability decreasing in a similar manner for values
on either side of 1.5. Therefore, a suitable choice for the marginal prior of a might be

_ 4(a—1), l<a<lys,

$@W=10 0. 15<a<2

This is a symmetric triangular density on support (1, 2). To sample from such a density,
take R, R, ~ U (0, 1) and put

1
a=1+5 (R +Ry). (8.10)

163



164 Markov chain Monte Carlo

It is also thought that the expected lifetime lies somewhere between 2000 and 3000 hours,
depending upon the o and B values. Accordingly, given that

E(X|a,3)=/0°°f(x)dx

:BF($+1>,

a choice might be made for the conditional prior of [ given «, the
U (2000/[I" (1/a+1)],3000/[I" (1/a+1)]) density. Once « has been sampled, B is
sampled using
1000 (2 + R;)
 I'(1Ja+1)
where R; ~ U (0, 1). Note that the joint prior is

(8.11)

1
m(a—l)F —+1), l<a<l.y5,
a
g(a,B) = (8.12)

1
2 o-ar(=+1), 15<a<2,
1000( Ol\g+ =es

where 2000/[I" (1/a+1)] < B <3000/[I" (1/a+1)].

In order to implement a maintenance policy for such components, it was required to
know the probabilities that a component will survive to ages 1000, 2000, and 3000 hours
respectively. With no failure time data available the predictive survivor function with
respect to the joint prior density is

x [e3
prlor(X > x) g(a,B) eXp| — E
3000/[T°(1/a+1)] 2\¢
= [Caa p[—(—) }g(a,ﬁ)dﬁ.
1 2000/[(1/a+1)] B
Now suppose that there is a random sample of failure times x|, ..., x,. Table 8.1
shows these data where n = 43. It is known that the posterior density of « and (3 is

7 (a, B) < L (e, B) g (v, B) (8.13)

where L is the likelihood function. The posterior predictive survivor function is

x o
it o]
3000/[T'(1/a+1)] N
:/ f P[_ <—) ]W(a,ﬁ)dﬁ- (8.14)
1 2000/[T'(1/a-+1)] B

Table 8.1 Failure times (hours) for 43 components

293 1902 1272 2987 469 3185 1711 8277 356 822 2303
317 1066 1181 923 7756 2656 879 1232 697 3368 486

6767 484 438 1860 113 6062 590 1633 2425 367 712
953 1989 768 600 3041 1814 141 10511 7796 1462
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In order to find a point estimate of Equation (8.14) for specified x, we will sample k
values {(«;, B;)} from 7 («, B) using MCMC, where the proposal density is simply the
joint prior, g(«, B). This is therefore an example of an independence sampler. The k
values will be sampled when the chain is in a (near) equilibrium condition. The estimate
is then

ﬁpost(X >Xx) = %Xk:exp [— (%)a] .
i=1

1

In Appendix 8.2 the procedure ‘fail’ is used to estimate this for x = 1000, 2000, and
3000 hours. Given that the current point is («, 8) and the candidate point sampled using
Equations (8.10) and (8.11) is («,, B.), the acceptance probability is

: [1 W(ac,BC)g(a,B)]

min L (aC’ BC)
" (a, ) g (ac. Be)

—min 1, 2B

where

L(a,B)= ﬁaxf’lﬁ’“ exp |:— <%>ai|

=a"B " exp |:i— (%)a] (x...x,)* ",
i=1

The posterior estimates for a component surviving 1000, 2000, and 3000 hours are 0.70,
0.45, and 0.29 respectively. It is interesting to note that the maximum likelihood estimates
(constrained so that a > 1) are @,; = 1 and B,; = 2201. This represents a component
with a constant failure rate (exponential life). However, the prior density indicated the
belief that the failure rate is increasing and indeed this must be the case with the Bayes
estimates (i.e. the posterior marginal expectations of a and B). These are @, = 1.131

and Bgyes = 2470.

8.4 Single component Metropolis—Hastings and Gibbs
sampling

Single component Metropolis—Hastings in general, and Gibbs sampling in particular, are
forms of the Metropolis—Hastings algorithm, in which just one component of the vector
x is updated at a time. It is assumed as before that we wish to sample variates x from a
density f. Let x' = (x,, ..., x,) denote a vector state in a Markov chain which has a limit
density f. Let x_; denote this vector with the ith component removed. Let [y, x_;] denote
the original vector with the ith component replaced by y. Given that the current state
is (xy,...,x,), which is the same as [x;, x_;], single component Metropolis—Hastings
samples y from a univariate proposal density

q i | [x x_])
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This samples a prospective value y; for the ith component (conditional on the current
point) and generates a candidate point [y;, x_,]. This is accepted with probability

(o x2D) g (x| [y Xi])i|
T (s xsD g O s x|
However, f([x;,x_,]) = f(x_)f(x;|x_;) and f([y,x;]) = f(x_)f(]x).

Therefore,

« = min |:l

a = min |:1

F il x) g (x| [y xi]):|
Ll xs) g (| [x, x2])
The essential feature of this approach is that either we remain at the same point or move
to an ‘adjacent’ point that differs only in respect of one component of the vector state.
This means that univariate sampling is being performed.
Now suppose the proposal density is chosen to be

q il [xmx_ ) =f il xy).

Then the acceptance probability becomes one. This is the Gibbs sampler. Note that we
sample (with respect to the density f) a value for the ith component conditional upon
the current values of all the other components. Such a conditional density, f (y; | x_;), is
known as a full conditional. As only one component changes, the point is updated in small
steps, which is perhaps a disadvantage. The main advantage of this type of algorithm
compared with the more general Metropolis—Hastings one is that it is expected to be
much simpler to sample from d univariate densities than from a single d variate density.
In some forms of this algorithm the component i is chosen at random. However, most
implementations sample the components 1 through to d sequentially, and this constitutes
one iteration of the algorithm shown below:

t:=0
+1
1. Xft ) ~f (xl | xg),xgt), .. ,xf;))
1+1 (t+1) (1) (6]
X; )’vf(x2|x1 , X5 ,...,xd)
(1+1) (t+1) (141 (1+1)
X, Nf(xd|x| , X, ,...,xd_l)
ti=t+1
goto 1

Sampling is from univariate full conditional distributions. For example, at some stage
there is a need to sample from

f(x3 |-x1,-x2,-x4,. . "xd)'
However, this is proportional to the joint density
f(xhxz, X35 Xgyev e ,)Cd)

where x,, Xx,, X4, . . ., X, are known. The method is therefore particularly efficient if there
are univariate generation methods that require the univariate density to be known up to
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a multiplicative constant only. Note, however, that the full conditionals are changing not
only between the different components sampled within an iteration but also between the
same component sampled in different iterations (since the parameter values, being the
values of the remaining components, have also changed). This means that the univariate
sampling methods adopted will need to have a small set-up time. Therefore, a method
such as adaptive rejection (Section 3.4) may be particularly suitable.

Given that the method involves sampling from full conditionals, finally check that this
is likely to be much simpler than a direct simulation in which X, is sampled from the
marginal density of f (x,), X, from the conditional density f (x, | x;),. .., and X, from
the conditional density f (x, | x;, ..., x,;_;). To show that this is so, note that in order to
obtain f (x,) it would first be necessary to integrate out the other d — 1 variables, which
is likely to be very expensive, computationally.

As an illustration of the method, suppose

f (X1, X5 x3) = exp [— (o 42, 4+ 2x3) — 015X, X, — 053,03 — O3 x3% ] (8.15)

for x; > 0 for all i, where {0,' j} are known positive constants, as discussed by Robert and
Casella (2004, p. 372) and Besag (1974). Then

£ (xy, x5, %3)
f (x27x3)
o f (x5 Xp, X3)

ocexp (—x; — 015X, X, — 03, x3x,) .

f ] x,x)=

Therefore the full conditional of X, is
X, | x5, x3 ~ Exp (1+0,,x, + 03,x3)

or a negative exponential with expectation (14 6,,x,+ 65,x;)"". The other full
conditionals are derived similarly.

8.4.1 Estimating multiple failure rates

Gaver and O’Muircheartaigh (1987) estimated the failure rates for 10 different pumps in
a power plant. One of their models had the following form. Let X; denote the number
of failures observed in [0, ¢;] for the ith pump, i = 1,. .., 10, where the {¢,} are known.
It is assumed that X, | A; ~ Poisson (A;1;) where {A; | @, B} are independently distributed
as g, s (A | B) ~ gamma(e, B) and B is a realization from g (B8) ~ gamma (y, 6). The
hyperparameter values, «, 7y, and 6 are assumed to be known. The first four columns of
Table 8.2 show the sample data comprising x;, t;, and the raw failure rate, r;, = x,/t;.
The aim is to obtain the posterior distribution of the ten failure rates, {A;}. The
likelihood is
et (o)

L({A}) = l_[

i=1

x;!

10
oc [Te MAS (8.16)

i=1
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Table 8.2 Pump failures. (Data, excluding last column are from Gaver and O’Muircheartaigh,
1987)

Pump x;, f,x 1073 (hours) r x 10°(hours™') Bayes estimate = A, x 10 (hours™")

4

1 5 94.320 0.053 0.0581
2 1 15.720 0.064 0.0920
3 5 62.860 0.08 0.0867
4 14 125.760 0.111 0.114
5 3 5.240 0.573 0.566
6 19 31.440 0.604 0.602
7 1 1.048 0.954 0.764
8 1 1.048 0.954 0.764
9 4 2.096 1.91 1.470
10 22 10.480 2.099 1.958

and the prior distribution is
10
818 (A}, B) = 85 (B) Hgmﬁ (A 1B)
i=1

efﬁﬁﬁy—lay 10 e*ﬁ“iﬁ“/\?‘*l
reyy o '

10
oce PR TTe PHpoar. (8.17)

i=1
The posterior joint density is
Tir)LB ({A}. B) o< L({A;}) 8(n).B (A}, B)

The posterior full conditional of 3 is

10
7 (B {A}) oce™ B [Te Phipe

i=1

_ Bl()a+y—lefﬂ(5+2}2] A) -

which is a gamma (10a +v,0+ 2}21 )\i) density. The posterior full conditional of A; is
Ty iz (A | (A i # j}, B) oce ™ Phag—le Ay

which is a gamma (a—i—xj, B+ tj) density. Note that this is independent of A; for i # j.
Gibbs sampling is therefore particularly easy for this example, since the full conditionals
are standard distributions. The Bayes estimate of the jth failure rate is

N =E, (E’Tw[’\f])

a—i—xj
=E,, <B+t,~> (8.18)

where 7 is the posterior marginal density of 3.
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There remains the problem of selecting values for the hyperparameters «, y, and 6.
When 7y > 1, the prior marginal expectation of A; is

Eg{A,},B (/\J) = Egﬁ (Eg).jw [)\/]>

=)

o o 6—6337—157

= dB
o B I'(y)
. adl’ (y—1)
I (y)
1)
- (8.19)
v—1
for j=1,...,10. Similarly, when y > 2,

Varg{,\ 1.8 (/\J) ZE&’B (Varg)\/\ﬁ [)\1])

+Var,, (E,, , [\)]) (8.20)

=E, (£>+Varg (E)
B BZ B B

5 (‘a>+E' (‘a2>‘[E’ (gﬂ
B BZ 8p Bz 88 ,B

~ a—0BRY-18Y o 2
et [ (0

B*I' (y) y—1
_ a(l+w)& [ ad )’
(=D (y-2) (7—1)
zw. (8.21)
(y=D"(y-2)

In the original study by Gaver and O’Muircheartaigh (1987) and also in several follow-
up analyses of this data set, including those by Robert and Casella (2004, pp. 385-7) and
Gelfand and Smith (1990), an empirical Bayes approach is used to fit the hyperparameters,
«, v, and 6 (apparently set arbitrarily to 1). In empirical Bayes the data are used to estimate
the hyperparameters and therefore the prior distribution. Here a true Bayesian approach is
adopted. It is supposed that a subjective assessment of the hyperparameters, «, y, and 0,
is based upon the belief that the prior marginal expectation and standard deviation of any
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prior and posterior densities prior and posterior densities
HL .2e2
.1e2 :I:l:l\
o. LT lambdaf1] o. lambda[2]
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prior and posterior densities prior and posterior densities
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Figure 8.2 Posterior and prior densities for 10 failure rates

of the failure rates are (per thousand hours) % and 2 respectively. Using Equations (8.19)
and (8.21) two of the three parameters can be fitted. A third hyperparameter value is
fitted by the prior belief that, for any pump, the marginal probability that the failure rate
exceeds 5 per 1000 hours is 0.01. This fitting results in

a=054, y=220, 8=1.11. (8.22)

The plots in Figure 8.2 show the results of Gibbs sampling over 2000 iterations following a
burn-in time of 200 iterations (see the procedure ‘pump’ in Appendix 8.3). The histograms
are representations of the posterior distributions of the 10 failure rates (per thousand
hours). Superimposed on each plot is the (common) prior marginal density of the failure
rate for any pump. Note that the latter is unbounded as A; — O since a < 1. The
(estimate of the) Bayes estimate of A; is the sample mean of the simulated values,
{(a+x,)/(BO+1),i=1,...,2000}.

Such a simulation could also be used, for example, to determine the posterior survival
probability for pump j say, Eﬂ{/\i}.ﬁ({)‘i}aﬁ) (e—m), Then

Eﬂ-{)‘i}vﬂ (e_/\jy) = Eﬂﬂ _E#A,\B (e_)‘j.V)]

o0 ef)\jyef)‘,(ﬁﬂ/)/\xf"'a_l (B + [j)"j+°‘ d)\j

= Exy /0 Fj(xj+oz) :|

Xjta
PI\B+t+y
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Therefore, an estimate is the sample mean of {[(BY+1;)/(BY +1;+y)]5"™,
i=1,...,2000).

8.4.2 Capture-recapture

The aim is to estimate the unknown population size N of a collection of animals, as, for
example, given in Castledine (1981) and George and Robert (1992). In the first episode,
for every animal in the population, let p denote the common probability of capture. Each
captured animal is marked and then returned to the population. In the second episode,
assume that N and p are as before. Let n, o, n |, and n, ; denote the number of animals
caught on the first episode only, the second episode only, and both episodes respectively.
Let

n=no+ny,+2n,
which represents the combined count of animals captured on the two episodes. Let
n = Ny o+ 7o+

which is the number of separate animals caught in the two episodes (some animals caught
and marked in the first episode may be caught again in the second one).
Using a multinomial distribution the likelihood of these data is

N!

L(N, p) = n o ne N —10)] [p(1=p)I"[(1 = p)p]" [p*]" [(1 = p)*T¥ "

_ ( N ) pn(l _ p)2N—2n’+n]‘0+ﬂo,1

ny1M,0M0,1
N ,
— n 2N—n
= p(I=p)" "
ny 1My 0M0,1

Suppose there is little idea of the value of p. Then a suitable prior distribution is U(0, 1).
Suppose that the prior distribution for N is Poisson (A) where A = 250. The aim is to find
the posterior distribution of N given n and »’. In particular we wish to find the Bayes
estimate of N, that is the posterior expectation of N.

The joint posterior distribution of N and p is

pn(l _p)ZN—n)\N

(N P) o

Now put N’ = N —n'. This is the number of animals in the population that were not

captured in either episode. Then the posterior distribution of N and p is

pn(l _ p)ZN'+2n/—n)\N’+n/
N’ -

Ty (N, p) (8.23)
Then the full conditionals of p and N’ are

PIN' ~beta (n+1,2N"+n, o +ny, +1)
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and
N'|p ~ Poisson (A[1 —p]z) .
Using Gibbs sampling m equilibrium values (N'®, pM), ... (N'™, p™) are

obtained. Now E v, (N'|p) = A[1 — p]*, so a Bayes estimate of N'is E.,, (A [1 — p]*).
The MCMC estimate of this expectation is

(1=

3>
IE

1

1

(See the procedure ‘gibbscapture’ in Appendix 8.4.)

Gibbs sampling works out quite well for this example. However, the opportunity will
also be taken to see whether the use of Monte Carlo can be avoided altogether. By
summing over N’ in Equation (8.23) the posterior marginal density of p can be obtained as

ﬂn 2
7, (p) o p" (1 —p)> " M1,

Using the data values A =250, n = 160, and »n’ = 130, as in Appendix 8.4, the Bayes
estimate of N’ is

Ey [Eny, V1P)| = Eq [AL1 = pI']
AL ey
T A e dp
= 111.30 (8.24)

using numerical integration in Maple. This can be compared with the estimate of 113.20
obtained using Gibbs sampling with a burn-in of 200 iterations followed by a further 500
iterations. This is shown in Appendix 8.4.

8.4.3 Minimal repair

This example concerns the failure of several components. However, unlike the example
in Section 8.4.1 it cannot be assumed that failure for any component follows a Poisson
process. This is because the failure rate here is believed to increase with the age of a

component.
The ith of m components is new at time 0 and put on test for a fixed time 7. The
density of time to first failure is specified as f (x|a;, A;) where (¢, X)), i=1,...,m,

are identically and independently distributed as g («, A |u, b), g being a prior density. The
parameter b is itself distributed as a hyperprior density w (b |y, &). The hyperparameters
M, v, and & are assumed to have known values.

Failures of the m components are independent, given {(a;,A,)}. Let F,(x) =
/. * f(ul|a;, A;)du. On failure during [0 T(i)] the ith component is instantaneously
minimally repaired. This means the following. Suppose the jth failure is at age x() <TO,
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(@) (O]

Then, conditional upon xj), ..., x;, the density of age, x at the next failure, is

(J+l)’

fi(x)/F; <x(’)> for T > x > x(l) There is a probability F; (T®) /F, (x ( m) that the next
failure lies outside the observatlon period [0, T@]. Physically, minimal repair means
that immediately after the jth repair the component behaves exactly as though it were a
component of age x() that had not failed since new. In other words, the component is
‘as bad as old’. Suppose that n; such failures and repairs of component i are observed in
[O, T® ] at times x(('l)) << x&)i) < TY. It follows that the joint distribution/density of

n,,{xé'/)) j=1,...,n11is

o) < 2 fy 200D

h (n X( ]) ,j=1,.
where x(o) =0. So a summary of the model is

i independen
M,{X((_g,jzl,...,m} ‘L‘h(n {8;‘—1 }|ai,/\i), i=1,...,m,

(a;, )\,-)i"ij'g(a, AMup,b), i=1,...,m,
b~w(bly,6).

The likelihood function for these data for component i alone is

LY =h< n;, {xg)) j= 1,...,ni} |ai,/\i>.

Now suppose that
Fi(x) =e 0,

a Weibull distribution. Then

o M —1
: ATO)% 0) a;
LB =¢ ~( ) | | (x( )) A

a;—1
_ o= (NTO)ni g mia T (0)
— (W) al' A <]_[x(j)) .
j=1
Therefore, the full likelihood is
m n; ;=1
L), (A} =e S Or)" [T (Hxﬁji) '
i=1 j=1

The prior distribution of {«;}, {A;} is taken to be

wb—1) 77 A p(b—1)A
r(l/a,»+1>] r(b)‘c’Xp[‘r(l/aiH)}

g (). (M) = T (@) [ (8.25)
i=1
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where b —2 has a gamma (7, 6) density on support [0, c0). The condition b > 2
arises as the prior variance of X is taken to be finite. Note that Equation (8.25)
indicates that the prior conditional density of A; given {e,}, {A,k#i} and b
is gamma (b, [w(b—1)]/[C(1/a;+1)]),i=1,...,m, and that g, («;) is the prior
marginal density of «;. The hyperparameters o and & are both positive, while y > 1 is
necessary if the prior variance of X is taken to be finite. The only restriction on g («)
is that the support excludes (—oo, 1], as the prior belief is that components have an
increasing failure rate. Suppose X; is the time to first failure for the ith component. Then
the standard result is that

E(x,-|a,-,m-)=/0 F, (x)dx
1 1

=\ —+1
a;

E(X]|a;, A) = /w2x F, (x)dx
0

2
=AT <— + 1) )
«;

Therefore, the prior expectation of X; given «; and b is

1 o \b-2 (b—1)A, b-1) 71
E(X"'“f’b)zr<&+l>/0 F(b)eXp[_llf(l/aHrl)}[Ile/aﬂrl)] A,
(1. N\TG-1 p®-1)

—F<a,+l> ) F(é-ﬁ-l)

and

=p
which is independent of «; and b. Therefore,
E(X,)=p. (8.26)

The prior expectation of X? given ; and b is

o )\b-3 — — b
E(Xi2|ai,b)=F<£+l) A exp|: p(b 1)/\ii||: plb=1) ] da;

a I (b) T (a+ D) || T (1/a,+1)
(2 wb-=1) TIr{®-2)
(&) [ Fian) o

W Q/a+1)(b—1)
T2 (1ja;+1)(b=2)

Integrating out b,

2
12T (2)a,+1) b—1
E(X|)) = =57 Euplys)

r2(1/a;+1) b—2
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w2/ +1) (1+ 8 )
o I2(1/a;+1) y—1

. 5 I(2/a;+1)
E(X)=p (1 + ﬁ> Eq.w) [m} ’

and so the prior variance of X; is

, ) I(2/a;+1)
Var (Xl) = MU {(1 =+ ﬁ) Eg,l(a;) [m} — 1} . (827)

and therefore

Results (8.26) and (8.27) suggest a simple way of setting parameters. Set w to the
prior expected time to first failure of any of the m components, and obtain 6/(y — 1)
using the prior knowledge on its variance. To keep the fitting process simple, a subjective
assessment of the expected value, v/, of b—2 allows the final hyperparameter to be
fitted.

The aim here is to sample from the posterior distribution of {(a;, A;),i=1,..., m}

(0 O] ;1

and b, given the observed failure data {Ix(]), .. x(n)} s .,m¢. The posterior

density is
8 (b—2)" e 0D
I'(y)

- ni oy niQ; (i) ; I (b - 1) ’
x[Ten <1_[ x(,)) 8 () [m]

i=1

A _ w(b—1) A _ ()%
r<b)e"p[ Fja+n W) “

7 ({e;}, {A}, D) o

The full conditionals are

(gl (g k # 1) (A} . B) ocexp [—M - (AIT“‘))“"]

r(/a;+1)
a;—1
n; y nQ; il i l 1 —b
x al' )] (Ex&) g(a) [r(zﬂﬂ , (8.28)
. b—1 /\i i)\ %i nje+b—
77(/\i|{ak},{)\k,k;éz},b)dexp[—lﬁf((Tij_l)—()\iT()) },\i +b—1 (8.29)

and

-2 — DV T AT (1, + 1]
7T(b|{ak},{)\k})o((b 2)" [{n(b 1}}’11(1;[),_1 JT (1, +1)]

X exp |:—8(b—2)—,u,(b I)Z (8.30)

T (1/a +1)}
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for i=1,...,m. Note that (8.29) is log concave, so is suitable for adaptive rejection,
while (8.28) and (8.30) are not obviously so. Fortunately, Gilks ef al. (1995) have shown
how to relax the log concavity condition by introducing a Metropolis step into adaptive
rejection. This method is known as adaptive rejection Metropolis sampling (ARMS).

8.5 Other aspects of Gibbs sampling

8.5.1 Slice sampling

Suppose we wish to sample from the univariate density

f(x)ocfi(x)- fi (%)

where fi,..., f, are non-negative functions. Define g to be a joint density of random
variables U, . . ., U, X, where

g(uy,...,u,x)=8B (8.31)
is a constant on support
S={(uy,...,u,x):0=<u; <f(x)Vi, x € support (f)} (8.32)

Integrating out u,, . . ., u,, it can be seen that the marginal density of X is

fr(x) fi(x)
gX(x)zB/O duk~~/(; du,
=Bf; (x) -+ fi (x).

It follows that gy (x) = f(x). Successive values of X can now be sampled (not
independently) using Gibbs sampling on the set of random variables {U,, ..., U, X}.
From Equation (8.31) and (8.32) the full conditional of U, say, is

gul\.(”1|uz, ce, U, X) X B

on support [0, f; (x)]. The full conditional of X is

gx. (xluy, ..., uy) x B

on support D = {x:u; < f;(x) Vi, x € support (f)}. The Gibbs sampling scheme is
therefore

uy ~ U (0, f) (x))
u ~ U (0, f> (x))

U~ U0, f, (1))
x~U (D)



Other aspects of Gibbs sampling

As an example, consider a truncated gamma distribution consisting of that part of a
full gamma density with values greater than a. This has density

fx)ocx*le™

on support [a, o) where a > 1. If a is large it is not efficient to sample from the full
gamma, rejecting those values that do not exceed a, so slice sampling will be tried. Now
f(x) o f, (x) f, (x) where f, (x) = x*"! and f, (x) = e~*. Therefore,

D={x:u1§x“’l,u2§e’x,x>a}

1/(a—1)
1

:{x:xzu ,xi—lnuz,x>a}

= [x:max(u:/(a_l),a) §x§—1nu2].

The corresponding Gibbs sampling scheme is

u, ~ U(O, x“")
u, ~ U (0,e7)
x~U (max (ui/(%l), a) ,—1In uz)

In Appendix 8.5 the procedure ‘truncatedgamma’ implements this for « =3, a =9, with a
burn-in of 100 iterations. The efficiency is compared with the naive approach of rejecting
gamma variates that are less than 9. Slice sampling becomes worthwhile if a is large. A
method that is better than both of these is to use envelope rejection with an exponential
envelope on support [a, 00), as in Dagpunar (1978).

As a further example, the estimation of the 10 pump failure rates in Section 8.4.1 will
be revisited. The joint posterior density is

877 le %8 10 e M (\,1)" e A1

7 ({A}, B) r(y) x;! I' (@)

10
o B! e~ 1_[ e*/\i(Bth;)/\;‘i*“*lBa.

i=1

Integrating out the {A;} gives

10
- (:B) o ﬁlOaerflefSB 1—[ (B + t’_)—(xi+a)

i=1

If we can sample from this density, then there is no need for Gibbs sampling, as it only
remains to sample A,|B ~ gamma (« + x;, B+1;), a standard distribution. One possibility
is to use slice sampling as follows:

U ~U [0, (B+zi)*<"f+“)] L i=1,...,10
Ull ~U [0, BlOaerfl]

Uy, ~ U [0, e %]
B~UI[D]
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where

1 xita
D={ﬁi< ) >u,i=1,...,10: B0 1>y e P>y, 1.

B+t
Sampling a (B variate will therefore require 12 uniform random numbers, R, ..., R,,.
If the last sampled variate is 8, then u, = R, (1/ (B, +1,))""*,i=1,...,10, and the

condition (1/(B+1,))""* > u; becomes (1/(B+1,))""* = R, (1/ (B, +1,))" ", that is

1 1/(x;+a)
p=rn(z) -

Similarly, providing 10a+ 7y — 1 > 0, as in the hyperparameters of (8.22), %71 >y,
leads to B'0+r=1 > R, B! that is

1/(10a+y—1)
B = BoR
= 11 .

Finally, e % > u,, leads to e % > R ,e =%, that is

InR,

B=<By— 5

So the next variate is 8~ U (B,ower, Bupper) where

Blower = BOR:{(]OQ+V7I)

) ] 1 1/(xi+a) InR
Bupper = min {,-=1I,I?l_r,l,1o |:(BO + ti) <E> —L BO - S = .

This is performed in the procedure ‘slice’ in Appendix 8.6. It is left as an exercise
to determine empirically whether or not this is more efficient than the original Gibbs
sampling in Appendix 8.3.

and

8.5.2 Completions
Let the joint density of X and Z be g(x, z), where g is said to be a completion of a density
fif

[ g(x, 2)dz = f(x). (8.33)

Using Gibbs sampling of X and Z from g gives a method for sampling (nonindependent)
variates from f. Note that the slice sampler is a special case of a completion.
For example, suppose

a—1,—z

g(x,z)=x""e



Problems

on support z > x > 0 where o > 0. Then the marginal densities of X and Z
are gamma(a, 1) and gamma(a + 1, 1). Therefore g is a completion of both these
distributions.

A second example is due to Robert and Casella (2004, p. 487). Suppose V;,...,7Y,
are i.i.d. Cauchy distributed with density

1
fy,.()’)dm

on support (—oo, 00), where the prior density of 6 ~ N (0, 0'2). Then the posterior
density is

2 2 " 1
m(6) oce /G0 )]_[—.
i 1+ (v — 0)2
Now the density
g(0,x,,...,x,)oce /2 ]_[e""'[”(y"“’)z]
i=1
on support |0 < oo, x; >0,i=1,...,n,is a completion of 7. It is left as an exercise to

show that the full conditionals are
X, {0 g # 1) ~Exp (14 (- 0)°)

fori=1,...,nand

ei{xj’j=1,...,n}~N< 23X 1 )

o 2+42n% 024 2nx

where X is the sample mean of {x;}.

8.6 Problems

1. It is required to sample from a folded normal probability density function

2
f(x) =/ =exp(—0.5x*) (x> 0)
T
using a Metropolis—Hastings algorithm with a proposal density

gy (y) =€ (y>0).

Use the U(0, 1) random numbers below to sample five candidate variates. Indicate
clearly which candidate variates are accepted (state of Markov chain changes) and
which are rejected (state unchanged). Start with x = 0.

R, (for candidate variate) 0.52 0.01 0.68 0.33 0.95
R, (for acceptance test) 0.62 064 0.03 095 045
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2. Let P (6) denote the prior density of a vector parameter 6 € S. Let P (0|D) denote the
posterior density after observing data D. Consider an MCMC algorithm for sampling
from P(0|D) with an independence sampler in which, at each iteration, the candidate
point is 6 with a proposal density P () for all 6 € S. Given that the current point is 6,
show that the acceptance probability for a candidate point ¢ is min[1, L (¢) /L (6)],
where L is the likelihood function.

3. Refer to Appendix 8.2. Modify the procedure ‘fail’ to obtain an MCMC point estimate
of the posterior expected time to failure for a component.

4. Discuss the merits or otherwise of simulating from the posterior density (8.13) using
envelope rejection with a proposal density which is the prior shown in (8.12).

5. Robert and Casella (2004, p. 303) consider a Metropolis—Hastings algorithm to
sample variates from a density f with support on [0,1] where

8(x)
J(x) o¢ ———.,
1—p(x)
g is a probability density function on [0, 1], and 0 < p(x) < 1 Vx. The proposal density
g (y| x) is such that if the current point (value) is x and the next candidate point is
Y, then with probability 1 — p(x), Y is a variate drawn from g, and with probability
p(x), Y =x.

(a) Define the acceptance probability in the Metropolis—Hastings algorithm to be the
proportion of candidate variates (¥ variates) that are accepted. Show that in this
case the proportion is one.

(b) Write a procedure to simulate variates from f when

x @ —)c)ﬁ*1
A .

where ¢ >0, 8>0,and 0 <x < 1.

