
Springer Finance

Editorial Board
M. Avellaneda

G. Barone-Adesi

M. Broadie

M.H.A. Davis

E. Derman

C. Klüppelberg

E. Kopp

W. Schachermayer

Springer Finance

Springer Finance is a programme of books aimed at students, academics and
practitioners working on increasingly technical approaches to the analysis of
financial markets. It aims to cover a variety of topics, not only mathematical finance
but foreign exchanges, term structure, risk management, portfolio theory, equity
derivatives, and financial economics.

Ammann M., Credit Risk Valuation: Methods, Models, and Application (2001)
Back K., A Course in Derivative Securities: Introduction to Theory and Computation (2005)
Barucci E., Financial Markets Theory. Equilibrium, Efficiency and Information (2003)
Bielecki T.R. and Rutkowski M., Credit Risk: Modeling, Valuation and Hedging (2002)
Bingham N.H. and Kiesel R., Risk-Neutral Valuation: Pricing and Hedging of Financial
Derivatives (1998, 2nd ed. 2004)
Brigo D. and Mercurio F., Interest Rate Models: Theory and Practice (2001, 2nd ed. 2006)
Buff R., Uncertain Volatility Models – Theory and Application (2002)
Carmona R.A. and Tehranchi M.R., Interest Rate Models: An Infinite Dimensional Stochastic
Analysis Perspective (2006)
Dana R.-A. and Jeanblanc M., Financial Markets in Continuous Time (2003)
Deboeck G. and Kohonen T. (Editors), Visual Explorations in Finance with Self-Organizing
Maps (1998)
Delbaen F. and Schachermayer W., The Mathematics of Arbitrage (2005)
Elliott R.J. and Kopp P.E., Mathematics of Financial Markets (1999, 2nd ed. 2005)
Fengler M.R., Semiparametric Modeling of Implied Volatility (2005)
Geman H., Madan D., Pliska S.R. and Vorst T. (Editors), Mathematical Finance – Bachelier
Congress 2000 (2001)
Gundlach M., Lehrbass F. (Editors), CreditRisk+ in the Banking Industry (2004)
Jondeau E., Financial Modeling Under Non-Gaussian Distributions (2007)
Kellerhals B.P., Asset Pricing (2004)
Külpmann M., Irrational Exuberance Reconsidered (2004)
Kwok Y.-K., Mathematical Models of Financial Derivatives (1998)
Malliavin P. and Thalmaier A., Stochastic Calculus of Variations in Mathematical Finance
(2005)
Meucci A., Risk and Asset Allocation (2005)
Pelsser A., Efficient Methods for Valuing Interest Rate Derivatives (2000)
Prigent J.-L., Weak Convergence of Financial Markets (2003)
Schmid B., Credit Risk Pricing Models (2004)
Shreve S.E., Stochastic Calculus for Finance I (2004)
Shreve S.E., Stochastic Calculus for Finance II (2004)
Yor M., Exponential Functionals of Brownian Motion and Related Processes (2001)
Zagst R., Interest-Rate Management (2002)
Zhu Y.-L., Wu X., Chern I.-L., Derivative Securities and Difference Methods (2004)
Ziegler A., Incomplete Information and Heterogeneous Beliefs in Continuous-time Finance
(2003)
Ziegler A., A Game Theory Analysis of Options (2004)

Gianluca Fusai · Andrea Roncoroni

Implementing Models in
Quantitative Finance:
Methods and Cases

Gianluca Fusai Andrea Roncoroni

Dipartimento di Scienze Economiche Finance Department
e Metodi Quantitativi ESSEC Graduate Business School
Facoltà di Economia Avenue Bernard Hirsch BP 50105
Università del Piemonte Cergy Pontoise Cedex
Orientale “A. Avogadro” France
Via Perrone, 18 E-mails: roncoroni@essec.fr

28100 Novara roncoroni@gmail.com

Italy
E-mail: gianluca.fusai@eco.unipmn.it

Mathematics Subject Classification (2000): 35-01, 65-01, 65C05, 65C10, 65C20,
65C30, 91B28
JEL Classification: G11, G13, C15, C22, C63

Library of Congress Control Number: 2007931341

ISBN 978-3-540-22348-1 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from Springer. Violations are
liable to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

c© Springer-Verlag Berlin Heidelberg 2008

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Cover design: WMX Design GmbH, Heidelberg
Typesetting by the authors and VTEX using a Springer LATEX macro package

Printed on acid-free paper 41/3100 VTEX - 5 4 3 2 1 0

To our families

To Nicola

Contents

Introduction . xv

Part I Methods

1 Static Monte Carlo . 3
1.1 Motivation and Issues . 3

1.1.1 Issue 1: Monte Carlo Estimation . 5
1.1.2 Issue 2: Efficiency and Sample Size . 7
1.1.3 Issue 3: How to Simulate Samples . 8
1.1.4 Issue 4: How to Evaluate Financial Derivatives 9
1.1.5 The Monte Carlo Simulation Algorithm 11

1.2 Simulation of Random Variables . 11
1.2.1 Uniform Numbers Generation . 12
1.2.2 Transformation Methods . 14
1.2.3 Acceptance–Rejection Methods . 20
1.2.4 Hazard Rate Function Method . 23
1.2.5 Special Methods . 24

1.3 Variance Reduction . 31
1.3.1 Antithetic Variables . 31
1.3.2 Control Variables . 33
1.3.3 Importance Sampling . 35

1.4 Comments . 39

2 Dynamic Monte Carlo . 41
2.1 Main Issues . 41
2.2 Continuous Diffusions . 45

2.2.1 Method I: Exact Transition . 45
2.2.2 Method II: Exact Solution . 46
2.2.3 Method III: Approximate Dynamics . 46

viii

2.2.4 Example: Option Valuation under Alternative Simulation
Schemes . 48

2.3 Jump Processes . 49
2.3.1 Compound Jump Processes . 49
2.3.2 Modelling via Jump Intensity . 51
2.3.3 Simulation with Constant Intensity . 53
2.3.4 Simulation with Deterministic Intensity 54

2.4 Mixed-Jump Diffusions . 56
2.4.1 Statement of the Problem . 56
2.4.2 Method I: Transition Probability . 58
2.4.3 Method II: Exact Solution . 58
2.4.4 Method III.A: Approximate Dynamics with Deterministic

Intensity . 59
2.4.5 Method III.B: Approximate Dynamics with Random Intensity 60

2.5 Gaussian Processes . 62
2.6 Comments . 66

3 Dynamic Programming for Stochastic Optimization 69
3.1 Controlled Dynamical Systems . 69
3.2 The Optimal Control Problem . 71
3.3 The Bellman Principle of Optimality . 73
3.4 Dynamic Programming . 74
3.5 Stochastic Dynamic Programming . 76
3.6 Applications . 77

3.6.1 American Option Pricing . 77
3.6.2 Optimal Investment Problem . 79

3.7 Comments . 81

4 Finite Difference Methods . 83
4.1 Introduction . 83

4.1.1 Security Pricing and Partial Differential Equations 83
4.1.2 Classification of PDEs . 84

4.2 From Black–Scholes to the Heat Equation . 87
4.2.1 Changing the Time Origin . 88
4.2.2 Undiscounted Prices . 88
4.2.3 From Prices to Returns . 89
4.2.4 Heat Equation . 89
4.2.5 Extending Transformations to Other Processes 90

4.3 Discretization Setting . 91
4.3.1 Finite-Difference Approximations . 91
4.3.2 Grid . 93
4.3.3 Explicit Scheme . 94
4.3.4 Implicit Scheme . 101
4.3.5 Crank–Nicolson Scheme . 103
4.3.6 Computing the Greeks . 109

ix

4.4 Consistency, Convergence and Stability . 110
4.5 General Linear Parabolic PDEs . 115

4.5.1 Explicit Scheme . 116
4.5.2 Implicit Scheme . 117
4.5.3 Crank–Nicolson Scheme . 118

4.6 A VBA Code for Solving General Linear Parabolic PDEs 119
4.7 Comments . 119

5 Numerical Solution of Linear Systems . 121
5.1 Direct Methods: The LU Decomposition . 122
5.2 Iterative Methods . 127

5.2.1 Jacobi Iteration: Simultaneous Displacements 128
5.2.2 Gauss–Seidel Iteration (Successive Displacements) 130
5.2.3 SOR (Successive Over-Relaxation Method) 131
5.2.4 Conjugate Gradient Method (CGM) . 133
5.2.5 Convergence of Iterative Methods . 135

5.3 Code for the Solution of Linear Systems . 140
5.3.1 VBA Code . 140
5.3.2 MATLAB Code . 141

5.4 Illustrative Examples . 143
5.4.1 Pricing a Plain Vanilla Call in the Black–Scholes Model

(VBA) . 144
5.4.2 Pricing a Plain Vanilla Call in the Square-Root Model (VBA) 145
5.4.3 Pricing American Options with the CN Scheme (VBA) 147
5.4.4 Pricing a Double Barrier Call in the BS Model (MATLAB

and VBA) . 149
5.4.5 Pricing an Option on a Coupon Bond in the Cox–Ingersoll–

Ross Model (MATLAB) . 152
5.5 Comments . 155

6 Quadrature Methods . 157
6.1 Quadrature Rules . 158
6.2 Newton–Cotes Formulae . 159

6.2.1 Composite Newton–Cotes Formula . 162
6.3 Gaussian Quadrature Formulae . 173
6.4 Matlab Code . 180

6.4.1 Trapezoidal Rule . 180
6.4.2 Simpson Rule . 180
6.4.3 Romberg Extrapolation . 181

6.5 VBA Code . 181
6.6 Adaptive Quadrature . 182
6.7 Examples . 185

6.7.1 Vanilla Options in the Black–Scholes Model 186
6.7.2 Vanilla Options in the Square-Root Model 188
6.7.3 Bond Options in the Cox–Ingersoll–Ross Model 190

x

6.7.4 Discretely Monitored Barrier Options 193
6.8 Pricing Using Characteristic Functions . 197

6.8.1 MATLAB and VBA Algorithms . 202
6.8.2 Options Pricing with Lévy Processes . 206

6.9 Comments . 211

7 The Laplace Transform . 213
7.1 Definition and Properties . 213
7.2 Numerical Inversion . 216
7.3 The Fourier Series Method . 218
7.4 Applications to Quantitative Finance . 219

7.4.1 Example . 219
7.4.2 Example . 225

7.5 Comments . 228

8 Structuring Dependence using Copula Functions 231
8.1 Copula Functions . 231
8.2 Concordance and Dependence . 233

8.2.1 Fréchet–Hoeffding Bounds . 233
8.2.2 Measures of Concordance . 234
8.2.3 Measures of Dependence . 235
8.2.4 Comparison with the Linear Correlation 236
8.2.5 Other Notions of Dependence . 238

8.3 Elliptical Copula Functions . 240
8.4 Archimedean Copulas . 245
8.5 Statistical Inference for Copulas . 251

8.5.1 Exact Maximum Likelihood . 253
8.5.2 Inference Functions for Margins . 254
8.5.3 Kernel-based Nonparametric Estimation 255

8.6 Monte Carlo Simulation . 257
8.6.1 Distributional Method . 257
8.6.2 Conditional Sampling . 259
8.6.3 Compound Copula Simulation . 263

8.7 Comments . 265

Part II Problems

Portfolio Management and Trading . 271

9 Portfolio Selection: “Optimizing” an Error . 273
9.1 Problem Statement . 274
9.2 Model and Solution Methodology . 276
9.3 Implementation and Algorithm . 278
9.4 Results and Comments . 280

9.4.1 In-sample Analysis . 281

xi

9.4.2 Out-of-sample Simulation . 285

10 Alpha, Beta and Beyond . 289
10.1 Problem Statement . 290
10.2 Solution Methodology . 291

10.2.1 Constant Beta: OLS Estimation . 292
10.2.2 Constant Beta: Robust Estimation . 293
10.2.3 Constant Beta: Shrinkage Estimation . 295
10.2.4 Constant Beta: Bayesian Estimation . 296
10.2.5 Time-Varying Beta: Exponential Smoothing 299
10.2.6 Time-Varying Beta: The Kalman Filter 300
10.2.7 Comparing the models . 304

10.3 Implementation and Algorithm . 306
10.4 Results and Comments . 309

11 Automatic Trading: Winning or Losing in a kBit 311
11.1 Problem Statement . 312
11.2 Model and Solution Methodology . 314

11.2.1 Measuring Trading System Performance 314
11.2.2 Statistical Testing . 315

11.3 Code . 317
11.4 Results and Comments . 322

Vanilla Options . 329

12 Estimating the Risk-Neutral Density . 331
12.1 Problem Statement . 332
12.2 Solution Methodology . 332
12.3 Implementation and Algorithm . 335
12.4 Results and Comments . 338

13 An “American” Monte Carlo . 345
13.1 Problem Statement . 346
13.2 Model and Solution Methodology . 347
13.3 Implementation and Algorithm . 348
13.4 Results and Comments . 349

14 Fixing Volatile Volatility . 353
14.1 Problem Statement . 354
14.2 Model and Solution Methodology . 356

14.2.1 Analytical Transforms . 356
14.2.2 Model Calibration . 358

14.3 Implementation and Algorithm . 360
14.3.1 Code Description . 361

14.4 Results and Comments . 362

xii

Exotic Derivatives . 371

15 An Average Problem . 373
15.1 Problem Statement . 374
15.2 Model and Solution Methodology . 374

15.2.1 Moment Matching . 375
15.2.2 Upper and Lower Price Bounds . 378
15.2.3 Numerical Solution of the Pricing PDE 379
15.2.4 Transform Approach . 382

15.3 Implementation and Algorithm . 386
15.4 Results and Comments . 390

16 Quasi-Monte Carlo: An Asian Bet . 395
16.1 Problem Statement . 396
16.2 Solution Metodology . 398

16.2.1 Stratification and Latin Hypercube Sampling 399
16.2.2 Low Discrepancy Sequences . 401
16.2.3 Digital Nets . 402
16.2.4 The Sobol’ Sequence . 403
16.2.5 Scrambling Techniques . 404

16.3 Implementation and Algorithm . 406
16.4 Results and Comments . 407

17 Lookback Options: A Discrete Problem . 411
17.1 Problem Statement . 412
17.2 Model and Solution Methodology . 414

17.2.1 Analytical Approach . 414
17.2.2 Finite Difference Method . 417
17.2.3 Monte Carlo Simulation . 419
17.2.4 Continuous Monitoring Formula . 419

17.3 Implementation and Algorithm . 420
17.4 Results and Comments . 421

18 Electrifying the Price of Power . 427
18.1 Problem Statement . 429

18.1.1 The Demand Side . 429
18.1.2 The Bid Side . 429
18.1.3 The Bid Cost Function . 430
18.1.4 The Bid Strategy . 432
18.1.5 A Multi-Period Extension . 433

18.2 Solution Methodology . 433
18.3 Implementation and Experimental Results . 435

19 A Sparkling Option . 441
19.1 Problem Statement . 441
19.2 Model and Solution Methodology . 444

xiii

19.3 Implementation and Algorithm . 450
19.4 Results and Comments . 453

20 Swinging on a Tree . 457
20.1 Problem Statement . 458
20.2 Model and Solution Methodology . 460
20.3 Implementation and Algorithm . 461

20.3.1 Gas Price Tree . 461
20.3.2 Backward Recursion . 463
20.3.3 Code . 464

20.4 Results and Comments . 464

Interest-Rate and Credit Derivatives . 469

21 Floating Mortgages . 471
21.1 Problem Statement and Solution Method . 473

21.1.1 Fixed-Rate Mortgage . 473
21.1.2 Flexible-Rate Mortgage . 474

21.2 Implementation and Algorithm . 476
21.2.1 Markov Control Policies . 476
21.2.2 Dynamic Programming Algorithm . 477
21.2.3 Transaction Costs . 480
21.2.4 Code . 480

21.3 Results and Comments . 482

22 Basket Default Swaps . 487
22.1 Problem Statement . 487
22.2 Models and Solution Methodologies . 489

22.2.1 Pricing nth-to-default Homogeneous Basket Swaps 489
22.2.2 Modelling Default Times . 490
22.2.3 Monte Carlo Method . 491
22.2.4 A One-Factor Gaussian Model . 491
22.2.5 Convolutions, Characteristic Functions and Fourier

Transforms . 493
22.2.6 The Hull and White Recursion . 495

22.3 Implementation and Algorithm . 495
22.3.1 Monte Carlo Method . 496
22.3.2 Fast Fourier Transform . 496
22.3.3 Hull–White Recursion . 497
22.3.4 Code . 497

22.4 Results and Comments . 497

23 Scenario Simulation Using Principal Components 505
23.1 Problem Statement and Solution Methodology 506
23.2 Implementation and Algorithm . 508

23.2.1 Principal Components Analysis . 508

xiv

23.2.2 Code . 511
23.3 Results and Comments . 511

Financial Econometrics . 515

24 Parametric Estimation of Jump-Diffusions . 519
24.1 Problem Statement . 520
24.2 Solution Methodology . 520
24.3 Implementation and Algorithm . 522

24.3.1 The Continuous Square-Root Model . 523
24.3.2 The Mixed-Jump Square-Root Model 525

24.4 Results and Comments . 528
24.4.1 Estimating a Continuous Square-Root Model 528
24.4.2 Estimating a Mixed-Jump Square-Root Model 530

25 Nonparametric Estimation of Jump-Diffusions . 531
25.1 Problem Statement . 532
25.2 Solution Methodology . 533
25.3 Implementation and Algorithm . 535
25.4 Results and Comments . 537

26 A Smiling GARCH . 543
26.1 Problem Statement . 543
26.2 Model and Solution Methodology . 545
26.3 Implementation and Algorithm . 547

26.3.1 Code Description . 551
26.4 Results and Comments . 554

A Appendix: Proof of the Thinning Algorithm . 557

B Appendix: Sample Problems for Monte Carlo . 559

C Appendix: The Matlab Solver . 563

D Appendix: Optimal Control . 569
D.1 Setting up the Optimal Stopping Problem . 569
D.2 Proof of the Bellman Principle of Optimality . 570
D.3 Proof of the Dynamic Programming Algorithm 570

Bibliography . 573

Index . 599

Preface

Introduction

This book presents and develops major numerical methods currently used for solving
problems arising in quantitative finance. Our presentation splits into two parts.

Part I is methodological, and offers a comprehensive toolkit on numerical meth-
ods and algorithms. This includes Monte Carlo simulation, numerical schemes for
partial differential equations, stochastic optimization in discrete time, copula func-
tions, transform-based methods and quadrature techniques.

Part II is practical, and features a number of self-contained cases. Each case
introduces a concrete problem and offers a detailed, step-by-step solution. Computer
code that implements the cases and the resulting output is also included.

The cases encompass a wide variety of quantitative issues arising in markets for
equity, interest rates, credit risk, energy and exotic derivatives. The corresponding
problems cover model simulation, derivative valuation, dynamic hedging, portfolio
selection, risk management, statistical estimation and model calibration.

We provide algorithms implemented using either Matlab R© or Visual Basic for
Applications R© (VBA). Several codes are made available through a link accessible
from the Editor’s web site.

Origin

Necessity is the mother of invention and, as such, the present work originates in class
notes and problems developed for the courses “Numerical Methods in Finance” and
“Exotic Derivatives” offered by the authors at Bocconi University within the Master
in Quantitative Finance and Insurance program (from 2000–2001 to 2003–2004) and
the Master of Quantitative Finance and Risk Management program (2004–2005 to
present).

The “Numerical Methods in Finance” course schedule allots 14 hours to the
presentation of Monte Carlo methods and dynamic programming and an additional
14 hours to partial differential equations and applications. These time constraints

xvi

seem to be a rather common feature for most academic and professional programs in
quantitative finance.

The “Exotic Derivatives” course schedule allots 14 hours to the introduction of
pricing and hedging techniques using case-studies taken from energy and commodity
finance.

Audience

Presentations are developed at an intermediate-advanced level. We wish to address
those who have a relatively sound background in the theoretical aspects of finance,
and who wish to implement models into viable working tools.

Users typically include:

A. Junior analysts joining quantitative positions in the financial or insurance indus-
try;

B. Master of Science (MS) students;
C. Ph.D. candidates;
D. Professionals enrolled in programs for continuing education in finance.

Our experience has shown that, instead of more “novel-like” monographs, this
audience usually succeeds with short, precise, self-contained presentations. People
also ask for focused training lectures on practical issues in model implementation.
In response, we have invested a considerable amount of time in writing a book that
offers a “hands-on” educational approach.

Prerequisites

We assume the user is acquainted with basic derivative pricing theory (e.g., pay-off
structuring, risk-neutral valuation, Black–Scholes model) and basic portfolio theory
(e.g., mean-variance asset allocation), standard stochastic calculus (e.g., Itô formula
and martingales) and introductory econometrics (e.g., linear regression).

Style

We strive to be as concise as possible throughout the text. This helps us minimize
ambiguities in the methodological part, a pitfall that sometimes arises in nontechni-
cal presentations of technical subjects. Moreover, it reflects the way we covered the
presented material in our courses. An exception is made for chapters on copulas and
Laplace transforms, which have been included due to their fast-growing relevance to
the practice of quantitative finance.

We present cases following a constructive path. We first introduce a problem in
an informal way, and then formalize it into a precise problem statement. Depending

xvii

on the particular problem, we either set up a model or present a specific methodol-
ogy in a self-contained manner. We proceed by detailing an implementation proce-
dure, usually in the form of an algorithm, which is then coded into a programming
language. Finally, we discuss empirical results stemming from the execution of the
corresponding code.

Our presentation is modular. Thus, chapters in Part I offer systematic and self-
contained presentations coupled with an extensive bibliography of published articles,
monographs and working papers.

For ease of comparison, the notation adopted in each case has been kept as close
as possible to the one employed in the original article(s). Note that this choice re-
quires the reader to have a certain level of flexibility in handling notation across
cases.

What’s missing here?

By its very nature, a treatment on numerical methods in finance tends to be encyclo-
pedic. In order to prevent textual overflow, we do not include certain topics. The most
apparent missing topic is perhaps “discrete time financial econometrics”. We insert
a few cases on basic and advanced econometrics, but ultimately direct the reader to
other more comprehensive treatments of these issues.

Content

Part I: Methods

Static Monte Carlo; Dynamic Monte Carlo; Dynamic Programming for Stochastic
Optimization; Finite Difference Methods; Numerical Solution of Linear Systems;
Quadrature Methods; The Laplace Transform; Structuring Dependence Using Cop-
ula Functions.

Part II: Cases

Portfolio Selection: ‘Optimizing an Error’; Alpha, Beta and Beyond; Automatic
Trading: Winning or Losing in a kBit; Estimating the Risk Neutral Density; An
‘American’ Monte Carlo; Fixing Volatile Volatility; An Average Problem; Quasi-
Monte Carlo; Lookback Options: A Discrete Problem; Electrifying the Price of
Power; A Sparkling Option; Swinging on a Tree; Floating-Rate Mortgages; Basket
Default Swaps; Scenario Simulation using Principal Components; Parametric Esti-
mation of Jump-Diffusions; Nonparametric Estimation of Jump-Diffusions; A Smil-
ing GARCH.

The cases included are not necessarily a mechanical application of the methods
developed in Part I. Conversely, some topics in Part I may not have a direct appli-
cation in cases. We have, nevertheless, decided to include them both for the sake of

xviii

completeness and given their importance in quantitative finance. We selected cases
based on our research interests and (or) their importance in the practice of quantita-
tive finance. More importantly, all methods lead to nontrivial implementation algo-
rithms, reflecting our ambition to deliver an effective training toolkit.

Use

Given the modular structure of the book, readers can use its content in several ways.
We offer a few sample sets of coursework for different types of users:

A. Six Hour MS Courses

A1. Quadrature methods for finance

Chapter “Quadrature Methods” (Newton–Cotes and Gaussian quadrature); inversion
of the characteristic function and the Fast Fourier Transform (FFT); pricing using
Lévy processes.

A2. Transform methods

Laplace and Fourier transforms; examples on pricing using Lévy processes and the
CIR model; cases “Fixing Volatile Volatility” and “An Average Problem”.

A3. Copula functions

Chapter “Structuring Dependence Using Copula Functions”. Case “Basket Default
Swaps”.

A4. Portfolio theory

Cases “Portfolio Selection: Optimizing an Error”, “Alpha, Beta and Beyond” and
“Automatic Trading: Winning or Losing in a kBit”.

A5. Applied financial econometrics

Cases “Scenario Simulation Using Principal Components”, “Parametric Estimation
of Jump-Diffusions”, “Nonparametric Estimation of Jump-Diffusions” and “A Smil-
ing GARCH”.

B. Ten to Twelve Hour MS Courses

B.1. Monte Carlo methods

Chapters “Static Monte Carlo” and “Dynamic Monte Carlo”. Cases “An ‘American’
Monte Carlo”, “Lookback Options: A Discrete Problem”, “Quasi-Monte Carlo”,
“A Sparkling Option” and “Basket Default Swaps”.

xix

B.2. Partial differential equations

Chapters “Finite Difference Methods” and “Numerical Solution of Linear Systems”;
Cases “An Average Problem” and “Lookback Options: A Discrete Problem”.

B.3. Advanced numerical methods for exotic derivatives

Chapters “Finite Difference Methods” and “Quadrature Methods”; Cases “An Aver-
age Problem”, “Quasi-Monte Carlo: An Asian Bet”, “Lookback Options: A Discrete
Problem”, and “A Sparkling Option”.

B.4. Problem solving in quantitative finance

Presentation of various problems across different areas such as derivative pricing,
portfolio selection, and financial econometrics; key cases are “Portfolio Selection:
Optimizing an Error”; “Alpha, Beta and Beyond”; “Estimating the Risk Neutral Den-
sity”; “A Sparkling Option”; “Scenario Simulation Using Principal Components”;
“Parametric Estimation of Jump-Diffusions”; “Nonparametric Estimation of Jump-
Diffusions”; “A Smiling GARCH”.

Abstracts

Portfolio Selection: Optimizing an Error

We assess the impact of sampling errors on mean-variance portfolios. Two alternative
solutions (shrinkage and resampling) to the resulting issue are proposed. An out-of-
sample comparison of the two methods is also presented.

Alpha, Beta and Beyond

We compare statistical procedures for estimating the beta coefficient in the market
model. Statistical procedures (OLS regression, shrinkage, robust regression, expo-
nential smoothing, Kalman filter) for measuring the Value at Risk of a portfolio are
studied and compared.

Automatic Trading: Winning or Losing in a kBit

We present a technical analysis strategy based on the cross-over of moving averages.
A statistical assessment of the strategy performance is developed using a nonpara-
metric procedure (bootstrap method). Contrasting results are also presented.

Estimating the Risk-Neutral Density

We describe a lognormal-mixture based method to infer the risk-neutral probability
density from option quotations in a given market. The model is tested by examining
a trading strategy grounded on mispriced options.

xx

An ‘American’ Monte Carlo

American option pricing requires the identification of an optimal exercise policy.
This issue is usually cast as a backward stochastic optimization problem. Here we
implement a forward method based on Monte Carlo simulation. This technique is
particularly suited for pricing American-style options written on complex underlying
processes.

Fixing Volatile Volatility

We propose a calibration of the celebrated Heston stochastic volatility model to a
set of market prices of options. The method is based on the Fast Fourier algorithm.
Extension to jump-diffusions and analysis of the parametric estimation stability are
also presented.

An Average Problem

We describe, implement and compare several alternative algorithms for pricing
Asian-style options, namely derivatives written on an average value in the Geometric
Brownian framework.

Quasi-Monte Carlo: An Asian Bet

Quasi-Monte Carlo simulation is based on the fact that “wisely” selected determin-
istic sequences of numbers performs better in simulation studies than sequences pro-
duced by standard uniform generators. The method is presented and applied to the
pricing of exotic derivatives.

Lookback Options: A Discrete Problem

We compare three algorithms (PDE, Monte Carlo and Transform Inversion) for pric-
ing discretely monitored lookback options written on the minimum and the maxi-
mum attained by the underlying asset.

Electrifying the Price of Power

We illustrate a multi-agent competitive-equilibrium model for pricing forward con-
tracts in deregulated electricity markets. Simulations are provided for sample price
paths.

A Sparkling Option

A real option problem concerns the valuation of physical assets using a formal rep-
resentation in terms of option pricing. We price co-generation power plants as an
option written on the spark spread, namely the difference between electricity and gas
prices.

xxi

Swinging on a Tree

A swing option allows the buyer to interrupt delivery of a given flow commodity,
such as gas or electricity. Interruption can occur several times on a given time pe-
riod. We cast this as a multiple-exercise American-style option and evaluate it using
Dynamic Programming.

Floating Mortgages

An outstanding debt can be refinanced a fixed number of times over a larger set of
dates. We compute the value of this option by solving for the corresponding multidi-
mensional optimal stopping rule in a discrete time stochastic framework.

Basket Default Swaps

We price swaps written on a basket of liabilities whose default probability is modeled
using copula functions. Alternative pricing methods are illustrated and compared.

Scenario Simulation Using Principal Components

We perform an approximate simulation of market scenarios defined by high-
dimensional quantities using a reduction method based on the statistical notion of
Principal Components.

Parametric Estimation of Jump-Diffusions

A simulation-based method for estimating parameters of continuous and discontin-
uous diffusion processes is proposed. This is particularly useful for asset valuation
under high-dimensional underlying quantities.

Nonparametric Estimation of Jump-Diffusions

We estimate a jump-diffusion process using a kernel-based nonparametric method.
Efficiency tests are performed for the purpose to assess the quality of the results.

A Smiling GARCH

We calibrate a GARCH model to the volatility surface by combining Monte Carlo
simulation with a local optimization scheme.

xxii

Acknowledgements

It is a great pleasure for us to thank all those who helped us in improving both content
and format of this book during the last few years. In particular, we wish to express
our gratitude to:

• Our direct collaborators, who contributed at a various degree of involvement
to the achievement of most problem-solving cases through the development of
viable working tools:

Mariano Biondelli (Mediobanca SpA, mariano.biondelli@mediobanca.it)
Matteo Bissiri (Cassa Depositi e Prestiti, matteo.bissiri@fastwebnet.it)
Giovanna Boi (Consob, giovanna.boi@inwind.it)
Andrea Bosio (Zero11 SRL, a.bosio@zero11.it)
Paolo Carta (Royal Bank of Scotland plc, Paolo.CARTA@rbos.com)
Gianna Figà-Talamanca (Università di Perugia, giannaft@unipg.it)
Paolo Ghini (Green Energies, paolo.ghini@greenenergies.eu)
Riccardo Grassi (MPS Alternative Investments SGR SpA, grassi@
mpsalternative.it)
Michele Lanza (Banca IMI, michele.lanza@bancaimi.it)
Giacomo Le Pera (CREDARIS CPM, giacomo.lepera@credaris.com)
Samuele Marafin (samuele.marafin@fastwebnet.it)
Francesco Martinelli (Banca Lombarda, francesco.martinelli@bancalombarda.
it)
Davide Meneguzzo (Deutsche Bank, davide.meneguzzo@db.com)
Enrico Michelotti (Dresdner Kleinwort, enrico.michelotti@dkib.com)
Alessandro Moro (Morgan Stanley, alessandro.moro@morganstanley.com)
Alessandra Palmieri (Moody’s Italia SRL, alessandra.palmieri@moodys.com)
Federico Roveda (Calyon, super fede <super_fede@email.it>)
Piergiacomo Sabino (Dufenergy SA, piergiacomo.sabino@gmail.com)
Marco Tarenghi (Banca Leonardo, marco.tarenghi@bancaleonardo.com)
Igor Toder (Dexia, igor.toder@clf-dexia.com)
Valerio Zuccolo (Banca IMI, valerio.zuccolo@polimi.it)

• Our colleagues Emanuele Amerio (INSEAD), Laura Ballotta (Cass Business
School), Mascia Bedendo (Bocconi University), Enrico Biffis (Cass Business
School), Rossano Danieli (Endesa SpA), Margherita Grasso (Enel SpA), Lorenzo
Liesch (UBM), Daniele Marazzina (Università degli Studi del Piemonte
Orentale), Marina Marena (Università degli Studi di Torino), Attilio Meucci
(Lehman Brothers), Pietro Millossovich (Università degli Studi di Trieste), Maria
Cristina Recchioni (Università Politecnica delle Marche), Simona Sanfelici (Uni-
versità degli Studi di Parma), Antonino Zanette (Università degli Studi di Udine),
for carefully revising parts of preliminary drafts of this book and making skilful
comments that significantly improved the final outcome.

• Our colleagues Emilio Barucci (Politecnico di Milano), Hélyette Geman (ESSEC
and Birckbek College), Stewart Hodges (King’s College), Giovanni Longo (Uni-
versità degli Studi del Piemonte Orientale), Elisa Luciano (Università degli Studi

xxiii

di Torino), Aldo Tagliani (Università degli Studi di Trento), Antonio Vulcano
(Deutsche Bank), for supporting our work and making important suggestions on
our project during these years.

• Text reviewers, including Aine Bolder, Mahwish Nasir, David Papazian, Robert
Rath, Brian Glenn Rossitier, Valentin Tataru and Jennifer Williams. A particular
thanks must be addressed to Eugenia Shlimovich and Jonathan Lipsmeyer, who
sacrificed hours of more interesting reading in the English classics to revise the
whole manuscript and figure out ways to adapt our Anglo-Italian style into a
more readable presentation.

• The three content reviewers acting on behalf of our Editor, for precious comments
that substantially improved the final result of our work.

• The editor, in particular Dr. Catriona Byrne and Dr. Susanne Denskus for the
time spent all over the editing and production processes. Their moral support
during the various steps of the writing of this book has been of great value to us.

• All institutions, and their representatives, who supported this initiative with in-
sightful suggestions and strong encouragement. In particular,

Erio Castagnoli, Donato Michele Cifarelli and Lorenzo Peccati, Institute of
Quantitative Methods, Bocconi University, Milan;
Francesco Corielli, Francesca Beccacece, Davide Maspero and Fulvio Ortu,
MaFinRisk (previously, MQFI), Bocconi University, Milan;
Stewart Hodges and Nick Webber, Financial Options Research Centre (FORC),
Warwick Business School, University of Warwick;
Sandro Salsa, Department of Mathematics, Politecnico di Milano, Milan.

• A special thanks goes to CERESSEC and its Director, Radu Vranceanu, for pro-
viding us with funding to financially support part of this work.

• Part of the book has been written while Andrea Roncoroni was Research Visiting
at IEMIF-Bocconi; a particular appreciation goes to its Director, Paolo Mottura,
and to the Director of the Finance Department, Francesco Saita.

• Our assistant Sophie Lémann at ESSEC Business School for precious help at
formatting preliminary versions of the draft and compiling useful information.

• Federica Trioschi at Bocconi University for arranging our classes at MaFinRisk.
• Our students Rachid Id Brik and Antoine Jacquier for helpful comments and

experiment design on some parts of the main text.

Clearly, all errors, omissions and “bugs” are our own responsibility.

Disclaimer

We accept no liability for any outcome of the use of codes, pseudo-codes, algorithms
and programs included in the text nor for those reported in a companion web site.

1

Static Monte Carlo

This chapter introduces fundamental methods and algorithms for simulating samples
of random variables and vectors, and provides illustrative examples of these tech-
niques in quantitative finance. Section 1.1 introduces the simulation problem and
the basic Monte Carlo valuation. Section 1.2 describes several algorithms for im-
plementing a simulation scheme. Section 1.3 treats some methods for reducing the
variance in Monte Carlo valuations.

1.1 Motivation and Issues

Monte Carlo is a beautiful town on the Mediterranean coast near the border between
France and Italy. It is known for hosting an important casino. Since gambling has
been long considered as the prototype of a repeatable statistical experiment, the term
“Monte Carlo” has been borrowed by scientists in order to denote computational
techniques designed for the purpose of simulating statistical experiments. A simula-
tion algorithm is a sequence of deterministic operations delivering possible outcomes
of a statistical experiment. The input usually consists of a probability distribution de-
scribing the statistical properties of the experiment and the output is a simulated sam-
ple from this distribution. Simulation is performed in a way that reflects probabilities
associated with all possible outcomes. As such, it is a valuable device whenever a
given experiment cannot be repeated, or it only can be repeated at a high cost. In this
case, first a model of the conditions defining the original experiment is established.
Then, a simulation is performed on this model and taken as an approximate sampling
of the true experiment. This method is referred to as a Monte Carlo simulation. For
instance, one may generate scenarios about the future evolution of a financial mar-
ket variable by simulating samples of a market model defining certain distributional
assumptions. Monte Carlo methods are very easy to implement on any computer
system. They can be employed for financial security valuation, model calibration,
risk management, scenario analysis and statistical estimation, among others. Monte
Carlo delivers numerical results in most cases where all other numerical methods fail
to. However, compared to alternative methods, computational speed is often slower.

4 1 Static Monte Carlo

Example (Arbitrage pricing by partial differential equations) Arbitrage theory is a
relative pricing device. It provides equilibrium values for financial contingent claims
written on prices S1, . . . , Sn of tradeable securities. Equilibrium is ensured by the
law of one price. Broadly speaking, two financial securities sharing a future pay-off
stream must have the same current market value. Otherwise, by buying the cheapest
and selling the dearest one would incur a positive profit today and no net cash-flow
in the future: that is an arbitrage. The current arbitrage-free value of a claim is the
minimum amount of wealth x we should invest today in a portfolio whose future
cash-flow stream matches the one stemming from holding the claim, that is, its pay-
off. The number x can be computed by the first fundamental theorem of asset pricing.
If t0 denotes current time and B(t) represents the time t value of 1 Euro invested in
the risk-free asset, i.e., the money market account, over [t0, t], the pricing theorem
states the existence of a probability measure P

∗, which is equivalent1 to the historical
probability P, under which price dynamics are given, such that relative prices Si/B

are all martingales under P
∗. This measure is commonly referred to as a risk neutral

probability. The martingale property leads to an explicit expression for any security
price:2

V (t0) = E
∗
t0

(
e
−

∫ T
t0

r(s) ds
V (T)

)
. (1.1)

If the random variable V (t) is a function F(t, x) ∈ C1,2(R+×R
k) of a k-dimensional

state variable X = (X1, . . . , Xk) satisfying the stochastic differential equation
(s.d.e.)

dX(t) = μ
(
t, X(t)

)
dt + Σ

(
t, X(t)

)
· dW(t), (1.2)

and the risk-free asset is driven by dB(t) = B(t)r(t, X(t)) dt , the martingale prop-
erty of relative prices V (t)

B(t)
= F(t,X(t))

B(t)
implies their P

∗-drift must vanish for all
t ∈ [0, T] and for P

∗-almost surely all ω in Ω . This drift can be computed by the Itô
formula. If D denotes the support of the diffusion X, we obtain a partial differential
equation (p.d.e.)

0 =
[
∂t + μ(t, x) · ∇x + 1

2
Tr

(
Σ(t, x)Σ(t, x)⊤ He[·]

)
− r(t, x)·

]
F(t, x), (1.3)

for all x ∈ D. This equation, together with the boundary condition F(T , x) =
V (T) = h(x), delivers a pricing function F(t, x) and a price process V (t) =
F(t, X(t)). Numerical methods for p.d.e.’s allow us to compute approximate solu-
tions to this equation in most cases. There are at least two important instances where
these methods are difficult, if not impossible, to apply:

(1) Non-Markovian processes.

1 Broadly speaking, P
∗ is equivalent to P, and we write P

∗ ∼ P, if there is a unique (up
to measure equivalence) function f such that the probability P

∗ of any event A can be
computed as:

P
∗(A) =

∫

A
f (ω)P(dω).

2
E

∗
t0

is a short form for the conditional expectation under P
∗, that is E

P
∗
(·|Ft0).

1.1 Motivation and Issues 5

• Case I. The state variable X is not Markovian, i.e., its statistical properties
as evaluated today depend on the entire past history of the variable. This
happens whenever μ, Σ are path-dependent, e.g., μ(t, ω) = f (t, {X(s), 0 ≤
s ≤ t}).

• Case II. The pay-off V (T) is path-dependent: then F is a functional and Itô
formula cannot be applied.

(2) High dimension. The state variable dimension k is high (e.g. basket options). Nu-
merical methods for p.d.e.’s may not provide reliable approximating solutions.

In each of these situations, Monte Carlo delivers a reliable approximated value
for the price V in formula (1.1).

1.1.1 Issue 1: Monte Carlo Estimation

We wish to estimate the expected value θ = E(X) of a random variable (r.v.) X with
distribution PX.3 A sample mean of this variable is any random average

θ̂n(X) := 1

n

n∑

i=1

X(i),

where X = (X(1), . . . , X(n)) is a random vector with independent and identically
distributed (i.i.d.) components with common distribution PX. If x = (x1, . . . , xn) is
a sample of this vector,4 then the number θ̂n(x) can be taken as an approximation to
the target quantity θ for at least two reasons. First, simple computations show that
this quantity has mean θ and variance Var(X)/n. This suggests that for n sufficiently
large, the estimation θ̂n(x) converges to the target quantity. Indeed the strong law of
large numbers states that this is the case. Second, the central limit theorem states that
the normalized centered sample means converge in distribution to a standard normal
variable, i.e.,

zn := θ̂n(X) − θ

σ̂n/
√

n

d→ N (0, 1) as n → ∞. (1.4)

This expression means that the cumulative distribution function (c.d.f.) of the r.v.
zn converges pointwise to the c.d.f. of a Gaussian variable with zero mean and unit
variance. The normalization can be indifferently performed by using either the ex-
act mean square error σ =

√
Var(X), which is usually unknown, or its unbiased

estimator

σ̂n(X) :=

√√√√ 1

n − 1

n∑

i=1

(
Xi − θ̂n(X)

)2

as is shown in formula (1.4). This statement says a lot about the way the sample
mean converges to the target number. In particular, the estimation error θ̂n(X) −

3 We suppose there is an underlying probability space (Ω,F , P). The distribution of X is
defined by PX(X ≤ x) := P({ω ∈ Ω: X(ω) ≤ x}).

4 In mathematical terms x = X(ω) for some ω ∈ Ω .

6 1 Static Monte Carlo

θ is approximately distributed as a normal N (0, σ̂ 2
n /n), which allows us to build

confidence intervals for the estimated value.

Example (Empirical verification of the central limit theorem) Let X(i) i.i.d.∼ U[0, 1]
with i = 1, . . . , n. Figure 1.1 shows the empirical distribution of zn for n = 2, 10, 15
as computed by simulation. To do this, we first generate 1,000 samples for each X(i),
that is 1,000×n random numbers. We then compute a first sample of zn by summing
up the first n numbers, a second sample of zn by summing up the next n numbers, and
so on, until we come up to 1,000 samples of zn. After partitioning the interval [−4, 4]

Fig. 1.1. Convergence of sample histograms to a Normal distribution.

1.1 Motivation and Issues 7

Table 1.1. List of symbols

Name Label Type Definition
State variable X r.v. X : Ω → R measurable
Sample of X x det. x = X(ω) for some ω ∈ Ω

State vector X r.v. X = (X1, . . . , Xn),Xi i.i.d.
Sample state x det. x = X(ω) for some ω ∈ Ω

Sample mean estimator θ̂n det. y → θ̂n(y) = 1
n

∑n
i=1 yi

Sample mean θ̂n(X) r.v. ω ∈ Ω → θ̂n(X(ω))

Sample mean estimation θ̂n(x) det. θ̂n(x), xi = indep. samples

into bins of length 0.2, we finally compute the histogram of relative frequencies by
counting the proportion of those samples falling into each bin. Figures 1.1(a), 1.1(b),
and 1.1(c) display the resulting histograms for z2, z10 and z15, respectively, vs. the
theoretical density function (dotted line). We see that convergence to a Gaussian law
occurs moderately rapidly. This property is exploited in Sect. 1.2.5 for the purpose
of building a quick generator of normal random samples.

Notice that the sample mean is the random variable obtained as the composite
function of the sample mean estimator5 θ̂n : y =(y1, . . . , yn) ∈ R

n → n−1 ∑n
i=1 yi

and the random vector X = (X1, . . . , Xn) with Xi i.i.d.∼ X, whereas a sample mean
estimation is the value taken by the sample mean at one particular sample. We are
led to the following:

Algorithm (Monte Carlo method)

1. Fix n “large”.
2. Generate x = (x1, . . . , xn) where the xi’s are samples of independent copies

of X.
3. Return the sample mean estimation θ̂n(x):

E(X) ≈ θ̂n(x).

This is the simplest Monte Carlo estimation. Table 1.1 summarizes the terminol-
ogy introduced hereby.

1.1.2 Issue 2: Efficiency and Sample Size

The simplest Monte Carlo estimator is unbiased for all n ≥ 1, i.e., E(θ̂n(X)) = θ . We
suppose from now on that the variance Var(X) is finite. The convergence argument
illustrated in the previous paragraph makes no explicit prescription about the size of
the sample. Increasing this size improves the performance of a given estimator, but
also increases the computational cost of the resulting procedure.

5 We recall that an estimator of a quantity θ ∈ Θ is a deterministic function of a sample
space into Θ . A sample space of a random element X ∈ Ξ is any product space Ξn.

8 1 Static Monte Carlo

We examine the problem of choosing between two estimators A and B given
the computational budget T indicating the time units we decide to allocate for the
purpose of performing the estimation procedure. Let τA and τB denote the units of
time required for accomplishing the two estimations above, respectively. We indicate
the corresponding mean square errors by σA and σB . Of course, if an estimation
takes less time to be performed and shows a lower variability than the other, then
it is preferable to this one. The problem arises whenever one of the two estimators
requires lower time per replication, but displays a higher mean square error than the
other. Without loss of generality, we may assume that τA < τB and σB < σA. Which
estimator should we select then? Given the computational budget T , we can perform
as many as

n(T , τi) = [T/τi]
replications of the estimation procedure i = A,B. Here [x] denotes the integer part
of x. The error stemming from the estimation is obtained by substituting this number
into formula (1.4):

√
T
(
θ̂

(i)
n(T ,τi)

− θ
)

≈ N
(
0, σ 2

i τi

)
, i = A,B. (1.5)

This expression provides the error in terms of the computational budget T and the
time per replication τi . The best estimator between A and B is thus the one leading
to the smallest estimation error represented by the product σ 2

i τi . We are led to the
following:

Rule (Estimation selection by efficiency)

1. Fix a computational budget T .
2. Choose the estimator i = A,B minimizing:

Efficiency(i) := σ 2
i τi .

This measure of efficiency is intuitive and does not depend on the way a repli-
cation is constructed. Indeed, if we change the definition of replication and say that
one replication in the new sense is given by the average of two replications in the old
sense, then the cost per replication doubles and the variance per replication halves,
leaving the efficiency measure unchanged, as was expected. After all we have simply
renamed the steps of a same algorithm.

Sometimes the computational time τ is random. This is the case when the chain
of steps leading to one replication depends on intermediate values. For instance, in
the evaluation of a barrier option the path simulation is interrupted whenever the
barrier is reached. If τ is random, then formula (1.5) still holds with τ replaced by
E(τ) or any unbiased estimation of it.

1.1.3 Issue 3: How to Simulate Samples

No truly random number can be generated by a computer code as long as it can only
perform sequences of deterministic operations. Moreover, the notion of randomness
is somehow fuzzy and has been debated for long by epistemologists. However, there
are deterministic sequences of numbers which “look like” random samples from

1.1 Motivation and Issues 9

independent copies of the uniform distribution on the unit interval. There are also
well-established tests for the statistical quality of these uniform generators. Each of
these numbers is a uniform “pseudo-random sample”. From uniform pseudo-random
samples we can obtain pseudo-random samples drawn from any other distributions
by applying suitable deterministic transformations. More precisely, if X ∼ FX,
then there exists a number n and function GX : [0, 1]n → R such that for any se-
quence of mutually independent uniform copies U (1), . . . , U (n), the compound r.v.
GX(U (1), . . . , U (n)) has distribution FX. It turns out that the function GX can be de-
termined by the knowledge of the distribution PX, which is usually assigned through:

• A cumulative distribution function (c.d.f.) FX(x);
• A density function (d.f.) fX(x) = d

dx
FX(x) (if FX is absolutely continuous);

• A discrete distribution function (d.d.f.) pX(x) = FX(x) − FX(x−) (if FX is
discrete);

• A hazard rate function (h.r.f.) hX(x) = fX(x)/(1 − FX(x)).

Methods for determining the transformation GX (and thus delivering random sam-
ples from PX) are available for each of these assignments. Section 1.2 below is en-
tirely devoted to this issue.

Numbers generated by any of these methods are called pseudo-random samples.
Monte Carlo simulation delivers pseudo-random samples of a statistical experiment
given its distributional properties. In the rest of the book, the terms “simulated sam-
ple” and “sample” are used as synonyms of the more proper term “pseudo-random
sample”.

1.1.4 Issue 4: How to Evaluate Financial Derivatives

Derivative valuation involves the computation of expected values of complex func-
tionals of random paths. The Monte Carlo method can be applied to compute ap-
proximated values for these quantities. For instance, we consider a European-style
derivative written on a state variable whose time t value is denoted by X(t). At a
given time T in the future, the security pays out an amount corresponding to a func-
tional F of the state variable path {X(s), t ≤ s ≤ T } between current time t and the
exercise time T . For notational convenience, this path is denoted by Xt,T .

History between t and T → Pay-off at time T

Xt,T := {X(s), t ≤ s ≤ T } F(Xt,T)

The arbitrage-free time t price of this contingent claim is given by the conditional
expectation of the present value of its future cash-flow under the risk-neutral proba-
bility P

∗, that is6

V (t) = E
P

∗
t

(
e−

∫ T
t r(u,X(u)) duF(Xt,T)

)
.

Notice that the state variable may enter into the determination of the short rate of
interest r .

6 The risk-neutral probability P
∗ makes all discounted security prices martingales. In other

words, X := V (t)/ exp(
∫ t

0 r(s) ds) is a P
∗-martingale for any security price process V .

10 1 Static Monte Carlo

Example (Options) In a European-style call option position, the holder has the right
to buy one unit of the underlying state variable at time T for a strike price K . Here
F(Xt,T) = max(0, X(T) − K), where K > 0 is the strike price and T > 0 is the
exercise date. In an Asian option position, the holder receives the arithmetic average
of all values assumed by the underlying state variable over an interval [t, T]. Here
F(Xt,T) =

∫ T

t
X(s) ds/(T − t), where T > 0 is the exercise date. In an up-and-

out call option position, the holder has the right to exercise a call option C(T ,K)

provided that the underlying state variable has always stayed below a threshold Γ

over the option lifetime [t, T]. Here F(Xt,T) = (X(T) − K)+1E(Xt,T), T > t , is
the exercise date, and the set E ={g ∈ R

[t,T] : g(s) < Γ,∀s ∈ [t, T]} identifies all
paths never crossing the threshold Γ on the interval [t, T].7

If we can somehow generate i.i.d. samples x
(1)
t,T , . . . , x

(n)
t,T of the random price

path XtT , the simple Monte Carlo estimation gives us

V (t) ≃ 1

n

n∑

i=1

e−
∫ T
t r(u,x

(i)
t,u) duF

(
x

(i)
t,T

)
.

This method can be implemented as follows:

Algorithm (Path-dependent Monte Carlo method)

1. Fix n “large”.
2. Generate n independent paths x

(1)
t,T , . . . , x

(n)
t,T of process X on [t, T].

3. Compute the discount factor and the pay-off over each path x
(i)
t,T .

4. Store the present value of the pay-off over each path, that is V (i) =
exp(−

∫ T

t
r(u, x

(i)
t,u) du) × F(x

(i)
t,T).

5. Return the sum of all V (1), . . . , V (n) divided by n.

In most cases paths need not, or simply cannot, be simulated in continuous time.
Therefore we may carry out a dimension reduction of the problem by identifying a
path (g(t), 0 ≤ t ≤ T) through a finite number of its value increments on consecu-
tive intervals of length, say, �t :

�g1, . . . ,�gN → g̃�g1,...,�gN
(t) := �g1 + · · · + �g[t/�t],

for all t ≤ �t × N =: T . We say that paths are discretely monitored. In these cases,
the expected value of a functional of a continuous time path g ∈ R

[0,T] with respect
to the probability measure P

X induced by a stochastic process X over the path space
R

[0,T] can be approximately evaluated as an integral over the finite-dimensional
space where a finite sample of increments in X is simulated:

E
P

X

(F) =
∫

R[0,T]
F(g)PX(dg)

=
∫

RN

F
((

g̃x1,...,xN
(t), 0 ≤ t ≤ T

))
f�X1,...,�XN

(x1, . . . , xN) dx1 · · · dxN ,

7 The symbol R
[t,T] denotes the class of all paths between t and T .

1.2 Simulation of Random Variables 11

where f�X1,...,�XN
denotes the distribution density of the vector of process incre-

ments X((k + 1)�t) − X(k�t), k = 0, . . . , N − 1. Consequently, Monte Carlo can
be seen as a method for numerically computing multidimensional integrals. This idea
is particularly useful each time the dimension of the problem is so large that neither
analytical evaluation nor standard numerical discretization procedures deliver reli-
able results.

Example (Basket option) Consider an option on a basket consisting of k many as-
sets. The underlying process is k dimensional and a vector xi := (xi,1, . . . , xi,k) is
sampled at each time ti . A Monte Carlo estimation reads as

E(F) ≃ 1

n

n∑

m=1

F ∗(x(m)
1,1 , . . . , x

(m)
1,k , x

(m)
2,1 , . . . , x

(m)
N−1,k, x

(m)
N,1, . . . , x

(m)
N,k

)
,

where x
(m)
i,j denotes the mth sample of the j th component of the state variable at

time ti . This corresponds to an integral in N × k dimensions. For a two year op-
tion, hedged once every week on the calendar year (52 weeks), on three indices, the
dimension is 2 × 52 × 3 = 312!!!.

1.1.5 The Monte Carlo Simulation Algorithm

Figure 1.2 provides a general Monte Carlo algorithm for financial applications. The
static branch deals with methods for generating pseudo-random samples from distri-
butions assigned by any of the functions listed in Sect. 1.1.3. This topic is developed
in the rest of the present chapter. Chapter 2 tackles the issue of sampling random
paths of a given stochastic process. We suppose a stochastic model is given in a
continuous time diffusion framework. The corresponding dynamics are then approx-
imated using processes that depend on a finite number of random variables. We use
any of the methods illustrated in Chapter 1 to generate samples from these distribu-
tions and then deliver pseudo-random sample paths. Monte Carlo estimation can be
improved by adopting variance reduction techniques that will be introduced at the
end of Chapter 2.

1.2 Simulation of Random Variables

We present some algorithms for generating independent and uniformly distributed
pseudo-random numbers on the unit interval [0, 1]. We then describe three gen-
eral methods for transforming uniform numbers into random samples with assigned
probability distributions. Inverse transformation methods take a c.d.f. as input, the
acceptance–rejection method assumes the d.f. is known, and the hazard rate method
moves from a hazard rate function.

12 1 Static Monte Carlo

Fig. 1.2. Implementation of the Monte Carlo algorithm.

1.2.1 Uniform Numbers Generation

A congruential generator is a recursive formula returning a sequence of pseudo-
random numbers. It starts with a “seed” value x0. Recall that for any positive in-
teger m, the modulus-m of a real number x is defined as the residual of the fraction
x/m and is denoted by x(mod m). We consider linear congruential generators.

Algorithm (Linear congruential generator)

1. Fix positive integers m (modulus), a (multiplier), and c (increment).
2. Set up a seed x0 ∈ {0, . . . , m − 1}.
3. Run the recursive rule xi+1 = (axi + c)(mod m).
4. Return ui+1 = xi+1/m ∈ [0, 1].

The modulus-m of axi + c is given by xi+1 = axi + c − kim, where ki is the
number of times the integer m can be “plugged” into axi + c, i.e., ki = [axi+c

m
].

(Here, square brackets denote the integer part of the argument.) As an example, if

1.2 Simulation of Random Variables 13

Table 1.2. Linear congruential generators with maximal period

Name m a c

1 237 − 1 16,807 0
2 2,147,483,399 40,692 0
3 2,147,483,563 40,014 0
4 231 − 1 39,373 0
5 231 − 1 742,938,285 0
6 231 − 1 950,706,276 0
7 231 − 1 1,226,874,159 0
8 235 27 + 1 1
9 108 31,415,821 1

x0 = 2, a = 1, c = 3,m = 2, we have ax0 + c = 5 and k1 = [5
2] = 2, so

that x1 = 5 − 2 × 2 = 1. This is exactly the residual of the ratio (axi + c)/m.
If constants m, a, and c are correctly chosen, the elements in the sequence (xi)i∈N

are good approximation of i.i.d. uniformly distributed samples on [0, 1]. Notice that
given ui ∼ U[0, 1], the r.v. ui × M is uniform on [0,M].

The sequence (xi)i∈N provided by any congruential generator is periodic. The
maximal period is m, since the sequence must self-intersect, i.e., meet twice the
same value in no more than m steps. Indeed, any sample value xi lies in the set
{0, . . . , m − 1} by construction. Consequently, any sequence (x0, . . . , xm) cannot
display distinct elements and is thus self-intersecting. This result suggests that one
should (1) select a relatively large m and (2) find conditions on the input coefficients
m, a, and c ensuring that the period p is maximal, i.e., p = m. Table 1.2 reports a
list of input values for which the maximality condition holds true. If the following
conditions are met, the corresponding generator can be proven to be maximal: m is
any power 10k , a(mod 200) = 21 or max{m/100,

√
m} < a ≤ m/100, c is an odd

number not a multiple of 5. It is recommended that the seed be reset to an arbitrarily
chosen value at each run of the code.

Below we report the relative performance of all generators indicated in Table 1.2.
Ranking is done according to the sample L2 deviation from the exact uniform den-
sity. (Error is computed as the difference in area underlying the two graphs.) Execu-
tion time for all generators is about the same across all generators.

Figure 1.3 compares the exact density to histograms for the best and the worst
generators reported in Table 1.3 according to the error criterion. These are genera-
tor 2 and generator 7, respectively.

Figure 1.4 shows the L2 error for each bin.

Example (Stratified sampling) To improve the uniformity of generated numbers we
may employ stratified sampling. This technique introduces a bias in the allocation of
sampled points by forcing samples to stick into subintervals refining [0, 1]. Let n be
the number of samples we want to generate. We may divide [0, 1] into M stratifying
bins [i

M
, i+1

M
], i = 0, . . . ,M − 1, and force the first sample to stick into [0, 1

M
],

the second sample into [1
M

, 2
M

], and so on until the Mth sample has been generated

14 1 Static Monte Carlo

Fig. 1.3. Theoretical vs. sample uniform densities.

Table 1.3.

Generator 1 2 3 4 5 6 7 8
Lerror

2 (×10−2) 2.67 2.22 2.52 2.44 2.75 2.30 5.28 2.48

in the last subinterval [M−1
M

, 1]. Then, the following number is generated within
[0, 1

M
] and so on. The general rule states that uk ∈ [i

M
(mod M), i+1

M
(mod M)] for

k = 1, . . . , n. If n = k × M , this method ensures that k samples fall into each
interval [i

M
, i+1

M
]. Table 1.4 displays a pseudo-code for sampling pseudo-random

numbers from stratified bins.

1.2.2 Transformation Methods

A. Inverse Transformation

This is the simplest method for simulating a r.v. with assigned c.d.f. F .

Idea Given a uniform r.v. U on [0, 1], we look for a transformation f of U such
that f (U) has c.d.f. given by F , that is:

P
(
f (U) ≤ x

)
= F(x). (1.6)

If f is bijective and monotonically increasing, the inverse function f −1 is well de-
fined and we may write:

P
(
f (U) ≤ x

)
= P

(
U ≤ f −1(x)

)

= f −1(x) (1.7)

1.2 Simulation of Random Variables 15

Fig. 1.4. L2-error for the best generator.

Table 1.4. Pseudo-code for stratified sampling and histogram of sample density

h[1] = h[2] = ... = h[m] = 0;
M = number of stratifying bins; /* bin length=1/M */
n = number of samples /* of the form k*M, k = integer */;
m = number of histogram bins /* of form p*M, bin length=1/m */
for (j = 1, j <= k, j++){

for (i = 1, i <= M, i++){
v = Uniform[0,1];/* sampling a uniform in [0,1]*/
u = (v+i-1)/M;/* zoom [0,1] into [(i-1)/M,i/M]*/
b = integerPart[(u*m)+1];
h[b]+=1;

}
};
Plot[(h[i]/n)/(1/m)] over i = 1,...,m;

because the probability that a uniformly distributed variable on the unit interval is
less than or equal to a given number is the number itself. Comparing expressions
(1.6) and (1.7) suggests that any function f whose inverse f −1 matches F is a can-
didate transformation. We consider three cases.

Case 1 F is continuous and strictly increasing (Figure 1.5). Then F is bijective and
f = F−1 satisfies the required properties.

Case 2 F is continuous (Figure 1.6). Then, it need not be injective and F−1 may not
even be defined. Let F−1(y) = min{x: F(x) = y} be the generalized inverse func-
tion of F , which always exists because F is right-continuous. Note that this definition
recovers the traditional definition of inverse in the case of strictly monotone func-
tions. Since F ◦ F−1 = Id, the function f = F−1 satisfies P(f (U) ≤ x) = F(x).

16 1 Static Monte Carlo

Fig. 1.5. Strictly monotone cumulative distribution function.

Fig. 1.6. Continuous cumulative distribution function displaying weak monotony.

Case 3 F is discontinuous, e.g., F(x) =
∑

i:xi≤x pi (Figure 1.7). Here pi is inter-
preted as the probability of xi . This function is neither injective nor surjective, so the
generalized inverse F−1(y) may not even be defined. This is actually the case for
points y ∈ [0, 1]\ Im(F). Let F−1(y) = min{x : F(x) ≥ y} be a further generaliza-
tion of the notion of inverse function. Again, the right continuity of F ensures the
well-definiteness of F−1 and this notion matches the two definitions above in their
corresponding cases. In general F ◦ F−1 �= F−1 ◦ F �= Identity. For any u ∈ [0, 1],
the set {x : u ≤ F(x) < F ◦ F−1(u)} is always empty. Consequently, it has zero
probability. We may then write:

P
(
F−1(U) ≤ x

)
= P

(
F ◦ F−1(U) ≤ F(x)

)

= P
(
F ◦ F−1(U) ≤ F(x)

)
+ P

(
U ≤ F(x) < F ◦ F−1(U)

)

= P
(
U ≤ F(x)

)
= F(x).

1.2 Simulation of Random Variables 17

Fig. 1.7. Piecewise constant cumulative distribution function.

These considerations justify the following procedure for generating a random
sample from a distribution F .

Algorithm (Inverse transformation)

1. Simulate U ∼ U[0, 1].
2. Return F−1(U).

Example (Exponential sampling) The c.d.f. of an exponentially distributed r.v. X

with unitary mean is F(x) = 1 − e−x . Thus X = F−1(U) = − ln(1 − U) ∼ E(1).
Since 1 − U is also a uniform on [0, 1], it suffices to take:

X = − ln U.

Note that cX is an exponential with mean c. An exponential with parameter λ is one
with mean λ−1, that is X = −λ−1 ln U , where U is uniform on [0, 1].

B. Multidimensional Inverse Transformation

This method extends univariate inverse transformation to the case of random vectors.

Idea Let X = (X1, . . . , Xk) be a random vector. If X1, . . . , Xk are mutually inde-
pendent and their c.d.f.’s F1, . . . , Fk are known, we may generate a sample of X by
applying the inverse transformation method to each component of X:

Xi = F−1
i (Ui).

If vector components are not mutually independent, we must follow a slightly dif-
ferent route. First, we fix a permutation i(1), . . . , i(k) of the first k positive integers.
For any arbitrary k-uple u1, . . . , uk in [0, 1]k , we solve the following system for
xi(1), . . . , xi(k):

18 1 Static Monte Carlo

⎧
⎪⎪⎨
⎪⎪⎩

Fi(1)(xi(1)) = u1
Fi(2)(xi(2)|xi(1)) = u2
...

Fi(k)(xi(k)|xi(1), . . . , xi(k−1)) = uk,

(1.8)

and arrive at x = G(u1, . . . , uk). Then, we sample k independent uniform numbers
U1, . . . , Uk and return G(U1, . . . , Uk).