6. (From Tierney, 1994.) It is required to generate variates from a probability density
function proportional to 4 using prospective variates from a density g. In the usual
envelope rejection method ¢ is chosen such that /(x)/g(x) < cVx € support (g). Now
suppose that ¢ is not a uniform bound, that is h(x)/g(x) > ¢ for some x. Let a
prospective variate y from g be accepted with probability min [1, 2(y) Acg(y)}].

(a) Show that the probability density function of accepted variates is now r (rather
than proportional to /) where

r(y) ocmin [A(y), cg(y)]-
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Problems

(b) Consider a Metropolis—Hastings algorithm to sample from a density proportional
to h, using a proposal density . Show that a candidate variate y from r is accepted
with probability

min [1 Cg(x)} i) .

.9) " h(x) 8() ’
a(x,y)=
min [1, %} otherwise.

(c) Discuss the merits of an algorithm based upon (b).

. Consider the following model.

WEN () =1

where
u~N (0.7,
B~ gamma (2, 1),
T~ gamma (2, 1).

Devise a Gibbs sampling scheme that can be used for estimating the marginal posterior
densities of w, 38, and 7 given y,, ..., ,.

. Construct a Gibbs sampling scheme for sampling from the bivariate density

1
f (x,, x,) < exp |:—§x1 (1 ~|—x§)i| (¥, >0,00> x, > —00).

Now find a direct method for sampling from the bivariate density which first samples
from the marginal density of X,, and then the conditional density of X, given X,.
Similarly, find a direct method that first samples from the marginal density of X|,
and then the conditional density of X, given X,. Which of the three methods would
you choose to implement?

. Modify the ‘capture-recapture’ Gibbs sampling scheme of Section 8.4.2 and

Appendix 8.4 so that the prior density of p is beta(c, v). Run the modified procedure
to estimate the posterior expectation of N and p when o =3 and y = 7 and the other
data and parameters are as before.

(From Robert and Casella (2004, p. 372)) Write a Maple procedure to perform Gibbs
sampling from the trivariate density (Equation (8.15))

S (xps X, x3) = exp[— (%) + 2, +X3) — 015X, X, — 05320503 — 03, x3x, ]

where x; > 0 for all i and where {0,. j} are known positive constants. Suppose 6, =1,
6,3 =2, and 65, = 3. Plot the empirical marginal density, fy, (x;), and estimate p, =
E (X)) and o, = 0 (X,). Use a burn-in of 100 iterations and a further 1000 iterations
for analysis. For w,, perform 50 independent replications using estimates in the form
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of (a) and (b) below. Carry out the corresponding analysis for estimating ¢,. Compare
the precision of methods (a) and (b).

ZIOOO (ON
i=1 1 »

(a) 1000

. -1
(b) Yo (1 + 912x§l) + 931)5,?)) .

1000

11. Use slice sampling to derive algorithms for sampling from the following distributions:

(@) f(x) xx*'(1=x)P"for0<x<1,1>a>0,1>pB>0 (note carefully the
ranges of the parameters);

(b) f(x,y) = (x+y)exp[—1 (x+?)] for (x,y) € [0, 1]*.

12. Let @ > 1 and 8 > 0. Suppose the joint density of X and Z is

1—x)P1z¢2 (0<z<x<]1),

0 (elsewhere).

g(x,Z)CX{

(a) Show that the marginal densities of X and Z are beta («, 8) and beta (¢ — 1, B+ 1)
respectively.

(b) Use the result in (a) to derive a Gibbs algorithm to sample variates from these
beta densities.

13. Consider a Brownian motion {X (¢),t> 0} with drift u (> 0), volatility o, and
X (0) =0. Let a be a known positive real number. It can be shown that the time
T =inf {¢: X(¢) = a} has density (an ‘inverse Gaussian’)

2
a —(a—put)
ex .
o2t P |: 207t :|

f)=

(a) Show that f(r) o< t=2exp[—2 (xt' +¢1)](t > 0), where x = a?/o? and
g =p’/o’.
(b) Use slice sampling to construct a Gibbs algorithm for sampling from f.

(c) Show that g is a completion of the density f, where

127 (y> x/(20), 2> Yt/2,1 > 0),

t,y,7) X
8(t.7.2) 0 (elsewhere) .
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14. A new component is installed in a computer. It fails after a time X has elapsed. It is

15.

16.

then repaired and fails again after a further time Y has elapsed. On the second failure
the component is scrapped and a new component is installed. The joint density of X;
and Y; (lifetimes for the ith such component) is fy y where

x(0x+y)e o+
1+ A0x

fx.y, (X, ¥) (x>0,y>0)

and where A (> 0) and 0 (0 < 0 < 1) are unknown parameter values. The priors of 6
and A are independently distributed as beta (a, b) and gamma (8 + 1, ) respectively
where a, b, B, and vy are known positive values. Let (x;,y,),...,(x,,y,) denote m
independent realizations of (X, Y). Let s = >, (x;+ ;).

(a) Derive an expression for the posterior density of A and 6 given the observed data.

(b) Deduce that the full conditional density of A given the data is proportional to

oA+ \B
[T, (14-A6x;)

(c¢) Derive the corresponding full conditional density of 6 given A.

(d) Choosing an envelope that is proportional to e *¢*YA#  derive a rejection
procedure for generating a variate A from the full conditional of A given 6. You
may assume that procedures are available for sampling from standard densities.

(e) Show that for known ¢ (> 0), x, 6, and A,

At
PY>t|X=x)=e M1+ ——).
(¥>1] x¥)=e (+l+/\0x>

Suppose that N equilibrium realizations (6, A), ..., (8™, A()) are available
from Gibbs sampling of the posterior density in (a). Show how the posterior
predictive probability of Y exceeding ¢, given that X = x, may be obtained.

Construct completion sampling algorithms for:

(a) the von Mises distribution: f (6) oce*?, 0 < 6 < 7

(b) the truncated gamma: g(x) oc x*~'e ™ (x >t > 0).

(a) Let X,,...,X, denote the lifetimes of n identical pieces of electrical
equipment, under specified operating conditions. X, ..., X, are identically and
independently distributed with the probability density function

)\Bxﬁ—le—)tx

W (x>0,i=1,...,n)

fx,.(x) =
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where 3 is a (single) realization of a random variable from the U(1, 3) probability
density function, and A is a (single) realization from the conditional probability
density function

5
g(AlB) = Ee_“/ﬁ (x>0).
IfX,=x;(i=1,...,n), show that:

(i) The full conditional posterior density of B is (8 | A) where
()\”xl R xn)ﬁ_le_S)\/ﬁ
(BB

on support (1, 3). Derive and name the full conditional density of A given
Xy,...,X, and B.

7(BIA)

(ii) Outline three approaches that might be pursued for the design of an algorithm
to generate variates from the posterior full conditional density of . Discuss
any difficulties that might be encountered.

(b) Three continuous random variables U,, U,, and X have a probability density
function that is constant over the region

{(uy, uy, )|0 < uy < x,0 < u, <e_x3,0<x<oo}

and zero elsewhere.

(i) Show that the marginal density of X is

3

X
fx(x) = W (x>0).

(ii) Use a Gibbs sampling method to design an algorithm that samples
xW, x® .. from fy.

iii) Use the U(0,1) random numbers R,, R,, and R, in the table below to
1 2 3
. . 1
generate variates x("), and x@, given that x® = (1) .

t R, (for U”) R, (for UY") Ry (for X®)

1 0.64 0.40 0.56
2 0.72 0.01 0.90

17. Suppose X, X,, ... are ii.d. with density

/\axa—le—/\x

f(X)ZW
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Problems

on support (0, o0), where the prior joint density of a(> 0) and A(> 0) is
g, d) =g, (a) gyo (A]@)

b yb—1
oo [EZD] 2 e

where g, (@) is a known density on support (0, c0) and w (> 0) and b (> 2) are
known constants.

(a) Derive expressions for the prior expectation and variance of X;.

(b) Given a realization x, . . ., x,,, show that the posterior density is

(AM'xy - x,)%exp (=AY, x;)
(I ()] ’

that the full conditional of A is a gamma (na+b, >, x;+u (b — 1) /@) density,
and that the full conditional of « is

m(a, A) x g, (a) a bAb~le - DV

8 () —u(b—DA/a (yn a
———a e (A'xp - x,)”.
[ (a)]

Find a condition for the latter to be log-concave.

7 (a|A) x

A gamma distributed time to failure with a shape parameter greater than one is useful
when it is known that the failure rate is increasing with age to a finite limit (in
contrast to an increasing failure rate for a Weibull density, which always increases
without bound). Accordingly, suppose the times to failure X, ..., X, of n similar
components are i.i.d. with density

/\axa—lef)\x

f(X):W

where @ > 1, A > 0, that is X; ~ gamma (e, A). Percy (2002) has remarked on the
use of a conjugate prior density of the form

(ad)" e
[I" ()]’
where the support here has been modified to a > 1, A > 0 for specified a, b, ¢, d > 0.

An advantage of any conjugate prior is that the posterior density comes from the
same family of densities.

g(a, A) x

(a) Show that the joint posterior density is

(ab)\”bxl .. .xn)a exp[—A(c+X, x;)]

7 (a, A) X i (a)]”””
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(b) Show that the posterior marginal density of « is

[a"x,--x,/ (c+ X0, x)""1°T [a(n+b) +1]

(@) [ ()"

(c) Show that the full conditionals are

(a”)\””xl . xn)a

[ ()]

m(a|A) x
and

(M) oc A¥ D exp |:—)\ <c+2x,~>:| )
i=1

How amenable is 7 (a, A) to Gibbs sampling?
(d) Show that there is no need to use simulation to derive the posterior expectation
of X, since this is simply (c+ > ", x;)/(n+b).

(e) Given Gibbs sampling yields equilibrium values of {(a®,A?),i=1,...,m}.
How would you estimate the Bayes estimates of A, «? How would you estimate
the posterior predictive probability that the component survives to at least age x?



Solutions

9.1 Solutions 1

Solutions to the problems in Chapter 1 appear in Appendix 1.

9.2 Solutions 2

l1.(a) a=5,m=16,c=3

X, = (5x5+3) mod 16 =28 mod 16 = 12
X,=(12x54+3) mod 16 =15

Xis=5=X,

Period is 16. Since m = 16, the generator is full period. This agrees with theory
since ¢ =3 and m = 16 are relatively prime, a — 1 =4 is a multiple of 2, which
is the only prime factor of m = 16, and a — 1 is a multiple of 4.

(b) A =16, period is unaffected by choice of seed.

(c) A =4, not full period, since a —1 =7 — 1 = 6, which is not a multiple of 4.
(d) A =2, not full period since ¢ =4 and m = 16 are not relatively prime.

() A=16=m/4, since m is a power of 2 and @ =5 mod 8§ and X|, is odd.

(f) A =4 < m/4 since X, is not odd.

2. The code below finds the smallest n for which X, = X,,. Note the use of the colon
rather than the semicolon to suppress output of every X,,. To obtain a random number
in [0,1) insert R := x/61. Answers: (a) A =60, (b) A = 30.

Simulation and Monte Carlo: With applications in finance and MCMC J. S. Dagpunar
© 2007 John Wiley & Sons, Ltd
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> rn := proc()globalseed;
seed := (seed*49) mod (61);
end proc;

>seed :=1;
x0 := seed;
x :=rn();
n:=1:
while x <> x0 do:
x :=rn():
n:=n+1:
end do:
n;

The period of 60 in (a) suggests that 7 is a primitive root of 61 as will now be shown.
The prime factors of m — 1 =60 are 5, 3, and 2. Therefore, 7°0/° — 1, 760/3 — 1, 790/2 _ |
should not be divisible by 61. Now (72 —1) mod 61 = (7° —1)(7°+ 1) mod 61.
However, 7° mod 61 = 7°7° mod 61 = (7° mod 61)? = 38> mod 61 = 41. Thus
(72 — 1) mod 61 = (40 x 42) mod 61 = 33. Similarly, (7% — 1) mod 61 = 46 and
(7*°—1) mod 61 = 59, showing that none of these is divisible by 61, so the generator
is a maximum period prime modulus one with A =m — 1 = 60.

(b) 49 is not a primitive root of 61 so the period is less than 60.
4. a=1,000, 101, X, = 53, 547, 507, 752. Hand calculation therefore gives

aX,=53,552,916, 050, 282, 952
= 53552 x 102 +916, 050, 282, 952.

Therefore, aX, mod (102 — 11) = 11 x 53552 + 916, 050, 282,952 = 916,
050, 872, 024.

5. (a) X, =aX; mod m gives an almost full period generator of period m — 1, since
a is a primitive root of m. Therefore, the sequence is {X,, ..., X,_5, Xgs - - - }
where X, ..., X,,_, is a permutation of 1,2,...,m— 1. Over the entire cycle
EX) =[1/(m=DIXEI X, =[1/(m = D] (1 42+ +m—1) = m/2. Also,
E(X?) =m(2m—1) /6 and hence gives the result for variance. Since R; =
X;/m, E(R;) = (1/m)E(X;) = 5 and Var(R,) = (1/m*)Var(X,) = (m—2)/(12m),
which is almost % when m is large.

6. First show 2 is a primitive root of 13. The remaining primitive roots
are {27:j <12, where j and 12 are relatively prime} = {2°,27,2'"} mod 13 =
{6, 11, 7}. Therefore, when m = 13, the only multiplicative generators having period
12 are those where a =2,6,7, 11.

7. The multiplicative generator X,,; = 13X; mod 2° with X, =3 gives {X;} =
(3,7,27,31,19,23, 11, 15}. Put R, = X,/m; then {R,} = {3/32,7/32,...,15/32}.
The mixed generator X}, | =[13X; 4 (3 mod 4)(13 —1)/4] mod2?® with X} =0 gives
{X7}=1{0,1,6,7,4,5,2,3}. Put Ry = X;/8; then R; = {0, §, ..., 2}. Now observe

that R; — R} = 3/32 as theory predicts.
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11.

13.

Solutions 2

. (a) The period is A where A is the smallest positive integer for which (X, X,) =

(X, X,;1)- The number of pairs (i, j) where i, j € [0, m—1] is m*. Clearly,
X, = X, =0 is not feasible, so the number of pairs to a repeat cannot exceed
m*—1.

(b) X,=0and X, =1 gives {0,1,1,2,3,0,3,3,1,4,0,4,4,3,2,0,2,2,4,1,0, 1, . . .

and the other one is {1, 3,4, 2, 1,3, . .. }, having periods of 20 and 4 respectively,
compared with the upper bound of 5 — 1 =24,

(a) Periods are 12 (X) and 16 (Y) respectively. Plots (see figures 9.1 and 9.2) of
overlapping pairs suggests that the X generator has a somewhat more uniform
distribution of points. Observe that in the basic lattice cells, the ratio of side

lengths (r2 =,/34/ 5) is smaller in the X generator compared to the Y one
(r, =8).
(b) A combined generator is R, = (X,,/13+7Y,/16) mod 1.

(b) The periods of {X,} and {Y,} are 8 and 6 respectively. Therefore, {R,} will repeat
after a period equal to the lowest common multiple of 8 and 6, which is 24.
Using the algorithm in Section 2.3, initially 7(0) = 0.69, T(1) = 0.79, T(2) =
0.10, T(3) =0.02, and T(4) =0.43. Now N = [4T(4) | = 1. Therefore, T(4) :=T(1) =

0.79 and T(1) := 0.61, which is the next number to enter the buffer. Continuing in
this manner the shuffled sequence becomes 0.43, 0.79, 0.02, 0.69, 0.10, 0.66, . . ..

X? =57.31 compared with a 1% critical value of x3,, = 21.666. Assuming these
data are independent, we can confidently reject the null hypothesis that these are
U, 1).

The generator X(i + 1) = 7X(i) mod13

0.8 1

X(i+1)

0.4 1

0.2 1

02 04 Y 08
X(i)

Figure 9.1 The lattice plot for the {X} generator, problem 2.9
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The generator Y(i + 1) =(Y(i) + 5) mod16

°

0.8 1 °

0.6 -

Y(i+1)

0.2 1 °

6 0i2 0t4 0i6 Oi8
Y()
Figure 9.2 The lattice plot for the {¥} generator, problem 2.9

9.3 Solutions 3

6. (a) Suppose the envelope is Ke™** for some positive w. Clearly, if w > A then it is

impossible to envelope /(x). If w < A the smallest K allowing enveloping of A
is K = 1. In that case the probability of acceptance is [;~ h(x)dx/ ;" g (x)dx =
{(A2+2)/[A(A*+4)]} /u~", which is maximized (subject to u < A) when = A,
giving an overall acceptance probability of (A% +2)/(A%+4), which is always
greater than %

(c) The rejection method is preferred. It involves one logarithmic evaluation for
the proposal exponential variate (X) and the acceptance condition becomes R,
< cos? X. This is likely to be much quicker than solving numerically the equation
given in (c).

. Use an envelope g (x) = K (2)". Then the smallest K is chosen such that K ()" >

(1+x) (1) Vx € [0,1,...). The maximum of (1+x)(%)"/(2)" occurs jointly

at x=2 and 3, so K = 3(?—1)2 = 27/16. Therefore, the acceptance probability

. oo X ) X -2

is Y (1+x)(3) /X2,K(3) = (1-3) " /[K/(1 =2/3)] = 4/(3K) = 64/81.

Given two random numbers R, and R,, a variate is generated from the (geometric)
2

mass function proportional to (3)x by setting x = [InR,/In(2/3)] and accepting

.. x X 2 2 x=2

itif R, < (14+x) (2)"/(2) /[(1+2)(%) /(2) ] =[(1+x)/3]1(3)"". Actually, a
slightly more efficient way of generating from this (negative binomial) distribution
is to notice that the function 4 (x) = (14 x) (%)X is a convolution of the function

()" with itself. Thus, h(x) =Y1_, (3)" " (3)", and therefore the required variate is
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the sum of two independent geometric variates. In that case set x = |InR,/In(1/2) ]| +
[InR,/In(1/2)].

10. (a) Applying the ratio method to Cy let Y = S/R where (R, S) is uniformly distributed
over Cy. Then Y =y <> s/r =y <> (v—utanf)/u = y where

(=)

This is true <> x —tanf = y where x is a random variate from a density
proportional to 4 (x). Thus ¥ = X —tan 6 and the density of Y is & (y+ tan 6).

(b) Note that
A cosf —sinf cosf sinf
N\ o — —sinf cosf

which represents the rotation followed by a deformation.

(c) By definition, for any (u, v) € C,

u< /h(Z)fmax h(x)=u".

Also by definition, 4 (x) is maximized at x = m so u™ = \/h(m). Therefore,
the boundary of C passes through (u*, utm) and the line u = u™ touches the
boundary at this point.

(d) If the random variable X has a small coefficient of variation, C will be a
thin region about the line v/u = m, and will occupy a small proportion of the
minimal rectangle enclosing C. Using the ratio method on a random variable
X —tan 0, where 0 is chosen suitably, will allow the region C, to be distributed
roughly evenly on either side of the line s = 0. The region C, will occupy a
larger proportion of the minimal enclosing rectangle for C,, resulting in a larger
probability of acceptance.

(e) (i) 6 = 0, acceptance probability = 0.45486; (ii) tanf = 2/9, acceptance
probability = 0.71943; (iii) tan 6 = 1826,/9000, acceptance probability = 0.72297.

. . -1
11. In the wusual notation it is shown that u, = (%)a , Uy = —v_ =

(1- cv‘l)(a_l)/2 /(2%/a). The acceptance probability is 3 jﬁz h(y)dy/ Qu,v,).
Using Maple f_lﬁz h(y)dy =272 /wl" () /T (¢ +1/2) and the result follows.
Using Maple, the limit of this as @ — oo is as given in the question.

9.4 Solutions 4

1. We have x = \/—21In(j/m) sin (27 [(aj) mod m]/m). The log term ensures that the
largest values of x are for small j. For such j, x = /—2In(j/m)sin 2maj/m),
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and the first maximum occurs at the smallest j such that tan (2maj/m) =
—2(2maj/m)1n (j/m). This is approximately 2maj/m = /2, giving x = /2 In(4a) =
v/21n524 = 3.54. Similarly, the largest negative value is at approximately 2maj/m =
3m/2, giving x & —,/21In(4a/3) = —3.21. Using Maple the expected frequencies in
230 variates are (i) 214817 and (ii) 712615 respectively.

2. The joint density of U and V is f, (u,v) = 1/7 over support u*>+v* < 1. The
Jacobian of the transformation is

dy
u
00

au

d

ol 2u 2v

| _ —v/u? 1/u |=2.
06

— L+v2/u? 140/ u?

v

Therefore, the joint density of Y and @ is fy o (y, 8) = (1/0) fyy (u[y, 0], v[y, 0]) =
(1/7)/2 = 1/(27) over support 6 € [0,27) and Y € [0, 1). Since the joint density is
evidently the product of the two marginal densities it is concluded that ¥ and @ are

independent.

4. (b) This should be close to the theoretical value, which can be shown to be 11.2

pence.

5. h(x)=e*x*! on support [0, oo). Choose an envelope g (x) = Ke

~A where A is to be

selected. The probability of acceptance is fooo h(x)dx/ fooo g(x)dx =T (a)/(K/A).
Therefore, for given A we select the smallest K s.t. Ke ™ > e *x*~!Vx € [0, 00).
Accordingly, we set K = max,_, (e *x*~'/e™*). If A > 1 then K is infinite, leading

to zero efficiency. If A < 1 then K =e~ (@) [%]aq. The resulting probability of

acceptance is AL (a)e*' |

a—1 ]7a+l
1-A

1

. This is maximized when A = a™', giving an

acceptance probability of I" (o) e*! /a® and an optimal exponential envelope that is
proportional to exp (—x/«). Note that for large «, using Stirling’s approximation,
this acceptance probability behaves as /27 (a—1)*""* Ja® ~ /2me™ //a—1 ~
e~'\/2m/a. This is poor (e.g. 0.206 when a = 20) and tends to zero as a — oo. The
method cannot be used when a < 1 as the gamma density is unbounded as x — 0. It
is therefore impossible to envelope it with any negative exponential function.

6. The first part is easy. For the second part, h(w) = exp (—w'/“), so ut =

max,,., [exp (—iw'*)] =1

acceptance probability is %
(e/2a)* [T (a+1)]/2. This is bounded (e.g 2

and v" = max,_, [wexp (—iw"?)] = (2a/e)”. The
Jo h(w)dw/ (urvh) = 1 [Fetax*'dx/ 2a/e)* =

3 a a— 0, and e/4 at a =1)

for all @ € (0,1) (see figure 9.3 and Maple procedure below). Each prospective
variate requires one exponentiation and one logarithmic evaluation, which is not
unusually costly (see below). It is therefore a good method. The method is still
valid when a > 1, but leads to steadily decreasing acceptance probabilities in this

range.

> gammaalphaless1:=proc(alpha) local r1,r2,x;

do;

if alpha>=1 then ERROR(*“alpha should be less than 17’) end if;

rl:=rand()/10°12;
r2:=rand()/10"12;
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Acceptance Probability

0.65

Prob

0.55

0.5

0.2 0.4 0.6 0.8 1
alpha

o

Figure 9.3 Acceptance probability, problem 4.6

x:=evalf((r2/r1)"(1/alpha)*(2*alpha/2.718281828));
if evalf(—In(rl) —x/2) > O then break end if;

end do;

end proc;

. The joint density of R, and R, is uniform over

[(rl,rz) :0<r,0< r2,r11/a+r21/ﬁ < 1}.

Let X = R:/“/ (R}/a +R§/B>. Then the joint density of R, and X is

=Bx P (1 —x)F! Bl

ar.
Iri.x (r, X) ‘_82
X

over support {(r;,x):0<r <x* 0<x<1}. Integrating over r, the marginal
density of X is

Fe () o P = [ a,
0
o x P (1—x)P! xetP

=x*(1—x)F",

as required.
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8. The joint density of W and Y is
fwy (w,y) oce™y* (1 —y)™

over support {(w, y) : 0 < w, 0 < y < 1}. Therefore the joint density of W and X is

e (7 (1-3)

w

dy
ox

_— A w

=e “x* ' (w—x)""

over support {(w, x) : 0 < x < w}. Therefore the marginal density of X is

fx (x) cc x*! /we”” (w—x)""dw

X

a—1_—x

xx* e,

the required gamma density.

9. The density of X is

J() o (p(lx—)o)al <1ix>aﬁ
()

=x"(1- x)B*1

dy
dx

as required.

10. The joint density is fy, (x,y) = f(\/xz——i—yz> /(27r\/x2—+y2) on domain RZ.
The marginal density of X is [° f (\/xz——l—yz> JQm/x2+y)dy =
fowf(\/m) /(my/x2+y?) dy and similarly for Y.

(a) Here, fyy (x,y)=[1/(2m)]exp (—x?/2 — y*/2), which is separable in x and y,
showing that X and Y are independently distributed as N(0, 1).

(b) Here, fy (x) o fom (1—x? —yz)“] dy o (1 —xz)cfl/z. Put T = /nX/v1—X?
and S = /nY/~/1—Y2 Then T is monotonic increasing in X in (—1,1).
Therefore, f,() o [n/(n+ tz)]”/z_1 |dx/d] o [1/(n+ tz)]"/z_1 [1/(n+ tz)]S/2 %
(1+t2/n)7("+1)/2. The joint density of S and T is not separable in s and ¢
and therefore these two random variables are not independent. Accordingly, a
simulation should use either the cosine form or the sine form but not both. (Recall
that in the standard Box—Miiller method for normal variates, the sine and cosine
forms are independent.) The result (4.15) is obtained by using the inversion
method to sample from the density of R.
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9.5 Solutions 5

1. (a) Using 5000 replications, each replication generating a primary and antithetic
waiting time for five customers, the mean such time was 1.287 and the standard
error was 0.00777. The estimated variance reduction ratio is approximately 2.5.

(b) Using the same seed, the corresponding results were 5.4751, 0.00820, and 14.
The v.r.r. is now better as W, is now more linear in A; and S;_, than in (a). Why?

4. (b) (i) t = 2.8386.

5. The conditional probability density function is

fX\Xe(ai,],ai) (X) =—Nln (.X)

on support (a;_;, a;), since for equiprobable intervals, P (X € (a,_,, a;)) = 1/N. For
large N, there is little variation in f over (a;_;, a;), except for i = 1, so a uniform
envelope is appropriate. Therefore, for i > 2,

1. generate X ~ U (a;_,, a;)

generate R ~ U (0, 1)

. —InX .
if R < ——  deliver X else goto 1
—In(a;_,)

For i =1, we could continue to use inversion. For large n this will not degrade the
performance much.

10. Let f denote the p.d.f. of points uniformly distributed over D. Since

Jof o

it follows that

f(x(l), e, x(m)) =m! (x(l), cee, x(,n)) eD

Therefore,

/.../L)[i(m_j+1)2xj:| dx:%Ef |:£(m—j+1)2xji|.

Points are sampled uniformly over D by sampling uniformly over (0,1)” and
then sorting the coordinates so that 0 < x4y < -+ < x(,, < 1. The Maple
code below shows the numerical derivation of a 95% confidence interval
for the integral. Note that the naive approach of sampling points uniformly
over (0,1)” and accepting only those that lie in D would be hopelessly
inefficient.
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> restart;
> with(stats);
[anova, describe, fit, importdata, random, statevalf, statplots, transform]|

> randomize(96341641);
> n := 10000; m := 10;

n := 10000
m:=10

> for i from 1 to n do;
for j from 1 to m do;
a[j]:=evalf(rand()/1012);
end do;
b:=[seq(a[j],j=1..m)];
c:=transform[statsort](b);
d:=0;
for j from 1 to m do;
d:=d+(m—j+1)"2xc[j];
end do;
end do:
f:=[seq(e[i],i=1..n)]:
gl:=describe[mean](f)/m!;
g2:=describe[standarddeviation[1]](f)/m!;
interval:=evalf([g1-1.96*g2/sqrt(n),g1+1.96*g2/sqrt(n)]);

gl :=.00003042677684
g2 := .987969785%-5
interval := [.00003023313476, .00003062041892]

9.6 Solutions 6

1. Put call parity gives ¢ (1) +Ke "7~ = p(t) +x () e~7T~). Using the result derived
for the delta of the corresponding call option,

817_(1‘) — ac_(t) —e(T-D
ax (1)~ ax(r)

— e—rf(T—t)(p (d ) _ e—rf(T—t)
Ty

=" [1-(d,)]

— e T (—d )
Ty

2. Use put call parity with r, = 0. This gives (a) p = £120.86, (b) p =£186.38, and (c)
p = £268.94. The seller of a put will initially hedge his or her position by having
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a portfolio consisting of —1 put and A blocks of shares, where A = —® (—d) (see
Problem 1) and d = {(r+0'2/2) (T—1) +ln[x(t)/K]} /(a+/T —1t). The number of
shares shorted initially is (a) 328, (b) 440, and (c) 553.

3. (a) Let P (X (T)|t, x (t)) denote the payoff for the bond holder at time 7', given that
the current FTSE is at x (¢). Then

X(1)
L xo <1
PXM)nx(n)={1+1[30-1], 1=3D <16,
X(T)
1+0.3, 1‘65T0)'

In a risk-neutral world,
X(T)=x(t)exp [(r —0.50%) (T—1)+ovT— tZ]

where Z ~ N (0, 1). Let Q (Z |t, x (¢) ) denote the payoff as a function of Z rather
than of X (7') and let

g In[x(0) /x ()] — (r—0.5¢%) (T —1)

' ovT —t ’
In[1.6x(0) /x(1)] — (r —0.50'2) (T—1)
2 oNT —t .
Then
1, Z<d,,
0(ZI|t,x(1)) = 1+§[%], d, <7 <d,
1+O.3, dzfzv
and so

V(x(1), 1) =T

L@l x(t) (r-0502)(T—t)rovTic
frea ] ST o o

+0.30 (—d,) }

(b) The following Maple procedure computes this for given ¢ and x¢, where xt = x (¢)
is expressed in terms of x0.

> capped_bond:=proc(xt,t) local r,sigma,T,b,d1,d2,P,price;

r:=0.04;
sigma := 0.2;
T :=4;

b := xt/x0;

d1 := (In(1/b)-(r-0.5*sigma”2)*(T-t)) /sqrt(T-t) /sigma;
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d2 := (In(1.6/b)-(r-0.5*sigma”2)*(T-t)) /sqrt(T-t) /sigma;

P :=0.5*(b* exp((r-0.5*sigma”2)*(T-t)
+sigma”sqrt(T-t)*z)-1)* exp(-0.5*2"2) /sqrt(2*Pi);

price := exp(-r*(T-t))*((1 +int(P, z = d1..d2))
+0.3*statevalf[cdf,normald](-d2));

print("price at time”,t,”is £”,price);

end proc;

It is found that V (x (0), 0) = £0.9392 and
(c) that V (1.8x(0),2) =£1.1678.

4. (a) At time T portfolio A has the value K+V (x(T),T) =K+ x(T)—K = x(T),
which is the same as the value of portfolio B. Therefore, the two portfolios must
have identical values at any time ¢ € [0, T'] otherwise a riskless profit could be
made by investing in the cheaper portfolio. At time #, the cash in A has grown
to Ke~'Te" so the value of portfolio A is Ke """ +V (x (), t) while that of B
is x (7). Equating these two gives the desired result.