Note that there are k! admissible systems, each one corresponding to a selected
permutation. To see this, suppose that distributions admit densities. For each permu-
tation i(1), . . . , i(k) of the first k indexes, we may write:

fX(x1, . . . , xk)

= fi(1)(xi(1)) ·
k−1∏

j=1

fi(j+1)(xj+1|Xi(1) = xi(1), . . . , Xi(j) = xi(j)). (1.9)

Each fi(n) is a density with corresponding c.d.f. Fi(n) determining a system of the
above form. Of course, there are k! many representations of the form (1.9). Some of
these systems may be easier to solve than others. No methods are available to select
a priori any of these systems.

Algorithm (Multidimensional inverse transformation)

1. Solve any of the admissible systems of form (1.8) and get to G(u1, u2, . . . , uk).

2. Simulate U1, U2, . . . , Uk
i.i.d.∼ U[0, 1].

3. Return G(U1, . . . , Uk).

Example Let (X1, X2) be a two-dimensional random vector with density fX1,X2(x1,

x2) = 6x11{x1+x2≤1,x1≥0,x2≥0}(x1, x2). We show that representing f in terms of
conditional densities in those ways corresponding to i(1) = 1, i(2) = 2 and
i(1) = 2, i(2) = 1, respectively, does matter for solving the resulting system (1.8).
If f = f1(x1)f2(x2|x1), the marginal c.d.f. is:

F1(x1) =
∫ x1

0
f1(y1) dy1

=
∫ x1

0

(∫ 1−y1

0
fX1,X2(y1, y2) dy2

)
dy1

= 3x2
1 − 2x3

1 ,

where 0 ≤ x1 ≤ 1 and condition [0, 1 − y1] y2 ∈ defines the support of the distrib-
ution on the y2 axis. The conditional c.d.f. is:

F2(x2|x1) =
∫ x2

0

(
fX1,X2(x1, y2)∫ 1−x1

0 fX1,X2(x1, y2) dy2

)
dy2 = x2(1 − x1)

−1,

where 0 ≤ x2 ≤ 1 − x1. The system becomes:

1.2 Simulation of Random Variables 19

Table 1.5. Performance of alternative multivariate inversion schemes

Method Execution time (s)
Numerical inversion (system (1.10)) 11.861
Numerical inversion (system (1.11)) 13.349
Direct substitution 0.101

{
F1(X1) = 3X2

1 − 2X3
1 = U1,

F2(X2|X1) = X2(1 − X1)
−1 = U2.

(1.10)

The alternative representation f = f2(x2)f1(x1|x2) leads to:
{

F2(X2) = 1 − (1 − X2)
3 = U1,

F1(X1|X2) = X2
1(1 − X2)

−2 = U2.
(1.11)

We note that (1.10) is difficult to solve whereas (1.11) is statistically equivalent to
(1 − X2)

3 = U1 and X2
1(1 − X2)

−2 = U2. This system has a solution:

X2 = 1 − U
1/3
1 , X1 = U

1/3
1 U

1/2
2 . (1.12)

There is no known method to determine a priori which among the k! representations
of the joint d.f. leads to the easiest to solve within the set of systems (1.8). Table 1.5
compares computational times for generating samples by numerically solving system
(1.10), system (1.11), or using the explicit solution (1.12).

C. Multivariate Direct Transformation

We present this method in the bivariate case.

Idea We wish to simulate a random vector (Y1, Y2) which is a known one-to-
one transformation g of another random vector (X1, X2) with a known density
fX1,X2(x1, x2). Let ψ be the inverse of g, namely:

ψ : (y1, y2) →
(
ψ1(y1, y2), ψ2(y1, y2)

)
: g

(
ψ1(y1, y2), ψ2(y1, y2)

)
= (y1, y2)

and J its Jacobian:

J = det

(∂ψ1
∂y1

∂ψ1
∂y2

∂ψ2
∂y1

∂ψ2
∂y2

)
.

An application of the change of variable formula for double integrals gives:

fY1,Y2(y1, y2) = J × fX1,X2(x1, x2)|x1=ψ1(y1,y2),x2=ψ2(y1,y2). (1.13)

Example (Normal distribution) Suppose that (Y1, Y2) is a standard normally dis-
tributed random vector. We look for r.v.’s X1, X2 and functions g1, g2 such that each

20 1 Static Monte Carlo

Yi is equal to gi(X1, X2) and both X1 and X2 are easy to sample. The strategy is to
look for ψ bringing Y1, Y2 somewhere, X1 and X2 say, and then define g = ψ−1. On
a hunch, we check for ψ transforming Cartesian into polar coordinates, that is:

x1 := ψ1(y1, y2) := y2
1 + y2

2 ,

x2 := ψ2(y1, y2) := tan−1(y2/y1).

We apply formula (1.13) to the function ψ : (y1, y2) → (x1, x2) defined above. As
the Jacobian of ψ is J = 1/2, we have:

fX1,X2(x1, x2) = 1

2π

e−x1/2 × 1

2
= 1

2
e−x1/2 × 1

2π

for x1 ∈ (0,∞) and x2 ∈ (0, 2π). By integrating over appropriate domains, we can
compute the marginals of X1 and X2. We easily read that X1 is exponential with rate
1/2 and X2 is uniformly distributed on the interval [0, 2π]. As a result, if X1 and
X2 are respectively samples from an exponential distribution with rate 1/2 (i.e., with
mean equal to 2) and from a uniform variate on the interval [0, 2π], then the r.v.’s
Y1, Y2 defined by:

Y1 = g1(X1, X2) = ψ−1
1 (X1, X2) =

√
X1 cos X2,

Y2 = g2(X1, X2) = ψ−1
2 (X1, X2) =

√
X1 sin X2,

are independent standard normals. Furthermore, if U1, U2
i.i.d.∼ U[0, 1], then

−2 ln U1 is exponential with rate 1/2 and 2πU2 is uniform on [0, 2π]. We have
proven the following:

Algorithm (Box–Müller)

1. Generate U1, U2 from U[0, 1].
2. Return

√
−2 ln U1 cos(2πU2) and

√
−2 ln U1 sin(2πU2).

1.2.3 Acceptance–Rejection Methods

This method is due to John Von Neumann.

Idea Let PX be a target distribution on D := Im(X). A random sample Y is first
drawn from a distribution PY with support D and then undergoes a random test. If the
test is successful, Y is returned; otherwise, it is rejected. The test is designed so that
accepted samples drawn from PY have distribution equal to PX. This scheme is ad-
vantageous whenever sampling from PY is easier than sampling from PX. However,
the method may be largely time consuming as long as several test may be required
before a number is accepted. More precisely, a test consists of drawing a sample
from the r.v. 1{U≤g(Y)}, where U ∼ U[0, 1] and g is a suitable function onto [0, 1].
If the outcome is 1, this is interpreted as a “success”; otherwise, it is meant as a
“failure”. Consequently, an acceptance–rejection scheme for a target distribution PX

is unequivocally defined by the selection of two quantities, namely: (1) a sampling
distribution PY and (2) a test function g. The problem can be stated as follows:

1.2 Simulation of Random Variables 21

Problem Given a distribution PX, find a distribution PY and a test function g :
Support(Y) → [0, 1], such that the distribution of Y , conditional to a successful
outcome for the test 1{U≤g(Y)} (i.e., an independent draw U ∼ U[0, 1] does not
exceed g(Y)) matches PX. In terms of densities, this condition reads as

fX(x) = fY |U≤g(Y)(x), (1.14)

for all x in the support D of X.

Solution One condition for two unknowns (fY and g) generally leads to several
solutions. We may shed light on this issue by expanding the right-hand side in (1.14)
as

fY |U≤g(Y)(x) = P(U ≤ g(Y)|Y = x)fY (x)

P(U ≤ g(Y))

= P(U ≤ g(x))fY (x)∫
P(U ≤ g(Y)|Y = y)fY (y) dy

= g(x)fY (x)∫
P(U ≤ g(y))fY (y) dy

= g(x)fY (x)∫
g(y)fY (y) dy

where the Bayes’ formula, the rule of total probabilities and a property of uniform
cumulative distribution functions are used in this order.8 By combining this expres-
sion with (1.14), we see that if fX is required to be decomposed into the product
of a test function 0 ≤ g ≤ 1, a density function fY , and a (normalizing) constant
C := (

∫
g(y)fY (y) dy)−1, i.e.,

fX(x) = C × g(x) × fY (x) on D. (1.15)

Then condition (1.14) is fulfilled and the following procedure delivers a sample
from fX. To implement this program, we may select a d.f. fY satisfying

fX ≤ CfY (1.16)

on D, for some constant C. Thus, decomposition (1.15) holds true for g defined by:

g := fX/(CfY) on D. (1.17)

Algorithm (Acceptance–rejection)

1. Select a constant C, a d.f. fY and a function g as in (1.15).
2. Simulate U ∼ U[0, 1].
3. Simulate Y ∼ fY .
4. If U > g(Y), go to Step 2.
5. Return Y .

8 Bayes’ formula: P(A|B) = P(A ∩ B)/P(B) = P(B|A)P(A)/P(B).
Rule of total probabilities: P(X < Y) =

∫
P(X < Y |Y = y)fY (y) dy.

Uniform property: P(U ≤ x) = x if U ∼ U [0, 1].

22 1 Static Monte Carlo

Example (Testing sampled uniforms) Drawing samples from PY should be as easy
as possible to perform. It is thus natural to try and simulate uniformly distributed
r.v.’s. Since the target distribution PX and the simulated one must share a common
support, an approximation of infinite domains is required. For the sake of clarity,
we assume an interval [a, b] is a common support for both PX and PY . That is Y is
uniformly distributed U[a, b] and X assumes values in [a, b]. This corresponds to
setting fY (x) := (b − a)−11[a,b](x). If M ≥ supx∈D fX(x), then inequality (1.16)
holds true for C = M(b − a). Expression (1.17) provides us with g := fX/(M(b −
a)fY) and decomposition (1.15) reads as

fX(x) = M(b − a) × fX(x)

M
× 1

b − a
1[a,b](x).

The parameter M provides a control on the constant C which turns out to be re-
lated to the efficiency of the resulting algorithm. Indeed, efficiency can be measured
by the inverse of the number of trials N , before a successful pair (U, Y) is drawn:
the smaller the number of trials required to deliver a sample, the more efficient the
algorithm. Since trial pairs (U, Y) are statistically independent of each other, the
probability of success is given by:

P(1{U≤g(Y)} = 1) = P
(
U ≤ g(Y)

)

=
∫

P
(
U ≤ g(Y)|Y = y

)
fY (y) dy

=
∫

P
(
U ≤ g(y)

)
fY (y) dy

=
∫

g(y)fY (y) dy = C−1.

It can be shown that the number of trials before a success occurs is a geometrically
distributed r.v. N , i.e., fN (n) = p(1 − p)n, with expectation C. This latter attains
the minimum value 1 provided that M = (b − a)−1.

Example (Absolute normal distribution) The exponential density is gE(1)(x) :=
e−x1R+(x). The absolute value of a standard normal N (0, 1) has density:

f|N (0,1)|(x) := d

dx
P(|Z| ≤ x) = d

dx

[∫ x

−x

fN (0,1)(x) dx

]
= 2√

2π

e−x2/2.

An upper bound for the ratio between f|N (0,1)| and gE(1) is given by

f|N (0,1)|(x)

fExp(x)
= 2√

2π

e−x2/2+x =
√

2e

π

e−(x−1)2/2 ≤
√

2e

π

=: C.

The method provides a sample from the absolute value of a normal by sampling from
the exponential distribution.

1.2 Simulation of Random Variables 23

1.2.4 Hazard Rate Function Method

Let τ be a positive r.v.; the ratio between its d.f. fτ and 1 minus its c.d.f. Fτ defines
the hazard rate function (h.r.f.) of τ :

λτ (t) := fτ (t)

1 − Fτ (t)
.

This name is motivated by the following:

Example (Bond default) If τ represents the time a bond defaults, the corresponding
h.r.f. computed at time t is the probability that default occurs in a “small” interval
(t, t + dt) conditional to the event that the bond has not defaulted before time t :

P
(
τ ∈ (t, t + dt)|τ > t

)
= P(τ ∈ (t, t + dt), τ > t)

P(τ > t)

= P(τ ∈ (t, t + dt))

P(τ > t)

= fτ (t) dt

1 − Fτ (t)
.

We now show how to sample τ given its h.r.f. λτ (·) > 0. For this, we need to make
the following:

Assumptions (1) λτ (·) is bounded from above by a constant λ∗ (e.g., λ∗ =
maxt≥0 λτ (t) < +∞); (2)

∫ ∞
0 λτ (s) ds = ∞.

Idea We draw sample jump times τ1, τ2, . . . , of a homogeneous Poisson process
until we meet the first time τi∗ for which a random test provides a positive outcome.
Our task is to design a test in such a way that the selected jump time τi∗ has h.r.f.
λτi∗ (t) equal to λτ (t) for all t ≥ 0, and can therefore be taken as a sample of τ . Let
τ1, τ2, . . . denote jump times of a Poisson process with intensity λ∗ and starting at
time 0. We recall that each time τi can be obtained as a sum

∑i
k=1 Tk of independent

samples T1, . . . , Ti with exponential distribution E(λ∗). A time t random test is an
experiment taking value “s” (success) with probability α(t), and value “f” (failure)
otherwise. A test function is a set of random tests, one for each time t ≥ 0. As P(U ≤
α(t)) = α(t) for uniform r.v.’s U ∼ U[0, 1], a test function can be represented as a
random process (Yα(t), t ≥ 0) with Yα(t) = 1U≤α(t), and is therefore unequivocally
determined by a function (α(t), t ≥ 0). We thus look for a time dependent function
(α∗(t), t ≥ 0) defining a test function (Yα∗(t), t ≥ 0), such that the conditional
r.v. τi∗ representing the first Poisson jump time for which the test succeeds (i.e.,
i∗ := min{i ≥ 1 : Yα∗(τi) = 1}) equals τ in the distributional sense, i.e., the h.r.f.’s
of τi∗ and τ agree for all times t ≥ 0.

Problem Given a hazard rate function (λτ (t), t ≥ 0), find a test function (α∗(t),
t ≥ 0), such that

λτi∗ (t) = λτ (t),

for all t ≥ 0; here i∗ := min{i ≥ 1: Yα∗(τi) = 1}, Yα∗(τi) := 1Ui≤α∗(τi), Ui
i.i.d.∼

U[0, 1], τi =
∑i

k=1 Tk , and Ti
i.i.d.∼ E(λ).

24 1 Static Monte Carlo

Solution We first clarify the following terms of the problem:

(1) The event {τ ∈ (t, t + dt)} corresponds to the existence of a Poisson jump time
τi lying in (t, t + dt), for which the test succeeds, i.e., Yα(τi) = 1;

(2) The event {τ > t} means that “the test fails for all Poisson jump times τi ≤ t”;
(3) Poisson processes have independent and stationary increments;
(4) Any test Yα(t) is statistically independent of the Poisson process and of all tests

Yα(s), with s < t .

Under these assumptions, we may compute the h.r.f. of τi∗ as

λτi∗ (t) dt := P
(
τi∗ ∈ (t, t + dt)|τi∗ > t

)

(1)∧(2)= P
(
∃i : τi ∈ (t, t + dt), Yα∗(τi) = 1|Yα∗(τk) = 0, k ≤ i − 1

)

(3)∧(4)= P
(
∃i : τi ∈ (t, t + dt), Yα∗(τi) = 1

)

= P
(
τi ∈ (t, t + dt)

)
× P

(
Yα∗(τi) = 1|τi ∈ (t, t + dt)

)

dt small=
(
λ dt + o(dt)

)
× α∗(t),

where o(dt) denotes a function converging to 0 quicker than t . Consequently,

λτi∗ (t) = λτ (t) ⇐⇒ α∗(t) := λτ (t)

λ
,

up to a term of order dt . This method can be implemented using the following:

Algorithm (Hazard rate function)

1. Let i = τ = 0 and λ∗ : λ(t) ≤ λ∗ for all t ≥ 0.
2. Set i = i + 1.
3. Sample Ti ∼ E(λ), and define τ = τ + Ti .
4. Sample Ui ∼ U[0, 1].
5. If λ × Ui > λ(τ), then go to Step 2.
6. Return τ .

The heuristic argument detailed above is turned into a rigorous proof in the next
chapter, where inhomogeneous Poisson processes are simulated using a similar tech-
nique.

1.2.5 Special Methods

A. Univariate Normal Distribution

We describe a “quick-and-dirty” algorithm to generate independent samples from a
standard normal distribution N (0, 1).

Idea The central limit theorem states that the ratio (
∑n

i=1 Xi − nμ)/(
√

nσ) asymp-
totically converges to N (0, 1). Set Xi = Ui ∼ U[0, 1]. Then μ = 1/2, σ = 1/

√
12

and, for n sufficiently large, the ratio (
∑n

i=1 Ui − n/2)/
√

n/12 is approximately nor-
mal. The assignment n = 12 provides a sufficiently accurate approximation for most
simulation purposes.

1.2 Simulation of Random Variables 25

Algorithm (Normal distribution by summing up uniforms)

1. Generate U1, . . . , U12
i.i.d.∼ U[0, 1].

2. Return
∑12

i=1 Ui − 6.

Let us conclude with a few remarks. For a log-normal r.v., we may return eX, with
X normal. We cannot use the inverse transformation method to generate a normal
sample because the c.d.f. admits no analytical expression. Analytical approximations
to this c.d.f. actually exist, but inverting them involves a root searching algorithm that
may make the resulting sampling method lower than alternative algorithms.

We have simulated Gaussian variables N (μ = 2, σ 2 = 3) by four methods:
(1) numerical inversion of the c.d.f., (2) acceptance–rejection of an absolute normal
with probability 0.5, (3) Box–Müller algorithm, (4) summing up 12 uniforms. For
sample sizes n = 1,000; 10,000; 100,000; 1,000,000; and 10,000,000, we have com-
puted execution time (in seconds) and the corresponding deviations of the sampled
histogram from the theoretical normal density. Two metrics have been implemented
for the purpose of evaluating this figure. The first one is the L2 metric: it computes
the difference in area between the two graphs. The second one is the Sup metrics: it
determines the maximum distance between ordinates of the two graphs.9 Table 1.6
reports results for all cases. These results depend on the refinement of the sample
range. Table 1.6 reports values corresponding to splitting the interval [−6, 10] into
N = 100 bins. We have performed the same analysis under thinner refinements,
that is N = 200 and N = 300. In general, error numbers increase by refining the
sample range. Table 1.7 displays errors for the cases of 10,000 and 100,000 samples
generated by numerical inversion of the c.d.f. However, the trend measured along in-
creasing sample sizes is the same: errors tend to decrease as the sample size becomes
larger and larger. Figures 1.8 and 1.9 display the L2-error across different values in
the abscissa under the hypothesis that the interval [−6, 10] has been partitioned into
300 evenly spaced bins. The graphs support labeling the uniform-based generator as
a “quick-and-dirty” method.

B. Multivariate Normal Distribution

The density of a random vector X with multivariate normal distribution N (μ,Σ) is

9 The L2-distance between functions f and g on the interval [0, T] is a measure of the area
underlying their difference:

dL2
(f, g) :=

√∫ T

0
|f (t) − g(t)|2.

The Sup-distance between functions f and g on the interval [0, T] is the least upper bound
of the absolute value of their difference:

dsup(f, g) := sup
t∈[0,T]

|f (t) − g(t)|.

26 1 Static Monte Carlo

Table 1.6. Performance of alternative sampling schemes for normal variables

Method Criterion n = 103 n = 105 n = 107

Numer.–Invers. L2 0.20831 0.02073 0.00179
Sup 0.09516 0.00615 0.00077
Time 0 0 5

Accept.–Reject. L2 0.16413 0.01845 0.00208
Sup 0.05041 0.00624 0.00069
Time 0 0 10

Box–Müller L2 0.14496 0.01699 0.00210
Sup 0.05763 0.00612 0.00105
Time 0 0 5

Uniform Sum L2 0.16833 0.02027 0.01140
Sup 0.07493 0.00697 0.00315
Time 0 1 11

Table 1.7. Performance of the numerical inversion method for normal variables

Sample size Criterion Ref. = 100 Ref. = 200 Ref. = 300
10,000 L2 0.056044 0.122860 0.174221

Sup 0.023736 0.038525 0.038613

100,000 L2 0.020734 0.041032 0.064318
Sup 0.006150 0.016850 0.021737

fX(x) = 1√
(2π)k det Σ

e−1/2(x−μ)⊤Σ−1(x−μ).

Here μ ∈ R
k is the mean vector and Σ ∈ M(k) is the covariance matrix, which

is positive semi-definite and symmetric. The class of normal distributions is closed
under linear transformations, meaning that for any matrix C ∈ M(k), the product
vector Cx is N (Cμ, CΣC⊤). This leads to the following:

Algorithm (Multivariate normal distribution)

1. Decompose Σ as CC⊤ for a suitable matrix C ∈ M(k).

2. Simulate Z = (Z1, . . . , Zn) ∼ N (0, I) by generating samples Zi
i.i.d.∼ N (0, 1).

3. Return CZ + μ as a sample of N (μ,Σ).

This method admits as many variants as the number of possible factorizations of
the covariance matrix Σ . We examine two of them.

Cholesky factorization

We look for a decomposition Σ = CC⊤ where C is a lower triangular ma-
trix. For any positive definite symmetric matrix this decomposition always exists
and can be obtained by a recursive procedure. Given semi-rows ci1, . . . , cij−1 and
cj1, . . . , cjj−1, the cell (i, j) is defined by

1.2 Simulation of Random Variables 27

Fig. 1.8. Sample errors for approximated inverse function and acceptance–rejection methods
vs. the exact normal density.

cij :=
σij −

∑j−1
k=1 cikcjk√

(σjj −
∑j−1

k=1 c2
jk)

,

where the sum
∑0

i=1 . . . is set to zero.

Principal components decomposition

Any covariance matrix admits a spectral decomposition Σ = UΛU⊤, where U is
an orthogonal matrix10 and Λ is a diagonal matrix diag(λ1, . . . , λk). The ith el-
ement λi in the diagonal of Λ is an eigenvalue of Σ and the ith column ui in

10 A matrix U =(u1| · · · |uk) is orthogonal if distinct columns have zero inner product:

〈ui , uj 〉 :=
∑k

m=1 ui
mu

j
m = 0. This implies U−1 = U⊤.

28 1 Static Monte Carlo

Fig. 1.9. Sample errors for Box–Müller and uniform-based methods vs. the exact normal den-
sity.

matrix U is its corresponding orthonormal eigenvector.11 Since Σ is symmetric,
then all eigenvalues are real. This leads to a decomposition Σ = CC⊤ where
C := U

√
Λ = U · diag(

√
λ1, . . . ,

√
λk). If X ∼ N (μ,Σ), then

X ∼ μ + Cz = μ + z1

√
λ1u1 + · · · + zk

√
λkuk, where zi

i.i.d.∼ N (0, 1).

11 A number λ ∈ C is an eigenvalue of a matrix Σ and u ∈ Rk is an eigenvector corresponding
to λ if they fulfill the following equation:

Σu = λu.

Eigenvectors corresponding to distinct eigenvalues are orthogonal. If their norm ‖u‖ :=∑k
m=1 ui

m is equal to 1, they constitute an orthonormal basis in R
k .

1.2 Simulation of Random Variables 29

This expression is particularly useful whenever k is very large and a reduction in
dimension is required. In this case, we first arrange the eigenvalues in decreasing
order, i.e., λ1 ≥ · · · ≥ λk . Then, we fix a threshold T representing the percent-
age of variance embodied by the original vector X to be explained by the reduced
vector. The former being the sum of all variances of the components of X, that is
Trace(Σ) =

∑k
i=1 Σii =

∑
i λi ,12 we select the smallest index k∗ such that the

ratio
∑k∗

i=1 λi/
∑k

i=1 λi ≥ T . Finally the vector μ+z1
√

λ1u1 + · · · + zk∗
√

λk∗uk∗
is

the reduced vector with the required approximating property:

X ∼ μ+z1

√
λ1u1 + · · · + zk∗

√
λk∗uk∗

,

where variables zi are as above.

Stable Distributions

These distributions arise in the simulation of Levy processes. A r.v. X has an α-stable
distribution if any linear combination of two independent copies of X is distributed

as X up to a linear transformation. More formally, ∀a1, a2 > 0 and X1, X2
i.i.d.∼ X,

∃c > 0, b ∈ R: a1X1 +a2X2
d= cX+b. In particular, the sum of independent copies

of X display the same property. It can be shown this distribution has characteristic
function given by

ϕ(x) = exp
{√

−1μx − σ α|x|α
[
1 +

√
−1β × Sign(x)h(x, α)

]}
,

h(x, α) =
{− tan

(
α π

2

)
, α �= 1,

2
π

ln x, α = 1.

Here μ ∈ R, σ ≥ 0, β ∈ [−1, 1], α ∈ (0, 2] have the interpretation of shift,
scale, skewness, and stabilization parameters, respectively. We write Sα(σ, β, μ) to
denote this distribution. It is not difficult to see that S2(1, 0, 0) is a standard normal
and that S1(1, 0, 0) is a Cauchy distribution. The attribute “α-stable” stems from the
following property involving the characteristic function of X: ∀a > 0, ∃α ∈ (0, 2]
and c = c(a) ∈ R such that ϕ(x)α = ϕ(α

√
ax) exp{

√
−1cx}.

To generate a sample of X ∼ Sα(σ, β, μ), it is sufficient to simulate Y ∼
Sα(1, β, 0), apply the stable property and return

σX + μ if α �= 1,

σX + μ + 2

π

βσ ln σ if α = 1.

We may apply the following:

Algorithm (α-stable distribution)

1. Generate U ∼ U[0, 1].
12 The trace of a matrix is invariant under orthogonal transformations: Trace(Σ) =

Trace(U⊤Σ) for any orthogonal matrix Σ .

30 1 Static Monte Carlo

2. Generate ε ∼ Exp(1) independently of U .
3. Set V = πU − π/2 and c = −(2α)−1

πβ(1 − |1 − α|).
4. Return

⎧
⎨
⎩

sin[α(U − c)]
(
ε−1 cos[U − α(U − c)]

)(1−α)/α
cos(U)−α, if α �= 1,

2
π

[(
π

2 + βU
)

tan(U) − β ln
(π

2 ε cos(U)
π

2 +βU

)]
, if α = 1.

Gamma and Chi-Square Distributions

The gamma distribution with shape parameter α > 0 and scale parameter β > 0 has
density:

fŴ(α,β)(x) = 1

Ŵ(α)βα
xα−1e−x/β (x > 0),

where Ŵ is the gamma function defined by:

Ŵ(α) :=
∫ ∞

0
xα−1e−x dx.

The moment generating function of a gamma distributed r.v. X can be computed as
follows:

mX(t) =
∫ ∞

0
etx 1

Ŵ(α)βα
xα−1e−x/β dx =

(
β−1

β−1 − t

)α

.

By differentiating one and two times this expression with respect to t and computing
the obtained results at t = 0, we come up to E(X) = αβ, E(X2) = α(α + 1)β2 and
Var(X) = αβ2.

It can be proved that Ŵ(α, β) is homogeneous with respect to β, i.e., βŴ(α, 1)
d=

Ŵ(α, β). Consequently, if we wish to simulate a random sample from X ∼ Ŵ(α, β),
it suffices to generate a sample Y ∼ Ŵ(α, 1) and return βX. The following algorithm
allows us to simulate variables Ŵ(α, 1) with α ≥ 1 a case covering most applications
in finance.13

Algorithm (Gamma distribution Ŵ(α, 1), with α ≥ 1)

1. Set b = α − 1 and c = 3α − 3/4.

2. Generate U,V
i.i.d.∼ U[0, 1].

3. Set Z = U(1 − U), Y =
√

c
Z

(U − 1
2), and X = b + Y .

4. If X < 0, then go to Step 2.
5. If ln(64Z3V 3) > 2(b ln(X

b
) − Y), then go to Step 2.

6. Return X.

Example (Central chi-square distribution) A chi-square distribution χ2(ν) with ν ∈
N+ degrees of freedom is defined as the distribution of the sum of ν squared i.i.d.
Gaussian variables Z1, . . . , Zν :

13 The case 0 < α < 1 is treated in, e.g., Cont and Tankov (2004) and Glasserman (2004).

1.3 Variance Reduction 31

Xχ2(ν) = Z2
1 + · · · + Z2

ν .

It can be proved that χ2(ν) is also a gamma with shape parameter α = ν/2 and scale
parameter β = 2; we may then generate a sample Y ∼ Ŵ(ν/2, 1) and finally return
X = 2Y .

Example (Noncentral chi-square distribution) A noncentral chi-square distribution
χ2(ν, λ) with ν degrees of freedom and noncentrality parameter λ =

∑ν
i=1 α2

i is de-
fined as the distribution of the sum of a number ν of αi-shifted squared i.i.d. Gaussian
variables Z1 + α1, . . . , Zν + αν :

Xχ2(ν,λ) = (Z1 + α1)
2 + · · · + (Zν + αν)

2.

From this expression we read:

χ2(ν, λ) = χ2(1, λ) + χ2(ν − 1)

=
(
N (0, 1) +

√
λ
)2 + χ2(ν − 1),

namely the sum of the square of a Gaussian variable with mean
√

λ and a standard
chi-square variable with ν−1 degrees of freedom. This method works for any integer
ν > 1. It turns out that a noncentral chi-square can be defined for any real number
ν > 0 by showing that the expression of the distribution function for integer ν makes
sense for arbitrary ν. In this case, Cont and Tankov (2004) provide us with a way to
simulate a random sample through an alternative algorithm.

1.3 Variance Reduction

We present three techniques for reducing the variance in the basic Monte Carlo algo-
rithm. Other methods gathered around the label “Quasi-Monte Carlo” are developed
as a case-study in Part II of this treatise.

1.3.1 Antithetic Variables

Let the target θ be the expected value of a monotone function g of a random vari-
able X. We know that the sample mean θ̂n(X) := 1

n

∑n
i=1 g(X(i)) is an unbiased

estimator of θ whose precision can be measured by

Var(θ̂n) = Var(g(X))

n
, (1.18)

or by its unbiased estimator σ̂ 2
n (g(X)) := 1

n−1

∑n
i=1(g(Xi) − θ̂n(X))2.

Problem Find an unbiased estimator of θ with greater precision, that is smaller
variance than (1.18).

32 1 Static Monte Carlo

Idea Let n = 2. If X1 and X2 are samples from common c.d.f. F , the variance
computes as

Var

(
g(X1) + g(X2)

2

)
= 1

2

[
Var

(
g
(
X1)) + Cov

(
g
(
X1), g

(
X2))],

since Var(g(X1)) = Var(g(X2)). If these samples are statistically independent, this
quantity is Var(θ̂2). If we set g such that g(X1) and g(X2) are negatively correlated,
then:

Var

(
g(X1) + g(X2)

2

)
≤ Var(θ̂2).

According to the inverse function method, we may generate X1 as F−1(U1) and X2

as F−1(U2), where U1 and U2 are uniform r.v.’s. If these two uniforms are negatively
correlated, we obtain negatively correlated samples X1 and X2. Given independent
uniform samples U1 and U2, we may introduce negative correlation by substituting
U1 with ι(U1). Here ι can be any decreasing function from [0, 1] to itself such that
ι(U1) ∼ U[0, 1]. Because the covariance of an increasing function (here F−1) of
a random variable and a decreasing function (here F−1 ◦ ι) of the same variable is
always less than or equal to zero, we have:

Cov
(
g
(
X1), g

(
X2)) = Cov

(
g ◦ F−1
︸ ︷︷ ︸
increasing

(U1), g ◦ F−1 ◦ ι︸ ︷︷ ︸
decreasing

(U1)
)

≤ 0.

A simple choice for ι is ι(u) = 1 − u. For an n-sized sample of a k-dimensional
random vector X with c.d.f. F = (F1, . . . , Fk) and statistically independent compo-
nents, this method generalizes to the following algorithm.

Algorithm (Antithetic variables)

1. Simulate U1, . . . , Un
i.i.d.∼ U[0, 1]k (n × k uniforms);

2. Estimate θ by:

θ̂AV := 1

2n

n∑

i=1

[
g
(
F−1

1 (Ui1), . . . , F
−1
k (Uik)

)

+ g
(
F−1

1 (1 − Ui1), . . . , F
−1
k (1 − Uik)

)]
.

Example In the Black–Scholes model the monotone function g transforming input
Z ∼ N (0, 1) into a call option discounted pay-off is given by

Z → S(T) = S0e(r−σ 2/2)T +σ
√

T Z

→ C(T , S(T); T ,K) = e−rT
(
S(T) − K

)
+ =: g(Z).

Taking independent sample Z1, . . . , Zn, the standard Monte Carlo estimator is θ̂n :=
1
n

∑n
i=1 g(Zi). We obtain the estimator

1.3 Variance Reduction 33

θ̂AV := 1

n

n∑

i=1

g(Zi) + g(−Zi)

2
,

To implement this estimator, we may compute 1
n

∑n
i=1

H(Ui)+H(1−Ui)
2 , where H :=

g ◦ F−1
N (0,1)

(u) and Ui independent uniform variables.

Example In a short interest rate model, we may consider antithetic paths generated
by:

r±
i+1 = r±

i + μ(ti, r
±
i) × �t + σ(ti, r

±
i) ×

√
�t × (±1) × N (0, 1).

Here, for each set of N i.i.d. standard normal r.v.’s, we simulate two antithetic paths.
As an alternative we may employ:

r±
i+1 = r±

i + μ(ti, r
±
i) × �t + σ(ti, r

±
i) ×

√
�t × N (0, 1,±U[0, 1]),

where the last factor denotes normals generated by antithetic uniforms, U and 1−U .

We stress the importance of the monotony hypothesis for g. For instance, a deriv-
ative having pay-off of form |S(T)−K| does not satisfy this requirement. Therefore
we do not expect a variance reduction by antithetic variables in this case.

1.3.2 Control Variables

If we have some information about functionals of the underlying process, we may
foresee the possibility to exploit it in order to build up a new unbiased estimator
which is more effective, either in terms of variance reduction or efficiency, than a
naive Monte Carlo valuation.

Remember that the aim is to estimate:

θ = E
(
g(X)

)
,

where g denotes a pay-off functional computed over a sample of the underlying
stochastic process X. An antithetic variable estimator is:

θ̂AV = g(X) + g(Y)

2
,

where Y is a random path identically distributed as X displaying negative covariance
with respect to Y .

Suppose we know the expected value of another functional f of X, such that
f and g are one “close” to the other. For instance, we may take g to be the pay-off
profile of an Asian option with arithmetic average, for which no closed form solution
exists in the Black–Scholes framework, and f to be the pay-off cash flow of an Asian
option with geometric average. This latter has a closed-form solution.

We may consider the following unbiased and consistent (can you prove it?) esti-
mator:

34 1 Static Monte Carlo

θ̂α
CV = g(X) + α

(
f (X) − E

(
f (X)

))
,

where the expected value is a known term.
The variance of θ̂α

CV is:

Var
(
θ̂α

CV

)
= Var

(
g(X)

)
+ α2 Var

(
f (X)

)
+ 2α Cov

(
g(X), f (X)

)
,

which is minimal for:

α∗ = −Cov(g(X), f (X))

Var(f (X))
.

The optimal estimator:

θ̂α
CV = g(X) − Cov(g(X), f (X))

Var(f (X))
×

(
f (X) − E

(
f (X)

))

is merely of a theoretical importance. Indeed, it would seem very strange to know
Cov(g(X), f (X)) without knowing E(g(X))! Anyway, we may follow two routes.
First, we can estimate such a covariance by regression over past observed data. This
amounts to computing the slope of the least-square regression line through the set of
points (g(Xi), f (Xi)), i = 1, . . . , n, i.e.,

α∗
n =

∑n
i=1(g(Xi) − n−1 ∑ g(Xi))(f (Xi) − n−1 ∑ f (Xi))∑n

i=1[g(Xi) − n−1
∑

g(Xi)]2
,

and adopting the estimator θ̂
α∗

n

CV. Alternatively, we may as well have a broad idea
about the value taken by α∗ according to our prior experience on the relation between
f (X) and g(X). That is the case of two derivatives with similar payoffs.

The optimal estimator has variance:

Var
(
θ̂α∗

CV

)
= Var

(
g(X)

)
− Cov(g(X), f (X))2

Var(f (X))

= Var
(
g(X)

)
− Corr(g(X), f (X))2(

√
Var(g(X)))2(

√
Var(f (X)))2

Var(f (X))

= Var
(
g(X)

)(
1 − Corr

(
f (X), g(X)

)2)
,

showing that under the optimal parameter variance reduction is assured provided that
f and g are one “close” to the other.

Example Let g be a functional transforming a sample price path into a time T pay-
off. We may take f to be the final value of a discretely rebalanced �-hedging strategy
within the Black–Scholes model:

S0,T
f→ V (S0,T) = CBS(0) +

N−1∑

i=0

[
∂SCi × �Si + Ci − ∂SCiSi

Bi

�Bi

]
Pi+1.

Here ∂SCi = ∂SC(ti, S0,T (ti)) is the option price delta,�Si = S0,T (ti+1) − S0,T (ti)

is the absolute variation of the stock price S,Ci = C(ti, S0,T (ti)) is the option

1.3 Variance Reduction 35

price, Si = S0,T (ti) is the stock price, Bi = B(ti) is the risk free asset price,
�Bi = B(ti+1) − B(ti) is the risk free asset price variation, and Pi+1 = Pti+1(0)

is the discount factor from time ti+1 to the current date. We can easily verify that
E(f (X0,T)) = CBS(0), that is the Black–Scholes price. Since the value process
above is a proxy of the true replicating strategy for the option defined by g, we may
argue that α = −1 is likely to work well. For the case of a call option on S(T), the
estimator would be:

θ̂α=−1
CV =

(
S0,T (T) − K

)
+ − 1 ×

(
V − CBS(0)

)
.

1.3.3 Importance Sampling

The general goal of any Monte Carlo method is to provide an estimation of the ex-
pected value of a function h of a random variable X: θ = Ef (h(X)). We assume
that the distribution of X is absolutely continuous with respect to the Lebesgue
measure on the range of X and denote the density of the distribution function PX

of X by f = fX. The Monte Carlo estimate is θ̂n = n−1 ∑n
i=1 h(X(n)), where

X(1), . . . , X(n) is a sequence of independent and identically distributed samples
from PX.

This estimator may be particularly inefficient whenever the region where h as-
sumes relatively important values has a low probability. This is the case of a deep
out-of-the-money European digital option written on S with maturity T and pay-off
N × 1{S(T)>K}. For instance, the underlying price distribution can be concentrated
on a region below the triggering threshold K and the probability for the option to
generate a positive pay-off turns out to be relatively low. However, if the amount
N is sufficiently big, then the option may have a nonnegligible value. It turns out
that a sample generator may require several trials before meeting a number exceed-
ing K . The Monte Carlo estimate is extremely sensitive to these circumstances and
its convergence may be unreasonably slow.

Importance sampling consists of (1) replacing f with a density g whose samples
are more likely to fall into the desired region, and (2) performing a Monte Carlo
estimates by sampling from the new distribution and weighing the resulting samples
appropriately. Intuitively, samples occurring more often under g than under f should
be cut by a fraction of the value. This is the case if each sample h(X(i)) is weighed
by the ratio f (X(i))/g(X(i)). A simple computation shows that this conjecture is
correct:

θ := E
f (h(X))

=
∫

h(x)f (x) dx

=
∫

h(x)
f (x)

g(x)
g(x) dx

= E
g

(
h(X)

f (X)

g(X)

)
.

36 1 Static Monte Carlo

For this to hold true, we must require that g > 0. For more general distributions,
the two probabilities must assign zero mass to the same events. We say that they
are mutually equivalent probability measures. If we denote by GX the probability
distribution having density g, the new Monte Carlo estimate is

θ̂
g
n = 1

n

n∑

i=1

h
(
X(n)

)f (X(n))

g(X(n))
,

where X(1), . . . , X(n) is a sequence of independent and identically distributed sam-
ples from GX. In other words, after choosing a suitable g > 0, samples are drawn
from it and plugged into the classical Monte Carlo estimator where the target func-
tion is now h × f/g.

Properties It is easy to check that θ̂
g
n is an unbiased estimator of θ . However, its

variance differs from the one exhibited by θ̂n. To show this, we assume without loss
of generality that θ = 0. (Otherwise, we may subtract θ from θ̂

g
n and proceed as

follows.) In this case, variance coincides with the moment of order two. For the new
estimator, this figure is easily computed as

E
g
[(

θ̂
g
n

)2] = E
g

[(
1

n

n∑

i=1

h
f

g

)2]

= 1

n2

n∑

i=1

E
g

[(
h

f

g

)2]

= 1

n
E

g

[(
h

f

g

)2]
, (1.19)

which we compare to the second moment of the traditional estimator θ̂n:

E
g
[
θ̂2
n

]
= 1

n
E

f
[
h2]. (1.20)

We should select g, i.e., the new sampling measure, in a way such that (1.19) be
smaller than (1.20):

E
g

[(
h

f

g

)2]
< E

f
[
h2]. (1.21)

Clearly, the ideal situation of zero variance obtains for a density g = hf∫
hf dx

, meaning

that the best estimator of θ is θ itself! This tautology is useful however in providing
us with a guidance towards a wise selection for g.

Prescription The importance sampling density g should be selected to be as close
as possible to a proportion of the product between the contract pay-off h and the
probability density function f of the underlying asset at maturity:

g ∝ h × f.

1.3 Variance Reduction 37

Example Consider a call option written on a standard normally distributed index W

with strike price k. Then θ = E[(W − k)+] and the standard Monte Carlo estimate

is θ̂1
n = n−1 ∑(W (i) − k)+, where W (i) i.i.d.∼ N (0, 1). If the option is deeply out-of-

the-money, then it may be useful to sample from a normal distribution targeting the
exercise region of the underlying asset space more thoroughly. An upward shift for
the price mean can do the job. Specifically, we change the density from N (0, 1) to
N (μ, 1) and compute

θ̂2
n = n−1

n∑

i=1

(
W (i) − k

)
+e−μW (i)∗+μ2/2,

where W (i)∗ i.i.d.∼ N (μ, 1). An estimate of the sample error can be obtained by com-
puting a Monte Carlo estimate of the variance reported on the left-hand side in for-
mula (1.21), i.e.,

Var(θ̂n) ≃ 1

n

n∑

i=1

[(
W (i) − k

)
+e−μW (i)∗+μ2/2]2

.

The path-dependent case Consider a European-style derivative paying-off h(x1,

. . . , xN) if the underlying index is worth x1, . . . , xN at intermediate monitoring
times t1, . . . , tN . Assuming that, for the sake of simplicity, the time value of money
is zero, then the derivative value can be written as:

θ = E(h) =
∫

h(x1, . . . , xN)fX1,...,XN
(x1, . . . , xN) dx1 · · · dxN

=
∫

h × fXN |X1,...,XN−1 × fX1,...,XN−1 dx1 · · · dxN

=
∫

h × fXN |X1,...,XN−1 × fXN−1|X1,...,XN−2 × fX1,...,XN−2 dx1 · · · dxN

=
∫

h(x1, . . . , xN)

N∏

i=1

fXi |X1,...,Xi−1(x1, . . . , xN) dx1 · · · dxN (recursion)

=
∫

h(x1, . . . , xN)

N∏

i=1

fXi |Xi−1(xi, xi−1) dx1 · · · dxN (Markov property),

where all integrands are evaluated at (x1, . . . , xN) and fXi |X1,...,Xi−1 |i=1 = fX1 .
If we denote the transition density fXi |Xi−1(xi, xi−1) by fi , then the importance

sampling estimator corresponding to a new probability measure with transition den-
sities gi reads as:

θ̂n = E
g

[
h(X1, . . . , XN)

N∏

i=1

fi(Xi, Xi−1)

gi(Xi, Xi−1)

]
,

with g := (g1, . . . , gN).

38 1 Static Monte Carlo

Example Consider a standard Brownian motion W moving on a Δ-spaced time re-
finement 0 = t0 ≤ t1 ≤ · · · ≤ tN . The transition density is

P
(
W(ti) ∈ dxi |W(ti−1) = xi−1

)
= fi(xi, xi−1)

= fN (xi−1,Δ)(xi) dxi .

Let gi(xi, xi−1) = f
N (xi−1+μi

√
Δ,Δ)(xi) dxi be the transition density of a motion

drifting with a rate μi on each interval [ti, ti+1]. The weighing ratio is

N∏

i=1

fi(xi, xi−1)

gi(xi, xi−1)
=

N∏

i=1

1√
2πΔ

exp{−[(xi − xi−1)
2/(2Δ)]}

1√
2πΔ

exp{−[(xi − xi−1 − μi

√
Δ)2/(2Δ)]}

=
N∏

i=1

exp

{
(
√

Δμi)
2 − 2

√
Δμi(xi − xi−1)

2Δ

}

= exp

{
−

N∑

i=1

μi

(
xi − xi−1√

Δ

)
+ 1

2

N∑

i=1

μ2
i

}
.

Consider a general path-dependent option on W . The pay-off can be written as
h(W(t1), . . . ,W(tN)). An importance sampling estimator reads as

θ̂μ
n = 1

n

n∑

j=1

h
(
W (j)(t1), . . . ,W

(j)(tN)
)

× exp

{
−

N∑

i=1

μi

(
W (j)(ti) − W (j)(ti−1)√

Δ

)
+ 1

2

N∑

i=1

μ2
i

}
, (1.22)

where (W (j)(t1), . . . , W
(j)(tN)) denotes the j th simulated path of the drifted random

walk
W(ti) = W(ti−1) + μ

√
Δ + N (0,Δ).

Approximating the Zero Variance Estimator The importance sampling estima-
tor (1.22) can be succinctly written as:

θ̂μ = E
μ

(
h(x) exp

(
−μ⊤x + 1

2
μ⊤μ

))
,

for an N -dimensional Gaussian random vector x. If we write h(x) = exp(H(x)),
then the exponent in the previous expectation is H(x) − μ⊤x+ 1

2μ⊤μ. Under the
μ-drifted measure, x has mean μ. We may therefore replace it by a standard normal
vector x0 plus a constant mean vector μ, and get to

θ̂μ = E

[
exp

(
H(x0 + μ) − μ⊤(x0 + μ) + 1

2
μ⊤μ

)]

≃ E

[
exp

(
H(μ) − ∇H(μ)⊤x0 − μ⊤x0 − 1

2
μ⊤μ

)]
,

1.4 Comments 39

where the value of H at point x0 + μ has been approximated by its linear expansion
around μ. This expression becomes deterministic provided that

∇H(μ) = μ. (1.23)

This observation leads to the following algorithm.

Algorithm (Optimal importance sampling)

1. Solve the fixed-point condition (1.23) and get to μ∗.
2. Compute θ̂

μ∗
n .

The quality of this estimator depends on the proximity of H at point μ to its
linear differential.

1.4 Comments

The literature on Monte Carlo methods in finance is exceptionally vast. General treat-
ments can be found in Rubinstein (1981), Press et al. (1992), Fishman (1996), Ross
(1997), and Grigoriu (2003), among others. Boyle (1977) was the first ever paper
on Monte Carlo methods in finance. Approximations of probability distributions and
their funcitonals can be found in Johnson and Kotz (1995). Clewlow and Strick-
land (1998) and Glasserman (2004) explore a wide variety of simulation methods in
finance and provide a complete selection of additional references. Synthetic descrip-
tions of simulation methods are contained in Lamberton and Lapeyre (1996), Boyle,
Broadie and Glasserman (1997), Broadie and Glasserman (1997), Clewlow and
Strickland (1998), James and Webber (2000), Duffie (2001), and Cont and Tankov
(2004). Seminal papers on simulation include Box and Muller (1958), Marsaglia
(1972), Marsaglia and Bray (1964) and Siegmund (1976), among others. Further
technical issues together with a wide variety of simulation methods are explored
in Devroye (1986), L’Ecuyer (1988), Glynn and Iglehart (1989), Glynn and Whitt
(1992), L’Ecuyer (1994), Gentle (1998), L’Ecuyer, Simard and Wegenkittl (2002).
Special topics are investigated in Clewlow and Carverhill (1994), Dupire (1998),
Rogers and Talay (1997), and Bouchaud, Potters and Sestovic (2000), among others.
The density arising in importance sampling has an interesting dynamic counterpart in
finance. It represents the likelihood process associated to a change of measure as no-
ticed by Jarrow (1986) and Jamshidian (1987, 1989). Applications of this process can
be found in Chen and Scott (1993), Geman, El Karoui and Rochet (1995), Jamshid-
ian (1990, 1991c, 1993, 1995, 1996, 1997, 1999), Musiela and Rutkowski (1997),
among others.

2

Dynamic Monte Carlo

This chapter presents both existing and new algorithms for simulating paths of a
random process. Section 2.1 introduces the main issue of sampling from proba-
bility measures on a path space. Section 2.2 focuses on continuous path diffusion
processes: four methods are presented and illustrated using a comprehensive exam-
ple on derivative pricing. Section 2.3 details methods for simulating pure and mixed-
jump diffusions. Section 2.4 sketches procedures that have been designed for special
classes of continuous time processes.

2.1 Main Issues

Let us address the problem of simulating samples of continuous time random
processes. There are two main differences from the simpler case of sampling ran-
dom variables (r.v.’s):

(1) No analytical expression exists for the distribution of the “object” we wish to
simulate.

(2) Sample paths are a continuum of values, whereas any simulation algorithm can
only provides us with a finite amount of pseudo random numbers.

The mathematics underlying the first of these items goes well beyond the scope of
the present treatment. However, it is possible to provide the reader with an intuitive
explanation of this fact. Recall that a stochastic process aims at describing the ran-
dom evolution of a state variable X over time. More precisely, for each date t ≥ 0,
a random variable X(t) is defined on a common probability space (Ω,F , P) and a
sample path is the ordered set X0T = (X(t))0≤t≤T of outcomes for these variables
corresponding to a particular result ω in the sample space Ω . Consequently, the dis-
tribution of a continuous time process is a probability measure on the set of sample
paths.1 There are several ways we can build a continuous time process and each

1 More formally, let R
[0,T] be the Cartesian product of infinitely many copies of R, one

for each point in [0, T]: that is the space of all functions f : [0, T] → R. A stochastic

42 2 Dynamic Monte Carlo

method implicitly offers such a probability measure. Because the space of sample
paths cannot be ordered, this measure does not allow for a cumulative distribution
function. This absence, along with the fact that the Lebesgue measure2 defined on
this space does not exist, implies that density functions are not available for stochas-
tic processes.

For these reasons, we must search for approximations of continuous time process
involving a finite number of random variables that can be simulated. This introduces
a further source of error beyond the one stemming from the impossibility of generat-
ing truly random samples from any distribution: this is the error induced by replacing
a continuous time process with one among all possible approximations.

There are essentially two methodologies for approximating a continuous time
process that can serve the scope of simulation. They share the property of producing
a discretized version of the process in the sense that randomness enters through a
finite number of random variables.

The first methodology consists of replacing a whole continuous time path Xt,T

by the vector X(0), . . . , X(N) representing values of Xt,T at fixed points in time 0 =
t0 < t1 < · · · < tN = T . Simulation is performed on these variables and the entire
path, if needed, is obtained by interpolation methods.

We illustrate this idea by simulating paths of a standard Brownian motion W on
the positive real axis. Our goal is to compute the expected value of a functional F

of the process path W0T , that is E(F (W0T)). We may approximate W by a suitable
process taking constant values over finitely many consecutive intervals.

The first part of this program is to split [0, T] into N evenly spaced time
lags with a common length � and consider the law of the finite-dimensional vec-
tor (W0,W�t , . . . ,WN�t) of Brownian increments. This vector is distributed as
(0,

√
�tg1, . . . ,

√
�t(g1 + · · · + gN)), where the gi’s are independent standard nor-

mal variables. We may thus approximate W(t) by

g(t) = W[t/�t]�t ∼
√

�t(g1 + · · · + g[t/�t]), (2.1)

process is a mapping from Ω to R
[0,T]: an elementary event ω is mapped into the set of

all values {f (t), t ∈ [0, T]}, which is the function f ∈ R
[0,T] itself. Given a probability

space (Ω,F , P), the law PX of a process X is a probability measure induced by X on its
image space R[0,T] through the assignment

PX(A) = P({ω ∈ Ω: X(ω) ∈ A}),

for all Borel sets A ∈ B(R[0,T]).
2 Broadly speaking, the Lebesgue measure on a given space is defined as a sigma-additive

measure which is invariant up to rotations and translations of subsets in the space. To illus-
trate this property, we may think of the area of a given square in the plane. This number
does not change if the square is translated and rotated. The Lebesgue measure on the real
line (resp. plane; resp. 3D space) measures the length (resp. area; resp. volume) of a set.
A definition given in Chapter 1 states that the density function of a probability measure is
the Radon–Nikodym derivative of its cumulative distribution function with respect to the
Lebesgue measure.

2.1 Main Issues 43

where [x] denotes the integer part of x. The expected value above mentioned can be
computed as:

E(F [g]) ≈ E
(
F
[(√

�t(g1 + · · · + g[t/�t])
)

0≤t≤T

])
, (2.2)

which is a standard [t/�t]-dimensional integral. A Monte Carlo estimation can be
performed using the following algorithm.

Algorithm (Monte Carlo valuation)

1. Fix n equal to a “large” value; set i = 1 and N = [t/�t];
2. Simulate g

(i)
1 , . . . , g

(i)
N

i.i.d.∼ N (0, 1);
3. Compute F (i) = F [(W (i)(t))0≤t≤T] by evaluating the payoff functional F on

the approximate Brownian path W (i)(·) =
√

�t(g
(i)
1 + · · · + g

(i)
[·/�t]);

4. Let i = i + 1. If i < n, then go to Step 2;
5. Return the average sampled payoff n−1 ∑n

i=1 F (i).

Example (Call option) Consider a call option C(T ,K) on a market index whose
dynamics are described using a Brownian motion W . Here T is the option ma-
turity and K denotes the strike price. Let �t = T/N and, for i = 1, . . . , n

and k = 1, . . . , N , let g
(i)
k

i.i.d.∼ N (0, 1). Setting x(i) =
√

�t(g1 + · · · + gN),
we obtain a sequence of sampled payoffs (x(1) − K)+, . . . , (x(n) − K)+. Assum-
ing a constant short rate of interest r , the Monte Carlo estimate of the option
value reads as n−1 ∑n

m=1 e−tT (x(m) − K)+. (Of course, this example is trivial
and no one would use a Monte Carlo to compute the analytically solvable integral∫
(x − K)+fN (0,T)(x) dx!.)

Another possible implementation of the same program is to consider the joint
law of a finite number of Brownian points W(t1), . . . ,W(tn). We know that any vec-
tor W = (W(t1), . . . ,W(tn)) follows a normal distribution N (0,Σ) with Σ ik =
min{ti, tk} (i, k = 1, . . . , n). By applying the Principal Components decomposi-
tion detailed in chapter “Static Monte Carlo”, a sample Wi can be obtained as∑n

j=1 zj

√
λj uj , where λj is the j th greatest eigenvalue of Σ and uj denotes the

corresponding normalized eigenvector. If W i
k denotes the kth coordinate of this sam-

ple, an approximate Brownian path can be obtained as W (i)(t) = W i
[t/�t].

The second methodology for simulating a continuous time process starts from
the representation of a path in terms of a series expansion with respect to se-
lected basis functions. More precisely, the process is written as the sum of a series
X(t) =

∑∞
k=1 αkϕk(t) with respect to a system of deterministic functions ϕk(t) for

appropriate random coefficients αk . A simulation is then performed according to the
following algorithm.

Algorithm (Series expansion method)

1. Fix a sample size K;
2. Generate samples α1, . . . , αK ;
3. Return X(t) ≈

∑K
k=1 αkϕk(t).

44 2 Dynamic Monte Carlo

In order to illustrate this method, let us consider the problem of sampling a ran-
dom path (W(t))0≤t≤1 of a Brownian motion. For the sake of simplicity, we assume
the simulation occurs on the unit interval [0, 1]. We examine three possible methods
for implementing this program by means of a series expansion.

The first method is based on the continuous time extension of the eigenvalue
decomposition reported above for the finite-dimensional case. We diagonalize the
covariance operator C(t, u) = min{t, u} by solving the problem

∫
min{t, u}ϕ(t) dt = λϕ(t)

with respect to the scalar λ and the function ϕ. It can be shown that this equation
produces the following system of solutions:

λi =
(

2

(2
√

−1 + 1)π

)2

,

ϕi(t) =
√

2 sin

(
(2

√
−1 + 1)πt

2

)
(i ≥ 1).

This system leads to the well-known Karhounen–Loeve expansion of a standard
Brownian motion

W(t) =
∞∑

i=1

zi

√
λiϕi(t),

where zi
i.i.d.∼ N (0, 1).

The second method expands a path in terms of a basis in the space L2([0, 1]) of
square-integrable functions on the closed interval [0, 1]. Consider the system of Haar
functions defined as follows: for each integer n ≥ 1, let k ∈ I (n) be the set of odd
integers between 0 and 2n, and for t ∈ [0, 1], set

Hk,n(t) =

⎧
⎨
⎩

2(n−1)/2 for t ∈
[

k−1
2n , k

2n

)
,

−2(n−1)/2 for t ∈
[

k
2n , k+1

2n

)
,

0 elsewhere.

The system of Schauder functions is defined by

Sk,n(t) =
∫ t

0
Hk,n(u) du.

Then, the following representation holds true:

W(t) =
∞∑

n=0

∑

k∈I (n)

zk,nSk,n(t),

where zk,n
i.i.d.∼ N (0, 1).

2.2 Continuous Diffusions 45

The third method is based on the first ever construction of a Brownian motion.
Paley and Wiener used a trigonometric basis and obtained the following expression:

W(t) = z0t +
∞∑

n=1

2n−1∑

k=2n−1

√
2

sin(kπt)

kπ

zk,

where zk
i.i.d.∼ N (0, 1).

Compared to path generation by the accumulation of consecutive increments, this
series expansion has two disadvantages: first, it involves O(n2) operations; second it
produces a whole path in one shot. This may not be advisable whenever an entire path
over the option horizon need not be computed, as is the case with a barrier option for
which path simulation is to be interrupted each time the barrier is hit. Methods based
on time discretization can be applied to all diffusion processes and generate simu-
lated paths even for very complicated processes. These considerations explain the
higher popularity of these methods in finance literature compared to the ones based
on series expansions. These latter are particularly suitable for stationary processes,
such as Levy processes, for which the distribution of coefficients αk is known. (See
Sect. 2.5 for these extensions.) One further reason for their attractiveness lies in their
independence from interpolation procedures for the purpose of obtaining paths in
continuous time.

2.2 Continuous Diffusions

We consider four methods for sampling solutions of stochastic differential equations
(s.d.e.):

dX(t) = μ(t) dt + σ(t) dW(t).

These methods correspond to simulating samples:

(1) from the exact transition density p(t, dx; s, y) = P(X(s) ∈ dx|X(t) = x);
(2) of the solution of the exact dynamics followed by the process;
(3) of the solution of approximate dynamics to the original s.d.e.;
(4) of the coefficients in a truncated series expansion of the process.

The first three of these methods simulate first values for a sample path at a discrete
set of times t1, . . . , tN and then make an interpolation to produce a continuous time
trajectory. Throughout, we make the following assumptions:

• the starting time is t0 = 0;
• the starting state is a known value x0;
• the sampling interval [0, T] splits into N equally �t-sized intervals [ti+1, ti].

2.2.1 Method I: Exact Transition

This method can be performed whenever the transition distribution of the process is
known for any pair of consecutive times.

46 2 Dynamic Monte Carlo

Algorithm (Transition distribution)

1. Set X0 = x0;
2. For i = 1, . . . , N , sample Xi ∼ p(ti, ·; ti−1, Xi−1);
3. Return (X[t/�t], 0 ≤ t ≤ T) as a sample of the process X on [0, T].

Example (Vasicek model) In the Vasicek term structure model the one-dimensional
state variable is represented by the short rate of interest r , whose dynamics are given
by dr(t) = α(β − r(t)) dt + γ dW(t). Solving for r , we see that r(t) has a nor-
mal transition density with conditional mean μ(t; s, y) = β + e−α(t−s)(x − β) and

conditional variance σ(t; s, y) = σ 2

2α
(1 − e−2α(t−s)).

2.2.2 Method II: Exact Solution

Recall that the strong solution X of an s.d.e. is explicit if it can be written as an
analytic functional F of time t and the driving random noise W until that time, i.e.,
X(t) = G(t,W0t). This method can be performed whenever dynamics are given by
an s.d.e. whose strong solution is explicit. The method consists of discretizing the un-
derlying noise over a finite set of sampling times. An instance of this approximation
has been developed for the case of a Brownian noise in formula (2.1).

Algorithm (Exact solution)

1. Set X0 = x0;
2. For i = 1, . . . , N , sample random noise W(ti) and set

Xi = G
(
ti, {W(t1), . . . ,W(ti)}

)
;

3. Return (X[t/�t], 0 ≤ t ≤ T) as a sample of the process X on [0, T].

Example (Geometric Brownian motion) The stock price dynamics in the Black–
Scholes model are given by dS(t) = S(t)(r dt + σ dW(t)), with S(0) = x0. The
strong solution of this equation is

S(t) = x0 exp

((
r −

σ 2

2

)
t + σW(t)

)
.

Discretizing the underlying Brownian noise leads to a discrete time process

Si+1 = Si exp

((
r −

σ 2

2

)
�t + σ

√
�t × gi+1

)
.

Here the gi’s are independent samples from a standard normal distribution and the
corresponding sample path may be obtained using the rule (S0, S1, . . . , SN) →
SN (t) = S([t/�t]).

2.2.3 Method III: Approximate Dynamics

Both the exact transition and exact solution methods introduced above simulate an
approximate solution of given dynamics. If neither transition probabilities, nor the

2.2 Continuous Diffusions 47

explicit solution are available, we may look for simulating the exact solution of a
discrete time process approximating the system dynamics:

dX(t) = μ
(
t, X(t)

)
dt + σ

(
t, X(t)

)
dW(t). (2.3)

The method amounts to solving a stochastic difference equation obtained by dis-
cretizing the above equation. There are several ways for doing this and we shall fo-
cus on the two most popular among practitioners, namely the Euler and the Milstein
schemes.

A. Euler Scheme

S.d.e. (2.3) is discretized into the finite difference system:

Xi+1 = Xi + μ(ti, Xi)�t + σ(ti, Xi)
√

�t × gi, (2.4)

where gi
i.i.d.∼ N (0, 1).

Algorithm

1. Set X0 = x0;

2. For i = 0, . . . , N − 1, sample gi
i.i.d.∼ N (0, 1) and set Xi+1 as in (2.4);

3. Return (X[t/�t], 0 ≤ t ≤ T) as a sample of the process X on [0, T].

The Euler scheme gives an approximate solution which is pathwise convergent
to the exact solution of the original equation according to a mixed L2-sup norm; that
is, ∀T > 0, ∃C = C(T):

E

(
sup

t∈[0,T]

∣∣XN (t) − X(t)
∣∣2
)

≤ C × �t.

Actually, there is no need to adopt a time grid with evenly-spaced subintervals. We
may as well consider partitions with a finer grid on certain regions of the time axis.
This would improve the precision of our approximate process on some key portions
of the time spectrum, for instance around coupon payment dates of a bond. We just
have to replace �t with ti+i − ti at the ith step.

Example (A convergent scheme in law) If we take gi = 2bi − 1, where bi
i.i.d.∼

Ber(1/2) are independent Bernoulli variables, the resulting scheme provides the user
with an approximate process whose trajectories do not necessarily converge to those
of the exact solution. Yet, the law induced by the resulting discrete process on the
path space converges to the of the true process. For practical purposes, this means
that the expected value of any regular functional F of the approximate process XN

converges as N → ∞ (i.e., �t → 0) to the true expectation E(F (X0T)). For deriv-
ative evaluation purposes, one may thus adopt a weakly convergent scheme such as
the one involving Bernoulli samples.