(b) We have aV/dx (t) = 1, dV/dt = r[V (x (1), 1) — x (1)], and 3*V/dx (t)* =0; the
result follows by substitution.

(c) A portfolio that is a long one forward contract and a short one share will have
the value at time ¢ given by V (x (1), ) —x(t) = —Ke™"7~". Since there is no
uncertainty in —Ke """ for all ¢ € [0, T], the hedge is perfect. In practice the
hedge involves, at time zero, selling short one share for x (0). A forward contract
is purchased for V (x (0), 0) = x (0) — Ke~'7, leaving an amount of cash Ke™'7.
This grows to K at time 7, which is used at that time to meet the obligations on
the forward contract and to the initial lender of the share.

(d) The delivery price K is now such that V (x (0), 0) = 0. The contract at time zero
has zero value. No money passes between A and B at that time. This is a standard
forward contract.

5. At time zero, the writer of the option sets up a portfolio consisting of a —1 call option
and A (0) shares. The share purchase is financed by borrowing A (0) X (0). At time
T this has grown to A (0) X (0)e'”. At time T, if X (T) > K, then a further 1 — A (0)
shares are purchased at a cost of [1 — A (0)] X (T). Since the customer will exercise
the option, the writer will sell the one share for K. The total cost at time T of writing
and hedging the option in this case is

A0)X (0)e" +[1-A(0)]X(T)—K.

Otherwise, if X (T) < K at time T, the writer will sell the existing A (0) shares,
obtaining A (0) X (7). The total cost of writing and hedging the option in this case is

A0)X (0)e —A0)X(T).
Bringing these two results together, the total cost is

A(0) X (0)e'’" —A(0) X (T)+[X (T)—K]".
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The present value of this is
C=A0)X0)—A0)X(T)e "+ [X(T)-K]".
Therefore,
E(C)—c=E[A0)X(0)—A0)X(T)e " +e " [X(T)-K]"]-c
=A0)X(0)—E[A(0) X (T)e™]
+e T [X O D (d,) e — KD (d, —oVT)]
—e T [X O @ (@) e~ KD (d—0T)]
=A(0)X (0) —A(0) X (0) e 7"
+e "X (0) P (d,) e — X (0) D (d)
+Ke T [@(d=oVT) - (d,~ovT)]
=X (0)e" " [D(d,) — P (d)]
+Kke " [@(d=oVT) - (d, - ovT)]

and this is plotted in Figure 9.4.
Notice that when u = r, there is no difference between the expected cost of writing
and hedging the option in this way and the Black—Scholes price.

0.2 —0.1 0.1 0.2 03
mu

Figure 9.4 Plot of E(C) — ¢ against w, problem 6.5
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6. From Equation (6.30),

n : +
c,=e""Eyon I:Xoe(r—(rz/Z)[(n+l)/2]h+(0ﬁ/11) Y (=it )7 _ K]

Put

X —i+1)Z;

VXL i1y

. Z?:l(n_i—'—l)zj

C /n(+1)2n+1)/6

_Y—i+1)Z;
Ja

~N(,1).

Then
+
Cg = efrrEN(o,l) [Xoe(rfaz/z)[(wWz]“‘rmz/" — K]
and

+
lim Cg= e*fTEN(O’l) I:Xoe(f*U'Z/Z)(Tﬂ)JrU'ﬁZ/\/g _ K]

n—o00

2 ’ +
=e " Eyq. [Xoe(”q’” JATHOVTZ _ K]

where o’ = 0/+/3 and

that is
q=3r + IER
and the result follows from Equation (6.20).
9. (a) We have that

+
12 ) .
c= eirTEYNN(O,I) <|:_ Zx (0) e(r_02/2)1h+0ﬁ2{:1 Yi:| _ K)
n°’
j=1

Making the suggested substitutions,

+
n 1
c=e¢""Ey_yon <|:Z ;xje(raf/z)“ojﬁzj} - K)

j=1
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where Z; =Y/, ¥;/\/j ~ N (0,1) for j=1,...,n. This is clearly the price of
a basket option with quantities 1/n of each asset, where the correlation on the
returns between assets j and m (> j) is

Cov(Z;,Z,) = Cov ( \/_Y Z\’/I_Y )

\/_ZVar(Y)

_ /7
m
(b) The following Maple execution group makes the necessary substitutions and
creates the correlation matrix of returns between the 16 equivalent assets.

> n: = 16; r: = 0.05; x: = Vector(n); sigma: = Vector(n); q: = Vector(n);
rho: = Matrix(n); T: = 1; t: = 0; m: = 20;
npath: = 400; p: = 100; K: = 50; upper: = 200;
T: = 1; sig: = 0.3; x0: = 50;
h: = evalf (T/n);
f: = (i,j)- > if i < j then evalf(sqrt(i/j)) else evalf(sqrt(j/i)) end if:
rho: = Matrix(n, f);
for j from 1 to n do;
x[j]: = x0* exp(r*(j*h — T));
qlj]: = evalf(1/n);
sigma[j]: = sig"sqrt(j*h/T);
end do;
spot:=Transpose(x).q;

From the resulting 100 replications, using basketimppoststrat (seed = 9624651),
each consisting of 400 payoffs over 20 strata, a price of 4.1722 with a standard
error of 0.0014 was obtained. This compares with a value of 4.1708 and standard
error of 0.00037 using 100 replications, each consisting of 2500 replications over
100 strata, as given in Table 6.2. Bearing in mind the different sample sizes and
the sampling error, there is little to choose between the two approaches.

10. (a) Suppose A, = 0. In the usual notation, an Euler approximation scheme is (in a
risk-neutral world)

X (T) ~ xer?:‘ (r=a212) oy /h(N/1=p2Z;+0W))

where
o;=e",
Y=Y, e +m(l—e )+ vmwj
for j=1,...,n, with ¥, =In[o (0)]. {W,} and {Z,} are independent sequences

of N(0,1) random variables.
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(b) (i) Antithetics can be implemented with ease at little extra cost, but the
improvement may be unimpressive in many cases.

(ii) Stratification may be promising for certain parameter values. The distribution
of Y, given Y, is normal, so post-stratified sampling on Y, may be of some
value for slow mean reverting processes.

(iii) However, the method likely to be most successful is to note that conditional
onW,...,W,o,...,0,

n

X, = Xoezfn'=l [(”"?/2)”“’/'«/5(«/ lfpzzj+pw,)]
n .

Put Z =", o,v/hZ;/ (X", ah)"”> ~ N (0, 1). Then
X, = Xoep‘mzle ‘Tfoe(’*Az/z)TJrA\/mZ

where A* = (1/n) Y, 07. Put 2° = A*(1—p?) and S, = X,exp (p\/%
Y%, o;W;). Then

X, = Syelr =0 Tl - 2] TV Tz

Let BS (Sy, s, T, K, r, g) denote the price at time zero of a European call with
strike price K and exercise time 7', on an underlying asset having an initial
price S, which earns interest continuously at rate g with constant volatility
s, and where the risk-free interest rate is r. Then

" 1
T=BS <X0 exp <pﬁ2 O'jo) O, T, K, r, §A2p2>
j=1

This is an example of conditional Monte Carlo.

9.7 Solutions 7

1. (c) Each state variable, X (), t > 0, is a mixture of discrete and continuous, since
there is a positive probability that none has been consumed in [0, ¢]. The time
variable is continuous. The system is a continuous event system during periods
of consumption and is trivially a discrete state continuous time system during
periods of abstinence.

2. (b) The ith event is at T, = (1/B) ln(l—}—,BT(i)e‘“) where {T(I»)} follow
a simple Poisson process of rate one. Stop at event number
max {i: 7, < (1/B)e* (efo —1)}.

3. It is probably easiest and quite efficient to use rejection of points falling in the
rectangle {(x, y) : x € [—a, a], y € [—b, b]}, but not within the ellipse.
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To obtain the theoretical result, let m; denote the mean time to absorption given the
current state is i. Then m; =1+ Zj:i pym; fori=1,...,4. The expected life of the
equipment is m,.

. Since N(t)+ K(t)+ D(t) is a constant for all r > 0 the state is uniquely

represented by any two state variables, say (N (z), K (¢)). The ‘leaving rate’
for state (n,k) is A = nkBp+ nu, + kp, and so, given that (N (¢),K (1)) =
(n,k), the next event is at time f— A~'InR, where R ~ U(0,1), and
the state immediately after that event will be either (n—1,k+1) or
(n—1,k) or (n,k—1) with probabilities nkBp/A, nu,/A, kp,/A respectively.
Simulate realizations of the epidemic by setting (N (0),K(0)) = (N—1,1)
say.

(a) Given that there is an accident in (¢, ¢+ 6¢), the conditional distribution of R, the
distance of occurrence from the hospital, is given by

P(R§r|R§5)=<g>2

Using inversion of this cumulative distribution function gives (1’/5)2 =U or

r=5VT,s0 x=2 (sﬁ/v).

(b) This is a five server (ambulance) queueing system with waiting customers
(patients) forming one queue. Bound state changes are customer arrivals
(emergencies) and customer departures (patients deposited at the hospital).
Conditional state changes are starts of service (ambulances despatched to
patients). For each of the five ambulances it is necessary to store (i) the time
at which it next deposits a patient at the hospital and (ii) the time at which
the patient incurred the emergency. Suppose these are called TD[j] and TA[/]
respectively for j =1,...,5. Let b = number of busy servers, g = number
of patients waiting for an ambulance, A = time of next emergency, clock =
present time, and simtim = duration of simulation. Let A[j] = time of arrival
of the patient who is currently jth in the queue for an ambulance. Then,
assuming ambulances are despatched to emergencies on a ‘first come, first served’
protocol, the core part of a simulation might be based around the following
algorithm:

While clock < simtim do

clock := min(A,TD[1],...,TD]5])
If event is arrival (clock = A) then
qg:=q+1

A := clock +interarrivaltime
Alq] := clock

end if

If event is departure then

identify j the server involved

print clock — TA[}]

TA[j] := 0 (arbitrary value)
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TD[j] := o0

b:=b—-1

end do

If g> 0 and b < 5 then

Identify j, a free server

TD [j] := clock + service duration

TA[j]:= A[l]
All]:=00

sort {A[k].k=1,...,q}
qg=q—1

b:=b+1

end if

End do

13. The bound state changes are machine breakdowns, completion of machine
repairs, and completion of machine tests. Conditional state changes are repair
starts and testing starts. Let the time of the next state change for machine
j be T[j]- Let the state of machine j be S[j] =1,2,3,4,5 according to
whether it is working, in the repair queue, being repaired, in the testing
queue, or being tested respectively. Let nw,nr, and nt denote the number of
machines working, the number of repairmen who are free, and the number
of testers who are free respectively. Let gr and g¢ denote the number of
machines in the repair queue and testing queue respectively. Let clock and
clockprev denote the current simulation time and time at the previous event
respectively.

If working periods happen to be exponentially distributed, then regeneration
points would exist at those events where the number of working machines changes
from m — 1 to m. Otherwise, regenerative analysis cannot be used, since the only
regenerative points (assuming steady state behaviour) are those instants at which
all machines are returned simultaneously to the working state — an impossibility
with continuous random variables. Therefore, a proper analysis should plot
nw against clock and identify a burn-in period, tb. Then a point estimate of
the long-run average utilization will be {1/ [m (simtim — tb)]} ["™"" nw (¢)dt.
A confidence interval may be obtained by replicating a large number of
realizations over identical values of simtim and tb, preferably starting in different
states.

14. (a) Bound events are customer arrivals, customer departures from window A,
and customer departures from window B. Conditional events are the start of
service at window A, the start of service at window B, a queue-hop from A
to B, and a queue-hop from B to A.

(c) Regeneration points are when one server is idle and the other one becomes
idle. If the traffic intensity is not too close to 1, these will occur frequently
enough to allow a regenerative analysis.

15. This is similar to Problem 13, but here the individual waiting times need to be
recorded.
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9.8 Solutions 8

1. If x is the current point and y is a prospective variate then the acceptance probability

is
) e /2 e
o (X, y) = min (1, m)
and it is found that {x;} becomes {0, 0.6539, 0.6539, 0.3587, 1.1087,0.0513, ... }.

4. The overall acceptance rate is very low, being of the order of 2.5%. This is because
the posterior is so different from the prior which provides a very poor envelope. On
the other hand, inspection of the plots for the sequence { B(i)} say, (Appendix 8.2), for
the MCMC independence sampler shows that the acceptance rate, although poor, is
not quite so low (approximately 7.5 %). In the independence sampler the probability
of acceptance of a candidate point (e, 8.) is min (1, L («,, B.) /L (a, B)) where
(a, B) is the current point. This is always greater than L (c., B.) /L. the acceptance
probability using envelope rejection. Offset against this is the fact that envelope
rejection gives independent variates, whereas MCMC does not.

6. (c) Sometimes it is difficult to find a uniform bound c¢ for 4 (x) /g (x) in standard
envelope rejection. Part (b) suggests that variates from a density proportional to
h can be sampled using Metropolis—Hastings with the usual disadvantage that
variates will not be independent. However, each time 4 (y) /g (y) > ¢, we can
update ¢ to h(y)/g(y). In the limit (after many proposal variates), ¢ becomes
a uniform bound and the variates produced by Metropolis—Hastings become
independent.

7. Lety and sf denote the sample mean and variance of {y,,...,y,}. Gibbs sampling
is based upon the following full conditionals:

5 1
) ~ _’1 —u?
i~ (o1 1)
n 1 ' 2
T|w, B ~ gamma §+2,1+§(n—l)sy+§n(y—p,)

nyT 1
s NN -
i B (nT—}—,B nT+B>

8. The full conditionals are x, |x, ~ Exp [% (1+x§)] and x,|x; ~ N(0,1/x,). One
direct method is to sample from the marginal of X; which has a gamma (l,%
density, that is a chi-squared variate with one degree of freedom. Then put x, =
z} where z; ~ N(0,1) and x, ~ N (0, 1/x,). The other is to sample from the
marginal of X, which has a Cauchy density. Therefore x, = tan[(7/2) (2R, — 1)]
where R, ~ U (0, 1), and then put x; = —2InR,/(1 + x3) where R, ~ U (0, 1).
Either of the direct methods is better than Gibbs sampling, for the usual reason
that the former produces sequences of independent variates. The first direct
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method is probably preferred, due to the prevalence of efficient standard normal
generators.

10. (a) &, = 0.4597, e.se. (f,) = 0.0219.
(b) &, = 0.4587, e.s.e (&) = 0.0073.

11. (a) If x is the current point then
xHD ~ Uy (max [1 — (1 —x(i)) R;/(ﬁfl), 0] , min [1, x(")R}/(aq)])

where R, R, ~ U (0, 1).

(b) x*D ~ U <max [R; (x@+y@) —y@, 0], min [1, Jx@ —21n R1:|),

) ~ U | max [R3 (x(i+1) +y(i)) — x (D 0] ,min [1, oy —21n R2i|>,
where R, R,, R, ~ U (0, 1).
12. (b) 2D = xORY/“™ and x(+) = 1 — (1 — z*D) RY/? where R, R, ~ U (0, ).
15. (a) Let g (0, y) denote the joint density of 6 and y where

g(0,y) xee™™

on support oo >y > 1—cos0,0 < 6 < 7. Then g is a completion of f. One full
conditional is

g (y |0) =k e—k(y—l+cosﬂ)

on support y > 1 —cosf. Therefore y|6 = 1—cosf —1In(R,)/k where R, ~
U (0, 1). The other is

g(0]y) = constant

on support cos § > 1 —y. Therefore,

0| U(,m), y=2,
U(0,cos'(1—-y)), 0<y<2,

or

6| Ry, y=2,
Y Rycos ' (1—-y), 0<y<2,

where R, ~ U (0, 1).

17. (2) wand [2/(b—2)] (1+[b—11E, (1/a)).
() g, (@)a™(x,---x,)*/[I" (@)]" should be log-concave.
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18. (e) The posterior predictive survival probability is

00 )Layaflef)‘y
I

0 tafleft
=FE ——dr
e [ w (@) }

Ppost (X > )C) = E’rr(a,)\) [/

and an estimate of this is

~ 1 oo
Py (X>x) = —~ Y GAMMA (a"”, Ax)

i=1

where GAMMA («, ) is the Maple incomplete gamma function fs * "EIS “dr.







Appendix 1: Solutions to
problems in Chapter 1

H Problem 1.1

Use a Monte Carlo method, based upon 1000 random standard normal
deviates, to find a 95 % confidence interval for [ exp(—xz?)|cos z|dz. Use

the Maple ‘with(stats)’ command to load the stats package. The function
stats[random, normald] (1) will generate a random standard normal
deviate.

E‘ Solution

r Let 2 = y/+/2. Then the integral becomes

1 o 2 Yy
I=— eV /2 cos()‘d = ’/TE(
\/i/m V3) | = VrE;

L where fis N(0,1).

()

> restart;with(stats):;
[anova, describe, fit, importdata, random, statevalf, statplots, transform]
> randomize (135);n:=1000;

135
n:=1000

Simulation and Monte Carlo: With applications in finance and MCMC J. S. Dagpunar
© 2007 John Wiley & Sons, Ltd
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ur=evalf (sqrt (2)) :v:=evalf (sqrt (Pi)):
for i from 1 to n do:
y:=stats [random,normald] (1) ;
a[i]:=evalf (abs (cos(y/u))):;
end do:

c:=seqg(a[i],i=1..n):
mu:=v*describe[mean] ([c]):
u :=1.389072868
s:=v*describe[standarddeviation[1]]([c])
s :=0.4421267288
interval:= evalf ([mu-1.96*s/sqgrt (n), mu+l.96*s/sqrt(n)]):;

interval :=[1.361669569, 1.416476167]

E‘ Problem 1.2

Use a Monte Carlo method to find a 95% confidence interval for

/ / exp{ 05[36 Fy—1) - (10 )dedy

E Solution

Put z =y — 1. Then the integral is 2rE¢[exp(—XZ/20)] where X and Z
are i.i.d. N(O 1). We will sample 500 values of (X, 7).

[ > restart;

> with(stats);

[anova, describe, fit, importdata, random, statevalf, statplots, transform|
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> seed:=randomize (567);
us=evalf (sqrt(2)) :n:=500;
for i from 1 to n do:
x:=stats[random,normald] (1) ;z:=stats[random,
normald] (1) :
al[i]:=evalf (exp(0.05*x*z));
end do:

seed =567
L n =500

[ > ci=seq(al[il,i=1..n):

> mu:=describe[mean] ([c]);
u :=1.003656281

> s:=describe[standarddeviation[1]1]([c]);
s :=0.05394465324

> interval :=evalf ([2*Pi* (mu-1.96*s/sqrt(n)),
2% Pi* (mu+l.96%*s/sqrt(n))]);

L interval :=[6.276448626, 6.335868170]

H Problem 1.3

A machine tool is to be scrapped 4 years from now. The machine contains a
part that has just been replaced. It has a life distribution with a time-to-failure
density f(xz) = x e~* on support (0,00). Management must decide upon one
of two maintenance strategies. The first is to replace the part whenever it fails
until the scrapping time. The second is to replace failures during the first two
years and then to make a preventive replacement two years from now.
Following this preventive replacement the part is replaced on failures occur-
ring during the second half of the 4 year span. Assume that replacements are
instantaneous and cost c; on failure and ¢, on a preventive basis. Simulate
5000 realizations of 4 years for each policy and find a condition on ¢,/c; for
preventitive replacement to be the preferred option.
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B Solution

[ Firstly, we simulate the number of failures during 5000 of these 4 year
| periods.

[ > restart;

> n:=5000;
n :=5000

> nf:=0:
randomize (134) :
for j from 1 to n do;
t:=0;
do;
rl:=evalf(rand()/10712);# rand() samples integers
~U[1,10712-12]
r2:=evalf (rand()/10°12);
x:=-1ln(rl*r2);
ti=t+x;
if t>4 then break end if;
nf:=nf+1;
end do:
end do:
printf ("nf=%d",nf) ;
| nf=8851

[ For the second strategy we obtain the number of failures during 10 000
periods, each of 2 years duration.

> n:=10000;
n:=10000

> nf:=0:
randomize (134) :
for j from 1 to n do;
t:=0;
do;
rl:=evalf (rand()/10°12);
r2:=evalf (rand () /10°12);
x:==1ln(rl*r2);
ti=t+x;
if t>2 then break end if;
nf:=nf+1;
end do:
end do:
printf ("nf=%d",nf);
| nf=7577
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For the first strategy the expected cost over 4 years is ¢;8851/5000 and
for the second it is ¢, 4+ ¢;7577/5000. Therefore, it is estimated that
preventive replacement is better when ¢,/cy < 637,/2500.

H Problem 1.4

Two points A and B are selected randomly in the unit square [0, 1]*. Let D
denote the distance between them. Using Monte Carlo:

(a) Estimate E(D) and Var(D).

(b) Plot an empirical distribution function for D.

(c) Suggest a more efficient method for estimating P(D > 1.4), bearing in
mind that this probability is very small.

ﬂ Solution
=l ()

restart;

[ > randomize (462695) : #specify a seed

> distance:=proc(n) local j,x1,x2,vyl,vy2,d;
for j from 1 to n do;
xl:=rand()/10712;
yl:=rand()/10712;
x2:=rand()/10712;
y2:=rand () /10712;
dl[jl:=sqrt((x1-x2)"*2+(yl-y2)"2);
end do:
seq(d[jl,J=1..n);
B end proc:

> n:=1000;
n :=1000

[ > f:=evalf (distance(n)):
> with(stats):;

[anova, describe, fit, importdata, random, statevalf, statplots, transform|
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> mean:=evalf (describe[mean] ([£]));
mean :=0.5300028634

> stddev:=evalf (describe[standarddeviation[1]]1([£]1));

stddev :=0.2439149391

> std_error_of mean:=evalf (stddev/sqrt(n));

std_error_of _mean :=0.007713267629

> d:=transform[statsort] ([f]) :#sorts the data. d[j] is
now the j th. order statistic for distance

> for j from 1 to n do:#constructs the empirical
distribution function
h[§1:=[d[j],evalf(j/(n+1))]1:
end do:
L e:=seq(h[j],j=1..n):

> PLOT (CURVES ([e]),TITLE ("Empirical

c.d.f."),AXESLABELS ("distance", "prob."),
AXESSTYLE (BOX) ) ;

Empirical c.d.f.

0.8
0.6
prob.

0.4 1

0.2 1

0 0.2 0.4 0.6 0.8 1 1.2
distance
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=l (e

Since the maximum possible value of D is v/2 = 1.41421, the prob-
ability, p say, that a distance exceeds 1.4 will be extremely small.
Therefore the standard error of the estimate for p using naive Monte
Carlo will be approximately /p/n and the coefficient of variation
v/1/(np), giving very low precision.

To motivate a more efficient scheme set up Cartesian coordinates
at the centre of the square with the square vertices at,
(-1/2,1/2),(1/2,1/2),(1/2,-1/2),(-1/2,—1/2). Construct a cir-
cle of radius 1.4, centre (—1/2,—1/2). It cuts that portion of
the square in the first quadrant at (v1.42—-1-1/2,1/2) and
(1/2,v/1.42 —1 —1/2). Repeat for the remaining three vertices of
the square. This construction gives four truncated corner sections
formed from the four arcs and the square. Observe that a
necessary condition for D > 1.4 is that A and B lie in opposite
truncated corner sections. Now consider an isosceles triangle
containing the top right truncated sector and having two sides
identical to it. The equation of the third side is x +y = v1.42 — 1.
Similarly, equations for the third side of the three remaining
isosceles triangles, constructed in a similar manner, are
z—y=VI1ALZ -1, 2+y=—V142 -1, and 2 —y=—V142 — 1.
It follows that D < 1.4 whenever either A or B lies in the region
Q={(z, v): |z +yl <Vv142 -1,z —y| < /1.42 — 1}. Therefore,
we may condition the Monte Carlo on that part of the square that
does not include Q. This gives a phenomenal reduction in variance.

= Problem 1.5

An intoxicated beetle moves over a cardboard unit circle 22 + y*> < 1. The (z,y)
plane is horizontal and the cardboard is suspended above a wide open jar of
treacle. In the time interval [¢,¢ + 6t) it moves by amounts éx = Zyo1V/ét and
8y = Zyo9\/0t along the = and y axes where Z; and Z, are independent
standard normal random variables and o; and oy are specified positive con-
stants. The aim is to investigate the distribution of time until the beetle arrives
in the treacle pot starting from the point (g, o) on the cardboard.

(a) Write a procedure that simulates n independent times between starting at
the point (zo, yo) and landing in the treacle. The function stats
[random, normald] (1) creates a random standard normal deviate.
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E

(b) Plot a histogram showing the distribution of 200 such times when

o1 =09 =1, 6t =0.01, and xy = yp = 0. To create a histogram, load the
subpackage ‘statplots’ using with (statplots) and use the function
histogram(a) where a is a list of the 200 times.

=l (a)
[ >

>

Or oco0oococom V

j Solution

restart;

with(stats);

> beetle:=proc (x0,y0,sigmal,sigma2,h,n, seed)

X,VY,9,1,t,time;

L [anova, describe, fit, importdata, random, statevalf, statplots, transform)

local

# 'h' is the time increment (deltat), 'n' is the number
of realisations (falls), 't' is current time, "time[i]"'

is the time to the ith. fall.
g:=sgrt (h) :randomize (seed) :
for i from 1 to n do:
t:=0:x:=x0:y:=y0:
while x"2+y*2<1 do:

xX:=x+sigmal*g* stats[random, normald] (1) :
y:=y+sigma2* g* stats[random,normald] (1) :

t:=t+h:
end do:
time[i]:=t:
end do:
seq(time[i],i=1..n):
end proc:

x0:=0:y0:=0:sigmal:=1:sigma2:=1:h:=0.01:n:=200:

seed:=6345:

a:=beetle(x0,y0,sigmal, sigma2,h,n, seed);
:=0.71, 0.18, 0.19, 0.59, 0.34, 0.97, 1.24,

.31, 0.59, 0.17, 0.45, 0.55, 0.38, 0.14, 0.18,
.16, 0.43, 0.23, 0.38, 0.69, 0.56, 0.68, 0.40,
.35, 0.40, 0.95,

.23, 0.64, 0.89, 0.48, 0.27, 0.35, 0.43, 0.27,
.28, 0.23, 1.27, 0.13, 0.35, 0.23,

.79, 0.97, 0.82, 0.34, 0.42, 0.19, 0.31, 0.92,
.52, 0.20, 0.82, 0.43, 0.88, 0.25,

.52,

0.26,
0.52,

0.15,

1.17,
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0.33, 0.44, 0.38, 0.34, 0.62, 0.41, 0.27, 0.37, 0.72,
0.45, 0.59, 0.66, 0.32, 0.28, 1.25,
0.39, 0.36, 0.28, 0.36, 0.19, 0.47, 0.53, 0.59, 0.33,
0.36, 0.10, 0.24, 0.11, 0.20, 0.20,
0.54, 0.72, 0.60, 1.39, 0.32, 0.19, 0.35, 0.39, 0.28,
0.33, 0.30, 1.01, 0.63, 1.47, 0.35,
0.31, 0.34, 0.64, 0.26, 1.51, 0.16, 1.98, 0.44, 0.38,
0.29, 0.84, 0.34, 0.64, 0.36, 0.63,
0.92, 0.28, 0.65, 0.21, 0.18, 0.14, 0.67, 0.25, 0.16,
0.13, 0.77, 0.46, 0.67, 0.47, 0.22,
0.49, 0.16, 0.08, 0.85, 0.38, 0.23, 0.94, 0.83, 0.45,
0.87, 0.22, 0.99, 0.20, 0.64, 1.39,
0.62, 0.22, 0.15, 2.21, 0.76, 0.80, 0.97, 1.06, 0.26,
0.47, 0.13, 0.28, 0.18, 0.57, 1.35,
0.61, 0.48, 0.14, 0.16, 0.32, 0.29, 0.32, 0.48, 1.14,
0.31, 0.40, 0.66, 0.21, 0.91, 0.18,
0.97, 0.48, 0.34, 0.20, 1.60, 1.82, 0.54, 0.65, 0.41,
0.74, 0.26, 0.76, 0.24, 0.61, 0.58,

| 0.50, 0.33, 0.41, 0.68, 1.26, 0.82

=l (b)

> with(statplots):

Warning, these names have been redefined: boxplot,
histogram, scatterplot, xscale, xshift, xyexchange,
xzexchange, yscale, yshift, yzexchange, zscale, zshift

> histogram([a]l,title="Histogram of time to
fall",labels=[time,density], axes=BOXED) ; #produces
rectangles of equal area

Histogram of time to fall

15

density 1

0.5

time
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Problem 1.6

The following binomial model is frequently used to mimic share price move-
ments. Let S; denote the price at time i# where ¢ =0,1,2,... and h is a
positive time increment. Let p and o denote the growth rate and volatility
respectively. Let

u= %(e_“h +elntothy 4 % \/ (erh +el+o )2 _ 4 =y~ p= eZh__vU.
Then
Si = XS
where X;,i =0,1,..., are independent Bernoulli random variables with

distribution P(X; =u) =p, P(X; =v) =1 — p for all 4.

(a) Simulate the price at the end of each week during the next year when
So = 100 pence, p = 0.2 per annum, o = 0.3 per annum, and h = 1/52
years.

(b) Now suppose there are 252 trading days in a year. Put b = 1/252. For any
realization let S =max(S;:7=0,...,756). Let loss = Sy — S7s6-
loss denotes the difference between selling the share at the peak value
during the next 3 years and selling it after 3 years. Simulate 200 realizations
of loss and construct an empirical distribution function for it. You will
need to sort the 200 values. Do this by loading the ‘stats’ package and
using the function transform [statsort] (x) where x is a list of the
data to be sorted. Note that if the order statistics to loss are z(y), ..., T
then an unbiased estimate of P(X < x(;)) is i/(n + 1).

E Solution

=l @
[ > restart;

> $:=100:mu:=0.2:sigma:=0.3:h:=1/52;

h:=

& -
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[ Compute u,v,p.

> u:=0.5* (exp (-mu*h) +exp ( (mut+sigma”2)*h))
+0.5*sgrt ( (exp (-mu*h) +exp ( (mu+sigma”2)*h))*2-4);

L u :=1.042763680
> vi=1/u;

v :=0.9589900561

> p:=(exp (mu*h)-v)/ (u-v);

p :=0.5355325675

[ >

[ Do loop prints out week, random number, price.

> randomize (15725) :# set seed

for j from 1 to 3 do:
R:=evalf (rand()/10712) :
if R<p then X:=u else X:=v end if:
S:=X*S:printf ("j=%d R=%f S[j]=%f\n",3j,R,S);
#d prints as integer, £ prints in floating point,
\n gives new line

end do:

J=1R=0.174296 S[j1=104.276368
j=2 R=0.465652 S[j]1=108.735609
L j=3 R=0.630084 S[j]1=104.276368

[ and similarly for the full year.