Example (Fong–Vasicek model) We discretize a two-factor interest rate model

48 2 Dynamic Monte Carlo

where r is the short rate of interest and v represents its instantaneous volatility:

dr(t) = α
(
μ − r(t)

)
dt +

√
v(t) dW 1,

dv(t) = β
(
μ̄ − v(t)

)
dt + σ

√
v(t) dW 2,

ri+1 = ri + α(μ − ri)�t +
√

vi�t × ni,

vi+1 = vi + β(μ̄ − vi)�t + σ
√

vi�t × mi,

where (ni,mi) denotes a sample from N2(0,Σ) and Σ dt = Cov(dW 1, dW 2).

B. Milstein Scheme

The idea is to add a second order term in the series expansion of the true solution. The
convergence order of the resulting scheme is the same as the one stemming from a
Euler discretization. However, this comes at the expense of increased computational
complexity.

Xi+1 = Xi + μ(ti, Xi)(ti+1 − ti) + σ(ti, Xi)
√

ti+1 − ti × gi

+ 1

2
σ(ti, Xi)σ (ti, Xi)

⊤ × (ti+1 − ti) ×
[
g2

i − 1
]
.

Notice that the last term has zero expected value.

2.2.4 Example: Option Valuation under Alternative Simulation Schemes

Let us compute the arbitrage-free value of four European options. Each option is
written on the security price process S and expires at T = 0.4 years (i.e., 100 days
for a day-count convention assuming 250 days per year). The strike price is K =
1.9 Euros, the current spot price is S(t) = 2.1 Euros, and the risk-free rate is 2%
per annum. We consider a European call, a digital, a barrier and an Asian option on
the geometric average of past prices. For the barrier option, the up-and-out threshold
is set to 2.5 Euros. The underlying process S is a geometric Brownian motion with
volatility σ = 0.2. The option value is first computed using the exact formula and
then compared to the value obtained by simulating the underlying process through
the following five alternative methods:

1. Recursive sampling from the analytical transition density over intervals of length
� until either the expiration time is reached or the up-and-out threshold is at-
tained. (Method I.)

2. Discrete time simulation of the exact solution of underlying process. (Method II.)
3. Simulation of the random walk stemming from discretizing the s.d.e. followed

by the process S according to the Euler scheme. (Method III.A.)
4. As in Step 3, with a Milstein discretization scheme. (Method III.B.)
5. Simulation of the geometric Brownian motion under a Fourier representation of

the driving standard Brownian motion.

Each Monte Carlo evaluation involves 100,000 sample paths. Each path is obtained
by sampling the process 500 times between the outset and the option maturity, unless

2.3 Jump Processes 49

Table 2.1. Comparison of option prices obtained using alternative simulation schemes. First
round parentheses contain percentage error with respect to the exact Black–Scholes price.
Second round parentheses indicate standard errors

Call Digital Barrier Asian
Exact formula 0.242559 0.779335 0.141267 0.210084
Analyt. transition 0.242946 0.779632 0.141416 0.210336

(0.39%) (0.15%) (0.32%) (0.27%)

(−0.16%) (0.04%) (0.11%) (0.12%)

Discret. solution 0.242763 0.779677 0.143879 0.210208
(0.24%) (0.16%) (0.43%) (0.17%)

(0.08%) (0.04%) (1.85%) (0.06%)

Discr. SDE (Euler) 0.242572 0.779492 0.144098 0.210099
(0.22%) (0.12%) (0.31%) (0.16%)

(0.01%) (0.02%) (2.00%) (0.01%)

Discr. SDE (Milstein) 0.242636 0.779669 0.144328 0.210148
(0.20%) (0.04%) (0.27%) (0.12%)

(0.03%) (0.04%) (2.17%) (0.03%)

Fourier expansion 0.242669 0.779287 0.145251 0.210133
(0.24%) (0.08%) (0.39%) (0.15%)

(0.05%) (−0.01%) (2.82%) (0.02%)

the barrier in attained before. For case 5, the Fourier series has been computed up
to the 200th term. Each option price is calculated 10 times for the purpose of comput-
ing the numerical standard deviation of the reported option value. Table 2.1 reports
simulated option prices for all options and computational methods. The numbers
within round brackets are the standard deviation and the pricing error with respect to
the exact option value as expressed in percentage over this latter.

2.3 Jump Processes

A pure jump process is one whose trajectories vary according to discontinuities only.
In the previous section, we presented several methods for simulating samples of con-
tinuous diffusions. In this section, we introduce simulation algorithms for compound

jump processes. The following section combines continuous and compound jump
diffusion processes and develops algorithms to simulate the resulting mixed-jump

diffusions. The last section is devoted to methods expressly conceived for Gaussian
processes.

2.3.1 Compound Jump Processes

We consider a stochastic process of the following form:

J (t) =
N(t)∑

j=1

Yj . (2.5)

50 2 Dynamic Monte Carlo

This expression involves two terms. The first term N governs the jump occurrence:
for a given elementary event ω (usually identified with a sample trajectory), N(t, ω)

counts the number of jumps between the initial time 0 and current time t (both in-
cluded). We call N a counting process and denote the corresponding jump times by
τ1(ω), . . . , τN(t,ω)(ω). The second term (Yi)i≥1 determines the jump magnitudes:
Yi represents the ith jump size. The joint effect of the two terms is described by
expression (2.5) defining a compound jump process J .

Sampling paths of a compound jump process J can be split into simulating jump
times corresponding to the counting process N and then generating sample jump
sizes Yi, i ≥ 1. The latter are usually assigned through their distributions. Conse-
quently, methods described in chapter “Static Monte Carlo” can be employed for the
purpose of sampling jump amplitudes. Simulating jump times is less trivial. Actually,
the relationship between counting processes and the associated jump times needs to
be made more explicit.

Example (Counting process) A counting process N = (N(t), t ≥ 0) is any non-
decreasing process taking values in the set N of natural numbers 0, 1, This
process can be used to model the number of jumps occurring on a time period [0, T],
i.e., N(t) = “# jumps until time t”. Counting processes can be sampled as follows.

Algorithm (Simulation of a counting process)

1. Generate r.v.’s T1, . . . with distributions supporting the positive real axis; (Ti rep-
resents the ith interarrival time, that is the time between the ith jump and the
following one.)

2. Jump times τ1, τ2, . . . are obtained by summing up interarrival times:

τk =
k∑

i=1

Ti;

3. For each time t , N(t) records the number of jumps that have occurred since the
beginning, that is

N(t) =
∞∑

n=1

1{τn≤t} =
∞∑

n=1

n1{τn≤t<τn+1}, (2.6)

where the indicator function 1A(ω) is equal to 1 if ω ∈ A, and 0 otherwise.
The first expression sums up as many 1’s as the number of jump times occurring
until time t . It is clear that a counting process is a compound jump process with
unit jumps, namely Yi = 1 for all i. We note that the second expression in
formula (2.6) selects n whenever the nth jump occurs no later than t and the
(n + 1)th jump occurs after time t . The second expression in (2.6) can be used
for simulating a Poisson random variables.

Example (Poisson process) Let the interarrival times be modeled by independent
and identically distributed exponential r.v.’s. The corresponding counting process is

2.3 Jump Processes 51

called “homogeneous Poisson process”. Simulation reads as follows:

Ti
i.i.d.∼ Exp(λ) → τn =

n∑

k=1

Tk → N(t) =
∞∑

n=1

1{τn≤t} ∈ Z. (2.7)

Recall the exponential density fExp(λ)(x) = λe−λx , for X ≥ 0. It can be shown
that the r.v. N(t) is distributed according to a Poisson law Po(λt) with parameter λt ,
i.e., fN(t)(n) = e−λt (λt)n/n!, for all n ∈ Z+. Coefficient λ represents the expected
number of jumps per time unit, i.e., E(N(t)) = λt . Notice that this quantity is the
same for all times t and that Var(N(t)) = λt as well.

2.3.2 Modelling via Jump Intensity

A compound jump process
∑N(t)

j=1 Yj is determined by specifying jump occurrence
and size. Occurrence can be modeled in two distinct yet equivalent ways.

The first method was described in the previous section: the ith jump time can
be obtained by summing up the first i interarrival times. Since these variables are
sampled from exogenously assigned distributions, this method is advantageous for
simulation purposes as long as their distribution is known by assumption. However,
we may wish to model jump occurrence as a function of time and, possibly, the
underlying state variable. In this case it is not clear how interarrival time distributions
ought to be selected.

The second method serves the purpose of explicitly linking jump occurrence to
both time and state variables. We begin by assigning a jump intensity, or frequency
(λ(t), t ≥ 0), which may be constant, time dependent or random as well. Heuris-
tically, this process defines the number of jumps per time unit in a “small” neigh-
borhood of each point t in the time interval [0, T], i.e., λ(t) dt = dsEt (N(s))|s=t .
The integrated intensity

∫ t

0 λ(s) ds is referred to as the compensator of the jump

process N . This term stems from the property that N(t) −
∫ t

0 λ(s) ds is a martingale.
For instance, the intensity of a homogeneous Poisson process with parameter λ is λ

itself. It can be shown that the intensity process unequivocally determines a corre-
sponding counting process N . The main advantage of this method is that the jump
occurrence can be easily modulated over the time horizon and can be made random,
e.g., state dependent. This goal can be achieved by assigning a specific functional
form to the intensity process. We consider four possible specifications for the jump
intensity of a given process X:

(1) λ constant;
(2) λ(t) time dependent;
(3) λ(t, Y (t)) random and dependent on a process Y that is statistically independent

of X;
(4) λ(t,X(t)) random and dependent on the underlying process X.

The first two cases are developed in this section for pure jump processes. Models
driven by random intensity will be treated in the more general context of mixed-
jump diffusions.

52 2 Dynamic Monte Carlo

Example (Electricity price modelling, Roncoroni (2002)) Poisson processes have
constant intensity: jump occurrence is uniformly spread over the time axis. Electric-
ity markets often display spikes during certain periods of the calendar year. A spike
is a sequence of upward jumps followed by a sequence of downward jumps. If spikes
tend to occur during the warm season, we may use a periodic intensity function

λ(t) = θ ×
[

2

1 + | sin(π(t − τ)/k)| − 1

]d

. (2.8)

Figure 2.1 displays the graph of intensity function (2.8) across varying levels of
the squeezing coefficient d and for a fixed θ = 1. This function concentrates jumps
around a precise portion of the time axis and has been proven to be quite effective for
describing the empirical jump occurrence in most U.S. electricity markets. If jump
occurrence is linked to other quantities than time, we may adopt a random intensity
function depending on the values assumed by these quantities. For instance, spikes
in electricity markets are linked to the prevailing temperature in the region where
power is delivered. This suggests to first model the temperature as an independent
variable F(t) and then consider an intensity function λ(t, F (t)). This turns out to
be an effective way of simulating upward jumps featuring the ascendant movements
during a price spike. However modeling the descendent side of a spike requires a
more “clever” intensity. Whenever prices reach high values compared to those pre-
vailing under normal market conditions, they tend to revert to their mean value. This
effect is usually modeled by introducing a smooth mean reversion effect in the drift of
the underlying diffusion process. Occasionally, this reversion consists of downward
jumps. To force the occurrence of reverting jumps, we can consider an intensity that
also depends on the standing market price E(t). For instance, by selecting

Fig. 2.1. Alternative jump frequency functions.

2.3 Jump Processes 53

λ
(
t, E(t)

)
= λ(t) ×

[
1 + max

(
0, E(t−) − b(t)

)]
,

with λ(t) as in expression (2.8), we may amplify the time dependency of jump oc-
currence in a way that is proportional to the “distance” between the current price
E(t−) and the average price b(t) computed at the same time under normal market
conditions.

2.3.3 Simulation with Constant Intensity

Let N(t) =
∑∞

i=1 1{τn≤t}, t ≥ 0, be a counting process with a given constant in-
tensity λ. We present two algorithms for simulating sample paths (N(t))0≤t≤T and
the corresponding jump times τ1, . . . , τN(T). The first method, called “conditional

simulation”, simulates the number of jump times occurring on [0, T] followed by
their exact location within the same interval. The second method, called “countdown

simulation”, samples jump times in a sequential order, starting from the first one and
continuing until the time horizon T is reached.

Method I (Conditional simulation) It can be shown that conditional to N(t) = n,
jump times τi of a homogeneous Poisson process are independent uniformly distrib-
uted r.v.’s on [0, T]. This fact leads to the following algorithm.

Algorithm

1. Simulate N(T) ∼ Po(λT);
2. Simulate N(T) independent uniform samples τ1, . . . , τN(T) on [0, T];
3. Return jump times τ1, . . . , τN(T), and the Poisson realization N(T).

Notice that, contrary to the construction (2.7), here N(T) is sampled first and
jump times are obtained then. The Poisson random variable should be sampled by
any of the methods introduced in chapter “Static Monte Carlo”.

Method II (Countdown simulation) Since λ is constant, we know that N is a Pois-
son process. Therefore interarrival times are exponentially distributed with parame-
ter λ and consecutive jump times on the interval [0, T] can be simulated by the
following algorithm.

Algorithm

1. Let τ0 = 0, i = 0;
2. Set i = i + 1;
3. Generate U ∼ U[0, 1];
3. Set Ti = −λ−1 ln U and τi = τi−1 + Ti ;
4. If τi ≤ T , then go to Step 2;
5. Return jump times τ1, . . . , τi−1, and the Poisson sample N(T) = i − 1.

This is in agreement with construction (2.7).

54 2 Dynamic Monte Carlo

Example (Simulation of a Poisson random variable) Since N(t) is a Poisson r.v.
with parameter λt , N(1) is a Poisson r.v. X with parameter λ. From expression (2.6),
we see that:

N(1) =
∞∑

n=1

n1{τn≤1<τn+1} =
∞∑

n=1

n1{T1+···+Tn≤1<T1+···+Tn+1}.

This expression selects n in a way that the sum of n exponentially distributed sam-
ples T1, . . . , Tn does not exceed 1 and the same number plus a further independent
exponential sample Tn+1 is greater than 1. This is just the algorithm illustrated above,
with T = 1. The procedure is somehow inefficient. Indeed, each step involves the
computation of a logarithm. Fortunately, using the equivalence

{T1 + · · · + Tn ≤ 1 < T1 + · · · + Tn+1}
= {U1 × · · · × Un+1 ≤ e−λ ≤ U1 × · · · × Un},

we may avoid computing the logarithmic function. This observation leads to the
following algorithm.

Algorithm

1. Set P = 1, n = 0 and d = e−λ;
2. Generate U ∼ U[0, 1];
3. Define P = P × U and n = n + 1;
4. If P > d , then go to Step 2;
5. Return n.

The reason for setting d at the outset is to prevent the implementation code from
repeatedly compute an exponential during the run.

2.3.4 Simulation with Deterministic Intensity

The two methods described in the previous paragraph can be adapted to simulate
samples from inhomogeneous Poisson processes with given deterministic inten-
sity λ(t). A third method, called “thinning”, is based on an acceptance–rejection
scheme: jump times of a homogeneous Poisson process (=constant intensity) are
sampled first; then, a test is performed to decide whether to accepted them or not as
sample jump times of the inhomogeneous Poisson process.

Method I (Conditional simulation) The cumulated jump intensity over the time
horizon [0, T] is given by Λ =

∫ T

0 λ(s) ds. This leads to the following algorithm.

Algorithm

1. Generate N(T) ∼ Po(Λ);
2. Generate N(T) independent samples τ1, . . . , τN(T) with common distribution

density fτ (t) = Λ−1λ(t);
3. Return jump times τ1, . . . , τN(T) and sample number N(T).

2.3 Jump Processes 55

Method II (Countdown simulation) It can be shown that for any pair of con-
secutive jump times τi and τi+1, the conditional distribution of the compensator∫ τi+1
τi

λ(s) ds given τi is an exponential variable E(1). Consequently, we may draw
a sample ei+1 from this distribution and then set τi+1 as the first time for which the
integral above exceeds the threshold ei+1.

Algorithm

1. Let τ0 = 0, i = 0;
2. Set i = i + 1;
3. Generate ei+1 ∼ E(1);
4. Let Ti = inf{t ≥ τi :

∫ t

τi
λ(s) ds ≥ ei+1};

5. Set τi = τi−1 + Ti ;
6. If τi ≤ T , go to Step 2;
7. Return jump times τ1, . . . , τi−1 and Poisson sample N(T) = i − 1.

Method III (Thinning simulation) The idea is to generate jump times from a Pois-
son process with a suitable constant intensity. This can be done by using any of the
algorithms detailed hitherto. Then, we select some of these sample times according
to the outcome of a random test. More precisely, if τ is a Poisson jump time, we
draw an independent r.v. U ∼ U[0, λ], where λ is an upper bound for λ(t) over the
simulation time domain [0, T]. If U falls into [0, λ(τ)], then τ is accepted as a sam-
ple from a Poisson process with intensity function λ(t). Notice that the closer λ(τ)

is to λ, the higher is the probability that U belongs to [0, λ(τ)] and that τ is then
accepted. Intuitively, if λ(τ) is close to λ, then the inhomogeneous Poisson process
with intensity function λ(t) is close to a homogeneous Poisson process with inten-
sity λ. The optimal level for λ is the one leading to the shortest average time period
before acceptance. It can be proven that this number is λ∗ = sups∈[0,T] λ(s). This
method can be implemented through the following algorithm.

Algorithm

1. Set λ∗ = sups∈[0,T] λ(s);
2. Sample N exponential r.v.’s ei ∼ E(λ∗), with N = min{n:

∑n
i=1 ei > T };

3. Sample N − 1 uniform variables Ui on [0, 1];
4. Define

Ij =
{

1 if Uj ≤ λ(
∑j

i=1 ei)

λ∗ ,
0 otherwise.

5. Select the subset of the index set from 1 to N − 1 consisting of indices j for
which Ij equals 1: J = {j : Ij = 1}. An order function associates its position
R(j) to each element j in J ;

6. Return jump times τi =
∑R−1(i)

k=1 ei .

The mathematical proof of this method is developed in an appendix for the gen-
eral case of random intensity.

56 2 Dynamic Monte Carlo

2.4 Mixed-Jump Diffusions

2.4.1 Statement of the Problem

A mixed-jump diffusion process, or simply jump diffusion, is the sum of a continuous
diffusion process and a pure jump process. We tackle the issue of simulating a mixed-
jump diffusion satisfying a stochastic differential equation

dX(t) = μ
(
t, X(t)

)
dt + σ

(
t, X(t)

)
dW(t) + η

(
t, X(t−)

)
dJ (t), (2.9)

X(t0) = x,

where J is a compound jump process J (t) =
∑N(t)

j=1 Yj , Yj
i.i.d.∼ fY , and X(t−) =

lims↑t X(s). This process is specified by the following ingredients:

• x = Initial state;
• μ(t, x) = Drift function;
• σ(t, x) = Brownian volatility function;
• η(t, x) = Jump impact function;
• λ(t, x) = Jump intensity, or frequency, function;
• Yj = Jump size variable.

Regular coefficients are assumed in order to ensure the existence of a unique solution
to the differential system above. Moreover, λ is superiorly bounded by a constant.
The Euler discretization of equation (2.9) reads as

Xi+1 = Xi + μ(ti, Xi)�t + σ(ti, Xi)
√

�t × gi

+ η(ti, Xi) ×
N(ti+1)∑

j=N(ti)+1

Yj , (2.10)

where the convention
∑n

i=n+1 ai = 0 is adopted. Notice that all jumps occurring in
the semi-closed time interval (ti, ti+1] contribute to the evaluation of Xi+1. Three
methods for simulating the discretized process (2.10) are detailed below.

Example (Black–Scholes dynamics with jumps) We generalize the Black–Scholes
framework for a market where two assets are traded:

• The risk-free asset, or money market account, is given by B(t) = ert ;
• The risky asset is driven by three mutually independent sources of noise: a stan-

dard Brownian motion W , a counting process N(t), and a sequence of random
jump sizes (Yi)i≥1.

These terms are combined according to the following guidelines:

(a) The price process S follows a standard geometric Brownian motion between two
consecutive jump times:

t ∈ [τj , τj+1) → dS(t) = S(t)
(
μ(t) dt + σ(t) dW(t)

)
,

2.4 Mixed-Jump Diffusions 57

(b) At jump time τj , S jumps by a proportion Yj of its pre-jump value S(τ−
j)

t = τj → �S(t) = S(τj) − S(τ−
j) = S(τ−

j)Yj .

These dynamics can be made explicit in terms of the driving noise. On [0, τ1), we
have a continuous diffusion:

S(t) = s0e(μ−σ 2/2)t+σW(t). (2.11)

In particular, S(τ−
1) = s0 exp((μ−σ 2/2)τ1+σW(τ1)). Note that the superscript “−”

can be omitted in all expressions on the right-hand side because both drift and W are
continuous functions of time. At the first jump time, price jumps by a proportion Y1,
that is:

S(τ1) = S(τ−
1)(1 + Y1)

= s0e(μ−σ 2/2)τ1+σW(τ1) × (1 + Y1).

On the interval [τ1, τ2), the process S behaves like a continuous diffusion starting at
value S(τ1) at time τ1:

S(t) = S(τ1)e
∫ t
τ1

(μ−σ 2/2) ds+
∫ t
τ1

σ dW(s) = s0e(μ−σ 2/2)t+σW(t) × (1 + Y1).

By induction, we arrive at the general term

S(t) = s0e(μ−σ 2/2)t+σW(t) ×
N(t)∏

i=1

(1 + Yi). (2.12)

If N(t) = 0, i.e., no jump has ever occurred, then the product
∏

is set equal to 1 to
recover formula (2.11). We may derive a unique expression for the differential of S

by summing up differentials of continuous and discontinuous parts of S:

dS(t) = S(t)
(
μ(t) dt + σ(t) dW(t)

)
+

∑

v∈(t,t+dt]:�S(v) �=0

�S(v)

= S(t−)

[
μ(t) dt + σ(t) dW(t) + dt

[
N(t)∑

j=1

Yj

]]
,

because:

∑

v∈(t,t+dt]:
�S(v) �=0

�S(v) =
N(t+dt)∑

j=N(t)+1

S(τ−
j)Yj = dt

N(t)∑

j=1

S(τ−
j)Yj = S(t−) dt

N(t)∑

j=1

Yj .

The last equality stems from the fact that dt (
∑N(t)

j=1 Yj) assumes nonzero values at
jump times τj (j ≥ 1) only. Note that this formulation prevents the price process
from assuming negative values as long as we require that Yi ∈ [−1,∞) and that the
three sources of random noise W(t),N(t) and Yi (i ≥ 1) are mutually independent.
This implies that they must be generated by using transformations of independent
uniform numbers.

58 2 Dynamic Monte Carlo

2.4.2 Method I: Transition Probability

Jump diffusion sample paths can be simulated by combining methods developed for
continuous diffusions and for pure jump processes. If the exact transition distribu-
tions are known, we may follow the scheme presented in Sect. 2.2.1.

Example (Poisson–Gaussian process) Consider a mean reverting process with Pois-
son jump component:

dX(t) = k
(
θ − X(t)

)
dt + v dW(t) + ι dN(t), (2.13)

where N is a Poisson process with intensity λ and parameters are all constant. The
analytic expression of the transition density for this process can be approximated by
the exact transition of a discrete-time approximation of the process above. We may
consider the discrete-time approximation:

Xi+1 = k(θ − Xi)�t + v ×
√

�t × N (0, 1) + ι × Be(q),

where Be(q) denotes a Bernoulli distribution with parameter q = λ�t . It can be
shown that this scheme converges in law to the solution of equation (2.13). The
transition density of the discrete time process is given by

p(ti, dx; ti−1, Xi−1) =
q√

2π(v2�t + γ 2)
× e

− (x−Xi−1−k(θ−Xi−1)�t−μ)2

2(v2�t+γ 2)

+
1 − q

√
2πv2�t

× e
− (x−Xi−1−k(θ−Xi−1)�t)2

2v2�t .

2.4.3 Method II: Exact Solution

If the solution to the s.d.e. (2.9) can be derived in a closed-form, we may simulate
paths from a suitable discretization of this process. The following example illustrates
this technique.

Example (Black–Scholes dynamics with jumps (continued)) The process (2.12) is
one of the few instances for which simulation can be performed on the explicit so-
lution of the s.d.e. This solution can be discretized by factorizing it on a partition of
the interval [0, T]:

S(n�t) = s0 ×
S(�t)

s0
× · · · ×

S(n�t)

S((n − 1)�t)
.

All factors share a common distribution, namely:

S(i�t)

S((i − 1)�t)
=

N((i+1)�t)∏

j=N(i�t)+1

(1 + Yj) × e(μ−σ 2/2)�t+σ(W((i+1)�t)−W(i�t))

d=
N(�t)∏

j=1

(1 + Yj) × e(μ−σ 2/2)�t+σ(W(�t)−W(0)),

2.4 Mixed-Jump Diffusions 59

where N(�t) ∼ Po(λ�t), Yj
i.i.d.∼ fY and W(�t)−W(0) ∼ N (0,�t). This expres-

sion leads to the following:

Algorithm (Simulation of the exact solution)

1. Simulate a Poisson variable N with parameter λt ;
2. Simulate random samples Y1, . . . , YN with distribution fY ;
3. Simulate a standard normal variable n;
4. Return x × Y1 × · · · × YN × exp((μ − σ 2/2)�t + σ

√
�t × n).

2.4.4 Method III.A: Approximate Dynamics with Deterministic Intensity

In most models, simulation is performed on the exact solution of an approximate
dynamics stemming from the original s.d.e.: this is almost the only method for sim-
ulating a jump-diffusion with varying jump intensity. If intensity is deterministic,
then the jump part of the process can be sampled by any of the algorithms detailed
in Sect. 2.3. Once jump times τ1, . . . , τm have been sampled, we generate the con-
tinuous part of the process by implementing a standard path simulation between
consecutive pairs of jump times:

Xi+1 = Xi + μ(ti, Xi)�t + σ(ti, Xi)
√

�t × gi .

Then, for each jump time τi , we sample a random jump size Ỹi from fY , and add
η(τi, X(τi))Ỹi to the last value of the continuous part of process. Of course, τi need
not belong to the partition T = {t0, . . . , tN } of the time horizon [0, T]. We may
overcome this problem by substituting each τi with its closest element in T , that is
τ ′
i = targ minj |tj −τi |. If we adopt the thinning method, the resulting procedure is given

by the following algorithm.

Algorithm (Thinning method)

1. Generate approximate jump times τ ′
1, . . . , τ

′
m as above;

2. X̃0 = x, τ ′
0 = t0;

3. Set ik: tik = τ ′
k , for k = 0, . . . , m;

4. For k = 0, . . . , m − 1,
4.1. For i = ik, . . . , ik+1, use the Euler scheme:

Xi+1 = Xi + μ(ti, Xi)�t + σ(ti, Xi)
√

�t × gi, (2.14)

and get to X̃ik , . . . , X̃ik+1−1, X̃ik+1 ;
4.2. Sample Ỹk+1 from fY ;
4.3. Set X̃ik+1 = X̃ik+1 + η(tik+1 , X̃ik+1) × Ỹk+1;

5. For i = im, . . . , N , use the Euler scheme (2.14) and arrive at X̃im, . . . , X̃N ;
6. Return X̃0, . . . , X̃N .

60 2 Dynamic Monte Carlo

2.4.5 Method III.B: Approximate Dynamics with Random Intensity

Randomness in the jump intensity is usually introduced through a process D and a
function λ(t,D). The resulting jump intensity process λ(t,D(t)) gives rise to a jump
component whose sampling technique differs according to whether D in independent
of the underlying state variable process X or not. We examine two cases:

1. Exogenous random intensity: D is statistically independent of the Brownian mo-
tion W , the jump sizes Yi , and the state variable process X.

2. Endogenous random intensity: D is statistically dependent on the Brownian mo-
tion W and/or jump sizes Yi and/or the state variable process X.

The case of exogenous random intensity is the easiest to simulate. We first generate
a sample (D(t), 0 ≤ t ≤ T) and the corresponding intensity is the deterministic
function λ(t) = λ(t,D(t)) defined for 0 ≤ t ≤ T . Then, we employ any of the
methods available for the case of deterministic intensity.

If we adopt a thinning algorithm for simulating jumps, the corresponding proce-
dure is as follows:

Algorithm (Thinning method under exogenous intensity) Preliminary step. Sim-
ulate a sample path (D(t))0≤t≤T and set λ(t) = λ(t,D(t)). Steps 1–5 as above
(Method III, Sect. 2.3.4).

Sometimes it is possible to avoid simulating the whole path (λ(t), 0 ≤ t ≤ T)

and obtain a jump time in one movement. This is the case of an intensity process
whose jump time distribution can be computed in a closed-form. Consider, for in-
stance, a one-point process N(t) = 1{τ≤t} with jump intensity following a mean
reverting square-root process dλ(t) = α(β − λ(t)) dt + σ

√
λ(t) dW(t), starting at

λ(0) > 0. Provided that α, β > 0 and 2αβ ≥ σ 2, the process stays always pos-
itive during the entire lifetime. By recalling the definition of intensity, the process
1{τ≤t} −

∫ t

0 λ(u) du is a martingale. Then, P(τ ≥ T) = E(exp(−
∫ T

0 λ(u) du)) and,
in the case above, this quantity can be calculated analytically. The jump time distri-
bution function is given by

Fτ (t) = P(τ ≤ t)

= 1 − P(τ ≥ t)

= 1 − exp
(
−A(t)λ(0) + C(t)

)
,

with:

A(t) = 2 exp(γ t − 1)/
[
αγ

(
exp(γ t) − 1

)
+ 2γ

]
,

C(t) = 2αβσ−2 ln
2γ exp((α + γ)t/2)

(α + γ)(exp(γ t) − 1) + 2γ)
,

γ =
√

α2 + 2σ 2.

This computation, coupled with the inverse transformation method, leads to the fol-
lowing algorithm.

2.4 Mixed-Jump Diffusions 61

Algorithm (Exact sampling)

1. Compute Fτ as above and set F−1
τ as the generalized inverse of Fτ ;

2. Sample U ∼ U[0, 1];
3. Return τ = F−1

τ (U).

The case of endogenous random intensity is slightly harder to address. Indeed,
X determines D which in turn affects λ, and ultimately the state variable process X

through its discontinuous part. Therefore, we need to simultaneously sample D and
X via λ(t,D(t)). We consider the case where D = X (i.e., λ = λ(t,X(t))) and leave
the extension to the more general situation where D �= X (e.g., D = g(X)) as an
exercise.

By adopting the thinning method, we come up to the following algorithm.

Algorithm (Thinning method under endogenous intensity)

1. Set initial state X0 = x, initial time τ̄0 = 0, time partition ti = i� (i =
1, . . . , N) and counters i0 = 0, k = −1, j = 0;

2. Define an intensity upper bound λ: λ(t, x) ≤ λ for all (t, x) in [0, T] × Im(X);
3. Set k = k + 1;
4. Generate independent ek ∼ E(λ) and set τ̄k = τ̄k + ek;
5. If τ̄k > T , go to Step 11, otherwise set τ̄ ′

k = tik where ik = arg minj |tj − τ̄ ′
k|;

6. For i = ik, . . . , ik+1 use (2.14) and arrive at Xik , . . . , Xik+1−1, Xik+1 ;
7. Generate independent Uk ∼ U[0, 1];
8. If λUk > λ(τ̄ ′

k, Xik+1) go to Step 3 (rejected);
9. Set j = j + 1 and τj = τ̄ ′

k;
10. Sample Yk+1 from fY ;
11. Set Xik+1 = Xik+1 + η(tik+1, Xik+1) × Yk+1 and go to Step 3;
12. For i = ik, . . . , N use the Euler scheme (2.14) and arrive at Xik , . . . , XN ;
13. Return τ1, . . . , τj and X0, . . . , XN .

The first two steps initialize variables and parameters. Steps 4 and 5 generate
the next potential jump time within the discrete set of sample times. Step 6 sim-
ulates the continuous path until the potential jump time. Steps 7 and 8 perform an
acceptance–rejection test on this sample time. If this is accepted, Steps 9–11 generate
and add a sample jump on the last generated value of the continuous trajectory; if the
test fails, the next potential jump time is sampled. Step 11 simulates the continuous
path between the last potential, or actual, jump time and the time horizon. Step 13
returns sample jump times and path. The algorithm can be implemented through
pseudo-code 2.2-2.3; unfortunately, it may be highly time consuming, depending on
the number of rejected jump times, which, in turn, depends on the average distance
between the jump intensity and the upper bound λ. This distance is random as long
as it varies with the sample path. Consequently, the method is viable to the extent that
the function λ(t, x) has a relatively narrow image. It is therefore natural to search for
more efficient methods to simulate the desired process. It turns out that the sequential
method detailed in Sect. 2.3.4 can be extended to the case of an endogenous random
intensity rather naturally.