=!I (b)
> n:=200;randomize (5640) :
n =200

> h:=1/252;u:=0.5* (exp (-mu*h) +exp ( (mu+sigma”2)*h))
+0.5*sgrt ( (exp (-mu*h) +exp ( (mut+sigma”~2)*h))*2-4);

1
252

L u :=1.019103964

219
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> vi=1/u;

v :=0.9812541559

> p:=(exp (mu*h)-v)/ (u-v);

p :=0.5162459489

The following execution group computes loss[7], which is the
maximum share price during the three years minus the price on
the last day of the three years, on the ith realization, where there
are n realizations in all. This represents the loss in selling the share
on the last day as opposed to selling it at its maximum price.

> for 1 from 1 to n do:
S:=100:smax:=S:
for j from 1 to 756 do:
R:=evalf (rand()/10712):
if R<p then X:=u else X:=v end if:

S:=X*3:
if S>smax then smax:=S end if:
end do:
loss[i]:=smax-S:
L end do:

[ Form a sequence a, comprising the n losses.

[ > a:=seqg(loss[i],i=1l..n):

[ Sort the losses.

> with(stats);d:=transform[statsort] ([a]) :#sorts the
data. d[i] is now the i th. order statistic

L [anova, describe, fit, importdata, random, statevalf, statplots, transform]

[ Construct a sequence e, each element of the sequence giving the
| rank order and the cumulative probability.

> for i from 1 to n do:#constructs the empirical
distribution function
h[i]:=[d[i],evalf(i/ (n+1))]:
end do:
L e:=seq(h[i],i=1l..n):
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> PLOT(CURVES ([e]),TITLE ("Empirical
c.d.f.") ,AXESLABELS ("loss", "prob.") ,AXESSTYLE (BOX) ) ;

Empirical c.d.f.
l,
0.8 1
0.6

prob.
0.4 1
0.2
0+, . : ; ; : : :
0 20 40 60 80 100 120 140
loss

H Problem 1.7

Consider a single server queue. Let a; denote the interarrival time between
customer ¢ — 1 and customer i, s; the service time of customer 4, and w; the
waiting time in the queue (i.e. the time between arrival and start of service)
for customer 1.

(a) Show that w; = maX(O, Wi—1 — a; + Si—l)-

(b) Now consider an M/M/1 queue in which the arrival rate is A and the service
rate is u. Write a procedure that simulates wy, ..., w, given wy, A, and .

(c) Experiment with different values for the traffic intensity A/u, plotting w;
against ¢ to demonstrate queues that achieve stationary behaviour (i)
quickly, (ii) slowly, and (iii) never. In cases (i) and (ii) provide point
estimates of the expectation of w; in the steady state.




222 Appendices

E Solution
=l @

Suppose the ith customer arrives immediately after the (i — 1)th
customer. Then the waiting time for customer ¢ is the waiting time
for customer i — 1 plus the service time for customer i — 1, that is
w;_1 + s;—1. However, if there is a delay of a; between these two
arrivals this time will be reduced by a;, unless the result
w;_1 — a; + s;_1 1s negative, in which case customer ¢ — 1 will have
completed his service before customer 4 arrives, leading to a waiting
time of zero for customer 3.

=l o
[ > restart;

> wait:=proc(lambda,mu,w0,n)local

a,b,j,rl,r2,c,d,w,u:

w[0]:=w0;a:=evalf(l/lambda);b:=evalf (1/mu) ;

for j from 1 to n do;
rl:=evalf (rand()/10712);
r2:=evalf (rand () /10712) ;
c:=-a*1ln(rl) :d:=-b*1n(r2);
w[jl:=max(w[j-1]-c+d,0);
uljl:=[3,wlill;

end do:

[seq(uljl,j=1..n)1]:

L end proc:

=l (e

> with(stats) :with(plots):

Warning, the name changecoords has been redefined.

E (i) Low traffic intensity, \/p = 0.5

> randomize (89347) ;w0:=0; lambda:=0.5;mu:=1;
n:=1000;v:=wait
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(lambda, mu,w0,n) : #rates are in customers per
minute

89347
w0 =0
A :=0.5
u =1
n :=1000

> PLOT (CURVES (v) , TITLE ("waiting times") ,AXESLABELS
("customer number","mins."),AXESSTYLE (BROX));

waiting times

0 200 400 600 800 1000
customer number

The plot suggests that stationarity is achieved almost imme-
diately. This is as expected for a queue with low traffic
intensity, A\/u. Therefore the entire sample record is used to
estimate the mean waiting time under stationarity.

> waittimes:=seq(op(2,v[i]),i=1..1000):
mean waiting time=evalf (describe[mean]
([waittimes])):;
standard_deviation_of waiting_time=evalf
(describe[ standard.
deviation[l]] ([waittimes]));

mean_waiting_time = 0.9375110082
standard_deviation_of _waiting_time = 1.478717653

[ The theoretical stationary mean waiting time is 1. The
difference from the estimate is due to sampling variation.
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L‘J (ii) High traffic intensity, 1/u = 0.99

> randomize (89347) ;w0:=0;lambda:=0.99;mu:=1;
n:=1000; v:=wait (lambda,mu,w0,n):

89347
w0 =0
A :=0.99
u =1
L n :=1000

> PIOT (CURVES (v) , TITLE ("waiting times") , AXESLABELS
("customer number", "mins."),AXESSTYLE (BOX) ) ;

waiting times

40

30
mins.

20

10

0 200 400 600 800 1000
customer number

The plot suggests that perhaps 1000 or so customers have to
arrive before stationarity is achieved. We will need to
increase the number of customers to, say, 10 000, with a
burn-in time of at least, say, 1000 customers, to obtain an
L estimate of stationary mean waiting times.

> randomize (89347) ;w0:=0;lambda:=0.99;mu:=1;
n:=10000;v:=wait (lambda,mu,w0,n):

89347
w0 =0
A :=0.99
u =1

n :=10000
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> PLOT (CURVES (v) ,TITLE ("waiting times") ,AXESLABELS
("customer number","mins."),AXESSTYLE (BOX)):;

waiting times
180

160
140
120

100

mins.
80

60
40

20

0 2000 4000 6000 8000 10000
customer number

> waittimes:=seqg(op(2,v[i]),1i=1000..10000):
mean_waiting time=evalf (describe[mean]
([waittimes])):;
standard_deviation_of waiting_time=evalf
(describe[standard
deviation[1l]] ([waittimes]));

mean_waiting_time = 65.42348523
L standard_deviation_of _waiting_time = 54.91974974

The theoretical mean waiting time under stationarity is 99.
Comparison with the estimate indicates that a large sampling
variation is present, even with this large sample size of 9000.
This is due to the large positive autocorrelation between the
individual waiting times. It also seems likely that we have
underestimated the burn-in time that is required. Note that
even if this sample represents stationary behaviour we can-
not say that the standard error of the estimate of mean
waiting time is 54.92/4/9000 because of the correlation. Tt
L is much larger than this.
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B (iii) Stationarity not achievable (\/j = 1.2)

> randomize (89347) ;w0:=0;lambda:=1.2;mu:=1;
n:=1000;v:=wait (lambda,mu,w0,n) :

89347
w0 =0
A =12
=1
n :=1000

> PLOT (CURVES (v) , TITLE ("waiting times"), AXESLABELS
("customer number", "mins."),AXESSTYLE (BOX));

waiting times

mins.

80
60
40
20

0 200 400 600 800 1000
customer number

Note how the trend is for queue length to increase progres-
sively, since the arrival rate exceeds the service rate.



Appendix 2: Random number

generators

[ In addition to the in-built Maple generator ‘rand’, the following generators
described in Chapter 2 can also be used.

> rl:=proc() global seed;
seed:=(906185749 *seed+1) mod 2731;
evalf (seed/2731);
end proc:

> r2:=proc() global seed;
seed:=(2862933555777941757 *seed+1) mod 2764;
evalf (seed/2764);
end proc:

> schrage:=proc() local s,r; global seed;
s:=seed mod 62183;r:=(seed-s)/62183;
seed:=-49669 *r+69069 *s+1;
if seed<0 then seed:= seed + 2”32 end if;
evalf (seed/2732);
end proc:

> r3:=proc() global seed;
seed:=(seed *630360016)mod (2731-1) ;
evalf (seed/ (2731-1));
end proc:

Note that ‘seed’ is declared as a global variable in each of these. Therefore,
any procedures calling these generators will likewise have to declare ‘seed’ as
a global variable. The procedure ‘expon’ below generates a variate from the
density f(z) = e on support [0, 00). It calls the random number generator
‘schrage’. The final execution group sets an (initial) seed and calls ‘expon’

L three times.

Simulation and Monte Carlo: With applications in finance and MCMC J. S. Dagpunar
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-1ln(schrage());
end proc:

> seed:=47139;

expon () ;
end do;

> expon:=proc() global seed;

for j from 1 to 3 do;

seed := 47139
0.2769925308
0.7827805984
0.3164070444



Appendix 3: Computations of
acceptance probabilities

H 3.1 Computation of acceptance probabilities for
arbitrary envelope rejection generators

The procedure ‘envelopeaccep’ is used to compute the acceptance probability
for generating variates from a p.d.f. proportional to h(z) using an envelope
(and therefore proposal density) proportional to r(z). The parameters are:

h = a procedure supplied by the user,
r = a procedure supplied by the user,
[1, 2] = the connected support of h,

xinit=a suggested start point for the numerical maximization of i(x)/r(x)
over [z, 2.

[ > restart;with (Optimization):

> envelopeaccep:=proc (h: :procedure, r: :procedure, x1,x2,xinit)
local u,K,acc;
u:=NLPSolve (h(x) /r(x),
x=x1..x2,initialpoint={x=xinit},maximize);
K:=op(1l,u);
print ("envelope is",K*r(x));
acc:=int (h(x),x=x1..x2)/int (r (x),x=x1..x2) /K;
B end proc:
Now the acceptance probability will be found when generating from
a generalized inverse Gaussian distribution having a p.d.f. proportional to
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x(ADe=B+1/2)/2 on support (0,00) using a proposal density proportional
to 2 "De%/2 for selected values of A and 3. The envelope has been
optimized by setting

22 (1+ BN - 1)
' E

L (see Section 4.8 of the text).

> lambda:=5;

beta:=10;
gam:=2* lambda”2* (sqrt (1+beta”2/lambda”2)-1) /beta;
A=5
£:=10
L gam =55 -5

> ha:=proc(x) global alpha,beta;
x” (lambda-1)*exp (-beta* (x+1/x)/2) ;
end proc;
L ha := proc(z) global «, 3;z" (XA — 1)xexp(—1/2xB+(x + 1/z)) end proc

> ra:=proc(x) global alpha,gam;
x”* (lambda-1)*exp (—gam**x/2) ;
end proc;
L ra :=proc(z) global «, gam;z"(\ — 1)*exp(—1/2*gam+z) end proc

> acceptance prob:=evalf (envelopeaccep (ha, ra, 0, infinity,
1));
‘envelope is’, 0.00206972426167299210 zle~(>V5-5)z/2
L acceptance_prob:=0.6528327067

3.2 Computation of acceptance probabilities for
arbitrary ratio of uniforms generators

The procedure ‘ratioaccep’ is used to compute the acceptance probability for a

ratio of uniforms generator for a p.d.f. proportional to /(x). The parameters
are:

h = a procedure supplied by the user,

[x1, 2] = the connected support of h,

xinit = a suggested start point for the numerical maximization of 4(x) over

(@1, 22,
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xinit] = a suggested start point for the numerical maximization of z%h(x)
over [z1,0],

xinit2 = a suggested start point for the numerical maximization of z%h(x)
over [0, z3].

> restart;with (Optimization):

ratioaccep:=proc (h::procedure, x1,x2,xinit,xinitl, xinit2)
local u,ul,vl,vll,v2,v22,acc;
u:=NLPSolve (h (x),
x=x1..x2,initialpoint={x=xinit},maximize) ;ul:=sqrt(op(l,u));
if x1<0 then
v1:=NLPSolve (x* x*h (x),
x=x1..0,initialpoint={x=xinitl},maximize);
vll:=-sqgrt(op(1l,vl));
else v11:=0
end if;
if x2>0 then
v2:=NLPSolve (x*x*h (x),
x=0..x2,initialpoint={x=xinit2},maximize);
v22:=sqrt (op(1,v2));
else v22:=0;
end if;
print ("u+"=ul) ;
print ("v-"=v11);
print ("v+"=v22);
acc:=int (h(x),x=x1..x2)/ul/ (v22-v1l)/2;
acc;
end proc:

Use ‘ratioaccep’ to compute the acceptance probabilities and u+, v+, v— for
a density proportional to 1/(1 4+ x2/3)2 on support (—oo, 00).

> hl:=proc(x);

1/ (14+x*x/3)"2;
end proc;
hil:=proc(x)1/(1 4 x*x+1/3)"2 end proc

> acceptance prob:=ratiocaccep(hl,—infinity,infinity,0,-2,2);

Warning, no iterations performed.

‘ut+’=1.
‘v—"=—0.8660254038
‘v+°=0.8660254038
acceptance_prob: =0.14433756727/3
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The warning arises because the initial point chosen for the maximization of A
over the entire support happens to be the maximizing point.

Now repeat for a density proportional to (3 — x2)9 on support (—1,3).

> h2:=proc(x);
(1/4-x*x)"9;
end proc;
L h2:=proc(z)(1/4 — z+z)"9 end proc

> acceptance_prob:=ratioaccep(h2,-1/2,1/2,0,-1/4,1/4);
‘u+’=0.001953125000
‘v—"=-0.0001922167969
‘v+7=0.0001922167969
L acceptance_prob:=0.7208585900




Appendix 4:
Random variate generators
(standard distributions)

The following variate generation procedures appear to be faster than the proprietary
Maple functions and are therefore recommended. Note that the proprietary Maple
beta and negative binomial generators do not accept noninteger shape parameters,
whereas the corresponding procedures below do so. In all cases faster generators
than the ones listed below could be devised. However, these ones are selected for
their brevity and reasonable efficiency. No attempt has been made to save parameter
values between successive calls of the same generator. Doing so would improve the
efficiency when the parameter(s) of the distribution remains unchanged between
successive calls.

L‘J 4.1 Standard normal generator

This is a polar implementation of the Box—Miiller generator, as described in
Section 4.1. Note the warning to set i and X, to global variables and to set i to
‘false’ on the first call.

> STDNORM:=proc( ) local ij,Ul,U02,S,B,Xl;global i,X2;

DEVIATE, USING THE POLAR BOX MULLER METHOD.

#

# PROCEDURE GENERATES A STANDARD RANDOM NORMAL

#

# SET i to ‘false’ ON FIRST CALL. Note that i and
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=

X2 are global variables and have to be declared as
# such in any procedure that calls STDNORM.
if type(i,boolean)then
if (i) then
i:=not (i) ;X2;
else
for ij from 1 to infinity do
Ul:=evalf(2.0*rand()/10712)-1.0;
U2:=evalf(2.0*rand()/10712)-1.0
S:=U1*Ul+U2*U2;
if(S>=1.0 or S<=0.0) then next end if;
B:=sqrt(-2.0*1n(S)/S);
X1:=B*Ul;
X2:=B*U2;
break;
end do;
is=not (i) ;X1;
end if;
else ERROR("i should be boolean") end if;
L end proc:

’

L‘J 4.2 Beta generator

This is an implementation of Cheng’s log-logistic generator as described in
Section 4.5.1. It generates a beta(a,b) variate.
> beta:=proc(a,b) local z,rl,r2,w,rho,m,la;
if a>0 and b>0 then
rho:=a/b;m:=min (a,b);if m<=1 then la:=m else
la:=sqgrt((2*a*b-a-b)/ (a+b-2)) end if;
do;
rl:=rand()/10°12;
r2:=rand()/10°12;
z:=(1/rl-1)~(1/1la);
if
evalf (4*rl*rl*r2-evalf (z”~ (a-la)* ((1l+rho)/ (l+rho*z) )"
(a+b)))<0 then break end if;
end do;
evalf (rho*z/ (1+rho*z));
else ERROR("a and b should be positive") end if;
L end proc:
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H 4.3 Student’s t distribution

This procedure generates a Student’s ¢ variate with n degrees of freedom using
the method described in Section 4.7. If n=1 then a Cauchy variate is delivered.

> tdistn:=proc(n) local rl,r2,c,x;
if type(n,posint) then;
rl:=evalf (rand()/10712);
if n>1 then
r2:=evalf (rand () /10712);
c:=co0s(6.2831853071795864770*r2) ;
sqgrt(n/(1/(1-r1”(2/(n-1)))-c"2))*c;

else
tan(1.5707963267948966192* (r1+rl-1));
end if;
else
ERROR ("n should be positive integer") end if;
B end proc:

ﬂ 4.4 Generalized inverse Gaussian

This procedure generates a variate from a p.d.f. that is proportional to
2 le Ae+1/2)/2 on support (0,00) where 0 < X and 0 < 3. The method is
described in Section 4.8.

> geninvgaussian:=proc (lambda,beta) local
gam,al,a2,a3,a4,r,]j,x;
if lambda>0 then
if beta>0 then
gam:=2* lambda”2* (sqrt (1+ (beta/lambda) ~2) -1) /beta;
al:=0.5* (beta-gam);
a2:=0.5*beta;
a3:=sqrt (beta* (beta-gam)) ;
ad:=2.0/gam;
for j from 1 to infinity do;
r:=evalf (rand()/10712);
x:=random[gamma[lambda,ad4]] (1);
if -ln(r)>x*al+a2/x-a3 then break end if;
end do;
else ERROR ("beta must be positive") end if;
else ERROR("lambda must be positive") end if;
B end proc:
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E‘ 4.5 Poisson generator

This procedure uses unstored inversion of the c.d.f. as described in Section
4.9. It generates a Poisson (u) variate.

> ipoisl:=proc (mu) local y,x,r;
if mu>=0 then
y:=evalf (exp (-mu)) ;
x:=0;
r:=evalf (rand () /10712);
while r>y do;
x:=x+1;
r:=r-y;
yi=mu*y/x;
end do;
Xy
else ERROR("mu should be non-negative") end if;
end proc:

L >

B‘ 4.6 Binomial

This procedure uses unstored inversion of the c.d.f. as described in Section
4.10. It generates a binomial (n,p) variate.

> ibinom:=proc(n,p) local ps,q,r,y,X,ds;
if type(n,posint) then
if p>=0 and p<=1 then
if p>0.5 then ps:=1-p else ps:=p; end if;
qg:=1-ps;
gs:=ps/q;
y:=evalf (gq”*n);
r:=evalf (rand () /10712);
x:=0;
while r>y do;
x:=x+1;
r:=r-y;
y:=evalf (y* (n-x+1)*qgs/x);
end do;
if p>0.5 then n-x else x end if;
else ERROR ("p should belong to[0,1]") end if;
else ERROR("n should be a positive integer") end if;
L end proc:
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H 4.7 Negative binomial

This procedure generates a variate from a p.m.f. where

[(z+k)p°q*
= =0,1,2,...
k is a positive real. It uses unstored inversion as mentioned in Section 4.11. It
is fast providing that kp/q is not too large. In that case the Poisson gamma
method described in Section 4.11 is better.

> negbinom:=proc (k,p) local q,r,y,x;
if k>0 then
if p>=0 and p<=1 then
q:=1-p;
y:=evalf (q™k);
r:=evalf (rand () /10712);
x:=0;
while r>y do;
X:=x+1;
r:=r-y;s
y:=evalf (y*p* (x+k-1) /x);
end do;
X;
else ERROR("p should belong to[0,1]") end if;
else ERROR("k should be positive") end if;
B end proc:







Appendix 5: Variance reduction

ﬂ 5.1 Antithetic variates and the estimation of I'(1.9)

The procedure ‘thetal 2’ samples m unit negative exponential variates, and
raises each to the power of 0.9. The sample mean of the latter is an estimate
of I'(1.9).

[ > restart;with(stats):
> thetal 2:=proc(m) local j,r,%X,y,u;
for j from 1 to m do;
r:=evalf (rand()/10712);
x:=-1ln(r);
y[3]:=x70.9;
end do;
u:=[seq(y[jl,j=1l..m)1;
[describe[mean] (u) ,describe[standarddeviation[1]] (u)*2/m,ul;
print ("thetal hat"=describe[mean] (u))
print ("standard
error"=evalf (describe[standarddeviation[1]] (u) /sgrt(m)));
u;
B end proc:

Compute the estimate and estimated standard error for a sample size of 1000.
> seed:=randomize (341) :

print ("seed"=seed);

resl:=thetal_2(1000):
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‘seed” = 341
‘thetal_hat” = 0.9259670987
L ‘standard error’ = 0.02797125535

Now replace r by 1 — r and thetal _hat by theta2_hat in the print statement
of procedure ‘thetal 2’ and run the simulation again with the same seed.

> seed:=randomize (341):

print ("seed"=seed) ;

res2:=thetal_2(1000):

‘seed” = 341
‘theta2_hat’ = 1.009153865

L ‘standard error’ = 0.02773074613
The procedure ‘theta_combined’ does the two jobs above in one run, giving
an estimate and estimated standard error using primary and antithetic
variates.

> theta combined:=proc(m) local j,r,x,y,u,rl,z;
for j from 1 to m do;
r:=evalf (rand()/10712);rl:=1-r;
x:==1n(r);z:=-1n(rl);
y[31:=(x%0.9+270.9)/2;
end do;
u:=[seq(y[jl,j=1..m)1;
print ("mean"=describe[mean] (u));
print ("standard
error"=evalf (describe[standarddeviation[1]] (u) /sqgrt(m)));
u;
L end proc:

> seed:=randomize (341):
print ("seed"=seed) ;
res3:=theta combined(1000) :
‘seed” = 341
‘mean’ = 0.9675604815
L ‘standard error’ = 0.01072362734

Calculate the sample correlation between thetal and theta2.

> rho:=describe[linearcorrelation] (resl,res2);

p = —0.7035269031

Calculate an estimate of the variance reduction ratio.
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> 1/ (1l+rho);

3.372987332

Calculate an alternative estimate of the v.r.r. that avoids the need to find the
correlation.

> (.2797125535e-172+.2773074613e-172)/4/.1072362734e-12;

3.372688907

Calculate the exact correlation and v.r.r. using numerical integration.
> e3:=evalf (int ((ln(R)*1n(1-R))*0.9,R=0..1));
e3 :=0.3909740620
> el:=evalf(int ((-1n(R))”*0.9,R=0..1));
el: =0.9617658319
> e2:=evalf (int ((-1n(R))"*1.8,R=0..1));
e2: = 1.676490788

> rho:=(e3-el"2)/ (e2-el”2);

p = —0.7106073074

[ Calculate the exact variance reduction factor.

> 1/ (1+rho);

3.455512270

5.2 Exceedance probabilities for the sum of i.i.d.
random variables

The procedure ‘impbeta’ estimates P{a < > ; X;} where {X;} are i.i.d. beta
distributed with shape parameters « and (3, both greater than one. The
importance sampling density is g(z) =[], ’yxﬁfl) on support (0,1)" where
a < 7. A good choice is v = 1/log(n/a) and a should satisfy n e /* < a.
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with (stats):

Warning, these names have been redefined: anova, describe, fit, import-
data, random, statevalf, statplots, transform

impbeta:=proc(n,m,a,alpha,beta) local
gam,gaml,sl,s2,j,s,p,k,x,t,prob,stderr,vrf,b, z,mean, std_dev;
#
#Procedure finds probability that sum of n i.i.d. beta
variates (shape parameters alpha>=1,beta>=1) exceeds a.
#Importance sampling distribution is product of n identical
distributions having density gam*x” (gam-1) where gam>1.
#gam(=1/log(n/a)) is chosen to minimize an easily computed
upper bound on variance.
#if a<=n*exp(-1l/alpha), i.e. if this is not a small right
tail probability, use naive Monte Carlo.
#sample size =m
#computes central limit approximation for comparison
#
mean:=n*alpha/ (alpha+beta) ;
std_dev:=sqrt (n*alpha*beta/ (alphatbeta+l)/ (alphatbeta)2);
print ("alpha"=alpha, "beta"=beta, "n"=n, "mean "=mean, "std
dev"=std dev);
if a<evalf (n*exp(-1/alpha)) then print ("STOP, use naive monte
carlo" )
return end if;
gam:=evalf (1/1n(n/a));
gaml :=1/gam;
b:=(GAMMA (alpha+beta) /GAMMA (alpha) /GAMMA (beta) /gam) *n;
s1:=0;s2:=0;
for j from 1 to m do;
s:=0;p:=1;
for k from 1 to n do;
x:=(evalf (rand () /10712)) ~gaml;
s:=s+x;
p:=p*x" (alpha-gam)* (1-x) * (beta-1) ;
end do;
if s>a then
ti=p;
sl:=sl+t;s2:=82+t"2;
end if;
end do;
prob:=sl*b/m;
stderr:=b*evalf (sqrt((s2-s12/m)/m/ (m-1)));
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vrf:=1/ (m* stderr*2/prob/ (1-prob)) ;

print ("estimate of probability that sum of",n,"variates
exceeds",a,"is",prob) ;

print ("standard error"=stderr);

print ("variance reduction ratio"=vrf);

z:=(mean-a) /std_dev;

print ("central limit approx"=statevalf[cdf,normald](z));
B end proc:

> seed:=randomize (99356) :
print ("seed"=seed) ;
impbeta(12,5000,9,1.5,2.5);
‘seed” = 99356
‘alpha’ = 1.5, ‘beta’ = 2.5, ‘n’ = 12, ‘mean’ = 4.500000000,
‘std dev’ = 0.7500000000
‘estimate of probability that sum of’, 12, ‘variates exceeds’, 9, ‘is’, 1.146003559 x 10~
‘standard error’ = 1.067644898 x 10~1°
‘variance reduction ratio’ = 2.010769567 x 107

L ‘central limit approx’ = 9.865876451 x 10710

> seed:=randomize (99356) :

print ("seed"=seed) ;

impbeta(12,5000,9,2.5,1.5);

‘seed” = 99356
‘alpha’ = 2.5, ‘beta’ = 1.5, ‘n’ = 12, ‘mean’ = 7.500000000,
‘std dev’ = 0.7500000000
‘estimate of probability that sum of’, 12, ‘variates exceeds’, 9, ‘is’, 0.01936693724
‘standard error’ = 0.0005737629220
‘variance reduction ratio’ = 11.53805257

L ‘central limit approx’ = 0.02275013195

> seed:=randomize (6811357):

print ("seed"=seed) ;

impbeta(12,5000,9,2.5,1.5);

‘seed” = 6811357
‘alpha’ = 2.5, ‘beta’ = 1.5, ‘n’ = 12, ‘mean’ = 7.500000000, ‘std dev’ = 0.7500000000
‘estimate of probability that sum of’, 12, ‘variates exceeds’, 9, ‘is’, 0.01978833352
‘standard error’ = 0.0005813529138
‘variance reduction ratio’ = 11.47834773

L ‘central limit approx’ = 0.02275013195

> seed:=randomize (6811357):
print ("seed"=seed) ;
impbeta(24,5000,18,2.5,1.5);

243
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‘seed” = 6811357
‘alpha’ = 2.5, ‘beta’ = 1.5, ‘n’ = 24, ‘mean’ = 15.00000000, ‘std dev’ = 1.060660172
‘estimate of probability that sum of’, 24, ‘variates exceeds’, 18, ‘is’, 0.001761757803
‘standard error’ = 0.00008414497712
‘variance reduction ratio’ = 49.67684543
‘central limit approx’ = 0.002338867496

L‘J 5.3 Stratified sampling

L‘J 5.3.1 Estimating

/01 /o1 ([—ln (r)* + [ 111(7’2)]2/3)5/4d7'1 dry

using naive Monte Carlo

The procedure ‘weibullnostrat’ gives the estimate and estimated standard
error for a sample of size k.

> weibullnostrat:=proc(k) local j,rl,r2,w,v,y,suml,sum2,m;
suml:=0;sum2:=0;
for m from 1 to k do;
rl:=evalf (rand()/10712);
r2:=evalf (rand () /10712);
w:=(-1n(r2))"~(2/3);
vi=(-1n(xrl))"~(2/3);
yi=(v+w) "~ (5/4);
suml :=suml+y;
sum2 :=sum2+y”"2;
end do;
print ("mean"=suml/k, "std error"=sqrt ((sum2-suml”2/k)/
(k-1)/%k));
B end proc:

> tl:=time () :seed:=randomize (639156) :
weibullnostrat (20000) :
t3:=time () -tl;

‘mean’ = 2.158428985, ‘std error’ = 0.009127721506
t3: = 20.500
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E‘ 5.3.2 Stratified version using a single stratification
variable

First plot »
Y = ([— In (7“1)}2/3 +[- 1n(7ﬂ2)]2/3)0/

against stratified variable X = ryry. This confirms that much of the
variation in Y is accounted for by variation in the conditional expectation
of Y given X. Therefore, stratification on X will be effective.

> with (stats);
Warning, these names have been redefined: anova, describe,
L fit, importdata, random, statevalf, statplots, transform

> strat:=proc(n) local j,rl,r2,x,al,a2,y,z;
for j from 1 to n do;
rl:=evalf (rand()/10712);
r2:=evalf(rand()/10712);
x[J1:=(rl*r2);
al:=(-1n(rl))~(2/3);
a2:=(-1n(xr2))"~(2/3);
vljl:=(al+a2)*(1.25);
z[J1:=[x[31,y[31]1:
end do;
seq(z[jl1,]=1..n);
L end proc:

> seed:=randomize (5903) :print ("seed"=seed) ;
v:=strat (500):
PLOT (POINTS (v) , SYMBOL (POINT) ,AXESLABELS ('X','Y"));
vx:=seq((op(l,v[j1),j=1..500)) :vy:=seq((op(2,vI[]]),
J=1..500)):
correlation:=describe[linearcorrelation] ([vx], [vy]):
CV_VRF:=l-correlation”2;

‘seed” = 5903
6
5
4
Y
3
2
1 E?‘.!n“h.

* ’.W.‘“ e .0
mrrrrrrrrrrrrrrrrrrrorTrT 1T1T
0 0.2 0.4 0.6 0.8

X
correlation : =—0.8369837074

CV_VRF :=0.2994582735
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[ The following procedure, ‘weibullstrat’, performs k independent realiza-
tions. Each realization comprises n observations over n equiprobable
| strata, with exactly one observation per stratum.
> weibullstrat:=proc(n,k) local
j,ul,t,x,u2,r2,rl,y,w,v,tprev, suml, sum2, mean, sl,m;
suml:=0;sum2:=0;
for m from 1 to k do;
sl:=0;tprev:=10"(-10);
for j from 1 to n do;
ul:=evalf (rand()/10712); u2:=evalf (rand()/
10712) ;
t:=fsolve (x-x*1n(x)-(j-1+ul) /n, x=tprev,
tprev..1l);
tprev:=t;
r2:=t*u2;w:=(-1n(xr2))*(2/3);
rl:=t/r2;v:=(-1n(rl))"(2/3);
yi=(v+w) ~(5/4);
sl:=sl+y;
end do;
mean:=sl/n;
suml :=suml+mean; sum?2 :=sum2+mean”2;
end do;
print ("mean"=suml/k,"std error"=sqrt ((sum2-suml”2/k) /
(k-1)/k));
B end proc:

> tl:=time();seed:=randomize (639156) ;weibullstrat (100,200);
t2:=time () -tl;
tl: = 109.077
seed. = 639156
‘mean’ = 2.166441095, ‘std error’ = 0.001321419976
t2: = 110.250

estimated vrr:=(.1321419976e-2/.9127721506e-2) " (-2);
estimated efficiency:=t3*estimated vrr/t2;
estimated_vrr: =47.71369240

L estimated_efficiency: =8.871933734

5.3.3 Stratification on two variables

The procedure ‘grid’ estimates the same integral using & replications
where there are now two stratification variables, r; and ry. Each replica-
tion comprises n? equiprobable strata on [0, 1]%.



> grid:=proc(n,k) local j,rl,r2,w,v,y,m,suml,sum2,

mean;
suml :=0; sum2:=0;
for k1 from 1 to k do;
sl:=0;
for j from 1 to n do;
for m from 1 to n do;
rl:=(j-1l+evalf (rand()/10712)) /n;
r2:=(m-1l+evalf (rand () /10712)) /n;
wi=(-1n(xr2))"~(2/3);
v:=(-1n(rl))*(2/3);
yi=(vtw)~(5/4);
sl:=sl+y;
end do;
end do;
mean:=sl/n/n;
suml :=suml+mean;
sum2 :=sum2+mean”2;
end do;
print ("mean"=suml/k,"standard error"=sqrt ((sum2-
suml~2/k) /k/ (k-1)));
end proc:

tl:=time();
seed:=randomize (639156) :
print ("seed"=seed) ;
grid(10,200);
td:=time()-tl;

tl: = 152.688

‘seed” = 639156

‘mean’ = 2.167096762, ‘standard error’ = 0.002507078421
L t4: = 21.531

estimated_efficiency:=t3*estimated_vrr/t4;

estimated vrr:=13.25528056

L estimated efficiency:=12.62055880

Appendices

k1,s1,

> estimated vrr:=(.2507078421e-2/.9127721506e-2) " (-2);

247






Appendix 6: Simulation and
finance

H 6.1 Brownian motion

‘STDNORM’ is a standard normal generator, using the polar Box—Miiller
method.

> STDNORM:=proc( ) local ij,U1,U2,S,B,X1;global i,X2;

PROCEDURE GENERATES A STANDARD RANDOM NORMAL
DEVIATE, USING THE POLAR BOX MULLER METHOD.
SET i to 'false' ON FIRST CALL. Note that i and
X2 are global variables and have to be declared as
such in any procedure that calls this STDNORM.
if type(i,boolean)then
if (i) then
i:=not (i) ;X2;
else
for ij from 1 to infinity do
Ul:=evalf (2.0*rand()/10712)-1.0;
U2:=evalf(2.0*rand()/10712)-1.0;
S:=U1*Ul+U2*U2;
if(S>=1.0 or S<=0.0) then next end if;
B:=sqrt (-2.0*1n(S)/S);
X1:=B*Ul;
X2:=B*U2;
break;
end do;
i:=not (1) ;X1;

S He He Sk S e

Simulation and Monte Carlo: With applications in finance and MCMC J. S. Dagpunar
© 2007 John Wiley & Sons, Ltd
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end if;
else ERROR("i should be boolean") end if;
end proc:

The procedure Brownian generates the position of a standard Brownian
motion {B(t)} at times 0, h,2h, ... ,nh where nh =T.

> Brownian:=proc(T,n,seed) local h,sh,B,P,],z;
#
# Simulation of standard Brownian motion over [0,T] using n
subintervals each of length h.
# Procedure generates a list, [{[J*h,B(j*h)]1,3=0..n}] where
B(j*h) is the position of the Brownian motion at time j*h.
#
global i,X2;
i:=false;
randomize (seed) ;
h:=T/n;
sh:=sqrt (h);
B:=0;
P[0]1:=[0,01;
for j from 1 to n do;
z :=STDNORM() ;
B:=Bt+evalf (sh*z);
P[jl:=[evalf(j*h),B];
end do;
[seq(P[j1,3=0..n)1;
end proc:

> ul:=Brownian (100,10000,3671) :
u2:=Brownian (100,10000,4791023):
u3:=Brownian(100,10000,4591038):
PLOT (CURVES (ul,u2,u3,COLOR(RGB, 1, 0, O, O, 1, 0,0,0,1)),
TITLE ("Three realizations of a standard Brownian
motion") ,AXESLABELS ("t","B(t)"),AXESSTYLE (NORMAL) ) ;

Three realizations of a standard Brownian motion
20 40 60 80 100
B(t) -5

-10

-15
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H 6.2 Geometric Brownian motion

Let {B(t)} denote a standard Brownian motion. The procedure ‘Geometric-
Brownian’ generates the position, X(¢), of a Brownian motion

%éi:: wdt+odp

at times 0, h, 2h,...,nh where nh = T. The solution to the stochastic differ-
ential equation is X(t) = X(s) elt=o"/D(=9)+oB(t=s) - Suppose X(s) = z(s).
Since E(X(t)) = z(s)e*=*), 1 is interpreted as the expected growth rate.

> GeometricBrownian:=proc(T,n,seed,mu,sigma,x0) local
h,sh,X,P,]j, z,mh;
#
# Procedure generates a list [{[j*h,X(J*h)],j=0..n}] where
X(j*h) is the position at time jh of the geometric Brownian
motion (with expected growth rate, mu, and volatility, sigma).

#
global 1i,X2;
i:=false;

randomize (seed) ;

h:=T/n; r:=mu-sigma”~2/2;

sh:=sqgrt (h) ;

mh:=r*h;

X:=x0;

P[0]:=[0,x01];

for j from 1 to n do;
z :=STDNORM() ;
X:=X*exp (evalf (mhtsh* sigma*z)) ;
P[jl:=[evalf(j*h),X];

end do;

[seq(P[3j]1,3=0..n)1;

B end proc:

> vl:=GeometricBrownian(10,2000,1845,0.1,0.3,100):
v2:=GeometricBrownian(10,2000,35915,0.1,0.3,100):
v3:=GeometricBrownian(10,2000,159284,0.1,0.3,100) : PLOT
(CURVES (v1,v2,v3,COLOR(RGBR, 1, 0O, O, O, 1, 0,0,0,1)),
TITLE ("Three independent realizations of a geometric
Brownian motion with expected \n growth rate of 0.1,
volatility 0.3, initial price
=100") ,AXESLABELS ("t", "X (t)") ,AXESSTYLE (NORMAL) ) ;
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Three independent realizations of a geometric Brownian motion with expected
growth rate of 0.1, volatility 0.3, initial price =100

300
250

200
X(®)
150

100

50

> vl1:=GeometricBrownian(10,2000,1845,0.15,0.02,100):
v2:=GeometricBrownian (10,2000,35915,0.15,0.04,100):
v3:=GeometricBrownian(10,2000,159284,0.15,0.08,100):
PLOT (CURVES (v1l,v2,v3,COLOR(RGB, 1, 0, 0, O, 1,
0,0,0,1)),TITLE ("Independent Geometric Brownian motions
over 10 years with expected growth rate \n of 0.15 p.a.,
volatility 0.02, 0.04, 0.08 p.a., \n initial price
=100pence") ,AXESLABELS ("t", "X (t) ") ,AXESSTYLE (NORMAL) ) ;

Independent Geometric Brownian motions over 10 years with expected growth rate
of 0.15 p.a., volatility 0.02, 0.04, 0.08 p.a.,
initial price =100 pence

500
400
X(t) 300
200

100

B‘ 6.3 Black-Scholes formula for a European call

Using the built-in ‘blackscholes’ procedure (part of Maple’s finance package),
find the price of a European call option on a share that is currently priced at
£100, has volatility 20 % per annum (this means that the standard deviation
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on the return in 1 year is 0.2), and where the option has 103 trading days till
expiry (252 trading days in a year). The strike price is £97. The risk-free interest
rate is 5 %. Assume no dividends.

[ > with (finance) :

> B:=blackscholes (100, 97, 0.05, 103/252, 0.2);
evalf (B);

100
B :=50 erf (002427184466 (ln (W) + 0.02861111111) v103v 252\/5)
1 100
+2.48111124 — 47.51888876 erf (5 (0.04854368932 (ln (W)

+0.02861111111)v/103v/252 — 0.0007936507936v 103V 252) \/5)

7.84025659

ﬂ 6.4 Monte Carlo estimation of the price of a European
call option

The procedure ‘BS’ below simulates m independent payoffs together with their
antithetic counterparts; x( is the current asset price at time ¢, and ¢, is the
exercise time of the option.

> BS:=proc(m,t,te,sigma,r,k,x0)local
ml,m2,sl,s2,j,payoff_avg,disc,payoffa,payoffb,xa,xb, z,
call,std;global i,X2;
i:=false;
ml:=(r-0.5*%sigma”2)* (te-t);
m2:=sigma*sqgrt (te-t);
disc:=exp (-r*(te-t));
s1:=0;s2:=0;
for j from 1 to m do;
z:=STDNORM() ;
xa:=evalf (x0*exp (ml+m2*z)); xb:=evalf (x0*exp (ml-m2*z));
payoffa:=max (xa-k,0) ;payoffb:=max (xb-k,0);
payoff avg:=(payoffa+tpayoffb)/2;
sl:=sl+payoff avg;
s2:=s2+payoff_avg"2;
end do;
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call:=disc*sl/m;

std:=disc*sqrt ((s2-s172/m) /m/ (m-1));
print("call_price"=call,"std_error"=std);

print ("confidence interval (large m)
is",call-1.96*std,call+l.96*std);

L end proc:

Now call this procedure, using 10 000 payoffs, to estimate the price that was
calculated exactly using the Black—Scholes formula in Appendix 6.3 above.

> seed:=randomize (87125635);BS(10000,23/252,126/
252,0.2,0.05,97,100);
seed: = 87125635
‘call_price’=7.835472640, ‘std_error’=0.04129181009
L ‘confidence interval (large m) is’, 7.754540692, 7.916404588

Now reduce the remaining life (from 103 to 50 trading days) of the option
and make the option more ‘in the money’ by reducing the strike price from
£97 to £85. Note how the standard error is now smaller, as a result of the
L antithetic design being more effective (see text).
> seed:=randomize (87125635);BS(10000,76/252,126/
252,0.2,0.05,85,100);
seed: = 87125635
‘call_price’=15.91630722, ‘std_error’=0.009405292445

L ‘confidence interval (large m) is’, 15.89787285, 15.93474159

6.5 Delta hedging for a currency

The procedure ‘hedge’ returns the cost of writing and hedging a call option,
where the hedging is performed nn + 1 times. The asset earns interest at rate
rs. The risk-free interest rate is r and the (unknown) expected growth rate is f.
Print statements are currently suppressed using ‘#. Removing ‘#” will show
the price (x) of the asset, the 4, the change in 4 since the last hedge, and the
cumulative borrowings to finance the hedge, all at each hedging instant.
Remember to load the procedure ‘STDNORM’ in Appendix 6.1.

> hedge:=proc(K,r,rf,sigma,T,n,x0,mu) local
al,a2,a3,a4,a5,a6,h,x,d,delta,delta_prev,c, ], z,cost,xprev;
global i,X2;
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i:=false;
h:=T/n;
al:=exp (h* (mu-0.5*sigma”2));
a2:=sigma*sqrt (h);
a3d:=(r-rf+0.5*sigma”2)*h;
ad:=exp (r*h);
ab:=exp (-r*T);
a6:=exp (rf*h);
x:=x0;
d:=(ln(x/K)+a3*n)/a2/sqrt(n);
delta:=exp (-rf*T)*statevalf[cdf, normald] (d);
c:=delta*x;
#print ("x"=x, "delta"=delta, "c"=c);
for j from 1 to n do;
Xprev:=x;
Z :=STDNORM() ;
xi=x*al*exp (a2*z);
delta prev:=delta*a6;# The holding in assets changes due
to the interest earned on them at rate rf
if j=n then;
if x>K then delta:=1 else delta:=0 end if;
else;
d:=(1ln(x/K)+a3* (n-j))/a2/sqrt (n-j);
delta:=exp (-rf* (n-j)*h)*statevalf[cdf,normald] (d);

end if;

c:=c*ad+x* (delta-delta_prev);
end do;
#print ("x"=x, "delta"=delta, "dif"=delta-delta_prev,
"et=c) i
if delta>0 then cost:=ab5* (c-K) else cost:=ab5*c end if;
cost:
end proc:

> with(stats);

[anova, describe, fit, importdata, random, statevalf, statplots, transform)

The procedure ‘effic’ calls ‘hedge’ replic times. It stores the costs in the list p
and then prints the resulting mean and standard deviation of hedging cost
together with a histogram. If the option were continuously hedged, then the
standard deviation would be zero, and the hedging cost would always equal
the Black—Scholes price. The current price of the asset is £680 and the strike
price is £700. The risk-free interest rate is 5% per annum and the asset earns
interest continuously at the rate of 3% per annum. The volatility is 0.1 per

L annum and the exercise time is 0.5 years from now.

255
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> effic:=proc(nn,replic)local m,u,p,e2,el;
randomize (3640651) ;
for m from 1 to replic do:

u[m] :=hedge (700,0.05,0.03,0.1,0.5,nn,680,0.15) :

end do:
p:=[seqg(u[m],m=1..replic)]:
e2:=describe[standarddeviation[1]] (p):
el:=describe[mean] (p) ;
print ("mean cost of hedging"=el, "std dev of cost"=e2,
"number of hedges"=nn+l, "number of contracts"=replic):;
statplots[histogram] (p) ;

L end proc:

Now perform 10 000 replications for contracts that are hedged 2, 3, 4, 13,
and 127 times respectively. It is supposed that the unknown expected growth
rate of the underlying asset (euros) is 15 % per annum. The last example
(127 hedges) takes a considerable amount of time (~10 minutes on a
L Pentium M 730, 1.6 GHz processor).

> effic(1,10000);

‘mean cost of hedging’=21.53800165, ‘std dev of cost’=22.17558076,
‘number of hedges’=2, ‘number of contracts’= 10000

0.025
0.02
0.015
0.01

0.005

-20 20 40 60 80 100 120 140 160

> effic(2,10000);

‘mean cost of hedging’=17.26850774, ‘std dev of cost’=13.21884756,
‘number of hedges’ =3, ‘number of contracts’= 10000
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0.03
0.025
0.02
0.015
0.01

0.005

20 40 60 80 100

> effic(3,10000);

‘mean cost of hedging’=16.02928370, ‘std dev of cost’=10.25258825,
‘number of hedges’=4, ‘number of contracts’= 10000

0.04

0.03

0.02

0.01

> effic(4,10000);

‘mean cost of hedging’ = 15.30498281, ‘std dev of cost’=8.665076040,
‘number of hedges’=5, ‘number of contracts’= 10000
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0.05

0.04

0.03

0.02

0.01

> effic(12,10000);

‘mean cost of hedging’=13.99661047, ‘std dev of cost’=4.750293651,
‘number of hedges’= 13, ‘number of contracts’= 10000

0.08

0.06

0.04

0.02

10 20 30 40

> effic(126,10000);

‘mean cost of hedging’ =13.40525657, ‘std dev of cost’=1.452085739,
‘number of hedges’= 127, ‘number of contracts’= 10000
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0.35
0.3
0.25
0.2
0.15
0.1

0.05

The cost of continuous hedging is the Black—Scholes cost, which is computed

| in the procedure ‘bscurrency’.

> bscurrency:=proc(r,rf,K,x0,sigma,T,t) local d,price;
d:=(1ln(x0/K)+ (r-rf+0.5*sigma~2)* (T-t)) /sigma/sqrt (T-t);
price:=x0*exp (-rf* (T-t))*statevalf[cdf,normald] (d) - K*exp (-r*
(T-t) )*statevalf[cdf,normald] (d-sqgrt (T-t)*sigma) ;

B end proc:

> bscurrency(0.05,0.03,700,680,0.1,0.5,0);
13.3368447

Now, as suggested in the text, perform your own experiments to verify that
(subject to sampling error) the expected cost of writing and discrete hedging the
option is the Black—Scholes price, when the expected growth rate of the under-
lying asset happens to be the same as the risk-free interest rate. Of course, there
- Lis still variation in this cost, reflecting the risk from not hedging continuously.

H 6.6 Asian option

E‘ 6.6.1 Naive Monte Carlo

The procedure ‘asiannaive’ computes the price of an Asian call option
(arithmetic average) using standard Monte Carlo with no variance redu-
L cation. The parameters are:
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r = risk-free interest rate
xo = known asset price at time zero
o = volatility
T = expiry (exercise) time for the option
n = number of time periods over which the average is taken
h = time increment such that T'= nh
npath = number of paths simulated
K = strike price
> asiannaive:=proc(r,x0,sigma,T,n,npath,K) local
R,al,a2,sl,s2,theta,x,xc,il,i2,z,h,mean, stderr; global
i, X2;
# Computes call price for Asian option.
i:=false;
h:=evalf (T/n);
al:=exp((r-0.5*sigma~2)*h);
a2:=evalf (sigma*sqrt (h));
s1:=0;s2:=0;
for i2 from 1 to npath do;
x:=x0;
xc:=0;
for il from 1 to n do;
Z:=STDNORM () ;
x:=x*al*exp (a2*z);
XC:=xXCt+x;
end do;
R:=max (xc/n-K, 0) ;
sl:=sl+R;
82:=82+R"2;
end do;
theta:=sl/npath;
stderr:=sqrt((s2-sl1l”2/npath) /npath/ (npath-1));
print ("K"=K, "sigma"=sigma, "n"=n);
print ("# paths"=npath) ;
print ("point estimate of price"=exp (-r*T)*theta);
print ("estimated standard error"=exp (-r*T)*stderr);
L  end proc:

[ Now call ‘asiannaive’ for the parameter values given below, remember-
ing first to load the procedure STDNORM (Section 6.1). These
values are used in the paper by P. Glasserman, P. Heidelberger, and
P. Shahabuddin (1999), Asymptotically optimal importance sampling
and stratification for pricing path-dependent options, Mathematical
Finance, 9, 117-52. The present results can be compared with those

L appearing in that paper.
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> randomize (13753) ;asiannaive (0.05,50,0.3,1,16,25000,55);
13753
‘K’=55, ‘sigma’=0.3,'n"=16
“#paths’=25000
‘point estimate of price’=2.214911961
L ‘estimated standard error’=0.03004765102

> randomize (13753) ;asiannaive(0.05,50,0.3,1,16,25000,50);
randomize (13753) ;asiannaive (0.05,50,0.3,1,16,25000,45) ;
randomize (13753) ;asiannaive(0.05,50,0.1,1,16,25000,55) ;
randomize (13753) ;asiannaive (0.05,50,0.1,1,16,25000,50);
randomize (13753) ;asiannaive(0.05,50,0.1,1,16,25000,45) ;
13753
‘K’=50, ‘sigma’=0.3, ‘n’=16
# paths’=25000
‘point estimate of price’=4.166563741
‘estimated standard error’=0.03986122915
13753
‘K’=45, ‘sigma’=0.3, ‘n’=16
‘# paths’=25000
‘point estimate of price’=7.145200333
‘estimated standard error’=0.04857962659
13753
‘K’=55, ‘sigma’=0.1, ‘n’=16
‘# paths’=25000
‘point estimate of price’=0.2012671276
‘estimated standard error’=0.004621266108
13753
‘K’=50, ‘sigma’=0.1, ‘n’=16
“# paths’=25000
‘point estimate of price’=1.917809699
‘estimated standard error’=0.01401995095
13753
‘K’=45, ‘sigma’=0.1, ‘n’=16
“# paths’=25000
‘point estimate of price’ = 6.048215279
L ‘estimated standard error’=0.01862584391

6.6.2 Monte Carlo with importance and stratified
sampling

The procedure ‘asianimpoststrat’ computes the price of an Asian average
price call option (arithmetic average) using importance sampling and post
stratified sampling. Let n be the number of time points over which the
average is calculated. The drift is set to f where §5; = (0/0Z;) In (payoff)
at z; =0;, i=1,...,n, and where payoff is based on the geometric
average. This gives §; = A\(n — i + 1) where
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_ moexp((r—0.50%)(n+ 1)h/2 + oX(n +1)(2n + DVh/6)avVh
B n(zgexp((r — 0.502)(n + 1)h/2 + oA(n + 1)(2n + 1)Vh/6) — K)

A lower bound on the search for A is the value that makes the denomi-
nator zero. With the resulting importance sampling distribution,
zi ~ N(0;,1) for i =1,...,n. The stratification variable is

x=Zimbila=6) _ (Cia(n=it =) —dnl+ DA D/6 ey

L Vn(n+1)(2n+1)/6

i=1M1

Remember to load the standard normal generator STDNORMY() in
Appendix 6.1.

> with(stats):
Warning, these names have been redefined: anova, describe,
| fit, importdata, random, statevalf, statplots, transform

> asianimppoststrat:=proc(r,x0,sigma, T, t,n,m,npath, K,
p,upper) local
R,al,a2,a3,a4,b3, theta,j,s,£,i2,x,xc,x1,1il,z,h, st,
xbar,v,cl,c2,mean, stderr, jj, lambda; global i,X2;
#
# Computes price of an Asian average price call option at
time t, with expiry time T, and strike K, using importance
sampling combined with post stratification.
#

r=risk-free interest rate

x0=asset price at time t

sigma=volatility

T=exercise time

T=n*h where the average is taken over times h,2h,...,nh

m=number of strata

npath=number of paths in one replication. It should be

at least 20*m for post stratification to be efficient

# K=strike price

# p=number of replications

# upper=an upper bound for lambda

#

i

h

H= S W = e e S

i:=false;

:=evalf ((T-t)/n);
al:=exp((r-0.5*sigma”~2)*h);
a2:=evalf (sigma*sqrt (h));
a3:=evalf (n* (2*n+l)* (n+l)/6);
b3:=evalf (sqgrt(a3));
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a4 :=max (0, 6* (1n (K/x0) - (r-sigma”~2)*h* (n+1) /2) /a2/ (n+1) /

(2*n+1));

#

# solve for lambda
#

xbar:=x0*al” (0.5*n+0.5)*exp (a3*u*a2/n) ;
lambda:=fsolve (u-xbar*a2/n/ (xbar-K) ,u=a4. .upper) ;
#lambda:=0; #exchange with previous line for no importance
sampling;
print ('lambda'=lambda) ;
#
# end of solve for lambda
#
cl:=0;c2:=0;
for jj from 1 to p do:
theta:=0;
for j from 1 tom do s[j]:=0;f[j]:=0 end do;
for i2 from 1 to npath do;

x:=x0;
xc:=0;
x1:=0;

for il from 1 to n do;
z:=lambda* (n-il+1)+STDNORM() ;
x:=x*al*exp(a2*z);
XC:=xCc+x;
x1:=x1+(n-il+1)*z;
end do;
R:=max (xc/n-K, 0) *exp (-lambda* x1) ;
st:=(xl-lambda*a3) /b3;
j:=1l+floor (m*statevalf[cdf,normald] (st)); #j is the
stratum number;
f[j]:=f[j]1+1; # increment frequency, this stratum;
s[j]l:=s[j]1+R; # increment sum, this stratum;
end do;
for j from 1 tom do;
theta:=theta+s[j1/£f[j];
end do;
theta:=theta/m;
theta:=theta*exp (-r* (T-t) )*exp (0.5* lambda”2*a3);
cl:=cl+theta;
c2:=c2+theta”2;
end do;
mean:=cl/p;
stderr:=sqrt ((c2-cl”2/p) /p/ (p-1));
print ("K"=K, "sigma"=sigma, "n"=n) ;
print ("# replications"=p, "paths per
replication"=npath, "strata"=m);
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print ("point estimate of price"=mean) ;
print ("estimated standard error"=stderr);
end proc:

Now call ‘asianimppoststrat’ where the risk-free interest rate is 5 % per
annum and the exercise time is 1 year from now. The average is taken
over 16 equally spaced time periods over the year. The volatility is either
10 % or 30 % per annum, and the strike prices are either £55, £50, or
£45, as shown in the six sample runs below. Each run took approxi-
mately 15 minutes on a Pentium M730 1.6 GHz processor. This data set
is part of one appearing in the paper by P. Glasserman, P. Heidelberger,
and P. Shahabuddin (1999), Asymptotically optimal importance sam-
pling and stratification for pricing path-dependent options, Mathema-

L tical Finance, 9, 117-52.

> randomize (13753) ;asianimppoststrat(0.05,50,0.3,1,0,16,
100, 2500,55,100,0.5);
randomize (13753) ;asianimppoststrat (0.05,50,0.3,1,0,16,
100,2500,50,100,0.5);
randomize (13753) ;asianimppoststrat (0.05,50,0.3,1,0,16,
100, 2500,45,100,0.5);
randomize (13753) ;asianimppoststrat (0.05,50,0.1,1,0,16,
100,2500,55,100,0.5);
randomize (13753) ;asianimppoststrat (0.05,50,0.1,1,0,16,
100,2500,50,100,0.5);
randomize (13753) ;asianimppoststrat (0.05,50,0.1,1,0,16,
100,2500,45,100,0.5);
13753
A =0.03422043734
‘K’=55, ‘sigma’=0.3, ‘n’=16
‘# replications’ = 100, ‘paths per replication’=2500, ‘strata’ =100
‘point estimate of price’=2.211606984
‘estimated standard error’=0.0003131946824
13753
A =0.02691202349
‘K’=50, ‘sigma’=0.3, ‘n’=16
‘# replications’ = 100, ‘paths per replication’=2500, ‘strata’ =100
‘point estimate of price’ =4.170829200
‘estimated standard error’=0.0003747052714
13753
A =0.02087070210
‘K’=45, ‘sigma’=0.3, ‘n’=16
‘# replications’ = 100, ‘paths per replication’=2500, ‘strata’ =100
‘point estimate of price’=7.152065560
‘estimated standard error’=0.0004827321234
13753
A =0.04549738209
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‘K’=55, ‘sigma’=0.1, ‘n’=16
# replications’ = 100, ‘paths per replication’ =2500, ‘strata’ = 100
‘point estimate of price’=0.2023819565
‘estimated standard error’ =0.00002354664402
13753
A =0.02171666756
‘K’=50, ‘sigma’=0.1, ‘n’=16
‘# replications’ = 100, ‘paths per replication’ =2500, ‘strata’ =100
‘point estimate of price’=1.919506766
‘estimated standard error’=0.00006567443424
13753
A =0.01089879722
‘K’=45, ‘sigma’=0.1, ‘n’=16
‘# replications’ = 100, ‘paths per replication’ =2500, ‘strata’ =100
‘point estimate of price’=6.055282128
L ‘estimated standard error’=0.0001914854216

H 6.7 Basket options

Consider a basket (or portfolio) consisting of n assets. The basket contains a
quantity ¢; of asset ¢ where i =1,...,n. Let 7,04, {X;(u), u<T, 0 <u}
denote the risk-free interest rate, volatilty, and prices in [0,77] of one unit of
the ith asset. At time ¢ the spot price is Y ., ¢;z;(t). Let p denote the
correlation between the returns on the assets and let the Cholesky decomposi-
tion of this be b b’ = p. Then the price of a European call option at time ¢
with strike price K and exercise time 7" is the discounted expected payoff in a
risk-neutral world, that is

¢ = o T nax <0’ ( ¢z exp {(r —0.5 0'?) (T—-t)+o, VT —t VVJ) — K>
i=1

where W ~ N(0,p). Put W = bZ where Z ~ N(0,1).

E‘ 6.7.1 Naive Monte Carlo

The procedure ‘basket’ estimates ¢ using naive Monte Carlo. It performs
npath replications of the payoff. Ensure that the procedure ‘STDNORM’
in Appendix 6.1 and the Linear Algebra and statistics packages are loaded.
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> with(LinearAlgebra) :

with (stats):

Warning, these names have been redefined: anova, describe,

| fit, importdata, random, statevalf, statplots, transform

> basket:=proc(r,x,sigma,q,rho, T, t,n,npath,K) local

b,cl,c2,il,i2,mean, R, spot, stderr, theta,w, xav,xi, z; global
1,X2;

Computes call price for basket optionusing naive Monte Carlo;
load STDNORM and Linear Algebra package;

r=risk-free interest rate;

x[il]= ilth. asset price at time t;
sigmal[il]=volatility of asset il;

gl[il]=quantity of asset il in basket;
rho=correlation matrix for returns between assets;
T=exercise time;

npath=number of paths

K=strike price;

S Sk e S o e e Sk e Sk sk W ook

spot:=Transpose (x) .q;
b:= LUDecomposition(rho, method='Cholesky');
i:=false;
z:=Vector(n);
w:=Vector(n) ;
cl:=0;c2:=0;
for i2 from 1 to npath do;

for il from 1 to n do;

z[i11] :=STDNORM() ;

end do;
w:=b.z;
xav:=0;

for il from 1 to n do;
xi:=q[il]*x[il]*exp((r-0.5*sigma[11]"2)* (T-t) +sigma[il]*
sqrt (T-t)*w[il]);

xav:=xav+xi;

end do;

theta:=max (0, xav-K)*exp (-r*T-t));

cl:=cl+theta;

c2:=c2+theta”2;
end do;
mean:=cl/npath;
stderr:=sqrt ((c2-cl”*2/npath) /npath/ (npath-1)) ;
print("K"=K, "spot"=spot, "r"=r, "1’1"=1’1, "t"=t, "T"=T’
"x"=x, "q"=q, "sigma"=sigma, "rho"=rho):;
print ("# paths"=npath);
print ("point estimate of price"=mean);
print ("estimated standard error"=stderr);
end proc:
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[ Set up the input data.