62 2 Dynamic Monte Carlo

Algorithm (Countdown method under endogenous intensity)

1. Set X̃0 = x, τ0 = 0, i = k = 0;
2. Generate ek ∼ E(1) independently of ek−1, if any;
3. Set i = i + 1; if i� ≥ T , then go to Step 9;
4. Generate gi ∼ N (0, 1) independently of all previous samples;
5. Set Xi+1 = Xi + μ(ti, Xi)�t + σ(ti, Xi)

√
�t × gi ;

6. If
∑i

j=0 λ(jΔ,Xj)Δ < ei+1, then go to Step 3;
7. Set k = k + 1, τk = iΔ;
8. Sample a jump size Jk and set Xi+1 = Xi+1 + Jk; go to Step 2;
9. Return jump times τ1, . . . , τk and the sample path X1, . . . , Xi−1.

This algorithm can be implemented using the pseudo-code 2.4.

2.5 Gaussian Processes

Let X be a Gaussian process with mean μ(t) = E(X(t)) and covariance c(t, s) =
E((X(t) − μ(t))(X(s) − μ(s))). We examine two methods for simulating samples
from this process following the series expansion approach.

The first approach applies to stationary processes. It relies on a sampling theorem
for deterministic bounded functions. This results states that the value of a function
f : R →[−ν, ν] computed at a point t can be represented as the sum of a series
whose nth term involves the values of f at finitely many points in the set {kΔ, k =
0,±1,±2, . . .}, with Δ = π/ν. More formally, f (t) = limn→∞

∑n
k=−n f (kΔ) ×

αk(t), where αk(t) = [(Δ − kπ)/tπ] sin(tπ/Δ − kπ). This leads to the following
algorithm.

Algorithm (Sampling theorem for stationary Gaussian processes)

1. Fix sample size n ≥ 1, frequency ν, and time interval [0, T];
2. Set Δ = π/ν and M = [T/Δ] + n + 1;
3. Generate samples of

X(−nΔ)

X
(
(−n + 1)Δ

)
|X(−nΔ)

X
(
(−n + 2)Δ

)
|X(−nΔ),X

(
(−n + 1)Δ

)

. . .

X(0)|X(−nΔ), . . . , X(−Δ)

. . .

X(MΔ)|X(−nΔ), . . . , X
(
(M − 1)Δ

)
.

by using the Gaussian property of conditional distributions;

2.5 Gaussian Processes 63

(* INPUT PARAMETERS *)

steps = Value; (* number of steps *)
dt= Value; (* length of one step in years *)
x[0] = Value;

(* DIFFUSION COEFFICIENTS *)

Drift [t_, x_] := Function(t, x);
Volatility[t_, x_] := Function(t, x);
λ[t_, x_] := Function (t, x); (* jump intensity *)
jumpCoefficient[t_, x_, �_] := Function(t, x);

(* DISTRIBUTIONS *)

uniform = UniformDistribution[0, 1];
normal = NormalDistribution[0, 1];
jumpRandomComponent = Distribution[];

(* GENERATOR *)

λmax = Value;
tau = 0;
(* last potential jump time (in Years), *)
t = 0;
(* last potential jump time (in Steps), *)
potentialInterarrivalTime = -Log[Random[uniform]]/λmax;
tau= tau+potentialInterarrivalTime; (* potential jump time *)

While tau < horizon,
ini = t + 1;
t= [tau* /dt] +1 ;

(* GENERATE CONTINUOUS TRAJECTORY UNTIL POTENTIAL JUMP TIME *)

For[i = ini, i < t + 1, i++,
(* Time steps between ’ 1 + last potential jump time’ and

the ’ next potential jump time’ *)

x[i] = x[i- 1] + Drift [i, x[i- 1]] +
Volatility [i, x[i - 1]] * Sqrt [dt]
* Random [normal] ;

] ;

Fig. 2.2. Thinning pseudo-code.

64 2 Dynamic Monte Carlo

(* TEST WHETHER POTENTIAL
JUMP TIME IS TO BE ACCEPTTED OR REJECTED *)

ratio = λ[t * dt, xLeft[t]] /λmax;(* Acceptance Rejection Ratio *)

If [Random [uniform] < ratio,
(* ACCEPTED => GEN.JUMP COMPONENT &

SUM TO THE CONTINUOUS *)

� = Random [jumpRandomComponent];
x[t] += jumpCoefficient[t* dt, x[t], �];

];

potent ialInterarrivalTime
= Max [-Log [Random [uniform]] / �max, dt];

(* set next potential interarrival time ≥ dt *)

tau = tau + potentialInterarrivalTime;
(* next potenatial jump time *)

];

(* GENERATE CONTINUOUS PATH
BETWEEN LAST POTENTIAL JUMP TIME AND horizon *)

ini = t + 1;

For[i=ini, i<steps+1, i++,

x[i] = x[i-1] + Drift[i, x[i-1]] +
Volatility[i, x[i - 1]] * Sqrt[dt] * Random[normal];

];

Fig. 2.3. Thinning pseudo-code (continued).

4. Return

X(n)(t) =
[t
Δ

]+n+1∑

k=[t
Δ

]−n

X(kΔ)αk(t),

where αk(t) = [(Δ − k)/t] sin(t/Δ − k), for all t ∈ [0, T].

The second approach applies to non-stationary Gaussian processes with zero
mean and covariance function c(t, s). It builds on the Fourier series expansion of
sample paths. The procedure is detailed in the following algorithm.

Algorithm (Fourier method for non-stationary Gaussian processes)

1. Fix a sample size n ≥ 1 and a time interval [0, T];

2.5 Gaussian Processes 65

(* INPUT PARAMETERS *)

steps = Value; (* number of steps *)
dt = Value; (* length of one step in years *)
x[0] = Value;

(* DIFFUSION COEFFICIENTS *)

Drift [t_, x_] := Function (t, x);
Volatility [t_, x_] := Function (t, x);
λ[t_, x_] := Function (t, x); (* jump intensity *)
jumpCoefficient [t_, x_, �_] := Function (t, x);

(* DISTRIBUTIONS *)

uniform = UniformDistribution [0, 1];
normal = NormalDistribution [0, 1];
jumpRandomComponent = Distribution [];

(* GENERATOR *)

i = 1;
exponentialTime = -Log [Random [uniform]];
cumulatedlntensity = 0;

While [i < steps ,
t = i * dt;
noise = Random [normal];
x[i] =

x [i - 1] + Drift [t, x [i - 1]] *dt
+ Volatility [t, x [i - 1]] * Sqrt [dt] * noise;

cumulatedIntensity += (λ[(i - 1) * dt, x[i - 1]]
+ λ[i * dt, x[i]]) * dt/2;

If[cumulatedIntensity > exponentialTime ,
� = Random [jumpRandomComponent]
x[i] += JumpCoefficient [t, x[i], �];
cumulatedIntensity = 0;
exponentialTime = -Log [Random [u]];
];

i + +
];

Fig. 2.4. Countdown pseudo-code.

2. Define I (n) = 1Z+(n), νk = 2πk/T (k = 1, . . . , n), and

ckh = 4

T

∫ T

0
dx

∫ T

0
dy
[
c(x, y) cos(νkx)I (k) sin(νkx)1−I (k)

× cos(νhy)I (h) sin(νhy)1−I (h)
]
,

66 2 Dynamic Monte Carlo

for h, k = 0,±1, . . . ,±n;
3. Generate 2n+1 centered correlated normal variables Yk (k = ±1, . . . ,±n) with

covariance E(YkYh) = ckh;
4. Return

X(n)(t) = Y0

2
+

n∑

k=1

[Yk cos(νkt) + Y−k sin(νkt)],

for t ∈ [0, T].

This algorithm requires that the Fourier series of all ckh converges to ckh. This is
the case, for instance, if ckh are C2 on the square [0, T] × [0, T].

2.6 Comments

General treatments of continuous and mixed-jump diffusion processes include Jacod
and Shiryaev (1988), Kloeden and Platen (2000), Rogers and Williams (1987), and
Shreve (2004). Approximations of continuous time jump processes are explored in
Asmussen and Rosinski (2001), Bruti-Liberati, Nikitopoulos-Sklibosios and Platen
(2006), Bruti-Liberati and Platen (2006, 2007), Duffie, Pan and Singleton (1998),
Jacod and Protter (1998), Lewis and Shedler (1979), and Talay (1982, 1984, 1995).
Theoretical aspects of path simulation in finance are examined in Acworth, Broadie
and Glasserman (1998) (comparison of alternative simulation methods), Boyle and
Tan (1997) (quasi Monte Carlo methods), Duan and Simonato (1998) (martingale
simulation), Dupire and Savine (1998) (speed reduction). Abken (2000), Glasser-
man, Heidelberger and Shahabuddin (1999b, 2000), and Picoult (1999) apply ran-
dom number generation to the computation of Value-at-Risk figures. Akesson and
Lehoczky (2000) use simulation for the valuation of mortgage positions, while An-
dersen (1995), Carr and Yang (1998), Glasserman, Heidelberger and Shahabud-
din (1999a), Glasserman and Zhao (1999), Miltersen (1999), and Rebonato (1998)
perform Monte Carlo studies in the context of interest rate models. American op-
tion valuation naturally requires backward induction (see chapter “Dynamic Pro-
gramming”). However, path sampling can be adopted for the purpose of improv-
ing traditional algorithms. These topics are explored by Carrière (1996), Broadie
and Detemple (1997), Broadie and Glasserman (1997), Broadie, Glasserman and
Jain (1997), Carr and Yang (1997), Carr (1998), Andersen and Broadie (2001),
Longstaff and Schwartz (2001), Boyle and Kolkiewicz (2002), and Garcia (2003),
among others. Douady (1998) and Avellaneda et al. (2001) apply Monte Carlo to
the calibration of stochastic models. Avellaneda and Gamba (2000), Broadie and
Glasserman (1996), Fournié et al. (1999), and Gobet and Munos (2002) are major
references for hedging related applications. General valuation schemes using sim-
ulation are developed in Boyle, Evnine and Gibbs (1989), Clewlow and Carverhill
(1994) and Carverhill and Pang (1998). Stochastic volatility models have been simu-
lated in Clewlow and Strickland (1997) and Fournié, Lasry and Touzi (1997). Appli-
cations to the econometrics of continuous time processes can be found in Duffie and
Glynn (1995), Duffie and Singleton (1993), and Gourieroux and Monfort (1996). An

2.6 Comments 67

extensive analysis of price returns using simulation has been performed by Tomp-
kins and D’Ecclesia (2005). Special simulation methods have been developed for
Levy processes in Këllezi and Webber (2004), Ribeiro and Webber (2003, 2005),
and Tankov (2005). Cont and Tankov (2004) review methods based on the notion of
Levy copula as introduced in Kallsen and Tankov (2004).

3

Dynamic Programming for Stochastic Optimization

In this short chapter we introduce one of the most popular and powerful methods to
solve optimal control problems for deterministic and stochastic dynamic systems in
discrete time. This method is known as Dynamic Programming (DP) and has been
proposed in the fifties of the last century by the American mathematician Richard
Bellman (Bellman (1957)) for the case of deterministic dynamics. The main fea-
ture of DP is the reduction of a computational problem of complexity order mn to n

problems of complexity order m. If the resulting algorithm needs to be reduced fur-
ther, then more sophisticated techniques must be employed. For a treatment of these
methods, we may refer to Bertsekas (2005).

Our presentation is organized as follows. Section 3.1 presents the general set-
ting of a discrete time optimization problem. Section 3.2 states the problem for both
deterministic and stochastic systems. Section 3.3 introduces the Bellman principle
of optimality. Section 3.4 develops the DP algorithm for the case of deterministic
systems. The extension to stochastic systems is presented in Sect. 3.5. Section 3.6
illustrates two major applications of DP in quantitative finance. A final section con-
cludes with comments on further references.

3.1 Controlled Dynamical Systems

Let us consider a system whose description at a given time s is captured by a variable
X(s). This quantity is the state variable of the system and may take values in any
given set X. A controlled dynamic system in discrete finite time horizon is defined
by a state variable assigned for each time t, . . . , T according to a law of the form
X(s + 1) = f (s,X(s), u(s,X(s))). Given an initial condition X(t) = x, this rule
says that the state of the system prevailing at time s + 1 is a known function of
(1) the previous time s, (2) the state X(s) prevailing then, and (3) the value u(s,X(s))

assumed by a control policy computed as a function of time s and state X(s).

Example X may represent the market value of a security portfolio and u the selec-
tion made by an investor about the proportion of his wealth to invest in the set of
tradeable assets in the market under consideration.

70 3 Dynamic Programming for Stochastic Optimization

It is important to distinguish between the notions of control policy and control.
A control policy is a rule u(·, ·) associating to each pair of time s and state y a number
u = u(s, y), the control, in a set U of admissible actions affecting the dynamic link
between the states of the system at consecutive times.1 Notice that the last control
occurs one time step before the last date T . A control policy is denoted by a symbol u.
The overall evolution of the system depends on:

(a) the selected policy u,
(b) the initial time t , and
(c) the starting value x of the system. Consequently we may denote by Xt,x,u the

solution, which we assume to exist and to be unique, of the resulting dynamic
system:

{
X(s + 1) = f

(
s,X(s), u

(
s,X(s)

))
, s = t, . . . , T − 1,

X(t) = x, u =u(·, ·).

Whenever the initial setting (t, x) is unambiguously understood, we adopt the lighter
notation Xu.

In most applications, we consider a state space X = R
n and a control set U = R

m.
Moreover, we assume that the pair (state, control) = (x, u) belongs to a specified set
K(s), which is allowed to vary over time, i.e., (X(s), u(s,X(s))) ∈ K(s) for all
s = t, . . . , T − 1. In this case, we say that u is admissible and write u ∈ Ut,T . De-
spite K(s) ⊂ X × U, it need not be itself a rectangle A × B, meaning that some
specific control u may be admissible for a limited number of times only.2

Control u is evaluated according to a performance measure (or index) J of the
corresponding dynamic system (Xu(s))s=t,...,T . This index is supposed to be time
additive, that is:

Jt,x(u) =
T −1∑

s=t

F
(
s,Xt,x,u(s), u

(
s,Xt,x,u(s)

))
+ Ψ

(
Xt,x,u(T)

)
. (3.1)

This means that the system generates a cost/return at each time. In our previous
example, J may represent the investor’s utility generated by the selected portfolio
strategy u. Table 3.1 summarizes notation and quantities introduced so far. Notice
that J also depends on dynamics f , the control set U, the last date T , though this is
implicitly taken for granted. Under a slight abuse of notation, Js,Xt,x,u(s)(u) denotes
the performance of the same system as measured from an intermediate time s > t .
We underline that the index above is separable in time and that the last summand on
the right-hand side of expression (3.1) is affected from the control policy u through
the state of the system only.

1 In general, a control policy is a time dependent function stating the control selected by
the user at any time t . In the case of stochastic systems, this quantity may be random. We
restrict our definition to the so-called Markovian control policies, namely those that depend
on time and state only.

2 A × B is the Cartesian product between A and B as defined by {(x, y): x ∈ A, y ∈ B}.

3.2 The Optimal Control Problem 71

Table 3.1. Notation

Symbol Space
X State
U Control
K(s) Ctrl. constraint
Ut,T Admiss.

Ctrl. policies

Symbol Variable
t Initial time
T Final time
s Current time
u Control
x State

Symbol Function
f (·, ·) Dynamics
u(·, ·) Ctrl. policy
Ψ (·) Final reward
F(·; ·) Going reward
J (·) Total reward

3.2 The Optimal Control Problem

Let a controlled dynamic system in discrete time and a performance index be given
as above. A deterministic optimal control problem consists of determining for any
starting point an admissible control policy maximizing the performance of the sys-
tem, i.e.,

max
u∈Ut,T

Jt,x(u),

for all (t, x) ∈ K(t). The function û = arg max J is the optimal control policy and
the best performance V (t, x) = Jt,x(û) is referred to as the value function of the
problem. Minimization obtains by replacing J with −J .

A stochastic optimal control problem generalizes the notion of optimal control
problem to the case of stochastic dynamic systems, namely those described by a
stochastic process. Accordingly, we identify three major differences between deter-
ministic and stochastic problems, which we now illustrate.

• The evolution law for the state variable X is random. More precisely, X(s + 1) is
a random variable whose distribution p is random. It may also depend on time s,
state X(s), and the value u(s) of the control at that time, that is:

X(s + 1) ∼ p
(
dx; s,X(s), u(s), ω

)
. (3.2)

More formally, for each 4-uple of time s, state y, control u, and sample event ω,
there is a probability measure p(dx; s, y, u, ω) on the state space X. This quantity
represents the probability that the state variable belongs to the interval [x, x + dx]
at time s + 1, conditional to event that the system was in state y at the previous
time s and has been controlled by u.

Typically, the dependence on randomness is achieved through a noise term W .
More precisely, a sequence of independent and identically distributed random
shocks W(t), . . . ,W(T − 1) is given. Then, system dynamics are described as
follows:

X(s + 1) = f
(
s,X(s), u(s),W(s)

)
, (3.3)

for s = t, . . . , T − 1. This relation, coupled with the usual initial condition
X(t) = x, determines a stochastic process Xt,x,u = (Xt,x,u(s))s=t,...,T .

Example A typical instance of these dynamics is provided by the Euler discretiza-
tion of a continuously controlled stochastic differential system:

72 3 Dynamic Programming for Stochastic Optimization
{

dXu(s) = μ
(
s,Xu(s), u

(
s,Xu(s)

))
ds + σ

(
s,Xu(s), u

(
s,Xu(s)

))
dW(s),

Xu(t) = x.

In this case, the resulting discrete time dynamics read as:
⎧
⎨
⎩

Xu(s + �s) = Xu(s) + μ
(
s,Xu(s), u

(
s,Xu(s)

))
× �s

+ σ
(
s,Xu(s), u

(
s,Xu(s)

))
×

√
�s × N (0, 1),

Xu(t) = x,

where N (0, 1) denotes a standard Gaussian variable. This expression assumes
form (3.3).

• The control variable u is random too. Again, we consider Markov control policies,
namely those whose randomness enters their value through the state variable only,
i.e.,

u(s, ω) = u
(
s,X(s, ω)

)
.

• Since there is one trajectory (X(s, ω), t ≤ s ≤ T) per sample event ω, we need to
synthesize the corresponding performances into a single number. It is customary
to consider the expected value of a functional of the random trajectory correspond-
ing to a given control policy. This expectation is computed under the probability
measure induced over the path-space by the transition densities above indicated
and delivers a measure of the overall performance of the system as:

Jt,x(u) = E

(
T −1∑

s=t

F
(
s,X(s), u

(
s,X(s)

))
+ Ψ

(
X(T)

)
)

,

for t ≤ T , provided that
∑T −1

s=T (·) := 0, i.e., JT ,x(u) = Ψ (x). Other function-
als may be adopted in place of the expected value. For instance, we may con-
sider higher-order moments (e.g., the mean square error) or distributional quantiles
(e.g., Value-at-Risk) of the distribution of the random performance index.

Example (Optimal stopping) An important type of stochastic control problems is
the optimal stopping time. In its simplest form, the system is allowed to evolve freely
until a time τ is selected by the user. The problem reads as follows:

max
τ∈T

(
τ−1∑

s=t

F
(
s,Xt,x(s)

)
+ Ψ

(
Xt,x(τ)

)
)

, (3.4)

where the system evolves according to Xt,x(s + 1) = f (s,Xt,x(s),W(s)). Here,
T is a set of random variables taking value in the time set {t, . . . , T }.3 In financial
applications, τ represents the time at which an option holder decides to exercise his
right to a given cash flow or to perform a certain action. In an appendix to this book,
we show how this problem can be cast in the framework developed so far. It can be

3 Proper measurability conditions are taken for granted in the present context. For more in-
formation on this point, see references cited at the end of this chapter.

3.3 The Bellman Principle of Optimality 73

proven that under suitable conditions, a Markov optimal control policy for an optimal
stopping problem defines a curve γ (s, x), known as the free boundary associated
to the problem. This curve has the property that the optimally controlled system is
stopped at time s, i.e., τ = s, if and only if the state X(s) hits (or overcome) the
threshold γ (s,X(s)). Dynamic programming allows us to compute this curve point
by point.

3.3 The Bellman Principle of Optimality

Both deterministic and stochastic optimization problems detailed above involve a
maximization, or minimization, on Rm×(T −t), where m is the number of control
variables and T −t is the length of the control time horizon. Dynamic programming is
a method to transform this problem in R

m×(T −t) into a sequence of T − t simplified
optimization problems on R

m. This method is based on the Bellman principle of

optimality, which we now introduce.
We say that a control policy u1 is dominated by another control policy u2 if

Jt,x(u
1) ≤ Jt,x(u

2) for all pairs (t, x). Correspondingly, we write u1 ≤ u2. We
consider an arbitrary control policy u = (u(t), . . . , u(s − 1), u(s), . . . , u(T − 1))

and then build another control policy u′ by keeping the first s − t components of u

and modifying the last T − s entries as follows. First, we apply the original policy
u to the system X until time s − 1 included, so that the resulting state at time s is
Xt,x,u(s). Then, we let the system evolve optimally: that is, we adopt the control

ûs =
(
ûs(s), . . . , ûs(T − 1)

)
:= arg max

v∈Us,T

Js,Xt,x,u(s)(v).

The resulting control policy read as

u′ =
(
u(t), . . . , u(s − 1), ûs(s), . . . , ûs(T − 1)

)
.

The Bellman principle of optimality states that:

Proposition (Bellman principle of optimality) The control policy u is dominated

by u′, i.e.,

u ≤ u′.

Remark One should not confuse u′ with the control policy:

u′′ =
(
u(t), . . . , u(s − 1), ût (s), . . . , ût (T − 1)

)
,

which is obtained from u by substituting the T − s components of the optimal policy
ût = arg maxUt,T

Jt,x(u) as computed at time tand under state x to the last T − s

entries in u.

Remark The intuition behind Bellman principle of optimality lays on the additivity
of the performance functional J and the Markov property of the underlying system
dynamics: given time s and state y, the optimal policy on the remaining time horizon

74 3 Dynamic Programming for Stochastic Optimization

s, . . . , T − 1 is independent of the way the system reached the state y at time s. This
is linked to the following flow property of the kind of system dynamics we adopted:

Xt,x(s) = XXt,x(r)(s),

for any t ≤ r ≤ s. Put in simple terms, the time s state of a system X starting at
a prior time t in a state x is the same as the state of the system X had it started on
any intermediate time r at the state Xt,x(r) that the same system would have reached
after starting at x on date t . In the stochastic case, this property, which should be
interpreted as an equality in distribution, stems from the Markovian nature of the
underlying stochastic evolution. This informal reasoning is turns into a proof in an
appendix reported at the end of this book.

In the rest of the chapter, we assume that any optimization problem under consid-
eration admits a unique solution for all (s, y) ∈ {t, . . . , T }×X. Sufficients conditions
for this assumption to hold true are provided in Bertsekas (2005).

3.4 Dynamic Programming

We now state the dynamic programming algorithm which is grounded on the Bell-
man principle of optimality.

Proposition (Dynamic programming algorithm) For all y ∈ X, define recur-

sively:

• (Begin)
V (T , y) := Ψ (y),

• (Step 1)

V (T − 1, y) := max
{u:(y,u)∈K(T −1)}

{
F(T − 1, y, u) + V

(
T , f (T − 1, y, u)

)}
,

ûT −1(T − 1, y) := arg max
{u:(y,u)∈K(T −1)}

{
F(T − 1, y, u) + V

(
T , f (T − 1, y, u)

)}
,

• (Step T − n)

V (n, y) := max
{u:(y,u)∈K(n)}

{
F(n, y, u) + V

(
n + 1, f (n, y, u)

)}
,

ûn(n, y) := arg max
{u:(y,u)∈K(n)}

{
F(n, y, u) + V

(
n + 1, f (n, y, u)

)}
.

Then:

uB :=
(
ût (t, ·), . . . , ûT −2(T − 2, ·), ûT −1(T − 1, ·)

)

is the optimal control policy ût and V is the value function of the optimal control

problem C(t, x).

3.4 Dynamic Programming 75

Remark The procedure is initialized at time T , and then moves backward. At time
T , no control is possible, so the best reward is the final reward itself. At any inter-
mediate time n, the controller selects the control u so that the pair (current state y,
control u) is admissible, i.e., it belongs to K(n), and leads to the best reward. This
latter is decomposed into two components: the first one is the time n reward stem-
ming from the current state y of the system and the selected control u, that is
F(n, y, u); the second component is the optimal reward from time n + 1 on, that
is the value function evaluated at time n + 1 under the state of the system then,
namely X(n+1) = f (n,X(n), u(n,X(n))) = f (n, y, u). A proof of this algorithm
is detailed in an appendix.

Remark (Determination of optimal controls) The number V (t, x) defines the per-
formance for the optimally controlled system. The optimal control policy is the rule
û : {t, . . . , T − 1}× R

n → R
m that fully determines a trajectory (Xt,x,û(s), t ≤ s ≤

T) of the controlled dynamic system according to the following procedure:

1. Start at (t, x);
2. If state y is reached at time s, then time s + 1 state is f (s, y, û(s, y)).

In other words, the optimal control policy is a sequence of functions of the state of
the system y, one function per time between tand T − 1. For instance, û(s, ·) states
that the control to be applied to the system at time s is û(s, y) if the state is y at that
time.

Let us show the way this method can be worked out step by step. Starting with
state x at time t , one obtains:

Xû(t + 1) = f
(
t, x, û(t, x)

)
,

and the optimal control at t + 1 is:

û
(
t + 1, Xû(t + 1)

)
= û

(
t + 1, f

(
t, x, û(t, x)

))
.

At time t + 2, the optimal trajectory defines a state:

Xû(t + 2) = f
(
t + 1, Xû(t + 1), û

(
t + 1, Xû(t + 1)

))
,

and the optimal control is:

û
(
t + 2, Xû(t + 2)

)
= û

(
t + 2, f

(
t + 1, Xû(t + 1), û

(
t + 1, Xû(t + 1)

)))

= û
(
t + 2, f

(
t + 1, f

(
t, x, û(t, x)

)
,

û
(
t + 1, f

(
t, x, û(t, x)

))))
.

By recursion, one computes all the individual optimal controls û(s, Xû(s)) for s =
t, . . . , T − 1. The overall optimal control is thus the optimal policy computed on
the optimally controlled trajectory (Xt,x,û(t), . . . , Xt,x,û(T)), that is the (T − t)-
dimensional sequence of individual optimal controls in R

m:

û =
(
û
(
t, Xt,x,û(t)

)
, . . . , û

(
T − 1, Xt,x,û(T − 1)

))
.

Note that this result is achieved by using the following items only:

76 3 Dynamic Programming for Stochastic Optimization

• Initial condition: time t and state x;
• Optimal policy: û(t, ·), . . . , û(t − 1, ·);
• Input dynamics: f (·, ·, ·).

3.5 Stochastic Dynamic Programming

Stochastic dynamic programming is an algorithm for determining the optimal control
policy in the case of stochastic dynamic systems of the kind presented in the first
section of this chapter. Here, we slightly abuse of our notation by writing Xn,y,u(n+
1) for the random state of the system at time n + 1 given that it started from state y

at the previous time and that a control u has been applied between times n and n+1.
As usual, P(dζ ; n + 1, y, u) denotes the probability distribution of the state variable
at time n + 1 given that the system was at state y one time period earlier and that
control u has been adopted. Symbol PW(n)(dw) denotes the probability distribution
of the random noise W affecting the system dynamics at time n.

Proposition (Stochastic dynamic programming algorithm) For all y ∈ X, define

recursively:

• (Begin)
V (T , y) := Ψ (y),

• (Step T − n)

V (n, y) := max
{u:(y,u)∈K(n)}

{
F(n, y, u) + E

[
V

(
n + 1, Xn,y,u(n + 1)

)]}

= max
{u:(y,u)∈K(n)}

{
F(n, y, u) +

∫

X

V (n + 1, ζ)P(dζ ; n + 1, y, u)

}

= max
{u:(y,u)∈K(n)}

{
F(n, y, u) +

∫

X

V
(
n + 1, f (n, y, u,w)

)
PW(n)(dw)

}

û(n, y) = arg max{· · ·}.

The sequence of functions û := (û(t, ·), . . . , û(T − 1, ·)) is the optimal control
policy and V is the value function of the optimal control problem.

Remark The only difference with the determinist case is that the way the system
is optimally controlled from time n + 1 on as seen as from time t depends on the
random state assumed by the system at time n + 1. Therefore, controller’s choice is
driven by the best forecast he can do about this state. This reflects into assessing the
expected best performance of the system from time n + 1 on.

Remark (Determination of sample optimal controls) The numerical value V (t, x)

defines the performance for the optimally controlled system starting at (t, x). The
optimal control policy determines the optimally controlled stochastic dynamics
(Xt,x,û(t))t=1,...,T , that is a probability distribution for the optimal trajectory. For

3.6 Applications 77

each sample ω, the corresponding sample optimal control is given by the (T − t)-
dimensional sequence of individual optimal controls in R

m:

û =
(
û
(
t, Xt,x,û(1, ω)

)
, . . . , û

(
T − 1, Xt,x,û(T − 1, ω)

))
.

In general, the optimal control policy gives rise to different sequences of control
vectors, one sequence per realization ω in the sample space.

3.6 Applications

3.6.1 American Option Pricing

We consider an American put option written at time 0 on an asset S for a strike price
K and expiration date T . If exercised at time τ ∈ [0, T], the option pay-off is

ψ(Sτ) = max(K − Sτ , 0).

Arbitrage pricing theory allows us to compute the fair price for the contract under
consideration as:

P0 = sup
τ∈T0,T

E
[
e−rτψ(Sτ)

]
,

where E[·] denotes the the risk-neutral expectation operator and T0,T is the set of
stopping times assuming values on [0, T].4

We assume throughout that a discrete time pricing model is given. This model
may be derived by discretizing continuous time asset price dynamics on a time re-
finement {0,�t, . . . , N�t = T }. The choice of the optimal exercise time τ ∗ reduces
to a comparison between the intrinsic value of the option and its continuation value at
each time step j . The former is the pay-off ψ(Sj) stemming from exercising the op-
tion, whereas the latter is the value of the option provided that exercise is postponed;
that is the conditional expected and discounted value of the option E[e−r�tPj+1|Sj]
one time step later. The optimal exercise time is the first date and which the intrinsic
value exceeds the continuation value.

This is clearly a dynamic programming procedure:

• (Begin)
PN = ψ(SN).

• (Step N − j)
Pj = max

(
ψ(Sj), E

[
e−r�tPj+1|Sj

])
.

The optimal stopping time τ ∗ is thus:

τ ∗ = min
(
k ≥ 0: ψ(Sk) ≥ E

[
e−r�tPk+1|Sk

])
.

4 A more precise formulation would consider the essential supremum over T0,T . For the sake
of simplicity, we skip on this subtle point in our presentation and refer to works cited at the
end of the chapter.

78 3 Dynamic Programming for Stochastic Optimization

In a binomial model setting, prices can move from one period to the next by either
a proportion u > 1 or d < 1 with probability p and 1 − p respectively. Three
parameters need to be identified: (1) the up jump factor u, (2) the downward jump
factor d , (3) the probability p of an upward movement.

Standard approaches exist for the purpose of selecting u, d, and p in a way that
is compatible to a time discretization of lognormal dynamics underlying the Black–
Scholes model. Cox, Ross and Rubinstein (1979) propose the following choice:

u = exp

((
r − 1

2
σ 2

)
�t + σ

√
�t

)
,

d = exp

((
r − 1

2
σ 2

)
�t − σ

√
�t

)
,

p = 1

2
,

where r is the 1-period risk-free rate of interest, σ is the Black–Scholes volatil-
ity, and �t is the time lag. Jarrow and Rudd (1982) consider equally large absolute
movements. This choice leads to unequal probabilities for the upward and downward
movements:

u = exp
(
σ
√

�t
)
,

d = exp
(
−σ

√
�t

)
,

p = 1

2
+ r − σ 2/2

2σ

√
�t.