> r:=0.04:
x:=Vector([5,2.5,4,3]):
sigma:=Vector([0.3,0.2,0.3,0.41):
g:=Vector([20,80,60,40]):
rho:=Matrix([[1,0.7,0.5,0.3], [0.7,1,0.6,0.2],
[0.5,0.6,1,0.4], [0.3,0.2,0.4,111]):
T:=0.5:t:=0:n:=4:
npath:=10000:

B spot:=Transpose (x) .q:

[ Now price the option with the following strike prices, K.
> K:=660; seed:=randomize (9624651) ;basket (r,x,sigma,q,
rho,T,t,n,npath,K);

K := 660
seed := 9624651
‘K’=660, ‘spot’=660., ‘r’=0.04, ‘n’=4, ‘t'=0, T°=0.5,

5 20
w_ 25] o _ |80
“la|PTT 60|
3 40
0.3 1 07 05 03
sigma — |02 | aho = |07 106 02
0.3 | 05 06 1 04
0.4 03 02 04 1

# paths” = 10000
‘point estimate of price’ = 47.20505098
‘estimated standard error’ = 0.7072233067

> K:=600; seed:=randomize (9624651) ;basket (r,x,sigma,q,
rho, T, t,n,npath,K);
K:=600
seed. =9624651
‘K’=600, ‘spot’=660., T°=0.04, ‘n’=4, ‘t'=0, “T°=0.5,

5 20
) 2.5 [P 80
= 4= 160

4
3 40
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0.3 1 07 05 03
‘sigma’ = 0.2 ‘rho’ = 07 1 06 02
03] 05 06 1 04
0.4 03 02 04 1

‘# paths’ = 10000
‘point estimate of price’ = 84.02729573
‘estimated standard error’ = 0.8807106819

rho, T, t,n,npath,K) ;

K:=720
seed: =9624651
‘K= 720, ‘spot’=660.,

5 20

£X7: 25 L(’: 80

4 |04 60 |

3 40
0.3 1 07 05 03
sigma = | 02 o = 07 1 06 02
, 0.3 05 06 1 04
0.4 03 02 04 1

‘# paths’ = 10000
‘point estimate of price’ = 23.48827444
‘estimated standard error’ = 0.5139235861

[ Now change the vector of volatilities.

> sigma:=Vector([0.05,0.1,0.15,0.05]);

0.05
0.1
0.15
0.05

o=

rho, T, t,n,npath,K) ;

rho, T, t,n,npath,K) ;

rho, T, t,n,npath,K) ;

> K:=720;seed:=randomize (9624651) ;basket (r,x,sigma, q,

T=0.04, ‘n"=4, ‘=0, ‘T"=0.5,

> K:=660;seed:=randomize (9624651) ;basket (r, x,sigma, q,
K:=600; seed:=randomize (9624651) ;basket (r,x,sigma, q,

K:=720; seed:=randomize (9624651) ;basket (r,x,sigma, q,



K =660
seed = 9624651

‘K’=660, ‘spot’=660., ‘T'=0.04, ‘n’=4, ‘t'=0, ‘T"=0.5,

5 20
oo |25 |80
T4 |PYTT |60l
3 40
0.05 1 07 05 03

. 0.7 1 06 02
0.15 05 06 1 04
0.05 03 02 04 1

‘sigma’ = ,‘rho” =

‘# paths’ = 10000
‘point estimate of price’ = 22.73700052
‘estimated standard error’ = 0.2834997907
K =600
seed := 9624651

‘K’=600, ‘spot’=660., ‘r’=0.04, ‘n’=4, ‘t'=0, ‘T"=0.5,

5 20
oo |25 |80
“la|PYTT |60
3 40

0.05 1 07 05 03

sigma’ = 0L | o |07 1 06 02

0.15 |’ 05 06 1 04

0.05 03 02 04 1

‘# paths’ = 10000
‘point estimate of price’ = 71.67610118
‘estimated standard error’ = 0.3903638189
K =720
seed = 9624651

‘K*=720, ‘spot’=660., ‘r’=0.04, ‘n’=4, ‘t'=0, ‘T"=0.5,

5 20
oo |25 |80
a4 T 60|
3 40
0.05 1 07 05 03
sigma’ = 0L | 0 |07 1 06 02
0.15 |’ 05 06 1 04

0.05 03 02 04 1
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=

‘# paths’ = 10000
‘point estimate of price’ = 2.744216261
‘estimated standard error’ = 0.1003118091

6.7.2 Monte Carlo with importance and stratified
sampling

Now define

Ty = Z qiT; exp[(r — .507?) (T - t)]
=1
and

_ 4% exp[(r — 0.50%) (T — t)]
Zo

Changing the measure, as described in the text, gives

c=xzgexp|—r(T —t)]exp(0.58'B)x

o (g (0) 8w

where Z~ N(B,I) and f is chosen as described in the text. The stratifica-

tion variable is
«_B2)-BB)
BB

The procedure ‘basketimppoststratv2’ below implements these two var-
iance reduction devices. See Table 6.3 in the text for the variance reduc-
tion ratios achieved.

> with(LinearAlgebra) :
with(stats):

Warning, these names have been redefined: anova, describe,
fit,importdata, random, statevalf, statplots, transform
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> basketimppoststratv2:=proc(r, x,sigma,q,rho,T,t,n,m,

npath, K, p,upper) local

a0,a4,b,beta,betasq,beta2,c,cl,c2,£f,il,i2,3j,3j,K

d, lambda,

mean, stderr, R, T1, Tbeta, s, spot, theta, v, w, x0, xs, xi,xav,

xstrat,z,zil; global i,X2,d1,d2;

#

# Computes call price for basket option using importance

sampling with post stratification.

# load STDNORM, Linear Algebra package, and Statistics

package

#

# r=risk-free interest rate;

# x[11]= ilth. asset price at time t;

# sigma[il]=volatility of asset il;

# q[il]:=quantity of asset il;

# rho[il, j]:=correlation between returns on assets il and j;

# T=exercise time;

# m=number of strata

# npath=number of paths in one replication; should be at

least 20*m for post stratification to be efficient;

# K=strike price;

# p=number of replications;

# upper=an upper bound for lambda;

# f[j]=number of paths falling in stratum j in one

replication

#

spot:=Transpose (x) .q;

b:= LUDecomposition (rho, method=’'Cholesky’ ) ;

i:=false;

c:=Vector(n);

z:=Vector (n);

w:=Vector (n);

beta:=Vector (n);

v:=Vector (n);

#

x0:=0;Tl:=sqgrt (T-t);

for i1l from 1 to n do;
x0:=x0+g[il]*x[il]*exp((r—-0.5*sigmal[il]"2)* (T-t));

end do;

for i1l from 1 to n do;
w[il]:=q[il]*x[1l1]*exp((r-0.5*sigma[il]"2)* (T-t))/x0;
c[il]:=w[il]*sigma[il];

end do;

Kd:=K/x0;

al:=Transpose (c) .rho.c;

a4:=1n(Xd)/T1/a0;
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lambda:=fsolve (u-Tl*exp (T1l*u*a0) / (exp (Tl*u*al) -
Kd) ,u=a4. .upper) ;
beta:=ScalarMultiply(Transpose (b) .c,lambda) ;
print ("lambda"=lambda, "beta"=beta) ;
Tbeta:=Transpose (beta) ;
betasqg:=Tbeta.beta;
beta2:=sqgrt (betasq) ;
#
cl:=0;c2:=0;
for jj from 1 to p do:
theta:=0;
for j froml tomdos[j]:=0;f[j]:=0 end do;
for i2 from 1 to npath do;
xs:=0;
for il from 1 to n do;
zil:=beta[il]+STDNORM() ;
xs:=xs+betal[il]*zil;

z[1i1]:=2zil;
end do;
# z is N(beta,I),v is N(b*beta, rho) ;
v:i=b.z;
xav:=0;

for i1 from 1 ton do;
xi:=w[il]*exp(sigma[il]*v[il]*T1);
Xav:=xav+xi;
end do;
xstrat:=(xs-betasq) /beta2;
j:=1+floor (m* statevalf[cdf,normald] (xstrat));
R:=max (0, xav—-Kd) *exp (-xs) ;
£31:=£[31+1;
s[J1:=s[J1+R;
end do;
for j from 1 tomdo;
theta:=theta+s[j1/£f[31;
end do;
theta:=theta/m;
cl:=cl+theta;
c2:=c2+theta”2;
end do;
mean:=exp (-r* (T-t))*x0*exp (0.5*betasqg)*cl/p;
stderr:=exp (-r* (T-t) ) *x0*exp (0.5*betasqg)*sgrt
((c2-c1”2/p) /p/ (p-1)):
print ("K"=K, "spot"=spot, "r"=r, "n"=n, "t"=t, "T"=T, "x"=x,
"q"=q, "sigma"=sigma, "rho"=rho) ;
print ("# replications"=p, "paths per
replication"=npath, "strata"=m) ;
print ("point estimate of price"=mean) ;
print ("estimated standard error"=stderr) ;
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dl:=statevalf[icdf, chisquare[p-11](0.025)/(p-1)/stderr*2;
d2:=statevalf[icdf,chisquare[p-11](0.975)/ (p-1)/stderr"2;
print ("approximate 95% confidence interval for reciprocal
variance of error=",dl,"to",d2);

end proc:

[ Set up the input parameters.
> r:=0.04:

x:=Vector([5,2.5,4,3]):
sigma:=Vector([0.3,0.2,0.3,0.4]):
g:=Vector([20,80,60,40]):
rho:=Matrix([[1,0.7,0.5,0.3],[0.7,1,0.6,0.2],
[0.5,0.6,1,0.4]1,[0.3,0.2,0.4,111]):
T:=0.5:t:=0:n:=4:m:=20:npath:=400:upper:=200:p:=25:

L spot:=Transpose (x) .g:

> seed:=randomize (9624651) ;K:=660:basketimppoststratv
2(r,x,sigma,q,rho,T, t,n,m,npath,K,p, upper) ;
seed = 9624651

0.772172051123948266
0.380523654341933582
0.513898302957234265
0.301405189763077175

‘lambda’ = 4.700068356, ‘beta’ =

‘K’=660, ‘spot’=660., ‘t’=0.04, ‘n’=4, ‘t°=0, “T"=0.5,

5 20
oo |25 o |80
Tla YT |60l
3 40
0.3 1 07 05 03
sigma’ = 02| ., . |07 1 06 02
0.3 | 05 06 1 04
0.4 03 02 04 1

‘# replications’ = 25, ‘paths per replication” = 400, ‘strata’ = 20
‘point estimate of price’ = 48.03048912
‘estimated standard error’ = 0.04919665583
‘approximate 95% confidence interval for reciprocal variance
of error=", 213.4909953, ‘to’, 677.6690736
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> seed:=randomize (9624651) ;K:=600:basketimppoststratv
2(r,x,sigma,q,rho,T,t,n,m,npath,K,p,upper) ;
seed := 9624651

0.589715108385092890

oo 0 | 0.290609518612742979
lambda’ = 3.589486716, ‘beta’ = 0.392469000899768161

0.230185997913606666

‘K’=600, ‘spot’=660., ‘T’=0.04, ‘n’=4, ‘t'=0, ‘T"=0.5,

5 2
o 25| o |80
T4 |PYT 60|
3 40
0.3 1 07 05 03
sigma’ = 02( ., |07 1 06 02
0.3 05 06 1 04
0.4 03 02 04 1

‘# replications’ =25, ‘paths per replication’ =400, ‘strata’ =20
‘point estimate of price’=85.18136772
‘estimated standard error’ =0.06450488957
‘approximate 95% confidence interval for reciprocal variance of error=",
124.1839457,
L ‘to’, 394.1881451

> seed:=randomize (9624651) ;K:=720:basketimppoststratv
2(r,x,sigma,q,rho,T,t,n,m, npath, K, p,upper) ;
seed = 9624651

0.996552064739320342

o oo | 0.491097331047708086
lambda’ = 6.065827969, ‘beta’ = 0.663228375246030528

0.388988391569389748

‘K*=720, ‘spot’=660., ‘t’=0.04, ‘n’=4, ‘t'=0, ‘T"=0.5,

5 20
o 125 ., |s0
X ,y 4 = 60 |

4
3 40
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0.3 1 07 05 03
. 07 1 06 02
0.3 05 06 1 04
0.4 03 02 04 1

‘sigma’ = ,‘rho’ =

# replications’ =25, ‘paths per replication’ =400, ‘strata’ =20
‘point estimate of price’ =24.03898507
‘estimated standard error’=0.02821965008
‘approximate 95% confidence interval for reciprocal variance of
error =", 648.8547348, ‘to’, 2059.612802

[>
[ Change the vector of volatilities.

> sigma:=Vector([0.05,0.1,0.15,0.05]);

0.05
0.1
0=

0.15
0.05

> seed:=randomize (9624651) ;K:=660:basketimppoststratv2
(r,x,sigma, q,rho, T, t,n,m,npath,K,p, upper) ;
seed := 9624651

0.610362601267784410

0.421462456610914860

0.478154378789704460
0.0850046460918798957

‘lambda’ = 10.38879243 ‘beta’ =

‘K’=660, ‘spot’=660., ‘r’=0.04, ‘n’=4, ‘t’=0, T°=0.5,

5 20
o |25 |80
4 04 60 |’
3 40
0.05 1 07 05 03
sigma’ = 0L | 0 |07 1 06 02
0.15 |’ 05 06 1 04
0.05 03 02 04 1

‘# replications’ =25, ‘paths per replication’ =400, ‘strata’=20
‘point estimate of price’=23.09053636
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“estimated standard error” = 0.009617279541
‘approximate 95% confidence interval for reciprocal variance of error =,
5586.582894, “to”, 17733.08729

> seed:=randomize (9624651) ;K:=600:basketimppoststratv2
(r,x,sigma, q,rho,T,t,n,m,npath,K,p,upper) ;
seed = 9624651

0.317687092406742088

¢ s Goes 0.219366622596493726
lambda’ = 5.407253416 ‘beta’ = 0.948874151207387928

0.0442439933277393033

‘K’=600, ‘spot’=660., ‘t’=0.04, ‘n’=4, ‘t"=0, ‘T"=0.5,

5 2
oo |25 |80
“la YT 60l
3 40
0.05 1 07 05 03
sigma’ = 01| |07 1 06 02
0.15 |’ 05 06 1 04
0.05 03 02 04 1

‘# replications’ =25, ‘paths per replication’ =400, ‘strata’ =20
‘point estimate of price’ =72.24856764
‘estimated standard error’=0.03901100494
‘approximate 95% confidence interval for reciprocal variance of error =",
339.5286687, ‘to’, 1077.741373

> seed:=randomize (9624651) ;K:=720:basketimppoststratv2
(r,x,sigma, q,rho,T,t,n,m,npath,K, p, upper) ;
seed = 9624651

1.20058900909143329
0.829020638061244374
0.940534185140876167
0.167204942779322074

‘lambda’ = 20.43485296, ‘beta’ =
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‘K*=720, ‘spot’=660., ‘t’=0.04, ‘n’=4, ‘t'=0, ‘T"=0.5,

5 20
o 28] o |80
4 |04 60 |°
3 40
0.05 1 07 05 03
sigma’ = 0.1 o[0T 1 06 02
0.15 | 05 06 1 04
0.05 03 02 04 1

“# replications” = 25, ‘paths per replication” = 400, ‘strata’ = 20
‘point estimate of price” = 2.865814172
‘estimated standard error’ = 0.002971217579
‘approximate 95% confidence interval for reciprocal variance of error=",
58530.44349, ‘to’, 185788.9668

6.8 Stochastic volatility

The procedure ‘meanreverting’ generates a volatility process {o(¢)} in [0, T] at
t=0,...,nh, where o(t) = '™ and Y(t) is an Ornstein-Uhlenbeck process,

dY =a(m-Y)dt+ 8 dB,

where 0 < o, 8 and {B(¢)} is a standard Brownian motion. Remember to
load ‘STDNORM'’ in Appendix 6.1. Define v? = 3*/(2a). There is a closed-
form solution

vV1—e 20t B(t)

Y(t) =y(0)e '+ (1—e*"m+ "

and so

E(o(t)) = exply(0)e ™'+ (1 — e )m+ 0.5 V(1 —e ")

> with(stats);
Warning, these names have been redefined: anova, describe,
fit, importdata, random, statevalf, statplots, transform

277



278 Appendices

> meanreverting:=proc(T,n, seed,alpha,m,nu,y0) local
hlPleZIalbldlAlY;
#
# Procedure generates a list [{[j*h,exp(Y(j*h))1,3J=0..n}]
where Y(j*h) is the position of the OU process (with
parameters alpha,m,nu) at time jh..

#

global i,X2;
i:=false;
randomize (seed) ;
h:=T/n;

Y:=y°;

P[0]:=[0,evalf (exp(y0))1;
a:=evalf (exp (-alpha*h));
b:=sqrt(l-a~2):;
d:=m* (1-a);
for j from 1 to n do;
z :=STDNORM() ;
Y:=d+Y*at+nu*b*z;
P[jl:=[evalf(j*h),exp(Y)];
end do;
[seq(P[Jj]1,3J=0..n)1;
L end proc:

Now plot a realization over [0,7] with the parameter values shown below
| together with E(o(t)).
> n:=1000:T:=5;alpha:=0.5;m:=-2;nu:=0.3;y0:=-2;
vl:=meanreverting(T,n,14457154,alpha,m,nu,y0) :
h:=T/n:
for j from 0 to n do:
ml :=m+ (y0-m)*exp (-alpha*j*h) :
m2:=nu”2* (1l-exp (-2*alpha*j*h)) :
Q[jl:=[J*h,evalf (exp(ml+0.5*m2)) ]:
end do:
v2:=[seq(Q[]j],J=0..n)1:
PLOT (CURVES (vl,v2) ,TITLE ("A slow mean reverting volatility
process\n (alpha=0.5) with the expected
volatility\n"),AXESLABELS ("t","sigma(t)"),
AXESSTYLE (NORMAL) ) ;
g:=[seq(op(2,v1[j]),j=1..n)]:
sample mean:=describe[mean] (g);

T:=5
a:=0.5
m = —2
v:=0.3

y0 = =2
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A slow mean reverting volatility process
(alpha=0.5) with the expected volatility

0.14—:
0131
0.12
sigma(t) 0.11 *
0.1
0.09 1

0.08

sample_mean := 0.1002435911

Notice in the realization above that the volatility is taking an exceptionally
long time to reach a value equal to its asymptotic expectation. Now increase
« from 0.5 to 5. Observe in the plot below that the reversion to the mean is
L far more rapid.
> n:=1000:T:=5;alpha:=5;m:=-2;nu:=0.3;y0:=-2;
vl:=meanreverting(T,n,14457154,alpha,m,nu,y0) :
h:=T/n:
for j from 0 to n do:
ml :=m+ (y0-m)*exp (-alpha* j*h) :
m2:=nu”2* (l-exp (-2*alpha*j*h)):
Q[jl:=[j*h,evalf (exp (ml+0.5*m2)) ]:
end do:
v2:=[seq(Q[j1,3=0..n)1:
PLOT (CURVES (v1l,v2),TITLE ("A faster mean reverting volatility
process\n (alpha=5) with the expected
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volatility\n"),AXESLABELS ("t","),TEXT([0.2,0.3],
"sigma (t)", ALIGNRIGHT) ,AXESSTYLE (NORMAL));
g:=[seq(op(2,v1[]j]),j=1l..n)]:
sample_mean:=describe[mean] (g);

T:=5
a:=05H
m:= —2
v:=0.3
y0 = -2

A faster mean reverting volatility process
(alpha =5) with the expected volatility

0.3 sigma(t)
0.25

0.2
0.15

0.1

sample_mean = 0.1234165404

| Finally, increase o from 5 to 50, giving very fast reversion to the mean.
> n:=1000:T:=5;alpha:=50;m:=-2;nu:=0.3;y0:=-2;
vl:=meanreverting(T,n,14457154,alpha,m,nu,y0) :
h:=T/n:
for j from 0 to n do:
ml:=m+ (y0-m)*exp (—alpha* j*h) :
m2:=nu”2* (l-exp (-2*alpha*j*h)) :
Q[j1:=[j*h,evalf (exp(ml+0.5*m2)) ]:
L L end do:
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v2:=[seq(Q[j1,3=0..n)1:
PLOT (CURVES (vl,v2),TITLE ("A fast mean reverting volatility

process \n (alpha=50) with the expected
volatility") ,AXESLABELS ("t","sigma (t)"),AXESSTYLE (NORMAL) ) ;

g:=[seq(op(2,v1[j]),j=1..n)1:
sample_mean:=describe[mean] (g);

T:=5
a =50
m = —2
v:=0.3
y0 = -2

A fast mean reverting volatility process
(alpha =50) with the expected volatility

0.3

0.25
0.2

sigmayt)

0.15

0.1

sample_mean = 0.1353869997
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Appendix 7: Discrete
event simulation

7.1 G/G/1 queue simulation using the regenerative
technique

For procedure ‘ggl’, the aim is to estimate the long-run average line length.
Line length is the number of customers in the queueing system. It includes any
customer currently being served. (The queue length is the number of customers
waiting for service.) The program assumes that interarrival times are indepen-
dently Weibull distributed with P(z < X) = exp[—(\z)’] for 0 <, 0 < z,
and that service durations are independently distributed with complementary
cumulative distribution P(z < D) = exp[—(uz)”] for 0 < 8, 0 < . The expec-
tation and standard deviation of these are printed out. For stationary beha-
viour, the mean interarrival time should be greater than the mean service
duration. Other distributions can be used by suitable modifications to the
program. The three-phase method for discrete event simulation is used. The
bound state changes are (i) customer arrival and (ii) customer departure. The
only conditional state change is (iii) start customer service. Separate streams are
used for the two types of sampling activity. This has benefits when performing
antithetic replications. The regeneration points are those instants at which the
system enters the empty and idle state and » regeneration cycles are simulated.

[ > with(stats):

Warning, these names have been redefined: anova, describe,
fit, importdata, random, statevalf, statplots, transform.

Simulation and Monte Carlo: With applications in finance and MCMC J. S. Dagpunar
© 2007 John Wiley & Sons, Ltd
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> ggl:=proc (lambda,mu, gam,beta,n, seedl, seed2) local

rho, seeda, seedb,m, clock, L, Lp, a,d, reward, k, tau,prev,delta,
u,v,R,tau,TAU,bl,b2,al,a2,a3,a4,a5,a6,f,stderr,a7,gaml,
betal,gam2,gam3,beta2,beta3,vl;
gaml:=1/gam;betal:=1/beta;
gam?2 :=evalf (GAMMA (gaml+1l)) ;
gam3:=evalf (GAMMA (2/gam+1)) ;
beta2:=evalf (GAMMA (betal+l));
beta3:=evalf (GAMMA (2/beta+l));
print ("Mean inter-arrival time"=gam2/lambda, "Std dev of
inter-arrival time"=sqrt (gam3-gam2”2) /mu) ;
print ("Mean service duration"=beta2/mu,"Std dev of service
duration"=sqrt (beta3-beta272) /mu) ;
seeda:=seedl;seedb:=seed2;
# SIMULATE n REGENERATIVE CYCLES - REGENERATIVE POINTS ARE
WHEN SYSTEM ENTERS THE BUSY STATE FROM THE EMPTY & IDLE
STATE
for m from 1 to n do;
# START OF NEW CYCLE

tau:=0;

L:=1;

reward:=0;

randomize (seeda) ;

seeda:=rand () ;

u:=evalf (seeda/10712);

a:=tau+ (-1n(u)) “gaml/lambda;

randomize (seedb) ;

seedb:rand () ;

v:=evalf (seedb/10712) ;

d:=tau+ (-1n(v)) *betal/mu;

do

tauprev:=tau;

tau:=min(a,d);

delta:=tau-tauprev;

reward:=reward+delta*L;

# CHECK FOR 'END OF CYCLE’

if tau=a and L=0 then break end if;

# CHECK FOR BOUND ACTIVITY ‘ARRIVALS

if tau=a then
L:=L+1;
randomize (seeda) ;
seeda:=rand();
u:=evalf (seeda/10712);
a:=clock+(-1n(u) ) “gaml/lambda;
end if;

# CHECK FOR BOUND ACTIVITY ’'DEPARTURE’

if tau=d then;
L:=L-1;
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d:=infinity
end if;
# CHECK FOR CONDITIONAL ACTIVITY ’START SERVICE/
if L>0 and d=infinity then;

randomize (seedb) ;

seedb:=rand () ;

vi=evalf (seedb/10712);

d:=tau+ (-1n(v)) “betal/mu;

end if;
end do;
# END OF CYCLE
# TAU[m]=LENGTH OF m th. REGENERATIVE CYCLE
# R[m]=CYCLE 'REWARD =int (L(t),t=0..TAU[m]), where L(t)IS
NUMBER IN SYSTEM AT TIME t, AND t IS THE ELAPSED TIME SINCE
START OF m th. CYCLE
TAU[m] :=tau;
R[m] :=reward;
end do;
# END OF n th CYCLE
bl:=[seq(R[m],m=1..n)];
b2:=[seq(TAU[m],m=1..n) ];
al:=stats[describe,mean] (bl);
a2:=stats[describe,mean] (b2) ;
a3:=stats[describe,variance] (bl);
ad:=stats[describe,variance] (b2);
a5:=stats[describe,covariance] (bl,b2);
a6:=al/a2;
a7:=a6* (1+(a5/al/a2-a4/a2/a2)/n); #a7 IS MODIFIED RATIO
ESTIMATOR OF TIN, M. (1965),JASA, 60, 294-307
f:=a3+ad*a7"2-2*a7*a5;
stderr:=sqrt(f£/n)/a2;
print ("mean cycle length"=a2);
print ("estimate of mean line length"=a7):;
print ("95% Conf Interval for mean line
length"=a7-1.96* stderr, "to",a7+1.96*stderr) ;
. end proc:

Now check that the program performs as expected for the M/M/1 system.

> ggl(1,2,1,1,10000,246978,71586) ;
print ("

ggl(1,1.5,1,1,10000,246978,71586);
print ("

")

ggl(1,1.1,1,1,10000,246978,71586);

‘Mean interarrival time’ =1 ‘Std dev of interarrival time’=0.5000000000
‘Mean service duration’=0.5000000000, ‘Std dev of service duration’=0.5000000000
‘mean cycle length’=2.003817572

285



286 Appendices

‘estimate of mean line length’=0.9993680613
‘95% Confidence interval for mean line length’=0.9503482328,’to’, 1.048387890
i \

s

‘Mean interarrival time’= 1., ‘Std dev of interarrival time’=0.6666666667
‘Mean service duration’ =0.6666666667, ‘Std dev of service duration’ =0.6666666667
‘mean cycle length’=3.014993555
‘estimate of mean line length’=2.030197245
‘95%  Confidence interval for mean line length’=1.903465437, ‘to’, 2.156929053

s

‘Mean interarrival time’= 1., ‘Std dev of interarrival time’=0.9090909091
‘Mean service duration’=0.9090909091, ‘Std dev of service duration’=0.9090909091
‘mean cycle length’ = 11.44855979
‘estimate of mean line length’=10.32733293
‘95% Confidence interval for mean line length’=9.087027523, ‘to’, 11.56763834

Note how the confidence interval becomes wider as the traffic intensity
approaches 1. Replace U(0,1) random numbers in ‘ggl’ by 1—U(0,1) random
| numbers, i.e. perform antithetic replications.
> ggl(1,2,1,1,10000,246978,71586) ;

print ("

")

ggl(1,1.5,1,1,10000,246978,71586) ;
print ("

")

ggl(1,1.1,1,1,10000,246978,71586) ;
‘Mean interarrival time’= 1., ‘Std dev of interarrival time’=0.5000000000
‘Mean service duration’=0.5000000000, ‘Std dev of service duration’=0.5000000000
‘mean cycle length’=1.980971270
‘estimate of mean line length’=1.006757945
‘95% Confidence interval for mean line length’=0.9547306296, ‘to’, 1.053785260
‘ \

s

‘Mean interarrival time’= 1., ‘Std dev of interarrival time’=0.6666666667
‘Mean service duration’ = 0.6666666667, ‘Std dev of service duration’=0.6666666667
‘mean cycle length’=2.958999958
‘estimate of mean line length’ = 1.952424988
‘95% Confidence interval for mean line length’=1.839236291, ‘to’, 2.065613685

s
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‘Mean interarrival time’=1.,°Std dev of interarrival time’=0.9090909091
‘Mean service duration’=0.9090909091, Std dev of service duration’=0.9090909091
‘mean cycle length’=10.86151154
‘estimate of mean line length’=10.15972516
‘95% Confidence interval for mean line length’=8.897052772, ‘to’,11.42239555

The results are summarized in the text. Now experiment with the program

for systems where no closed form results are available. Note that mean

waiting times in the system (waiting in the line) and in the queue can then
L be obtained using Little’s result.

H 7.2 Simulation of a hospital ward

E‘ 7.2.1 Procedure hospital_ward

The procedure ‘hospital ward’ simulates a ward of n beds. Arrivals form
a Poisson process of rate A and patient occupancy durations are Weibull
distributed with the complementary cumulative distribution function,
P(z < X) = exp|—(uz)’] for 0 < 3, 0 < z. If an arriving patient finds
all beds occupied the following protocol applies. If the time until the next
‘scheduled’ departure is less than o, then that patient leaves now (early
departure) and the arriving patient is admitted to the momentarily vacant
bed. Otherwise, the arriving patient cannot be admitted and is referred
elsewhere. Using the ‘three-phase’ terminology, the bound events are
() an arrival and (ii) a normal (scheduled) departure. The conditional events
are (iii) normal admission of patient, (iv) admission of patient following
early departure, and (v) referral of the arriving patient. The following
variables are used:

simtim= duration of simulation

n = number of beds in unit

t0] j]=ranked (ascending) scheduled departure times for bed j, at start of
simulation, with t0[j] = infinity indicating bed is currently unoccu-
pied, j=1,...,n

« =threshold early departure parameter

seeda = seed for random number stream generating arrivals

seedb =seed for random number stream generating durations of time
patient spends in unit

clock =present time
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clockprev = time of previous event

6 =time since last event

t[j] =ranked (ascending) scheduled departure times for bed j, at current
time, with t[j] =infinity indicating bed is currently unoccupied,
j=1....n

a = time of next arrival

nocc =number of occupied beds

q = 1,0 according to whether or not there is a patient momentarily requiring
admission

na = cumulative number of arrivals

noutl = cumulative number of normal departures

nout2 = cumulative number of early departures

na = cumulative number of admissions

nrefer = cumulative number of referrals

cum/[j] =cumulative time for which occupancy is j beds, j=1,..,n

[ > restart;

> hospital ward:=proc(simtim,n, t0,alpha, lambda, mu,beta,
seeda, seedb) 1local
q,d,t,clock,rl,a,clockprev, cum, na,noutl,nin, r2,nout2,
nrefer,delta, nocc, seedl, seed2, j,betal, f,s,util, r, beta2,
beta3, short, ed;
seedl:=seeda; seed2:=seedb;
betal:=1/beta;
beta2:=evalf (GAMMA (betal+l));
beta3:=evalf (GAMMA (2/beta+l)) ;
print (" INPUT
DATA ")
print ("Arrival and service seeds"=seeda,seedb);
print ("Run length in days"=simtim);
print ("Number of beds"=n,"Poisson arrival rate per
day"=lambda, "Mean (non reduced) length of stay in
days"=beta2/mu, "Std dev of (non reduced) length of
stay in
days"=sqgrt (beta3-beta272) /mu) ;
print ("Early departure parameter in days"=alpha);
nocc:=0;
cum[0] :=0;
# COMPUTE THE NUMBER OF BEDS OCCUPIED AT TIME ZERO FROM
THE INITIAL SCHEDULED DEPARTURE DATE FOR EACH BED
for j from 1 to n do;
if tO0[j]l<infinity then nocc:=nocc+l end if;
cum[j]:=0
end do;
print ("Bed state at time zero - Scheduled departure times
are"=[seq(t0[]j1,3=1..n)1);




Appendices

# INITIALISE OTHER VARIABLES, SORT INITIAL DEPARTURE
DATES, SAMPLE TIME OF FIRST ARRIVAL, AND ADVANCE
SIMULATION TIME TO FIRST EVENT
q:=0;
na:=0;noutl:=0;nout2:=0;nin:=0;nrefer:=0;short:=0;
t:=sort (t0);
clock:=0;
randomize (seedl) ;
seedl:=rand();
rl:=evalf (seedl1/10712);
a:=clock-1n(rl) /lambda;
clockprev:=clock;
clock:=min(a,t[1]);
# CHECK SIMULATION FINISHED. IF NOT UPDATE CUMULATIVE TIME
THAT nocc BEDS HAVE BEEN OCCUPIED;
while clock<=simtim do;
delta:=clock-clockprev;
cum[nocc]:=cum[nocc]l+delta;
# BOUND STATE CHANGE : ARRIVAL
if clock=a then;
na:=na+l;
randomize (seedl) ;
seedl:=rand() ;
rl:=evalf (seedl1/10712);
a:=clock-1n(rl)/lambda;
q:=1;
else # BOUND STATE CHANGE : DEPARTURE;
t[1]:=infinity;
t:=sort (t):;
nocc:=nocc-1;
noutl:=noutl+1l;
end if;
# CONDITIONAL STATE CHANGE :NORMAIL ADMISSION
if g=1 and nocc<n then;
nin:=nin+l;
nocc:=nocc+l;
randomize (seed2) ;
seed2:=rand() ;
r2:=evalf (seed2/10712) ;
t[nocc]:=clock+(-1n(r2)) *“betal/mu;

t:=sort(t);
q:=0;
end if;

# CONDITIONAL STATE CHANGE: ADMISSION OF PATIENT FOLLOWING
EARLY DEPARTURE
if g=1 and nocc=n and t[1]-clock<=alpha then;
nin:=nin+1;
nout2:=nout2+1;
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short:=short+t[1l]-clock;
randomize (seed2) ;
seed2:=rand () ;
r2:=evalf (seed2/10°12);
t[1]:=clock+(-1n(r(2))~betal/mu;
t:=sort(t);
q:=0;
end if;
# CONDITIONAL STATE CHANGE : REFERRAL OF ARRIVING PATIENT
if g=1 and nocc=n and t[1]-clock>alpha then;
randomize (seed2?) ;
seed2:=rand () ; # THIS RANDOM NUMBER IS GENERATED BUT
NOT USED! THIS IS DONE TO PRESERVE 1-1 CORRESPONDENCE
BETWEEN RANDOM NUMBERS AND PATIENTS’ LENGTHS OF STAY (IN
CASE ANTITHETIC VARIATES ARE USED)
nrefer:=nrefer+l;
qg:=0;
end if;
# STORE CURRENT SIMULATION TIME AND ADVANCE IT TO THE
EARLIER OF TIME OF NEXT DEPARTURE AND OF NEXT ARRIVAL
clockprev:=clock;
clock:=min(a,t[1l]):
end do;
# SINCE clock NOW EXCEEDS REQUIRED SIMULATION TIME RESET
IT TO simtim, CALCULATE TIME SINCE PREVIOUS EVENT AND
UPDATE cum[nocc]
clock:=simtim;
delta:=clock-clockprev;
cum[nocc]:=cum[nocc]+delta;
# COMPUTE AVERAGE UTILIZATION, AVERAGE REFERRAL RATE,
AVERAGE REDUCTION IN LENGTH OF STAY FOR REFERRED PATIENTS,
AND LIST f FOR PLOTTING BED OCCUPANCY DISTRIBUTION
:=0;
for j from 1 to n do;
:=s+j*cum[j];
end do;
f:=[seq([j,cum[j]/simtim],j=0..n)]1;
util:=s/n/simtim;
:=evalf (nrefer/na);
ed:=evalf (nout2/na) ;
if nout2>0 then short:=short/nout2 end if;
print (" OUTPUT
STATISTICS ")
print ("Utilisation"=util, "Referral proportion"=r,"Early
departure proportion"=ed, "Avg reduced stay in days for
early departures"=short) ;
[util, r, £];
end proc;
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[ hospital_ward: = proc(simtim, n, t0, o, A, W, B, seeda, seedb)
local ¢, d, t, clock, rl, a, clockprev, cum, na, noutl, nin, r2, nout2, nrefer,
d, noce, seedl, seed2, j, Bl, f, s, util, r, B2, B3, short, ed,
seedl: = seeda;
seed2: = seedb;
Bl:=1/B;
B2:=evalf(I'(B1 +1));
B3:=evalf(l'(2/B+ 1));
print(‘ INPUT DATA \
D
print(‘Arrival and service seeds’=seeda, seedb);
print(‘Run length in days’=simtim);
print(‘Number of beds’=n,'Poisson arrival rate per day =A,
‘Mean (non reduced) length of stay in days’=p2/u,
‘Std dev of (non reduced) length of stay in days’=sqrt(B3 — p2"2)\w);
print (‘Early departure parameter in days’=a);
nocc:=0;
cum[0]: =0;
for j to n do if t0[j]<oo then nocc:=nocc+1 end if;, cum[j]l:=0 end do;
print (‘Bed state at time zero - Scheduled departure times are’=
[seq(:0[/1, j=1..n)]):

q:=0;

na:=0;

noutl:=0;
nout2:=0;

nin: =0;

nrefer. =0;
short.=0;

t: =sort(t0);
clock:=0;
randomize(seed]);

seedl:=rand( );
r1:=evalf(1/1000000000000*seed]);
a:=clock — In(rl)/\;
clockprev: = clock;
clock: =min(a, [1]);
while clock < simtim do
6:=clock — clockprev;
cum[noccl: = cum[nocc] + 9;
if clock=a then
na :=na+1;
randomize(seed]);
seedl:=rand( );
r1:=evalf(1/1000000000000*seed1);
a:=clock — In(rl)/\;
g=1
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else f[1]:=o0; t:=sort(¢); nocc:=nocc-1; noutl:=noutl +1
end if;
if g=1 and nocc<n then
nin:=nin+ 1,
nocc:=nocc+1;
randomize(seed?);
seed2:=rand( );
r2:=evalf(1/1000000000000* seed?);
flnoccl: = clock + (—In(r2))"B1/w;
t:=sort(?);
q:=0
end if;
if g=1 and nocc=n and 1[1]-clock<o then
nin:=nin+1;
nout2: =nout2 + 1;
short: = short + t[1]-clock;
randomize(seed?);
seed2:=rand( );
r2:=evalf(1/1000000000000*seed?);
f1]: = clock + (-In(r2))"B1/u;
t:=sort(?);
q:=0;
end if;
if g=1 and nocc=n and a<[1]-clock then
randomize(seed?); seed2:=rand( ); nrefer:=nrefer+1; q:=0
end if;
clockprev: = clock;
clock: =min(a,[1])
end do;
clock: = simtim;
d: = clock — clockprev,
cum[noccl: = cum[nocc] + 3;
s:=0;
for j to n do s:=s+;*cum[j] end do;
fi=I[seq([j, cum]|j]/simtim], j=0..n)];
util: = s/(n*simtim);
r:=evalf(nrefer/na);
ed: = evalf(nout2/na);
if 0<nout2 then short.=short/nout? end fif;
print(‘ OUTPUT STATISTICS_____\
D

print(‘Utilisation’ = util,'Referral proportion’=r,

‘Early departure proportion’=ed,
‘Avg reduced stay in days for early departures’=short);
[util, r, f]

L L end proc
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E‘ 7.2.2 \Verification against the M/M/n/n system

[ A partial verification of the simulation program is to test the output
distribution of bed occupancy against M/M/n/n. This is done by setting
0 =1 and a = 0 (no early departures, so all arrivals to a full ward are
referred). The stationary probabilities for the theoretical model are
computed below in p[0],...,p[n]. Without carrying out a formal test
of hypothesis, it is apparent that the model results are in good agree-
L ment with theory.
> seeda:=87341:seedb:=64287:
n:=10:
t0:=[3.3,1.4,6.3,2.7,8.5,4.3,8.5,infinity,infinity,
infinity]:
simtim:=100000:alpha:=0:1lambda:=1.2:mu:=0.15:beta:=1:
v:=hospital ward(simtim,n,t0,alpha, lambda,mu,beta,
seeda, seedb) :
u:=op(3,v):d:=seq([[j,0],0op(j+1,u)],J=0..n) :# NB: d[]j]
is a list of two elements - these are the coordinates of
two points, [j,0] and [j,proportion]. The line joining
these two points is vertical and its height is the
proportion of time that j beds are occupied;
#
# CALCULATE M/M/n/n stationary probabilities:
#
p[0]:=1:
s:=p[0]:
for j from 1 to n do:
pl[il:=p[Jj-1]1* lambda/mu/j:
s:=s+p[j]:
end do:
for j from 0 to n do;
plj1:=p[j1/s:
e:=seq([[j+0.1,0]1,[§+0.1,p[3111,3=0..n):
end do:
PIOT (CURVES (d, COLOR(RGB, 1, 0,0)),CURVES (e, COLOR(RGB, O,
0, 1)),AXESLABELS ("beds", "proportion of simulated
time"),AXESSTYLE (NORMAL) , TITLE ("Bed occupancy
distribution, theory (red), \n simulation (blue)"));# PIOT
A SET OF VERTICAL LINES DEFINED BY THE LIST 'd' AND A
SLIGHTLY DISPLACED SET DEFINED BY THE LIST 'e'
‘ INPUT DATA \
‘Arrival and service seeds’ = 87341, 64287
‘Run length in days” = 100000
‘Number of beds” = 10, ‘Poisson arrival rate per day’ = 1.2,
‘Mean (non reduced) length of stay in days’ = 6.666666667,
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‘Std dev of (non reduced) length of stay in days’ = 6.666666667
‘Early departure parameter in days’ = 0
‘Bed state at time zero - Scheduled departure times are’ =
[3.3, 1.4,6.3,2.7, 8.5, 4.3, 8.5, 00, 00, <]

‘ OUTPUT STATISTICS \
“Utilisation’ =0.7059855552, ‘Referral proportion’ =0.1250620923,
‘Early departure proportion’=0., ‘Avg reduced stay in days for early
departures’=0

Bed occupancy distribution, theory (red), simulation (blue)

beds

E 7.2.3 A 20 bed ward with nonexponential service
durations and no early departure

> seeda:=87341:seedb:=64287:
n:=20:
t0:=[3.3,1.4,5.7,3.3,0.1,1.2,2.1,5.6,3.2,2,6,7.1,3.3,
4.5,5.3,2.5,4.4,2.5,infinity,infinity,infinity]:
simtim:=10000:
alpha:=0:lambda:=2.5:mu:=0.15:beta:=2.5:
v:=hospital_ward(simtim,n, t0,alpha, lambda,mu,beta,
seeda, seedb) :
u:=op(3,v):d:=seq([[J,0], op(j+1,u)]1,j=0..n):
PLOT (CURVES (d) ,AXESLABELS ("beds", "proportion of simulated
time"),AXESSTYLE (NORMAL) , TITLE ("Bed occupancy
distribution"));
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¢ INPUT DATA \

‘Arrival and service seeds’ = 87341, 64287
‘Run length in days” = 10000
‘Number of beds’ = 20, “Poisson arrival rate per day” = 2.5,
‘Mean (non reduced) length of stay in days’ = 5.915092117,
‘Std dev of (non reduced) length of stay in days’ = 2.531110333
‘Early departure parameter in days’ = 0

‘Bed state at time zero - Scheduled departure times are’ = [3.3, 1.4, 5.7, 3.3, 0.1,

1.2,2.1,56,3.2,2,6,7.1,3.3,4.5,5.3,2.5,4.4, 2.5, 00, ]

‘ OUTPUT STATISTICS \
‘Utilisation’ = (.7082827055, ‘Referral proportion’ = 0.04285542795,
‘Early departure proportion” = 0., ‘Avg reduced stay in days for early

departures’ = 0

Bed occupancy distribution

0.1

0.08

0.06

0.04

0.02

5 10 15 20
beds

H 7.2.4 As appendix 7.2.3 but with departures up to 1
day early

> seeda:=87341:seedb:=64287:
n: = 20:
t0: = [3.3,1.4,5.7,3.3,0.1,1.2,2.1,5.6,3.2,2,6,7.1,3.3,
4,.5,5.3,2.5,4.4,2.5,infinity,infinity,infinity]:
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simtim:=10000:alpha:=1:lambda:=2.5:mu:=0.15: beta:=2.5:
v: =hospital_ward(simtim,n,t0,alpha, lambda,mu,

beta, seeda, seedb) :
u:=op(3,v):d:=seq([[],0],0p(3+1,u)],J=0..n):

PIOT (CURVES (d) , AXESLABELS ("beds", "proportion of simulated
time") ,AXESSTYLE (NORMAL) , TITLE ("Bed occupancy
distribution"));

¢ INPUT DATA \

‘Arrival and service seeds’ = 87341, 64287
‘Run length in days’ = 10000

‘Number of beds’ = 20, ‘Poisson arrival rate per day’ = 2.5,

‘Mean (non reduced) length of stay in days’ = 5.915092117,
‘Std dev of (non reduced) length of stay in days’ = 2.531110333

‘Early departure parameter in days’ = 1
Bed state at time zero - Scheduled departure times are’ = [3.3, 1.4, 5.7, 3.3, 0.1,
1.2,2.1,56,32,2,6,7.1,3.3,4.5,53,2.5,44, 2.5, co,]

¢ OUTPUT STATISTICS \

‘Utilisation” = 0.7254928095, ‘Referral
proportion” = 0.01292465288,
“Early departure proportion” = 0.09183305990,
“Avg reduced stay in days for early departures” = 0.4384030484

Bed occupancy distribution

0.1

0.06

beds
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H 7.2.5 Plot performance as a function of the early
departure parameter «

The procedure is now called repeatedly for values of « between 0 and 2
days, plotting the utilization and referral rate in each case. The print
statements in ‘hospital_ward’ in Appendix 7.2.1 should be suppressed
by inserting ‘#’ before them.

> alphamax:=2:

m:=floor (alphamax/0.1) :
simtim:=1000:1lambda:= 4:mu:=0.15:beta:=2.5:
n:=25:
betal:=1/beta:
beta2:=evalf (GAMMA (betal+l)):
beta3:=evalf (GAMMA (2/beta+l)) :
t0:=[3.3,1.4,5.7,3.3,0.1,1.2,2.1,5.6,3.2,2,6,7.1,3.3,
4.5,5.3, 2.5,4.4,2.5,4.8,3.5,infinity,infinity,infinity,
infinity,infinity]:
print (" INPUT
DATA ")
seeda:=87341:seedb:=64287:
print ("Arrival and service seeds"=seeda,seedb);
print ("Run length in days"=simtim);
print ("Number of beds"=n,"Poisson arrival rate per
day"=lambda, "Mean (non reduced) length of stay in
days"=beta2/mu,"Std dev of (non reduced) length of stay
in days"=sqgrt (beta3-beta2”2) /mu) ;
for k from 0 to m do:

alpha:=0.1*k:

seeda:=87341:seedb:= 64287:
v:=hospital_ward(simtim,n,t0,alpha, lambda,mu,beta,
seeda, seedb) :

pllk]l:=[alpha,op(l,v)]:

p2[k]:=[alpha,2*0op(2,V) ]:
end do:
vl:=seq(pll[k],k=0..m):
v2:=seq(p2[k],k=0..m):
PIOT (CURVES ([v1],[v2]),VIEW(O..alphamax,0..1) ,AXESLABELS
("alpha", "Utilization (upper) and proportion referred*?2
(lower) ") ,AXESSTYLE (NORMAL) , TITLE ("Utilization and
Referral rates as a function of alpha"));

¢ INPUT DATA

‘Arrival and service seeds’ = 87341, 64287
‘Run length in days’ = 1000
‘Number of beds’ = 25, ‘Poisson arrival rate per day’ = 4,
‘Mean (non reduced) length of stay in days’ = 5.915092117,
L L ‘Std dev of (non reduced) length of stay in days’ = 2.531110333
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Utilization and referral rates as a function of alpha

o o o
EN o ©

Utilization (upper) and proportion referred*2 (lower)
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Appendix 8: Markov chain
Monte Carlo

H 8.1 Sampling from N(0,1) using the random walk
algorithm

We wish to sample from a density f{x) oc exp(—x?/2) with a proposal density
q(y|x) = 1/(2a) on support (x — a,x + a). Therefore, the acceptance prob-

ability is
a(x,y) = min {1,%} = min {l,exp (xz 2}72)] .

The procedure ‘memc’ samples iter variates, given x.

> mcmc:=proc (x0,a,iter)local t,y,alpha,r,xo0ld,xnew,b,count;

x01d:=x0;

count:=0;

b[0]:=[0,x01d];

for t from 1 to iter do;
y:=xold-a+2*a*evalf (rand () /10"12);
alpha:=min(1,exp(-0.5* (y*2-x0l1ld"*2)));
r:=evalf (rand () /10712);
if r<=alpha then xnew:=y else xnew:=xold end if;
b[t]:=[t,xnew];
xold:=xnew;

end do;

[seq(b[t],t=0..iter)];

B end proc:

[ > with(stats[statplots]):

Simulation and Monte Carlo: With applications in finance and MCMC J. S. Dagpunar
© 2007 John Wiley & Sons, Ltd
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Sample 500 variates starting with xo = —4 and a = 0.5. Note the long burn-in
time and poor exploration of the state space (slow mixing of states) due to the
| small step length.
> seed:=randomize (59274);
x:=mcmc (-4,0.5,500) :
PLOT (CURVES (x) , TITLE ("x-value against iteration
number:a=0.5") ,AXESSTYLE (NORMAL) ) ;

seed:= 59274

x-value against iteration number:a=0.5

100 200 300 400 500

Now repeat with « = 3. The situation is much improved in both respects.
Note that prospective variates are frequently rejected (horizontal sections
of plot), resulting in no change in the variate from one iteration to the
L next.
> seed:=randomize (59274);
x:=mcmc (-4,3,500) :
PIOT (CURVES (x) , TITLE ("x-value against iteration
number:a=3") ,AXESSTYLE (NORMAL) ) ;

seed.= 59274

x-value against iteration number: a=3
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Sample 100000 variates, starting with initial value of 0, to produce a
histogram showing their distribution, together with sample mean and
| variance.
> seed:=randomize (59274);
x:=mcmc (-4,3,100000) :
res:=[seq(op(2,x[t]),t=1..100000)]:
histogram(res, title="distribution of sampled x-
values", labels=["x","density"], numbars=100);
Mean=describe[mean] (res) ; StdDev=describe[ standarddeviation

I(res);

seed: = 59274

distribution of sampled x-values

0.4
0.3
density

0.2

0.1

Mean = 0.0001202304356
StdDev = 1.006266364

H 8.2 Reliability inference

We are interested in determining survival probabilities for components.
The age at failure of the ith component is X;,i=1,2,.... These are i.i.d.
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Weibull random variables with parameters « and (, where the joint prior
distribution is

4 1

B a-nr(-+1), 1 1.5

1000 @~V <oz+ ) Sas i
gla,B) = 4 :

2 o—ar(-+1), 15 2

1000 >~ (a+ ) Sass

and 2000/T(1/a+ 1) < 8 <3000/T'(1/ac+ 1). Then the joint posterior
density given the data {x;,i=1,...,n} is

(@, ) oc a3 exp [— > (%) ] (1) (e ).

i=1

Using an independence sampler with the proposal density equal to the joint
prior, and given that the current point is («, 3), the acceptance probability
for a candidate point(ag, fc) is

Zﬂc—nac exp | — - <ﬁ) QC‘| (J ce. ”)acfl
“ h [ i=1 Pe ! i
" 31 exp l_ zn: (%) O‘] (X1 x)* !

The candidate point is generated from the joint prior by noting that the
marginal prior of «. is a symmetric triangular density on support (1,2).
Therefore, given two uniform random numbers R; and R,, we set

min< 1,

o, =1 JrO.S(R] + Rz).

Given ag, the conditional prior density of (. is

2000 3000
U<F(1/ac +1) T (1/ac + 1)>

10002 + Ry)
T T ae+ 1)

SO we set

The procedure ‘fail’ performs k iterations of this independence sampler. It
returns a matrix C having k rows and ¢ + 2 columns. The first ¢ elements of
the ith row give sampled survivor probabilities at specified ages
»[1],...,¥[q]. The last two elements of the ith row give the sampled alpha
and beta at this ith iteration (point). The plots show that the burn-in time is




[
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negligible and that the mixing of states is quite reasonable. Bayes estimates
are given for survival probabilities at ages 1000, 2000, and 3000 hours. Of
course, if interval estimates are required it will be necessary to replicate these
runs. It is instructive to see the effect of reducing the sample size (discard
some of the original 43 ages at failure). The posterior density should then
reflect the prior density more so, with the result that the acceptance
probability becomes higher and successive « and 3 values are less correlated
than previously. This is good from the viewpoint of reducing the variance of

| estimators.

> restart;

Here x is a list of 43 ages (in hours) at failure.

> x:= [293, 1902, 1272, 2987, 469, 3185, 1711, 8277, 356,

822,2303, 317, 1066, 1181, 923, 7756, 2656, 879, 1232,

697, 3368, 486, 6767, 484, 438, 1860, 113, 6062, 590,

1633, 2425, 367, 712, 953, 1989, 768, 600, 3041, 1814,

141, 10511, 7796, 14621;
x:= [293, 1902, 1272, 2987, 469, 3185, 1711, 8277, 356, 822, 2303, 317, 1066,
1181, 923, 7756, 2656, 879, 1232, 697, 3368, 486, 6767, 484, 438, 1860, 113,
6062, 590, 1633, 2425, 367, 712, 953, 1989, 768, 600, 3041, 1814, 141, 10511,
7796, 1462]

The procedure ‘fail’ returns the simulation output from the MCMC.

> fail:=proc(k,a,b,n,x,q,y) local
al,b1,C,xp,sp,u,1l,1i,rl,r2,r3,r4,r5,r6,mp,ap, rate,bp,L2,j;
# k=# of iterations;

# (a,b)=initial (alpha,beta);

# x= failure data;

# n=number of data items in x;

# g=number of ages at which survivor probabilities are
required;

# y[il=age at which a survivor probability is required for
i=1l..q

al:=a;bl:=b;
C:=Matrix (k,q+2);
# Compute log likelihood (L1l) for current point (al,bl);
xp:=1;
sp:=0;
for u from 1 to n do;
xp:=xp*x[ul;
sp:=sptx[u]”al;
end do;
xp:=1ln(xp);
Ll:=evalf(n*1ln(al/bl”al)+(al-1)*xp-sp/bl*al):;
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>

# Perform k iterations;
for i from 1 to k do;
rl:=evalf(rand()/10712);r2:=evalf(rand()/10712);r3:=evalf
(rand () /10712) ;r4:=evalf (rand () /10°12);

# Sample candidate point (ap,bp) and compute likelihood
(L2) for (ap,bp):

ap:=1+0.5* (rl+r2);

bp:=1000* (2+r3) /GAMMA (1/ap+1) ;

sp:=0;

for u from 1 to n do;

sp:=sp+x[u]“ap:

end do;

L2:=evalf (n*1n (ap/bp~ap) + (ap-1) * xp-sp/bp~ap) ;

# Decide whether to accept or reject candidate point;

if 1n(r4)<L2-L1 then al:=ap; bl:=bp; L1l:=L2; end if;

# Enter survivor probs and alpha and beta values into
ith row of C;

for j from 1 to gq do;

C[i,jl:=evalf(exp(-(y[j1/bl)"al));

end do;

C[i,gtl]:=evalf(al);C[i,g+2]:=evalf (bl);

end do;

C;

end proc:

Set up parameter values. A sensible choice for initial « is the mode of the
| prior marginal. The initial 3 is set to the mode of its prior given a.

n:=43;a:=1.5;b:=2500/GAMMA (1/a+1) ;k:=5000;qg:=3;y:=Vector
(q);y[1]1:=1000;y[2]:=2000;y[3]:=3000;y;

n =43
a :=1.5
b :=2769.330418
k :=5000
q =3
0
y=10
0
1 := 1000
yy := 2000
y3 := 3000
1000
2000

3000
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Perform 5000 iterations.

> randomize (561293);d:=fail (k,a,b,n,x,q,y);

561293

5000 x 5 Matrix
Data Type: anything

d:= Storage: rectangular
Order: Fortran_order
> f:=Matrix(k,qt+2);
5000 x 5 Matrix
fim Data Type: anything

Storage: rectangular
Order: Fortran_order

> for 1 from 1 to k do:
for j from 1 to g+2 do:
f[lrj]:=[lrd[lrj]]:
end do;

B end do:

[ Plot diagnostics for survivor probabilities and compute point estimates.
> f3:=[seq(f[i,3],i=1..k) ]:PLOT (CURVES (f3), TITLE ("survival
probability at 3000 hours against iteration
number:") ,AXESSTYLE (NORMAL) ) ;
with (stats[statplots]):dat3:=[seqg(op(2,£f3[i]),i=1..k)]:
Estimate_ Prob_survive_3000_hours=describe[mean] (dat3);

survival probability at 3000 hours against iteration number:

b A

2000 4000

Estimate_Prob_survive_3000_hours = 0.2867886198
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> f2:=[seq(f[i,2]1,1i=1..k) 1:PLOT(CURVES (£f2), TITLE ("survival
probability at 2000 hours against iteration
number:"), AXESSTYLE (NORMAL) ) ;
dat2:=[seq(op(2,£f2[i]),i=1..k) ]:Estimate_Prob_
survive_2000_hours=describe[mean] (dat2) ;

survival probability at 2000 hours against iteration number:

0.55
0.5
0.45

0.4
0 1000 2000 3000 4000 5000

Estimate_Prob_survive_2000_hours =0.4529730938

> fl:=[seq(f[i,1]1,i=1..k) 1:PLOT(CURVES (f1), TITLE ("survival
probability at 1000 hours against iteration
number: "), AXESSTYLE (NORMAL) ) ;
datl:=[seq(op(2,£f1[i]),i=1..k)]:Estimate_Prob_survive_1000
_hours=describe[mean] (datl) ;

survival probability at 1000 hours against iteration number:

2t ngle

Estimate_Prob_survive_1000_hours = 0.6952910744

Plot diagnostics for a and 3 together with empirical posterior marginal
densities.

> f5:=[seq(f[i,5],1i=1..k) ]:PLOT(CURVES (£5), TITLE ("beta
values against iteration number"),AXESSTYLE (NORMAL)) ;
dat5:=[seq(op(2,£f5[1i]),i=1..k) ]:histogram(datb) ;Bayes
estimate_beta=describe[mean] (dat5);
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beta values against iteration number
3200

3000
2800
2600
2400
2200

0 1000 2000 3000 4000 5000

0.0015

0.001

0.0005

2000 2200 2400 2600 2800 3000 3200

Bayes_estimate_beta = 2470.294876

> f4:=[seq(f[i,4],i=1..k) ]:PLOT (CURVES (f4),TITLE ("alpha
values against iteration number"),AXESSTYLE (NORMAL)) ;
datd:=[seq(op(2,£f4[i]),i=1..k) ]:histogram(dat4) ;
Bayes_estimate_alpha=describel[mean] (dat4);
alpha values against iteration number

1.4

1.3

1.2

1.1

0 1000 2000 3000 4000 5000
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[

Bayes_estimate_alpha = 1.131475342

[ The estimate for « indicates that the components have a slowly increasing

failure rate. It is left as an exercise (Problem 8.3) to modify the procedure
‘fail’ so as to obtain an estimate of the posterior expected time to failure of a
component. It is not sufficient merely to substitute the Bayes estimates for «
and (3 into ST'(1/a + 1).

How do the Bayesian estimates compare with a classical analysis, using
maximization of the likelihood function, subject to 1 < a? (The parameter
space is restricted to the space used for the prior. This ensures that the
asymptotic Bayes and likelihood estimates would be identical.) Below, the
unrestricted likelihood function, L1, and its contour plot are computed. This
has a global maximum at & = 0.97. Using NLPsolve from the optimization
package, the constrained maximum is at @ = 1, ﬁ = 2201. This represents a
component with a constant failure rate (exponential life) and an expected

| time to failure of 2201 hours.

> with(plots):

> xp:=l:
sp:=0:
for u from 1 to n do:
xp:=xp*x[u]:
sp:=sptx[u]”al:
end do:
xp:=1n(xp) :

Ll:=evalf(n*1ln(al/bl”al)+(al-1)*xp-sp/bl”*al):
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> contourplot (exp(Ll),al=0.5..2,b1=1300..4000, contours=30,
grid=[100,100]);
3000+
2500+
b1
2000+
15004
0.7 0.8 0.9 1 11 12
al

> with (Optimization);
[ImportMPS, Interactive, LPSolve, LSSolve, Maximize,
Minimize, NLPSolve, QPSolve |

> NLPSolve (-L1, al=1..2,b1=1000..3000);
[373.966224564945776, [b1 =2201.48837205595191, al =1.]]

8.3 Pump failure

The data are from D.P. Gaver and 1.G. O’Muircheartaigh (1987), Robust
empirical Bayes analyses of event rates, Technometrics 29, 1-15.

The number of failures for pump i in time ¢[i] (i = 1,..., 10), x[i], are assumed
to be i.i.d. Poisson()\;z;) where ); are i.i.d. gamma [«, 5] and § is a realization
from gamma [§,gam]. The hyperparameters «, 6, and gam have been esti-
mated as described in the text.



310 Appendices

The procedure ‘pump’ returns, for each pump i, a list of simulated
Ay [ A, (o + x1) /(B + t;) values. The latter are individual Bayes estimates of ;.
> restart:with (stats) :with(plots):

Warning, the name changecoords has been redefined.

> x:=[5,1,5,14,3,19,1,1,4,22];
x :=[5,1,5,14,3,19, 1, 1, 4, 22]

> t:=[94.32,15.72,62.88,125.76,5.24,31.44,1.048,1.048,2.096,
10.487]:

| The Gibbs sampling procedure ‘pump’ is as follows.