A major problem with these two formulations is that the quality of the resulting ap-
proximation is acceptable only for a very thin time refinement. In order to overcome
this issue, Trigeorgis (1991) proposes the following discretization. Let x denote the
logarithmic price return of the risky asset S. We assume this quantity can increase to
x+�xu with a probability pu or decrease to x−�xd with a probability pd = 1−pu.
By matching both mean and variance of the continuous and the discrete time models,
we obtain:

E[�x] = pu�xu + pd�xd =
(

r − 1

2
σ 2

)
�t,

E
[
�x2

]
= pu�x2

u + pd�x2
d = σ 2�t +

(
r − 1

2
σ 2

)2

�t2,

pu + pd = 1.

Equal jump sizes lead to the following solution:

�x =

√
σ 2�t +

(
r − 1

2
σ 2

)2

�t2,

3.6 Applications 79

pu = 1

2
+ (r − σ 2/2)�t

2�x
,

pd = 1

2
− (r − σ 2/2)�t

2�x
.

The dynamic programming algorithm can be implemented by computing a tree of
values for both asset and option prices. Each node is identified by a double index
(j, l), where j = 0, . . . , N represents the time step and l is the level of the state
variable at that time. The asset price at node (j, l) is

Sj,l = exp(xj,l) = exp
(
x + l�xu + (j − l)�xd

)
.

The DP problem reads as:

Pj,N = max(K − SN,l, 0),

Pj,l = max
(
max(K − Sj,l, 0), e−r�t

(
puPj+1,l+1 + (1 − pu)Pj+1,l

))
.

This algorithm is implemented in the code BinomialCallPutPrice.m.

3.6.2 Optimal Investment Problem

Consider a market where N+1 assets prices evolve according to stochastic processes
S0(t), . . . , SN (t) in discrete timeset t = 0, . . . , T . An investor is faced with the
problem of allocating an initial wealth w0 and adjusting the resulting portfolio at each
point in time, n−r way that utility stemming from the value of the standing portfolio
at time T is maximized. We assume the investor’s utility is a differentiable, concave
and strictly increasing function U of the investor’s. . . . Let hi(t) denote the quantity
of asset i (i = 0, . . . , N) that is selected at time t and held until following time. An
admissible strategy H = (h(t))t=0,...,T −1, with h(t) = (h0(t), h1(t), . . . , hN (t)), is
self-financing if the standing wealth at each time t is totally reallocated among the
same set of N + 1 assets available for the trading market. In other words, wealth
is neither drawn out of the market, say for consumption, nor increased by any cash
inflow. Consequently, given an outstanding capital w, if N asset quantities are freely
decided upon, say h1(t), . . . , hN (t), then the residual quantity h0(t) is constrained
to either finance the resulting deficit (case:

∑N
i=1 hi(t)Si(t) − w > 0) or to support

the standing surplus (case: w −
∑N

i=1 hi(t)Si(t) > 0), i.e.,

h0(t) = w −
∑N

i=1 hi(t)Si(t)

S0(t)
. (3.5)

This constraint reduces by one unit the degree of freedom in selecting the optimal
allocation of wealth. We denote the class of self-financing trading strategies by H. In
view of expression (3.5), the time t + 1 wealth W(t) generated by a trading strategy
H = (h(t))t=0,...,T −1 investing an initial wealth W(0) = w is given by:

80 3 Dynamic Programming for Stochastic Optimization

Wh(t + 1) = w0 +
t∑

u=0

N∑

i=0

hi(u)[Si(u + 1) − Si(u)]

= w0 +
t∑

u=0

{
Wh(u) −

∑N
i=1 hi(u)Si(u)

S0(u)
[S0(u + 1) − S0(u)].

+
N∑

i=1

hi(u)[Si(u + 1) − Si(u)]
}

= Wh(t) + Wh(t) −
∑N

i=1 hi(t)Si(t)

S0(t)
[S0(t + 1) − S0(t)]

+
N∑

i=1

hi(t)[Si(t + 1) − Si(t)]. (3.6)

This expression says that investing Wh(t) at time t in a self-financing portfolio yields
an amount at time t + 1 that consists of two components: (1) the invested capital
Wh(t); (2) the capital gains occurred between t and t + 1, i.e., value variations in the
portfolio exclusively due to price movements. By inspecting the same formula, we
remark that the outstanding wealth at any time t + 1 depends on the following items:

• The outstanding wealth Wh(t) at time t : . This is a state variable of the system.
• The asset prices prevailing at the both investment and reallocation times. These

constitute N further state variables of the system.
• The allocation quantities h1(t), . . . , hN (t). These are control variables of the sys-

tem.

The optimization problem can be cast as follows:

max
h∈H

E
(
U

(
Wh(T)

)∣∣Wh(0) = w0, S(0) = s0),

where w0 is the initial wealth, S(0) = (S0(0), . . . , SN (0)), and s0 = (s0
0 , . . . , s0

N) is
the vector of market prices of the investment assets at time 0.

This problem can be solve by using dynamic programming. The algorithm reads
as follows:

• (Begin)
V

(
T , (w, s)

)
= U(w).

• (Step T − t)

V
(
t, (w, s)

)
= max

h∈RN

{
E

[
V

(
t + 1, S(t + 1)

)
|W(t) = w, S(t) = s

]}

= max
h∈RN

{
E

[
w + w −

∑N
i=1 hisi

s0
[S0(t + 1) − s0(t)]

]

+
N∑

i=1

hi[Si(t + 1) − si]
}

,

3.7 Comments 81

h∗(t, (w, s)
)

= arg max
h∈RN

{· · ·}

where h =(h1, . . . , hN), the expected value is computed with respect to the
conditional distribution of S(t + 1) = (S0(t + 1), . . . , SN (t + 1)) given that
S(t) = (s0, . . . , sN).

The value function at time 0 is given by:

V
(
0, (w0, s0)

)
,

and the optimal control reads as:

h∗(t,
(
Wh∗

(t), S(t)
))

, t = 0, . . . , T − 1.

By formula (3.6), the wealth Wh∗
(t) depends on h∗(u) only for u = 0, . . . , t − 1;

consequently the expression above for h∗ is well defined for each sample path
S(t), t = 0, . . . , T − 1.

3.7 Comments

The most comprehensive treatment of dynamic programming available to date is
Bertsekas (2005). Other comprehensive treatments of both deterministic and sto-
chastic optimal control theory include Kushner (1967), Fleming and Rishel (1975),
Gihman and Skorohod (1979), Krylov (1980), Oksendal (2003), and Oksendal and
Sulem (2004). We refer to the wide bibliography cited in these books for a com-
plete list of references. A concise introductory to stochastic control in continuous
time is contained in Björk (2004). Shiryaev (1978) provides a complete account of
the optimal stopping problem. Kushner and Dupuis (1992) describe a wide variety
of numerical methods for control problems. Demange and Rochet (1997) provide
an instructive introductory chapter on optimal control and its applications to the eco-
nomic theory. More refined methods in economics can be found in Grüne and Semm-
ler (2004) and references therein. The use of trees has been extensively adopted in
quantitative finance since Cox, Ross and Rubinstein (1979). Self-contained introduc-
tions to lattice methodologies can be found in Baxter and Rennie (1996), Musiela
and Rutkowski (1997), Björk (2004), Briys et al. (1998), James and Webber (2000),
Hull (2005) and, to a much wider extent, Brigo and Mercurio (2006). Applications
of tree-based methods to dynamic hedging and the pricing of exotic options can be
found in Avellaneda and Paras (1994) and Avellaneda and Wu (1999). Li, Ritchken
and Sankarasubramanian (1995) develop a clever device to overcome the problem
of non-Markovianity in HJM models for the term structure of interest rates. Amin
(1993), Baz and Das (1996), Das (1997a,1997b), and Këllezi and Webber (2004)
develop random walks approximating continuous time jump diffusions. Jamshidian
(1991a,1991b) proposes a discrete version of the Kolmogorov forward equation sat-
isfied by the pricing kernel of certain diffusion processes and applied the method
to price interest rate derivatives. Forward induction has also been explored for the

82 3 Dynamic Programming for Stochastic Optimization

pricing of American-style options in Carr and Hirsa (2003). Baccara, Battauz and
Ortu (2005) adopt an event-tree approach to model a security market where bid-ask
spreads affect daily quotations and then solve the resulting super-replication prob-
lem via linear programming techniques. Dumas and Luciano (1991) solve a dynamic
portfolio choice problem in continuous time with transaction costs, while Roncoroni
(1995) apply the optimal control scheme to model and solve an economic policy
problem affecting developing countries.

4

Finite Difference Methods

4.1 Introduction

4.1.1 Security Pricing and Partial Differential Equations

We have seen in a previous chapter that the arbitrage-free price of a European-style
contingent claim can be expressed as the time t conditional expected value of its
discounted payoff under the risk-neutral probability measure P

∗:

V (t) = E
∗
t

(
e−

∫ T
t r(s) dsV (T)

)
. (4.1)

Here r(t) represents the risk-free short rate of interest prevailing at time t for the
period between t and t + dt . If both this rate and the pay-off V (T) can be expressed
as a function of a k-dimensional Itô process X = (X1, . . . , Xk) satisfying a vector-
valued stochastic differential equation (SDE):

dX(s) = μ
(
s, X(s)

)
ds + Σ

(
s, X(s)

)
dW(s),

with X(t) = x, then the derivative price V (t) can be written as a function F of
time t and state X(t).1 According to the Feynman–Kaç theorem, the function F(t, x)

satisfies the following PDE:2

0 = ∂tF(t, x) + ∇xF(t, x) · µ(t, x) (4.2)

+
1

2
Tr

[

He[F(t, x)]Σ(t, x)Σ(t, x)⊤
]

− r(t)F (t, x)

1 More precisely, the right-hand side in expression (4.1) is a conditional expectation of the
argument with respect to the σ -algebra Ft = σ(Xs , 0 ≤ s ≤ t) generated by the process
X as observed until time t . Since X is a Markov process, this quantity is σ(Xt)-measurable
and thus it can be expressed as a function of t and Xt .

2 Here ∂tF denotes the partial derivative of F with respect to t , ∇xF is the gradient vector
collecting all partial derivatives of F with respect to the components of the state variable x,
He[F] is the Hessian matrix of F , and Tr[·] is the trace operator of a square matrix, i.e., the
sum of all diagonal elements.

84 4 Finite Difference Methods

on a domain D, with terminal condition F(T , x) = h(x) = V (T). This result holds
under regularity conditions which basically amount to requiring that F(t, x) belongs
to the class of continuously differentiable functions C1,2(R+ × R).

Let us consider the case of a single asset (k = 1) and assume that the spot price
evolves according to a Geometric Brownian Motion (GBM) under the risk-neutral
probability measure, i.e., dX(t) = (r − q)X(t) dt + σX(t) dW(t), with X(0) = x

as a starting condition, r denoting the risk-free rate, and q representing a continuous
“dividend yield”. In this setting, the PDE (4.2) is exactly the Black–Scholes (BS)
equation

∂tF(t, x) + (r − q)x∂xF(t, x) + 1

2
σ 2x2∂xxF(t, x) − rF (t, x) = 0. (4.3)

This equation, coupled with the payoff condition F(T , x) = max(0, x − K), returns
a solution that is the price of a standard call option written on X, with maturity T

and strike K . If the asset pays a continuous cash flow g(t, x), then this latter appears
as an additional term in the PDE above. For example, if the cash flow is proportional
to a stock price X, g(t, x) = gx say, then a term gx must be added to the right-hand
side of formula (4.3).

In this chapter, we present basic numerical methods for solving one-dimensional
PDEs of the kind above. In particular, we introduce the Finite Difference Method
(FDM) as a simple technique for generating an approximate solution to the pricing
PDE (4.3). A considerable number of problems arise in the case of high-dimensional
PDEs (e.g., stochastic volatility models, stochastic interest rates models, basket op-
tions) and path-dependent payoffs (e.g., Asian options). A few of these issues can be
tackled through analytical tools such as integral transforms (e.g., Laplace and Fourier
transforms). While we defer a treatment of these and other related issues to Chap-
ter 7, the pricing of path-dependent contracts (such as Asian and lookback options)
will be considered through a number of case studies in the second part of this book.
Instead, we will not consider how to deal with multidimensional PDEs, arising with
stochastic volatility or with basket options.

4.1.2 Classification of PDEs

A PDE is a functional equation containing a function and some of its derivatives.
Whereas for Ordinary Differential Equations (ODEs) the unknown function depends
on one variable only (e.g., u′(x) = 2x + u(x), where x is the independent variable
and u is the unknown function to be determined), in PDEs the unknown function de-
pends on several variables. In financial applications, the relevant variables are time t

and the underlying state variable x, which is usually identified with an asset price or
any financial index representing the underlying of the contract under investigation.

PDE’s may be classified according to several criteria:

(a) The order of the PDE, namely the order of the highest partial derivative in the
equation.

(b) The number of independent variables.

4.1 Introduction 85

(c) The kind of relation (linear/nonlinear) combining the unknown function F with
its partial derivatives.

For instance, the Black–Scholes PDE is a linear second-order equation involving
two variables, that is time and the spot price of an asset. As a more general example,
we may consider a second order linear partial differential equation with independent
variables x and y:

A∂xxF + 2B∂xyF + C∂yyF + D∂xF + E∂yF + HF = G, (4.4)

where F = F(y, x) is the unknown function to be determined and A, B, C, D, E,
H and G are known real-valued functions of both y and x. If G ≡ 0 for all y and x,
this equation is called homogeneous, otherwise inhomogenous. It is easy to see that
PDE (4.3) can be obtained from (4.4) by setting y = t and

A(t, x) =
1

2
σ 2x2, B(t, x) = 0, C(t, x) = 0,

D(t, x) = (r − q)x, E(t, x) = 1, H(t, x) = −r, G(t, x) = 0.

We may classify equations (4.4) as belonging to one of the following three groups
within a region R where A(y, x) �= 0:

Hyperbolic, if B2 − AC > 0,

Parabolic, if B2 − AC = 0,

Elliptic, if B2 − AC < 0.

Since in general B2 − AC is a function of the independent variables, a PDE can
change in nature depending on the part of the domain where it is considered. In the
Black–Scholes equation, we have B2 −AC = 0, so that (4.3) is a parabolic equation
on {x > 0}. In quantitative finance, we usually come across parabolic equations:

∂yF(y, x) + A∂xxF(y, x) + D∂xF(y, x) + HF(y, x) = G,

where y represents the time variable and x represents a spatial variable. In terms
of physical interpretation, A∂xxF is a diffusive term, D∂xF represents a convective

term, HF describes a conservative term, and G is a source term. Let us comment
on the meaning of these terms with reference to the BS equation (4.3) as an example.

• The term ∂tF(t, x) measures the effect of time flow on the option price: ceteris

paribus, the option loses time value as time goes by. This is because the likeli-
hood that the option ends up in-the-money decreases along time.

• The diffusive term σ 2x2∂xxF records the effect of noise on the stock price and
consequently on the derivative price written on this asset.

• The convective term rx∂xF takes into account the deterministic effect of time
flow on the stock price. This is given by opportunity cost of investing in the
risk-free asset and thus is reflected in an option price variation rx∂xF .

• The source term represents a continuous cash flow to be received by the holder
of the derivative contract.

86 4 Finite Difference Methods

By Itô’s lemma, the sum ∂tF(t, x) + σ 2x2∂xxF + rx∂xF describes the expected
capital gain on the derivative asset, i.e., E

∗
t (dF(t, x))/dt . By adding expected cash

flow generated by the asset, i.e., a source term, we obtain the total return on the
option contract. The sum of the expected capital gain and the expected cash flow ECF

provides the expected total return of the option. In a risk-neutral world, all the assets
have the same instantaneous expected total return. Consequently E

∗
t (dF(t, x))/dt +

ECF = rF, where rF is the return on a risk-free investment. This is the famous
Black–Scholes pricing equation.

A complete description of a financial valuation problem using PDEs requires:

1. A PDE describing the no-arbitrage relationship between the derivative price and
the price of the underlying assets.

2. Boundary conditions describing the financial characteristics of the contract at
boundary values of the underlying price process.

3. Terminal conditions, describing the payoff at maturity of the contract.

When the values of the state variable x are restricted to a bounded (or semi-infinite)
interval, we require that the solution satisfies assigned boundary conditions which
we assume linear in that they may involve either F(t, x) (Dirichlet boundary con-
dition), or its space derivative ∂xF(t, x) (Neumann boundary condition), or both
(Robin boundary condition).

For example, if we have a left-hand boundary at x = a, the boundary condition
at this point can assume the form

γ0(t)F (t, a) − γ1(t)∂xF(t, a) = γ2(t),

where γ0(t) ≥ 0, γ1(t) ≥ 0 and γ0(t) + γ1(t) > 0 for all t > 0. If: (a) γ0(t) �= 0 and
γ1(t) = 0, we have Dirichlet boundary conditions; (b) γ0(t) = 0 and γ1(t) �= 0 we
have Neumann boundary conditions, (c) otherwise, we have Robin condition. At the
right-hand boundary x = b, the boundary condition can be

λ0(t)F (t, b) + λ1(t)∂xF(t, b) = λ2(t),

where λ0(t) ≥ 0, λ1(t) ≥ 0 and λ0(t) + λ1(t) > 0 for all t . When γ2(t) and λ2(t)

are nonzero, the boundary conditions are of inhomogeneous type.
A PDE coupled with the prescription of its solution and/or its derivatives on the

initial (resp. final) line t = 0 (t = T) and on the boundary lines defines an initial

(resp. final) and boundary value problem.
We now examine the importance of the terminal and boundary conditions through

some financial examples. Distinct terminal conditions lead to prices of different con-
tracts. For example, the final condition F(T ,X(T)) = max(0,K − X(T)) returns
a put option price. It is also important to specify the domain for x depending on the
type of option one is evaluating.

Example (Vanilla call option) For a standard call option, the asset price can assume
values in the range [0,+∞). From a computational viewpoint, this domain requires
a truncation from above, [0,M] say, and an indication about the solution behavior

4.1 Introduction 87

for both small and large value of x, i.e., for x → 0 and x → M . For a GBM process,
we observe that if x = 0, then the process will be absorbed, i.e., X(t) = 0 for all
t > 0. Consequently, there is no chance that the option matures in-the-money, i.e.,
P(X(T) > K|X(0) = 0) = 0. The boundary condition at x = 0 is thus Fcall(t, x =
0) = 0, t ≥ 0. For x = M (large), it is likely that the option will expire in-the-
money and will then be exercised. Therefore, its current value can be approximated
by Fcall(t, x = M) = M − Ke−r(T −t). Alternatively, we may assign the Neumann
boundary condition ∂xFcall(t, x = M) = 1. This reflects the observation that for
large values of x, the option price tends to resemble the underlying stock price.

Example (Vanilla put option) For a standard put option, the infinite domain [0,+∞)

needs be limited to a finite interval [0,M]. If x = 0, the put option is exercised with
certainty since X(T) = 0 < K . The option value at x = 0 is then Fput(t, x = 0) =
Ke−r(T −t). Conversely, for large values of x, it is very unlikely that the put option is
exercised. This suggests setting the upper boundary condition Fput(t, x = M) = 0.
A Neumann boundary condition for large x might be ∂xFput(t, x = M) = 0.

Example (Barrier option) Barrier options are activated (knock-in feature) or ter-
minated (knock-out feature) whenever a specific threshold is hit before the expiry
date. In particular, a down-and-out call option is terminated if the asset price hits
a low barrier l < X(0) before time T . Then the option becomes worthless and
the computational domain is [l,M], for a large value M . Boundary conditions at
x = l,M become Fdoc(t, x = l) = 0 and Fdoc(t, x = M) = M − Ke−r(T −t),
respectively. A down-and-in call option is activated whenever the asset price hits
a low barrier l < X(0) before time T . If in this case, the holder receives a stan-
dard call option with a residual life equal to T − t . The computational domain is
again [l,M], however boundary conditions read as Fdic(t, x = l) = Fcall(t, l), and
Fdic(t, x = M) = M − Ke−r(T −t). A knock-out double barrier call is terminated
whenever the asset price hits a low barrier l < X(0) or a high barrier u > X(0)

before time T . The computational domain is [l, u] and boundary conditions at x = l

and x = u are Fkodbcall(t, x = l) = 0 and Fkodbcall(t, x = u) = 0, respectively.

Example (Discrete monitoring) In the previous example, threshold hitting has been
checked with continuity over time. Discrete monitoring refers to the case where the
triggering event is checked at a fixed number of times. In this setting, a knock-out
(resp. knock-in) option becomes less (resp. more) expensive as long as the number of
monitoring dates increases. No monitoring at all makes a knock-out option equal to
a plain vanilla option. As for boundary conditions, we observe that out of monitoring
dates, the asset price can freely span the range [0,+∞). For computational purposes,
this domain must be truncated into [0,M]. For a double barrier option, we can then
set boundary conditions:

F(ti, x) = F(t−i , x)1{x∈[l,u]}, (4.5)

where 1{x∈[l,u]} is the indicator function for the interval [l, u] as defined by

1{x∈[l,u]} =
{

1 if x ∈ [l, u],
0 if x /∈ [l, u].

88 4 Finite Difference Methods

This expression checks whether either of the two barriers has been hit. If this latter
condition occurs, the value of the option is set equal to zero. Otherwise, it is set equal
to its value just before the monitoring date under consideration.

4.2 From Black–Scholes to the Heat Equation

Under the assumption of a GBM process, the Black–Scholes equation (4.3) can be
simplified by simple variable transformations. First, we change the origin of time.
Next, we work with undiscounted option prices. Then, we transform prices into price
returns. Last, we reduce the BS equation to the much simpler heat equation. The first
two steps are general and can be applied independently of the stock price dynamics.
The remaining two steps are possible only under the GBM assumption. However, we
will see how to cope with more general processes in Sects. 4.2.5 and 4.5.

4.2.1 Changing the Time Origin

In financial application, PDEs are usually characterized by a terminal condition ex-
pressing the security payoff. In physics, it is more natural to think in terms of initial
conditions and then model the way information is gradually lost as time goes by. We
instead use a terminal condition because dynamics represent the gradual updating
of price information as the contract maturity approaches. In order to use numerical
methods for PDEs, it is convenient to change the origin of time. In financial terms,
this corresponds to deal with the time to maturity of the option instead of its time of

expiry, or calendar time. This change of time simply requires introducing a variable
τ defined as:

τ = T − t,

and defining a function

F(t, x) = f (τ, x), with τ = T − t.

We observe that
∂tF(t, x) = −∂τf (τ, x),

and so f solves the PDE:

−∂τf (τ, x) + rx∂xf (τ, x) + 1

2
σ 2x2∂xxf (τ, x) − rf (τ, x) = 0. (4.6)

The terminal condition affecting F is then transformed into an initial condition in-
volving f , namely f (0, x) = F(T , x). Boundary conditions are unaffected by this
simple transformation, except for replacing T − t by τ in all formulas. For instance,
a call option is characterized by conditions f (τ, 0) = 0 and f (τ,M) = M −Ke−rτ .

4.2 From Black–Scholes to the Heat Equation 89

4.2.2 Undiscounted Prices

A second transformation removes the term rf from the BS equation. We just need to
define g(τ, x) = erτf (τ, x) and then obtain:

∂τg(τ, x) = rerτf (τ, x) + erτ ∂τf (τ, x),

∂xg(τ, x) = erτ ∂xf (τ, x),

∂xxg(τ, x) = erτ ∂xxf (τ, x).

By replacing partial derivatives in (4.6), we obtain:

−∂τg(τ, x) + rx∂xg(τ, x) + 1

2
σ 2x2∂xxg(τ, x) = 0. (4.7)

From a financial point of view, this transformation is equivalent to considering for-
ward prices instead of spot prices.

4.2.3 From Prices to Returns

A third transformation allows us to obtain a PDE with constant coefficients. The
method is strictly connected to the GBM assumption and, in general, cannot be ex-
tended to other processes.

Indeed, if X(t) evolves according to a Geometric Brownian motion process
dX(t) = X(t)(r dt + σ dW), then, applying the Itô’s lemma, ln X(t) has dynam-
ics given by:

d ln X(t) =
(

r − σ 2

2

)

dt + σ dW, (4.8)

i.e. an SDE with constant coefficients.
If we define the new function g(τ, x) = G(τ, z = ln x), we have:

∂xg(τ, x) = 1

x
∂zG(τ, z),

∂xxg(τ, x) = − 1

x2
∂zG(τ, z) + 1

x2
∂zzG(τ, z).

By inserting these derivatives into (4.7) after a few algebraic manipulations, we ob-
tain a PDE with constant coefficients:

−∂τG(τ, z) +
(

r − σ 2

2

)

∂zG(τ, z) + 1

2
σ 2∂zzG(τ, z) = 0. (4.9)

Notice that spot returns in this PDE replace spot prices in the previous equation.
The coefficients in front of partial derivatives are r − σ 2/2 (convective term) and
σ 2/2 (diffusive term).

By considering log-returns, the price domain [0,+∞) is transformed into the
return domain (−∞,∞). Consequently, we need to truncate the domain on both of
its sides for the purpose of performing numerical computations. The advantage of
working with returns is that the transformed PDE displays constant coefficients. As
we shall see below, this is a good property for a better understanding of the theoretical
properties of the numerical schemes to be used for solving (4.9).

90 4 Finite Difference Methods

4.2.4 Heat Equation

A further variable transformation allows us to obtain the standard heat equation. By
setting G(τ, z) = eαz+βτu(τ, z) we have:

∂zG(τ, z) = αeαz+βτu(τ, z) + eαz+βτ ∂zu(τ, z),

∂zzG(τ, z) = α2eαz+βτu(τ, z) + 2αeαz+βτ ∂zu(τ, z) + eαz+βτ ∂zzu(τ, z),

∂τG(τ, z) = βeαz+βτu(τ, z) + eαz+βτ ∂τu(τ, z).

If we replace the partial derivatives in (4.9) and choose α and β in order to eliminate
the terms ∂zu(τ, z) and u(τ, z), where

α = −1

2

(

r − σ 2

2

)

, β = mα + 1

2
σ 2α2, m = r − σ 2

2
,

we come up with:

∂τu(τ, z) + σ 2

2
∂zzu(τ, z) = 0. (4.10)

The problem (4.10) is a problem of first order in time. The determination of the so-
lution requires to fix an initial condition in time. On the boundary, various boundary
conditions can be taken into account for determining completely the solution (Dirich-
let, Neumann or Robin boundary conditions). Notice that the general form for a heat
equation is −∂τu(τ, z) + c∂zzu(τ, z) = 0. It is said to be dimensionless whenever
c = 1. Indeed, by recalling the time scaling property of the Brownian motion W(τ),
i.e., W(cτ) = √

cW(τ), we can use the additional transformation s = √
cτ and get

to this form.

4.2.5 Extending Transformations to Other Processes

Let us examine how to extend the above transformation to processes exhibiting a
diffusion coefficient more general than the one associated with the GBM process, i.e.,
σ(x) �= σx. Popular specifications in financial literature are: (1) σ

√
x (square-root

process), (2) σ (Gaussian process), (3) σxα (constant elasticity of variance process,
CEV).

The Black–Scholes PDE associated to a general volatility function σ(x) is given
by:

−∂τg(τ, x) + rx∂xg(τ, x) +
1

2
σ 2(x)∂xxg(τ, x) = rg(τ, x). (4.11)

In general, the logarithmic transformation z = ln x does not work for the purpose
of transforming the original PDE into a heat equation. However, we may define z =
f (x) and apply Itô’s lemma:

dz(t) =
(

rxf ′(x) +
1

2
σ 2(x)f ′′(x)

)

dt + σ(x)f ′(x) dW(t).

4.3 Discretization Setting 91

If we set f (x) in such a way that the new process shows a constant diffusion coeffi-
cient:

σ(x)f ′(x) = c,

with c �= 0, then

f (x) =
∫ x

0

c

σ (u)
du, f ′(x) =

c

σ (x)
,

and f ′′(x) = −cσ ′(x)/σ 2(x).3 Consequently,

dz(t) = c

(

rx

σ (x)
−

1

2
σ ′(x)

)

dt + c dW(t).

By setting g(τ, x) = G(τ, z = f (x)), then G(τ, z) satisfies the PDE:

−∂τG(τ, z) + c

(

rx

σ (x)
−

1

2
σ ′(x)

)
∣

∣

∣

∣

x=f −1(z)

∂zG(τ, z)

+
1

2
c2∂zzG(τ, z) = 0, (4.12)

where f −1(z) is the inverse function of f (x). That is, a PDE with a constant diffusion
coefficient and a variable convective term.

Unfortunately, the transformed PDE (4.12) does not correspond to the heat equa-
tion, as we showed to be possible in the GBM case. So in general, it is preferable to
work directly with the numerical solution of (4.11) rather than with the transformed
version (4.12). The numerical approximation is discussed in Sect. 4.5.

4.3 Discretization Setting

We now describe a numerical procedure allowing us to compute a numerical solution
of the PDE:

−∂τu(τ, z) +
σ 2

2
∂zzu(τ, z) = 0, (4.13)

with initial condition:
u(0, z) = ϕ(z),

and boundary conditions:

u(τ, zL) = ψL(τ),

u(τ, zU) = ψU (τ),

at points zL and zU , which may be infinite. We proceed with the following steps:

1. Approximating both spatial and time derivatives using finite differences;

3 If σ(x) = σx, then f (x) = ln x and we obtain the logarithmic transformation.

92 4 Finite Difference Methods

2. Creating time–space grid of points over which the approximate solution is com-
puted;

3. Replacing partial derivatives appearing in the PDE by their finite differences
computed at grid points;

4. Deriving a recursive procedure to compute the approximate solution;
5. Establishing the main properties of the resulting function.

4.3.1 Finite-Difference Approximations

When a function f (z) is continuously differentiable an appropriate number of times,
then, by Taylor’s formula, we have:

f (z + h) = f (z) + hf ′(z) + 1

2
h2f ′′(z) + 1

6
h3f ′′′(z) + O

(
h4) (4.14)

and:

f (z − h) = f (z) − hf ′(z) + 1

2
h2f ′′(z) − 1

6
h3f ′′′(z) + O

(
h4), (4.15)

where O(hk) denotes terms that, when h → 0, tend to zero as fast as or faster than
the power function hk. If we subtract (4.15) from (4.14), we have:

f (z + h) − f (z − h) = 2hf ′(z) + 1

3
h3f ′′′(z) + O

(
h4),

and therefore:

f ′(z) = f (z + h) − f (z − h)

2h
+ O

(
h2).

This suggests that we approximate the first derivative computed at z by

f ′(z) ≃ f (z + h) − f (z − h)

2h
. (4.16)

This approximation generates a leading error of order h2. It is referred to as the “cen-
tral difference approximation”, because it is centered at z and it involves the symmet-
rical quantities f (z+h) and f (z−h). Geometrically, the derivative is approximated
by the slope of the chord connecting points A and C in Fig. 4.1.

Using (4.14) and considering the Taylor polynomial up to the first term, we can
approximate the derivative by the slope of the chord connecting points B and C in
Fig. 4.1:

f ′(z) ≃ f (z + h) − f (z)

h
. (4.17)

This approximation, involving the points z + h and z, has a leading error of order h

and is called a “forward difference”.
Similarly, we can alternatively approximate the derivative by using (4.15) through

the slope of the chord connecting points A and B:

4.3 Discretization Setting 93

Fig. 4.1. Finite difference approximations to the first derivative.

f ′(z) ≃ f (z) − f (z − h)

h
. (4.18)

This gives rise to a leading error of order h. The resulting approximation involves the
points z and z−h and is accordingly called “backward difference”. Note that central
difference is the most accurate among the three approximations. However, it requires
an evaluation of the target function at two different points, namely z − h, and z + h,
whereas the two alternatives require only one additional evaluation, i.e. at z + h or
at z − h. This simplicity comes at the price of a lower accuracy of these methods.
Table 4.1 synthetizes the different approximations to the first derivative f ′(z).