> pump:=proc (betal, x, t,alpha,delta,gam,replic,burn) local
bayeslam,bayeslambda,
i,k,n,beta,al,ql,j,jj,lam,lamval, lambda, lambdaval, s, lam5,
tot;
# betaO=initial beta value

# x[i]=number of failures of pump in in time t[1i],i=1..10
# alpha, delta, gam are hyperparameters

# replic= number of (equilibrium) observations used

# burn= number of iterations for burn in

# n=number of pumps=10

# lambdavall[k]= a list of lambda values for pump k

# lam[k]= a list of [iteration number, lambda value] for
pump k

n:=10;

beta:=betal;
tot:=burn+replic;
al:=n*alphatgam;
for jj from 1 to tot do;
j:=jj-burn;
s:=0;
for k from 1 to n do;
gl:=random[gamma[x[k]+alpha, 1/ (t[k]+beta) 1] (1):
s:=s+gl;
if j>=1 then lambdalk,jl:=[j,gl];lambdavallk,j]l:=gl;
bayeslam[k,j]:=(alpha+x[k])/ (beta+t[k]);end if
end do;
s:=s+delta;
beta:=random[gammal[al,1/s]1](1):
end do;
for k from 1 to n do;
lam[ k] :=[seg(lambdalk,j],j=1..replic)];
lamvall[k]:=[seq(lambdavallk,j],j=1..replic)];
bayeslambdal[k]:=[seqg(bayeslam[k,j],j=1..replic)];
end do;
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[[seg(lam[k],k=1..n) 1, [seqg(lamval[k],k=1..n) ], [seqg(bayesla
mbdalk],k=1..n)1]11];
end proc:

> randomize (56342871) ;alpha:=0.54;delta:=1.11;gam:=2.20;beta
0:=0.25;replic:=2000;burn:=200;

56342871
a:=0.54
6:=1.11
gam = 2.20
060 :=0.25
replic := 2000
burn 1= 200

Print the Bayes failure rates and plot their posterior and prior densities.
Note that the prior becomes unbounded as the failure rate approaches zero,
so the failure rate axis does not extend to zero.

> v:=pump (betal, x,t,alpha,delta,gam, replic,burn) :
u:=evalf (lambda” (alpha-1)/ (lambda+delta) * (alpha+gam)) :
k:=int (u, lambda=0..infinity) :
va:=op(l,v):vb:=op(2,Vv) :vc:=0p(3,V):
for kk from 1 to 10 do:
v1l[kk]:=op(kk,va):
v2[kk]:=op(kk,vb) :
v3[kk]:=op (kk,vec) :
m[kk] :=max (seq(v2[kk][J],j=1..replic)):
ms[kk]:=min(seq(v2[kk][j],j=1..replic)):
failrate[kk]:=describe[mean] (v3[kk]) :
print ("Bayes estimate failure rate
pump"”, kk, "is", failrate[kk]);
end do:
xa[l]:="lambda[l]":xa[2]:="lambda[2]":xa[3]:="lambda[3]":x
af[4]:="lambda[4]":xa[5]:="1lambda[5]":
xa[6]:="lambda[6]":xa[7]:="1lambda[7]":xa[8]:="l1lambda[8]":x
a[9]:="lambda[9]":xa[l0]:="lambda[10]":
A:=array(l..5,1..2):
for 1 from 1 to 5 do:
Ali,1l]:=display ({

statplots[histogram] (v2[2*i-1]),plot (u/k, lambda=ms[2*i-1]*
0.9..m[2*¥1-1]*1.1,labels=[xa[2*i-1],"prior and posterior

densities™], labeldirections=[HORIZONTAL, VERTICAL]) },
tickmarks=[4,2]):
A[i,2]:=display({

statplots[histogram] (v2[2*i]),plot (u/k, lambda=ms[2*i1]*0.9.
.m[2¥i]*1.1,labels=[xa[2*i], "prior and posterior
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densities"], labeldirections=[ HORIZONTAL, VERTICAL]) }, tickma
rks=[2,2]):

end do:

display(A);

‘Bayes estimate failure rate pump’, 1, ‘is’, 0.05809446755
‘Bayes estimate failure rate pump’, 2, ‘is’, 0.09192159100
‘Bayes estimate failure rate pump’, 3, ‘is’, 0.08666946370
‘Bayes estimate failure rate pump’, 4, ‘is’, 0.1146666174
‘Bayes estimate failure rate pump’, 5, ‘is’, 0.5657757990
‘Bayes estimate failure rate pump’, 6, ‘is’, 0.6016311355
‘Bayes estimate failure rate pump’, 7, ‘is’, 0.7643500150
‘Bayes estimate failure rate pump’, 8, ‘is’, 0.7643500150
‘Bayes estimate failure rate pump’, 9, ‘is’, 1.470380706
‘Bayes estimate failure rate pump’, 10, ‘is’, 1.958497332

prior and posterior densities prior and posterior densities
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0. ey lambdal3] o, [===LE -y lambda[4]
prior and posterior densities prior and posterior densities
- el
0. T 5 lambda[5] 0. [ = lambdal6]
prior and posterior densities prior and posterior densities
5 5
lambda[7 ‘
0 z 7 o 5 i lambdal8]
prior and posterior densities 1 prior and posterior densities
1.4 .
0. 5 T lambda[9] o, L5 5 = lambda[10]

B‘ 8.4 Capture-recapture

We are interested in estimating population size in a capture-recapture experi-
ment consisting of two episodes. Let N = unknown population size (assumed
the same in both episodes). The prior distribution of N is assumed to be
Poisson(\).
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Let nyg, ng1, n; be the number of animals captured in the first only,

second only, and both episodes respectively. Then the number of distinct
animals captured is nprime = n; o + 1y + n;; and the total number of animals
captured in both episodes is ncap = ny g + ng,; + 2n; 1. Let p=probability that
an animal has of being capured on an episode. The prior distribution of p is
assumed to be U(0,1)

Let notcap = N-nprime. This is the number of animals in the population

that were not captured in either of the episodes. We will use Gibbs sampling to
estimate the posterior distributions of notcap and p and the Bayes estimate of
notcap.

[ > restart;

[ > with(stats) :with(stats[statplots]):

> gibbscapture:=proc (lambda,p0, notcap0,ncap,nprime,iter,

burn)local i,ii,p,notcap,pa,notcapa,tot;
burn=number of iterations for burn in
iter=number of (equilibrium) iterations used
pO=initial p-value
notcapO=initial notcap-value
:=p0;
notcap:=notcap0;
pal0]1:=[0,p1;
notcapal[0]:=[0,notcap];
tot:=iter+burn;
for ii from 1 to tot do;
i:=ii-burn;
p:=stats[random,beta[ncap+l, 2* notcap-ncap+2* nprime+11] (1) ;
notcap:=stats[random,poisson[lambda* (1-p)*21]1(1);
if i>=1 then
palil:=[1i,pl;notcapal[i]:=[i,notcap];
end if;
end do;
[[seg(pa[i],i=0..iter) ], [seq(notcapal[i],i=0..iter)]1];
end proc:

O = 3k 2k 3k

randomize (73179) :
res:=gibbscapture (250,0.3,120,160,130,500,200) :
pa:=res[1l]:notcapa:=res[2]:

PLOT (CURVES (pa) , TITLE ("p-value against iteration
number") ,AXESLABELS ("Iteration

Number", "p") ,AXESSTYLE (NORMAL) ) ;

PLOT (CURVES (notcapa) , TITLE ("population-nprime against
iteration number"),AXESLABELS ("Iteration

number"”, "notcaptured") ,AXESSTYLE (NORMAL) ) ;
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ll:=[seq(op(2,pal[i]),i=1..500)]1:# a list of p-values
12:=[seq(op(2,notcapali]),i=1..500)]1:# a list of notcap
values

13:=[seq((1-11[1i])"*2,i=1..500)]1:# a list of (l-p)"2
values

histogram(ll,title="distribution of sampled p
values", labels=["p", "density"1);
Mean=evalf (describe[mean] (11));
StdDev=evalf (describe[standarddeviation] (11));

histogram(1l2,title="distribution of sampled
notcapvalues", labels=["notcap", "density"]);
Mean=evalf (describe[mean] (12));

StdDev=evalf (describe[standarddeviation] (12));

Bayes_estimate_of number not_captured=250*evalf (describe
[mean] (13));

p-value against iteration number

0.4
0.36 1 m’
p032aw W J

0.28 .

0 100 200 300 400 500
Iteration Number
population-nprime against iteration number

160 -

140 A}

notcaptured 120 1

100 - \‘
80 1
0 100

200 300 400 500
Iteration number
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distribution of sampled p values
16
12
density 8
4
0
0.25 0.3 0.35 0.4 0.45
p
Mean = 0.3277568452
StdDev = 0.02987484843
distribution of sampled notcapvalues

0.03

0.025

0.02

density 0.015

0.01

0.005

0

80 100 120 140 160
notcap

Mean = 114.5420000
StdDev = 14.69966789
Bayes_estimate_of _number_not_captured = 113.2008414

Slice sampler for truncated gamma density

Here, slice sampling is explored as applied to the generation of variates from a
truncated gamma distribution with density proportional to x*~! e on sup-
port [a,00) where a > 0.
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[ > restart:with(stats) :with(stats[statplots]):

> truncatedgamma:=proc (alpha,a,x0,iter,burn)local
x,rl,r2,r3,ul,u2,u3,lower,upper,pa,i,ii, tot;
x:=x0;pal0]:=[0,x];
tot:=iter+burn;
for ii from 1 to tot do;
i:=ii-burn;
rl:=evalf (rand () /10712);
r2:=evalf (rand () /10712) ;
r3:=evalf (rand() /10712);
ul:=evalf (r1*x” (alpha-1));
u2:=evalf (r2*¥exp(-x));
lower:=max (a,ul” (1/ (alpha-1)));
upper:=-1n(u2);
x:=lower+r3* (upper-lower) ;
if i>=1 then pa[i]:=[1i,x];end if;
end do;
[seg(pal[i],i=0..iter) ]1;
end proc:

> randomize (53179):
burn:=100;
iter:=500;
alpha:=3;
a:=9;
x0:=10;
pa:=truncatedgamma (alpha,a,x0,iter,burn):
PIOT (CURVES (pa) , TITLE ("truncated gamma variate against
iteration number"),AXESLABELS ("Iteration
number", "variate") ,AXESSTYLE (NORMAL) ) ;
11:=[seq(op(2,pal[i]),i=1..iter) ]:
histogram(ll,title="distribution of sampled x
values", labels=["x", "density"1);
Mean:=evalf (describe[mean] (11)) ;StdDev:=evalf
(describe[ standarddeviation[1]](11));

burn := 100
iter := 500
a:=3
a:=9

x0 :=10
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truncated gamma variate against iteration number
14 4
131

12
variate
114

10 4 fw
Q7 T T T T T
0 100 200 300 400 500
Iteration number

distribution of sampled x values

0.8

0.6

density
0.4

0.2

Mean := 10.16067140
StdDev := 1.147220533

In order to obtain an estimated standard error for the mean of the truncated
gamma, the sample standard deviation is calculated of 100 independent
replications (different seeds and starting states), each comprising 200 obser-
vations after a burn-in of 100 observations. In the code below the seed is
changed for each new replication. It is not sufficient merely to use the last
random number from one replication as the seed for the next replication.
This would induce positive correlation between the two sample means.

> tl:=time();
replic:=100;
seed:=6318540;
iter:=200;alpha:=3;a:=9;burn:=100;
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for j from 1 to replic do:
seed:=seed+113751:
randomize (seed) :
x0:=a-1ln(evalf(rand()/10712))/1.04; #an initial state is
a random observation from an approximation to the
truncated gamma — estimated from the histogram above
pa:=truncatedgamma (alpha,a,x0,iter,burn):
12:=[seg(op(2,pal[i]),i=1..iter)]:
rep[j]:=evalf (describe[mean] (12)):
end do:
13:=[seq(rep[j]l,j=1..replic)]:
Mean:=evalf (describe[mean] (13));Std errorl:=evalf (describe
[standarddeviation[11](13)/sqrt(replic));
timel:=time () -tl;

tl :=3.266
replic :== 100
seed := 6318540
iter :== 200
a:=3
a:=9
burn: =100
Mean = 10.205022061
Std_errorl := 0.0178901125
timel :=7.077

[ This time and standard error will be compared with that obtained for the
generation of 100 independent observations. These are generated below by
simply generating from the full gamma distribution, rejecting those not
| exceeding a (=9).

> tl:=time():

J:=0;

randomize (6318540);
alpha:=3;

a:=9;

iter:=100;
while j<iter do:
y:=random[gamma[alpha]] (1) :
if y>a then

Je=J+1:

vijl:=y:

pbljl:=[],y]
end if:
end do:
15:=[seq(pb[j1,]j=1..iter)]:
b:=[seq(v[j],j=1l..iter) ]:
Mean:=evalf (describe[mean] (b)) ;
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StdDev:=evalf (describe[ standarddeviation[1]] (b)) :
Std_error2:=evalf (StdDev/sqrt (iter));

time2:=time () -t1;

PLOT (CURVES (15) , TITLE (" 100 independent truncated gamma
variates"),AXESLABELS ("Iteration

number", "variate"),AXESSTYLE (NORMAL) ) ;

j=0
6318540
a:=3
a:=9
iter := 100

Mean = 10.27322534
Std_error2 := 0.1155931003
time2 := 5.750

100 independent truncated gamma variates
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variate W|’\'
11 /

40 60
Iteration number

> efficiency:=(Std_error2/Std _errorl)"2*time2/timel;

efficiency := 33.92003894

For comparison of mixing 100 successive truncated variates from Gibbs
sampling are displayed below.

> randomize (531577) :
burn:=100;
iter:=100;
alpha:=3;
a:=9;
x0:=10;
pa:=truncatedgamma (alpha,a,x0,iter,burn) :
PLOT (CURVES (pa) , TITLE ("truncated gamma variate against
iteration number"),AXESLABELS ("Iteration
number", "variate"),AXESSTYLE (NORMAL) ) ;
1l:=[seqg(op(2,pal[il),i=1..1iter)]:
histogram(1ll,title="distribution of sampled x
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values", labels=["x","density"]):
Mean:=evalf (describe[mean] (11)) :StdDev:=evalf (describe[sta
ndarddeviation[1]1](11)):

burn :== 100
iter :== 100
a:=3
a:=9
x0 := 10

truncated gamma variate against iteration number
12.5 ]

12 4 \
115 4 \ }\ N
variate 11 1 J \/\ \A X | A

10.5 1 f)\ \ \ | /J y / | \
0 _\[ \\ }\ I / // /(\ \l U" /
95 \_J \/\v/ W A \wv\} |

9 -

0 20 40 60 80 100
Iteration number

[ Note the more rapid mixing for independent variates. The Gibbs method has
slower mixing and poorer coverage of the sample space for the same number
of variates. However, naive sampling of independent truncated variates by
sampling from a full gamma leads to a probability of acceptance of the
| following.

> evalf (int (x” (alpha-1)*exp (-x),x=a..infinity) /GAMMA (alpha)) ;
0.006232195107

[ Because so many are rejected, the slice sampler comes out best, as the
efficiency calculation above shows. Of course, a better method still is to
choose an (exponential) envelope on support [a,00) for the truncated
| gamma and use envelope rejection.

E‘ 8.6 Pump failure revisited, an application of slice

sampling

> restart:with (stats) :with(plots):
Warning, the name changecoords has been redefined
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> X:=[5/1/5114l3719’1’1’4’22];
X = [51175714737]97]7]74722}

> t:=[94.32,15.72,62.88,125.76,5.24,31.44,1.048,1.048,2.096,
10.481]:

> slice:=proc(betal, x,t,alpha,delta,gam,replic,burn) local
beta, j,jj,bayeslam,bayeslambda,bmin,i,r,b,bmax,n,lamn,
lambda, k, g, lambdaval, lamval, tot;
n:=10;
beta:=betal;
tot:=burntreplic;
for jj from 1 to tot do;
Jj:=jj-burn;
bmax:=infinity;
for i from 1 to 10 do;
r:=evalf (rand () /10712);
b:=(t[i]+beta) /r*(1/(x[1]+alpha))-t[i];
if b<bmax then bmax:=b end if;
end do;
r:=evalf (rand()/10712);
b:=beta-1n(r) /delta;
if b<bmax then bmax:=b end if;
r:=evalf (rand () /10712);
bmin:=beta*r” (1/ (n*alphat+gam-1));
r:=evalf (rand () /10712);
beta:=bmin+ (bmax-bmin)*r;
if §>=1 then
for k from 1 to 10 do;
g:=random[gamma[x[k]+alpha,l/ (t[k]+beta)]1]1(1);
lambdalk,j1:=[J,q1;
lambdavallk,j]l:=g;
bayeslam[k,j]:=(alpha+x[k])/ (beta+t[k])
end do;
end if;
end do;
for k from 1 to n do;
lam[k]:=[seqg(lambdalk,j],j=1..replic) ];
lamval[k]:=[seq(lambdaval[k,j],j=1..replic)];
bayeslambdalk]:=[seq(bayeslam[k,j],j=1..replic)];
end do;
[[seg(lam[k],k=1..n) ], [seq(lamval[k],k=1..n) ], [seg
(bayeslambdalk],k=1..n)11;
end proc:

> randomize (56342871) ;alpha:=0.54;delta:=1.11;gam:=2.20;beta
0:=0.25;replic:=2000;burn:=200;
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56342871
a:=0.54
6:=1.11
gam :=2.20
80 :=0.25
replic :== 2000
burn := 200

> vi=slice (betal,x,t,alpha,delta,gam, replic,burn):
u:=evalf (lambda” (alpha-1) / (lambda+delta) ~ (alpha+gam)) :
k:=int (u, lambda=0..infinity) :
va:=op(l,v) :vb:=op(2,Vv):vci=op(3,Vv):
for kk from 1 to 10 do:
v1[kk]:=op (kk,va):
v2[kk]:=op (kk,vb) :
v3[kk]:=op(kk,vc):
m[kk]:=max (seq(v2[kk]l[]j],j=1l..replic)):
ms[kk] :=min(seq(v2[kk][Jj],j=1..replic)):
failrate[kk]:=describe[mean] (v3[kk]):
print ("Bayes estimate failure rate
pump", kk,"is", failrate[kk]) ;
end do:
xa[l]:="lambda[l]":xa[2]:="lambda[2]":xa[3]:="lambda[3]":x
al[4]:="lambda[4]":xa[5] :="1lambda[5]":
xa[6]:="lambda[6]":xa[7]:="lambdal[7]":xa[8]:="lambda[8]":x
al[9]:="lambda[9]":xa[1l0]:="lambda[10]":
A:=array(l..5,1..2):
for i from 1 to 5 do:
Ali,1]:=display ({

statplots[histogram] (v2[2*i-1]),plot (u/k, lambda=ms[2*i-1]*
0.9..m[2¥i-1]1*1.1,1labels=[xa[2*i-1],"prior and posterior
densities™], labeldirections=[HORIZONTAL, VERTICAL]) },
tickmarks=[4,2]):

Ali,2]:=display ({

statplots[histogram] (v2[2*i]),plot (u/k,lambda=ms[2*1]*0.9.
.m[2*¥1]*1.1,1labels=[xa[2*i],"prior and posterior
densities™], labeldirections=[HORIZONTAL, VERTICAL]) },
tickmarks=[4,2]):

end do:

display(Ad);

‘Bayes estimate failure rate pump’, 1, ‘is’, 0.05815043965
‘Bayes estimate failure rate pump’, 2, ‘is’, 0.09241283960
‘Bayes estimate failure rate pump’, 3, ‘is’, 0.08679369040
‘Bayes estimate failure rate pump’, 4, ‘is’, 0.1147498208
‘Bayes estimate failure rate pump’, 5, ‘is’, 0.5734949755




.le2

.le2

‘Bayes estimate failure rate pump’, 6, ‘is’, 0.6033146695
‘Bayes estimate failure rate pump’, 7, ‘is’, 0.7929892845
‘Bayes estimate failure rate pump’, 8, ‘is’, 0.7929892845
‘Bayes estimate failure rate pump’, 9, ‘is’, 1.508423622
‘Bayes estimate failure rate pump’, 10, ‘is’, 1.973528342
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Acceptance probability
envelope rejection 41
independence sampler 165
MCMC 159
ratio method 46
thinned Poisson process 141
unity in Gibbs sampling 166
Activity 146
Adaptive rejection sampling 48-52, 57, 167
Metropolis 176
Antithetic variates 79-82
attenuated variance reduction with rejection
methods 82
option pricing 114
queue simulation 148-149
symmetric distributions 82
Arbitrage 112
Arithmetic average/mean
Asian options  118-123
geometric mean 120-121, 132, 133
importance and stratified sampling for
119-123
viewed as a basket option 132
Asset price movements 109-111
Attribute 146
Autocorrelation 7, 148
Average, arithmetic/geometric 118, 132, 133
Average price or strike, see Asian options

118-119, 133

Basket option  123-126, 133

Bayes estimate 165, 170, 171

Bayesian statistics  157-158

Beta distribution  67-68, 76, 77
sum of i.i.d. variates 86-89
symmetric 56, 70

Binomial distribution 74

Birth—death process simulation 143

Black—Scholes differential equation 112, 115

Bound state change 146, 149

Box-Miiller 59-60, 75
generalization of 77

Brownian motion 108-109, 153, 182

BUGS 157

Burn-in 7, 160, 162

discrete event simulation 145, 151

Call, see European call/put
Candidate point in Metropolis—Hastings
algorithm 159
Capture-recapture
Cauchy distribution
inversion method 38, 52
normal variate generation 53
ratio method 55
t-distribution 70
variate as ratio of normal variates 55
with parameter normally distributed 179
Chi-squared distribution 69
non-central 69, 70-71
Cholesky decomposition 124
Completion of a density 178-179, 182, 183
Conditional Monte Carlo 101-103, 130
Conditional state change/event 146, 149-150
Conjugate prior 185
Control variates 98-101, 149
linear regression 100
stratification, compared with 101
Cost, of variate generation, fixed and variable
48, see also Set-up time of variate
generation
Currency, option on purchasing foreign 116
Customers, rejected 149-151, 155

171-172

Delta, see Hedging parameter (delta)
Delta hedging, see Hedging
Derivative, financial 1, 107, 111, 129
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Dimension, problems of increasing 26, 28,
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Discount factor 113

Discrete event simulation 135-156

Drift of Wiener process 108

Efficiency of Monte Carlo experiment 81, 95
Efficiency of variate generation algorithm
43-44, 48
Empirical Bayes 169
Empty and idle state 150
Entity 146
Envelope rejection 40-44
acceptance probability 41
antithetic variates, effectiveness of 82
beta variate 67-68
discrete variates 53-54
gamma tail variate generation 177
gamma variate 65-66
generalized inverse Gaussian variate 71-73
Metropolis—Hastings 180-181
normal variate 41-44, 53, 61-62
Poisson distribution, logistic envelope 73
variates from stratum of normal
distribution 122, 132
Epidemic 1, 153
Erlang distribution, special 64
Euler approximation for simulating a stochastic
differential equation 111
European call/put 111, 113-115
Event 142, 146
Event based approach 146
Exceedance probability 86-89
Exercise date 111
Exercise price, see Strike price
Exotic options 114
Expiration date, see Exercise date
Exponential distribution, see Negative
exponential distribution
Exponential polynomial intensity (in Poisson
process) 140
Extend 135

Failure rate 163
estimating Poisson 167-171
Fibonacci generator 34
Forward contract 111, 131
Full conditional distribution 166

Gamma distribution 64-66
adaptive rejection, illustration of 49-52
beta variate generation 67

conjugate prior 185

envelope rejection  65-66

Erlang, special distribution 64

life distribution with prior distributed

parameters 183-185

negative binomial variates 75

Poisson failure rate follows a 167

shape parameter less than one 65, 76

tail variate generation 177, 183

Weibull scale parameter follows 174
Generalized hyperbolic distribution 71
Generalized inverse Gaussian distribution

71-73

Geometric average/mean
Geometric Brownian motion
Geometric distribution

inversion method 39

negative binomial variates 74
Gibbs sampling 165-167

slice sampling, completions
Growth rate of asset value 109

expected 111, 112, 113, 116, 117

119-122, 132, 133
109-111, 153

176-179

Hedging 112, 115-117, 129, 131-132
Hedging parameter (delta) 112, 130
Hyperparameters 167, 169, 172, 174
Hyperprior density 172

Importance sampling 4, 82-86
Asian option 119-121
basket option 124-125

upper bound on variance 84, 104-105, 120

Income, asset earning 115-117
Independence sampler 161-162
Integration, multiple 1, 4-5, 82, 158

Monte Carlo compared with other numerical
methods 107, 172
Integration, one dimensional 2-4
Inverse Gaussian variate generation 182
Inversion method 37-39
Cauchy variate 38, 52
discrete variates 39, 54, 73, 74, 75
exponential 38
geometric 39
logistic 38

Markov Chains 142-143

triangular 52

unstored 73, 74

Weibull variate 38, 52, 92
1t6’s lemma 109, 127



Lattice, linear congruential generator
26-28
Likelihood function 158
Linear Congruential generators
bit shifting 21-22, 23
dimension, problems of increasing 26-28
double precision 20
full period 18
increment 18
lattice 26-28
mixed 18-22
modulus 18
multiplicative  22-25
multiplier 18
overflow 20-21, 22
prime modulus, maximum period 22-25,
33
rand() Maple generator 23
recommended 28

18-27

seed 18-19, 32
Super-Duper 21
List 146

Little’s formula 147
Log concave distribution 48, 57, 176, 185
Log-logistic proposal distribution 65, 67-68
Logistic distribution
as envelope for Poisson generator 73
inversion method 38
Lognormal distribution 57, 62-63
jumps in a geometric Brownian motion
153-154
price of asset 75-76, 110
sum of i.i.d. variates 104-105

Maple
binomial generator 9
colonin 11
correlation in 81
execution group 8
global variable 19
histogram in 14
list 8
local variable 9
mean in 10
normal generator
op 10
PLOT 10
Poisson generator 9
procedure 8
seed in 9
semicolon in 8

13, 14
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sequence 8

sorting list in 14

statplots subpackage 14

stats package 8
Market price of risk 129
Markov Chain

Metropolis—Hastings algorithm 159

simulation, discrete state, homogeneous

142-143

stationary distribution 6, 7
Markov Chain Monte Carlo
Mean reverting random walk
Mersenne prime 24
Metropolis algorithm (sampler) 161
Metropolis—Hastings algorithm 159-160
Microsaint 135
Minimal repair 172-176
Mixing in MCMC 161, 163
Monte Carlo method 1,5
Multinomial distribution 171
Multivariate p.d.f. 82, 158, 166

157-186
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Neave effect 60
Negative binomial distribution 74-75
Negative exponential distribution
inversion method 38
ratio method 46
Normal distribution
bivariate 63
Box-Miiller (polar) method 59-60
envelope rejection 41-44, 61-62
Maple generator 14
multivariate, sampling 124, 161
prior for a Cauchy parameter 179
ratio method 47
sampling from a conditional multivariate
122
sampling from a stratum of
sampling from a tail of 132

121-122, 132

Option
Asian  118-123
basket 123-126

definition 111
path-dependent 118
Order statistics and simulation Poisson
processes 138-139, 141
Ornstein—Uhlenbeck process 127-129
Path dependent option, see Option
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Poisson distribution
failures follow a 167
negative binomial variates 75
non-central chi-squared distribution 71
variate generation 73, 138
Poisson process simulation 137-141
over a plane 141-142, 152
simple 137-139
time dependent 140-141, 142
Posterior distribution 158
Posterior predictive survivor function
164-165, 170, 183
Precision 2
Prime modulus generator 22, 33
Primitive root 22, 24, 33
Prior distribution 157
Prior expectation and variance 174-175
Prior predictive survivor function 164
Probability mixture 57, 75
Process based simulation approach 146
Project
cost, stochastic 102
duration, stochastic 86
planning 5
Proposal density
envelope rejection 40, 42
Gibbs sampling 165
MCMC 159, 165
Prospective variate 40, see also Candidate
point in Metropolis—Hastings algorithm
Pseudo-code 7
Pump failure example 167-171
slice sampling 177-178
Put, see European call/put
Put-call parity 115

Queue 4, 58, 103
control variates 149
G/G/1 system 145-149, 154
hospital ward 149-151, 155
M/G/1 system 145
M/M/1 system 14, 148-149, 154
M/M/n/n system 151

separate random number streams for arrivals

and service durations 82, 149

Random numbers 1, 3, 17-35
collision test 31
combining streams 31, 34
coupon collector’s test 31
frequency test 29-30, 35

gap test 31
overlapping, nonoverlapping k-tuples 26,
30, 34

period 18

poker test 31

pseudo 17

reproducible 17

runs test 31

seed 18, 32

serial test 30

several sampling activities 82, 149

shuffled 28-29, 34-35

tests, empirical for 30-31

tests, theoretical for 25-28
Random Walk sampler 161
Randomize 9
Ratio estimator 145
Ratio of uniforms method 44-48

acceptance probability 46

beta, symmetric 56

Cauchy 55

exponential 46

normal 47, 55

relocated mode 55-56
Regeneration points 145, 154

G/G/1 queue 145, 147

M/G/1 queue 145

M/M/1 queue 154
Regenerative analysis 144-146, 155-156
Regression, effectiveness of

stratification/control variable 92, 98, 101

Regression, linear, connection with control
variates 100

Reliability inference 163-165, 167-171,
172-176, 183

Renewal reward process/theorem 144

Return on asset 109, 110, 123

Risk-free interest (growth) rate 112, 114,
117

Risk neutral drift 129

Risk-neutral world 113

Riskless asset 112

Set-up time of variate generation 167,
see also Cost, of variate generation,
fixed and variable

Simscript II.5 135

Simul8 135

Simulation, definition 5

Simulation, different approaches for discrete
event 146



Slice sampling 176-178, 182
Spot price 123, 126
Squeeze technique 62
Step length in MCMC 161
Stochastic differential equation, Itd 109
Stochastic volatility 126-130
Stratification variable 89, 93, 97, 100, 121,
126
Stratified sampling 89-98
Asian option 119, 121-123
basket option 124
dimensionality, problems of 95
effectiveness compared with control variate
101-112
post stratification 96-98, 122, 124
proportional 90
Strike price 111, 114
Sum of
i.i.d. beta random variables 86-89
i.i.d. lognormal random variables
Weibull random variables 93, 96
Symmetric distributions
antithetic sampling 82
beta 56, 70

104-105

Target density 44

t-distribution  69-71
Cauchy distribution 70
doubly noncentral 70-71
non-central 70
symmetric beta distribution 70
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Thinning 140-141, 152
Three-phase approach 146, 149
Tilted distribution 89, 104
Time scale transformation (Poisson process)
140, 152
Traffic intensity 148
Transition Kernel (in Markov Chain) 159
Triangular distribution
inversion method 52
symmetric, variate generation 163

Utilization 151

Vanilla options 114

Variance reduction ratio 80, 123, 126

Visual interactive simulations 135

Volatility 111, 114, 115, 126-130

von Mises distribution and completion
sampling 183

Wear of equipment 86
Weibull distribution
first and second moments
G/G/1 queue 148
inversion method 38, 92
length of stay in hospital ward 149
reliability 163, 172-174
sum of i.i.d. variates 92, 96
Wiener process, see Brownian motion
WINBUGS 157
Witness 135
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