Approximating the second-order derivative can be accomplished by summing
(4.14) and (4.15):

f (z + h) + f (z − h) = 2f (z) + h2f ′′(z) + O
(
h4)

and then solving by f ′′(z):

f ′′(z) ≃ f (z + h) − 2f (z) + f (z − h)

h2
. (4.19)

This formula leads to an error of order h2.
Partial derivatives ∂τu(τ, z) and ∂zzu(τ, z) appearing in the heat equation (4.13)

are approximated by expressions similar to those derived above.
The three main finite difference schemes (explicit, implicit, and Crank–Nicolson)

are derived as a result of discretizing the time derivative ∂τu(τ, z) according to the
three methods illustrated above. This is summarized in Table 4.2.

94 4 Finite Difference Methods

Table 4.1. Finite difference approximations of the first partial derivative

Approximation f ′(z) Leading error

Backward f (z)−f (z−h)
h

O(h)

Central f (z+h)−f (z−h)
2h

O(h2)

Forward f (z+h)−f (z)
h

O(h)

Table 4.2. Approximations of the time derivative and corresponding order of accuracy

Approximation for ∂τ u(τ, z) Method Order of accuracy
Backward Implicit O(dτ)

Central Crank–Nicolson O(dτ2)

Forward Explicit O(dτ)

4.3.2 Grid

With reference to the time variable, we set t = 0, so that τ can range in the domain
(0, T). With reference to the spatial variable, we truncate the working domain at
point (zL, zU). If the natural domain is (−∞,+∞), as is the case for plain vanilla
options, or (−∞, zU) (or (zL,+∞)), as it is the case with a single barrier option,
then choosing an appropriate working domain is crucial for determining the accuracy
of the numerical solution. If we are interested in finding a solution in the interval
(z−1, z1), both zL and zU should be selected far from z−1 and z1 a multiple number n

of times the standard deviation of the process. For most applications, a common
choice consists in setting n = 6, so that zL = z−1 + 6σ

√
T and zU = z−1 + 6σ

√
T .

For the sake of simplicity, we adopt a uniform grid and partition the z axis in m−1
equally spaced intervals of length δz, that is δz = (zU − zL)/(m + 1). The τ axis is
split into n − 1 equally spaced intervals of length δτ , that is δτ = T/(n + 1). The
resulting grid is illustrated in Fig. 4.2, where the black circles denote the initial values
and the white circles underline values on the boundary of the domain. We build a
mesh consisting of n points for the τ axis and m points for the z axis and denote the
solution of the PDE at the mesh point (iδτ ; zL + jδz) by ui,j , with i = 1, . . . , n+1,
and j = 1, . . . , m:

ui,j = u(iδτ, zL + jδz).

For i = 0, we have the initial value on the grid:

u0,j = u(0, zL + jδz).

For j = 0 and j = m + 1, we have boundary conditions at points zL and zU:

ui,0 = u(iδτ, zL) = ψL(iδτ),

ui,m+1 = u(iδτ, zU) = ψU(iδτ).

4.3.3 Explicit Scheme

We approximate the time derivative using the forward difference (4.17) and the spa-
tial derivative using the finite difference (4.19):

4.3 Discretization Setting 95

Fig. 4.2. The grid points at which to compute the approximate solution of the PDE.

∂u

∂τ
= u(τ + δτ, z) − u(τ, z)

δτ
+ O(δτ),

∂2u

∂z2
= u(τ, z + δz) − 2u(τ, z) + u(τ, z − δz)

δz2
+ O

(
δz2).

By replacing these expressions into (4.13), we have:

u(τ + δτ, z) − u(τ, z)

δτ
+ O(δτ)

= σ 2

2

u(τ, z + δz) − 2u(τ, z) + u(τ, z − δz)

δz2
+ O

(
δz2). (4.20)

If we restrict our attention to the mesh points (iδτ, jδz), we can write:

ui+1,j − ui,j

δτ
+ O(δτ) = σ 2

2

ui,j+1 − 2ui,j + ui,j−1

δz2
+ O

(
δz2).

Let us ignore all error terms and denote the approximate solution by vi,j . The scheme
above reads as:

vi+1,j − vi,j

δτ
= σ 2

2

vi,j+1 − 2vi,j + vi,j−1

δz2
. (4.21)

Note that ui,j is the true solution of the PDE computed at grid points (iδτ, jδz),
whereas vi,j indicates the approximate solution of the PDE, which is also the exact
solution of the difference equation (4.21) computed at grid points (iδτ, jδz). We can
solve the recursive relation (4.21) with respect to vi+1,j and obtain:

vi+1,j = vi,j + δτ

δz2

(

σ 2

2
vi,j+1 − σ 2vi,j + σ 2

2
vi,j−1

)

,

96 4 Finite Difference Methods

Fig. 4.3. Nodes involved in the updating of the solution in the Explicit scheme.

or, equivalently,

vi+1,j = σ 2

2
αvi,j+1 +

(
1 − σ 2α

)
vi,j + σ 2

2
αvi,j−1, (4.22)

where α = δτ/δz2, i = 1, 2, . . . , and j = 1, . . . , m. Expression (4.22) suggests that
the unknown value at node (i + 1, j) can be computed in terms of known values at
the previous time step, i.e., at nodes (i, j + 1), (i, j) and (i, j − 1), as is illustrated
in Fig. 4.3. This compels us to use the attribute “explicit” in the resulting numerical
scheme. For i = 0, we obtain the initial condition v0,j = u(0, zL + jδτ). For j = 0,
or j = m + 1, we identify boundary conditions, vi,0 = ψL(iδτ) and vi,m+1 =
ψU(iδτ), respectively.

Algorithm

EXPLICIT

Set vold(j) = initial condition evaluated

at jδz, j = 1, . . . , m;

For i = 1, . . . , n:

compute v(0) = lowerboundary(iδτ)

compute v(m) = upperboundary(iδτ)

update the vector v using vold according to

the iteration (4.22), j = 1, . . . , m;

copy v(j) in vold(j)

End cycle

return v(j) for j = 1, . . . , m

4.3 Discretization Setting 97

Matrix form

It is convenient to use vector notations and rewrite the iteration of the explicit
scheme in terms of matrix multiplications. Let us define the (m × 1) vector vi

(i = 0, 1, 2, . . .), the (m × m) matrix A, and the (m × 1) vector bi
4 by:

vi =

⎡

⎢

⎢

⎢

⎢

⎣

vi,m

...

vi,1

⎤

⎥

⎥

⎥

⎥

⎦

; v0 =

⎡

⎢

⎢

⎢

⎢

⎣

u(0, zL + mδz)

u(0, zL + (m − 1)δz)
...

u(0, zL + 2δz)

u(0, zL + δz)

⎤

⎥

⎥

⎥

⎥

⎦

;

bi =

⎡

⎢

⎢

⎢

⎢

⎣

vi,m+1
0
...

0
vi,0

⎤

⎥

⎥

⎥

⎥

⎦

; (4.23)

A =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

(1 − σ 2α) σ 2α
2 0 0 0

σ 2α
2 (1 − σ 2α)

. . .
. . . 0

0
. . .

. . .
. . . 0

0
. . .

. . . (1 − σ 2α) σ 2α
2

0 0 0 σ 2α
2 (1 − σ 2α)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (4.24)

The recursion in (4.22) can be written using matrix algebra as follows:

vi+1 = Avi + σ 2α

2
bi, i = 1, 2,

This representation will be useful later on in order to understand the mathemati-
cal properties of this numerical scheme. Note that this matrix form is not convenient
for programming the explicit scheme.

Example This example is borrowed from Smith (1985, p. 14). Let us consider the
heat equation in the interval [0, 1] with σ =

√
2:

−∂τu(τ, z) + ∂zzu(τ, z) = 0, (4.25)

initial condition:

u(0, z) =
{

2z 0 ≤ z < 1
2 ,

2(1 − z) 1
2 ≤ z ≤ 1,

(4.26)

and boundary conditions:
u(τ, 1) = u(τ, 0) = 0. (4.27)

4 Note that we have used the somewhat strange numbering of the vector components
m, . . . , 1 in order to conform to the graphic presentation.

98 4 Finite Difference Methods

The analytical solution of this initial value problem is:

u(τ, z) = 8

π
2

∞
∑

n=1

1

n2
sin

(

nπ

2

)

sin(nπz)e−n2
π

2τ . (4.28)

This example is interesting for at least four reasons. It allows us to:

(a) measure the effect of the initial condition with discontinuous first derivative on
the numerical solution, a common phenomenon in option pricing problems;

(b) examine the interpolation procedure to be adopted for the purpose of computing
solution values at points not included in the grid;

(c) assess the effect of the value of constant α = δz/δτ 2 on the numerical stability
of the scheme;

(a) establish a correspondence with the pricing of a double barrier knock-out option,
that is a contract extinguishing whenever the underlying asset hits either of two
selected barriers before maturity.

We set zL = 0, zU = 1 and choose m = 9 nodes on the z-axis, so that δz = 1/10 =
0.1. We are interested in the evolution of the solution until time 0.01 under a time step
δτ = 0.001. This means we are considering 11 nodes (0, 0.001, 0.002, . . . , 0.01) on
the time grid. The recursion has been implemented in Excel and is illustrated in
Fig. 4.4.

Let us examine the behavior of the numerical solution at points z = 0.2 and
z = 0.5. The latter has been chosen due to the presence of a discontinuity in the first
derivative of the initial condition there. We obtain a very accurate solution at z = 0.2.
However, the percentage error increases as long as we move forward in time, see
Table 4.3. At z = 0.5, the numerical solution appears rather inaccurate due to the
above mentioned discontinuity. Fortunately, the negative effect of the discontinuity

Fig. 4.4. Implementing the explicit recursion in Excel.

4.3 Discretization Setting 99

Table 4.3. Numerical and analytical solution when z = 0.2

t Numerical Analytical % Difference
0.005 0.39983 0.39985 0.00%
0.01 0.39678 0.39656 0.06%
0.02 0.37808 0.3766 0.39%
0.1 0.17961 0.17756 1.15%
0.5 0.00351 0.00343 2.49%

Table 4.4. Numerical and analytical solution when z = 0.5

t Numerical Analytical % Difference
0.005 0.85972 0.84042 2.30%
0.01 0.78674 0.77432 1.60%
0.02 0.68915 0.68085 1.22%
0.1 0.30562 0.30212 1.16%
0.5 0.00597 0.00583 2.49%

fades away as long as time increases and the error becomes comparable to the one
reported at z = 0.2, see Table 4.4. The explicit method has an order of accuracy equal
to δτ , but, as the example above has clearly shown, it can be reduced by the presence
of discontinuities. Smith (1985, pp. 16–17) reports that when the initial function
and its first p − 1 derivatives are continuous and the pth-order derivative exhibit
a discontinuity, then the difference between numerical and analytical solutions of
the PDE approaches the order (δτ)(p+2)/(p+4) for a “small” δτ . Consequently, if
all derivatives are continuous, i.e., p → ∞, the error becomes of order δτ . In the
illustrated above example illustrated, p = 1 so that the error has order (δτ)3/5 in a
neighborhood of point z = 0.5. This explains the inaccuracy of numerical results for
small times τ .

It is worth mentioning that the scheme provides a numerical solution only at
the nodes under consideration. For example, once we transform the Black–Scholes
equation into a heat equation, this has been solved over an evenly spaced z-grid. It
may therefore be possible that these values of z do not correspond to desired spot
prices. To determine values over these regions, we need to adopt suitable interpola-
tion methods. For instance, we may assume that v varies linearly from vi,j to vi,j+1.
The resulting linear interpolation is as accurate as the values on the grid. For any
z ∈ [jδz, (j + 1)δz], we obtain the approximation:

v(iδτ, z) ≃ v(iδτ, jδz) + v(iδτ, (j + 1)δz) − v(iδτ, jδz)

(j + 1)δz − jδz
(z − jδz)

= v(iδτ, jδz) + v(iδτ, (j + 1)δz) − v(iδτ, jδz)

δz
(z − jδz).

It is interesting to examine the way α affects the numerical solution resulting
from the proposed scheme. Figures 4.5 and 4.6 exhibit both analytical and numerical
solutions for α = 0.48 and α = 0.52. We notice an oscillating behavior occurring
in the latter case. A heuristic explanation for this effect may be as follows. Updated

100 4 Finite Difference Methods

Fig. 4.5. Analytical (continuous lines) and numerical solution (dots) at different times (0.0520,
0.1040 and 0.2080) when δz = 0.1 and δτ = 0.0048 (α = 0.48).

Fig. 4.6. Analytical (continuous lines) and numerical solution (dots) at different times (0.0520,
0.1040 and 0.2080) when δz = 0.1 and δτ = 0.0052 (α = 0.52).

values vi+1,j in (4.22) can be thought of as the expected value of the three preceding
values, vi,j+1, vi,j , and vi,j−1, much like is a trinomial tree. This probabilistic inter-
pretation makes sense provided all coefficients are positive and that they sum up to 1.
This amounts requiring that α < 1/2. If this condition is not fulfilled, the round-off
error generated by summing up terms with opposite sign progressively deteriorates
the quality of the numerical solution as time goes by. Refining both time and spatial
grids, while keeping α fixed, does not improve the situation. This behavior is ac-
tually due to an instability problem, which can be eliminated by taking appropriate

4.3 Discretization Setting 101

values for α, that is by setting δτ to a very small value compared to δz. This choice
ensures that the difference between numerical and exact solutions remains bounded
as the number of time steps diverges to infinity. This will be discussed in detail in
Sect. 4.4.

4.3.4 Implicit Scheme

If we approximate the time derivative using the backward difference (4.18) and the
spatial derivative using the finite difference (4.19), we have:

u(τ, z) − u(τ − δτ, z)

δτ
+ O(δτ)

= σ 2

2

u(τ, z + δz) − 2u(τ, z) + u(τ, z − δz)

δz2
+ O

(
δz2).

Computed on the grid points τ = iδτ, z = jδz, this expression provides:

ui,j − ui−1,j

δτ
+ O(δτ) = σ 2

2

ui,j+1 − 2ui,j + ui,j−1

δz2
+ O

(
δz2).

If we ignore the error terms and denote the approximate solution by vi,j , we ob-
tain:

vi,j − vi−1,j

δτ
= σ 2

2

vi,j+1 − 2vi,j + vi,j−1

δz2
.

By rearranging terms, we come up with a recursive relation:

−σ 2

2
αvi,j−1 +

(
1 + σ 2α

)
vi,j − σ 2

2
αvi,j+1 = vi−1,j ,

for i = 1, 2, . . . and j = 1, . . . , m, where

α = δτ

δz2
. (4.29)

If i = 0, we have the initial condition. For j = 0 and j = m + 1, boundary condi-
tions are obtained. By proceeding forward in time from the initial condition, we have
an equation connecting three unknowns (vi,j+1, vi,j , and vi,j−1) to a single known
value (vi−1,j). Thus, in order to find the updated values of the numerical solution, we
need to solve a linear system, as detailed in the next subsection. The scheme is illus-
trated in Fig. 4.7. The order of accuracy of this scheme is O(δτ, δz2). This means that
no improvement in accuracy is granted by this scheme compared to explicit scheme.
However, the implicit scheme is unconditionally stable in that no restriction on α is
required. The price to pay is represented by the need to solve a linear system at each
time step.

102 4 Finite Difference Methods

Fig. 4.7. The recursion for the implicit scheme.

Algorithm

IMPLICIT

Set v(j) = initial condition evaluated at jδz , j = 1, . . . , m;

For i = 1, . . . , n:

compute the right-hand side in (4.31);

solve the linear system (4.31);

update the solution v;

End cycle

return v(j) for j = 1, . . . , m;

Matrix form

By using a vector notation, we may write the iterations involved in the implicit
scheme in terms of matrix products. More precisely, let vi and bi be the (m × 1)

vectors introduced in (4.23). Let also B denote the m × m matrix defined as:

B =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 + σ 2α −σ 2α
2 0 0 0

−σ 2α
2 1 + σ 2α

. . .
. . . 0

0
. . .

. . .
. . . 0

0
. . .

. . . 1 + σ 2α −σ 2α
2

0 0 0 −σ 2α
2 1 + σ 2α

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (4.30)

The recursive relation (4.22) can be then written as:

4.3 Discretization Setting 103

Bvi+1 = vi + σ 2α

2
bi , i = 1, 2, (4.31)

This expression clearly shows the need to solve a linear system at every time step.
Fortunately, this system of equations is tridiagonal, i.e. the matrix B has non-zero
elements only on the diagonal and in the positions immediately to the left and to
the right of the diagonal. This implies that the computational cost is directly propor-
tional to the number of grid points. In fact, the cost per time step for this method is
approximately twice that of the explicit method. In principle, to solve (4.31) we could
compute the inverse of matrix B, provided it exists, and proceed forward according
to the following relation:

vi+1 = B−1
(

vi + σ 2α

2
bi

)

,

starting with the initial condition mentioned above. The resulting algorithm resem-
bles an explicit recurrence, where the matrix A appearing in the explicit method has
now been replaced by the matrix B−1. However, in the explicit method, A is tridi-
agonal and to update the solution, we just need to store the elements of the three
diagonals. On the other hand, the matrix B−1 has all non-zero entries, so that its
computational cost and storage can be expensive especially when a large number of
grid points is considered. The m × m matrix B−1 requires m2 elements to be stored,
whereas the tridiagonal matrix B needs only 3m − 2 numbers to be recorded. As m

is typically around 1,000, one method leads to 1,000,000 elements while the other
only 2,998 figures. In addition, if the coefficients are time dependent, then we need
to compute the inverse of matrix B at each time step.

Example Let us reconsider the example developed for illustrating the explicit me-
thod. We take δz = 0.1 and δτ = 0.001, so that α = 0.1. Vector b has all zero entries
and is independent of the index i. Matrix B has main diagonal elements equal to 1.2,
whereas entries in the upper and lower diagonal are all equal to −0.1. The recursion
is illustrated in Fig. 4.8, where we report an Excel spreadsheet implementing an
implicit scheme. For illustrative purposes, the recursion has been performed using
the inverse of matrix B.5 Note that B−1 has all nonzero entries, so that storage related
limitations are likely to arise whenever the number of spatial nodes is increased.

Table 4.5 shows a comparison between the implicit solution at time 0.01 to the
one obtained using an explicit method and the analytical solution.

Figure 4.9 shows the root mean square error of the implicit method versus the
time step. We can see that this relationship is linear as expected: the time derivative
has been indeed computed using a finite difference scheme accurate to order dτ .

4.3.5 Crank–Nicolson Scheme

This scheme is based on the idea of approximating the PDE at points (iδτ + δτ
2 , jδz).

5 In Excel this recursion can be done using the functions MInverse and MProduct.

104 4 Finite Difference Methods

Fig. 4.8. Implementing the implicit scheme in Excel, inverting the matrix B.

Table 4.5. Accuracy of the explicit and implicit schemes

z Analytical, A Explicit, E (E − A)/A Implicit, I (I − A)/A

0.9 0.19961 0.19958 −0.0002 0.19896 −0.0033
0.8 0.39655 0.39678 0.0006 0.39507 −0.0037
0.7 0.57990 0.58221 0.0040 0.57990 0.0000
0.6 0.72014 0.72811 0.0111 0.72929 0.0127
0.5 0.77432 0.78674 0.0160 0.79417 0.0256
0.4 0.72014 0.72811 0.0111 0.72929 0.0127
0.3 0.57990 0.58221 0.0040 0.57990 0.0000
0.2 0.39655 0.39678 0.0006 0.39507 −0.0037
0.1 0.19961 0.19958 −0.0002 0.19896 −0.0033

• For the time derivative, we use a central Taylor series expansion around (iδτ +
δτ
2 , jδz):

4.3 Discretization Setting 105

Fig. 4.9. Implicit scheme: root mean square error versus time step.

∂u(τ, z)

∂τ

∣

∣

∣

∣

τ=iδτ+ δτ
2 ,z=zL+jδz

≃ ui+1,j − ui,j

δτ
.

This provides an order of accuracy equal to O(δτ 2).
• For the second-order spatial derivative, we adopt the average of finite differences

computed at time steps (iδτ, jδz) and ((i + 1)δτ, jδz):

∂2u

∂z2
(τ, z)

∣

∣

∣

∣

τ=(i+1/2)δτ,z=zL+jδz

≃ 1

2

{

ui+1,j+1 − 2ui+1,j + ui+1,j−1

δz2

}

+ 1

2

{

ui,j+1 − 2ui,j + ui,j−1

δz2

}

.

The accuracy here is O(δz2).

By inserting these differences into the heat equation, we obtain the Crank–
Nicolson (CN) scheme:

ui+1,j − ui,j

δτ
+ O

(

δτ 2)

= σ 2

2

(

1

2

{

ui+1,j+1 − 2ui+1,j + ui+1,j−1

δz2

}

+ 1

2

{

ui,j+1 − 2ui,j + ui,j−1

δz2

})

+ O
(

δz2).

Although the Taylor expansion has been developed at point iδτ + δτ
2 , only values of

u at the grid points appear in the expression above. This leads to an approximated
recursive relation:

vi+1,j − vi,j

δτ

= σ 2

4

((

vi+1,j+1 − 2vi+1,j + vi+1,j−1

δz2

)

+
(

vi,j+1 − 2vi,j + vi,j−1

δz2

))

,

106 4 Finite Difference Methods

Fig. 4.10. The recursion for the Crank–Nicolson scheme.

or, equivalently,

−σ 2α

4
vi+1,j−1 +

(

1 + σ 2α

2

)

vi+1,j − σ 2α

4
vi+1,j+1

= σ 2α

4
vi,j−1 +

(

1 − σ 2α

2

)

vi,j + σ 2α

4
vi,j+1, (4.32)

where α = δτ/δz2. At each time step, the resulting scheme relates six points on
the grid as is shown in Fig. 4.10. As in the case of a fully implicit method, here no
relevant limitation on the size of the time step is required for the method to converge.
The approximation error is O(δτ 2, δz2) and allows us to say the Crank–Nicolson
recursion is more accurate than both explicit and fully implicit methods. Another
similar feature to the implicit scheme is that we need to solve a tridiagonal system
of linear equations at each time step. Consequently, the cost becomes proportional to
the number of grid points.

Matrix form

We may write the CN scheme using a matrix notation. Let us define (m×m) matrices
C and D as

C =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 + σ 2α
2 −σ 2α

4 0 0 0

−σ 2α
4 1 + σ 2α

2

. . .
. . . 0

0
. . .

. . .
. . . 0

0
. . .

. . . 1 + σ 2α
2 −σ 2α

4

0 0 0 −σ 2α
4 1 + σ 2α

2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (4.33)

4.3 Discretization Setting 107

D =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 − σ 2α
2

σ 2α
4 0 0 0

σ 2α
4 1 − σ 2α

2

. . .
. . . 0

0
. . .

. . .
. . . 0

0
. . .

. . . 1 − σ 2α
2

σ 2α
4

0 0 0 σ 2α
4 1 − σ 2α

2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (4.34)

and an (m × 1) vector bi as

bT
i =

[vi,m+1+vi+1,m+1
2 0 · · · 0 vi,0+vi+1,0

2

]

.

The recursive relation (4.32) can be written as:

Cvi+1 = Dvi + σ 2α

2
bi, i = 1, 2, (4.35)

The solution of the linear system above can efficiently exploit the tridiagonal form
of matrix C.

Algorithm

CRANK-NICOLSON

Set v(j) = initialcondition(jδz), j = 1, . . . , m

For i = 1,...,n:

compute the right-hand side in (4.35)

solve the linear system in (4.35)

End cycle

return v(j), j = 1, . . . , m;

Example We reconsider the prototypical example previously illustrated. We now set
δz = 0.1 and δτ = 0.001, so that α = 0.1. Vector b has all zero entries and does
not depend on i. Matrix C has main diagonal elements equal to 1.1. Entries in the
upper and lower diagonals are all equal to −0.05. Diagonal elements of D are all set
to 0.9. Elements in the upper and lower diagonals of the same matrix are all equal
to 0.05. Figure 4.11 shows a spreadsheet solving the linear system using the inverse
of matrix C. Efficient methods for solving linear systems are presented in the next
chapter.

Figure 4.12 shows the root mean square error of the Crank–Nicolson scheme ver-
sus the square of the time step. We can see that this relationship is linear as expected:
the time derivative has been indeed computed using finite differences accurate to
order dτ 2.

Although the Crank–Nicolson method can be proven to be stable for all values
of α, large values of this quantity may negatively affect the actual performance of the
scheme due to unexpected and spurious oscillations in the numerical solution. This
phenomenon is illustrated in figure where we use different values of α. Indeed, if we

108 4 Finite Difference Methods

Fig. 4.11. Implementing the Crank–Nicolson recursion in Excel.

Fig. 4.12. CN scheme: root mean square error versus squared time step.

take dτ too large the relationship between error and dτ 2, as illustrated in Fig. 4.12,
is lost. Indeed the presence of the kink in the initial condition introduces spurious
oscillations, as illustrated in Fig. 4.13. These oscillations disappear only reducing α,
i.e. or reducing the time step dt or increasing the space step dx.

This bias slowly disappears as i increases. Moreover, it usually occurs in a neigh-
borhood of points of discontinuity in the initial values or between initial values and
boundary values. This effect can be observed in Table 4.6, where the error near
z = 0.5 oscillates between positive and negative values as α increases from 0.1

4.3 Discretization Setting 109

Fig. 4.13. CN: oscillations in the numerical solution due to the discontinuity in the first deriv-
ative of the initial condition.

Table 4.6. Analytical and numerical solution of the problem at τ = 0.01

z Analytical, A CN (α = 1) (CN−A)
A

CN (α = 0.1) (CN − A)/A

0.9 0.19961 0.19890 −0.0036 0.19926 −0.0017
0.8 0.39655 0.39558 −0.0024 0.39588 −0.0017
0.7 0.57990 0.58343 0.0061 0.58101 0.0019
0.6 0.72014 0.73812 0.0250 0.72881 0.0120
0.5 0.77432 0.76906 −0.0068 0.79038 0.0207
0.4 0.72014 0.73812 0.0250 0.72811 0.0120
0.3 0.57990 0.58343 0.0061 0.58101 0.0019
0.2 0.39655 0.39558 −0.0024 0.39588 −0.0017
0.1 0.19961 0.19890 −0.00360 0.19926 −0.0017

to 1. These oscillations can be eliminated only by constraining the time-step of the
Crank–Nicolson method, that is by decreasing the value of α.6

4.3.6 Computing the Greeks

Financial “Greeks” are the partial derivatives of the option price with respect to the
underlying price, time to maturity and model parameters. These quantities can be
computed using finite difference approximations. We consider approximations for
the option delta (∆), gamma (Γ) and theta (Θ) defined as:

∆i,j = ∂u(τ, z)

∂z

∣

∣

∣

∣

τ=iδτ,z=jδz

≃ vi,j+1 − vi,j−1

2δz
,

6 A discussion on this point can be found in Smith (1985, p. 122).

110 4 Finite Difference Methods

Γi,j = ∂2u(τ, z)

∂z2

∣

∣

∣

∣

τ=iδτ,z=jδz

≃ vi,j+1 − 2vi,j + vi,j−1

(δz)2
,

Θi,j = ∂u(τ, z)

∂τ

∣

∣

∣

∣

τ=iδτ,z=jδz

≃ vi+1,j − vi,j

δτ
.

Since the schemes are accurate to the order O(δz2), it follows that delta is accurate to
the order O(δz), while gamma is merely O(1). Theta is accurate to the order O(δτ)

for the CN scheme and O(1) for the Implicit and Explicit schemes. Fortunately, nu-
merical Greeks do not display great inaccuracies in most instances. However, some
bias shows up for small diffusion coefficients.

Computing Greeks relative to model parameters (e.g., Rho, Kappa, and Vega)
can be performed using finite difference approximations. For example, Rho can be
computed with an accuracy of order two by (1) solving the pricing PDE with r + δr

and then with r − δr; (2) calculating the appropriate finite difference. However, this
requires solving two additional PDEs.

4.4 Consistency, Convergence and Stability

As Figs 4.5 and 4.6 clearly show, the explicit method suffers from an instability ef-
fect. Also the Crank–Nicolson scheme may generate spurious oscillations near dis-
continuity points of the boundary condition. This section tries to clarify this point
through the examination of convergence properties owned by the proposed schemes.
We start with preliminary definitions.

Let us write the heat equation (4.13) as follows:

L(u) = −∂τu(τ, z) + Lu(τ, z) = 0,

where L is the differential operator Lu(τ, z) = σ 2

2 ∂zzu(τ, z). Let F be the finite
difference approximation of L at grid points (i, j), v be the exact solution of the
difference equation, i.e., F(v) = 0, and u be the exact solution of the PDE, namely
L(u) = 0.

Definition (Truncation error) For any continuous function φ of τ and z, we define
the truncation error at a grid point (i, j) by

Ti,j (φ) = F(φij) − L(φi,j),

where φij = φ(iδτ, zL + jδz). By setting φ = u and using L(u) = 0, we have

Ti,j (u) = F(uij) − L(ui,j) = F(uij). (4.36)

The value F(uij) in expression (4.36) is the local truncation error at grid point (i, j).

In other words, Ti,j (φ) represents an estimate of the error generated by replacing
L(φi,j) with F(φi,j). Let C be a positive constant independent on δτ and on δz. If p

and q are the largest positive integers for which

4.4 Consistency, Convergence and Stability 111

|Ti,j (u)| ≤ C
(
(δτ)p + (δz)q

)

as δτ → 0 and δz → 0, the scheme is said to have order of accuracy p in δτ and
q in δz. For instance, the local truncation error in the explicit scheme as applied to
equation (4.13) has order p = 1 and q = 2, indeed it is given by O(δτ) + O(δz2). In
the Crank–Nicolson scheme we have p = 2 and q = 2.

Definition (Consistency) The approximating difference equation is said to be con-

sistent with the original PDE provided that F(ui,j) → 0 as δτ → 0 and δz → 0.

Since the local truncation error in the explicit scheme vanishes as δτ → 0 and
δz → 0, it follows that this scheme is consistent with the original PDE. The same
statement holds for both implicit and CN schemes.

Definition (Convergence) A finite difference scheme is convergent according to a
given norm ‖ · ‖ provided that its exact solution converges to the exact solution of
the original PDE

max
i,j

‖vi,j − ui,j‖ → 0,

as δτ → 0 and δz → 0.

Let us introduce the discretization error that quantifies the accuracy of the solu-
tion at the grid point (i, j):

εi,j = vi,j − ui,j .

We observe that truncation error is a local concept. For the purpose of assessing the
proximity of the solution stemming from the difference operator F to the one result-
ing from the differential operator L, the error clearly depends on δτ and δz. On the
contrary, the proposed definition of convergence is a global assessment. More pre-
cisely, we are interested the way the difference between true and numerical solutions
behave at a generic point τ, z as long as the grid becomes more and more refined.

To prove convergence, it is convenient to use the maximum norm given by:

Ei = ‖εi‖ = max
j=1,...,m

|εij |.

We aim at investigating limδz→0 Ei , where τ is arbitrary and δz → 0 with δτ = αδz

for some constant α.
In general the problem of convergence is dealt with using the Lax equivalence

theorem. Given a well-posed linear initial-value problem7 and a corresponding linear
finite-difference approximation satisfying the consistency condition, this result states
that stability is a necessary and sufficient condition for convergence.

Stability refers to the fact that small perturbations introduced through numerical
rounding at any stage do not grow and dominate the solution. In other words, if we
could use exact arithmetic, the whole error should be represented by a truncation
error.

7 Broadly speaking, a problem is well-posed if: (a) a solution always exists for initial data
that is arbitrarily close to initial data for which no solution exists; (b) it is unique; (c) it
depends on initial data with continuity.

112 4 Finite Difference Methods

Definition (Lax–Richtmyer stability) A scheme is Lax–Richtmyer stable if the
solution of the finite difference equation at a fixed time level remains bounded as
δz → 0. It is asymptotically stable provided that boundedness holds true as i → ∞,
δτ fixed.

Given the definition of stability, we can now state the Lax Equivalence Theorem.
This theorem studies the relation between consistency, stability, and convergence of
the approximations of linear initial value problems by finite difference equations.

Theorem (Lax Equivalence Theorem) For a consistent difference approximation

to a well-posed linear initial-value problem, the stability of the scheme is necessary

and sufficient for convergence.

The implication of this theorem is that, once consistency has been established,
we need to verify the condition for stability. Stability analysis can be conducted
by using the matrix form of the time recursion. Let F be the matrix arising from
the second-order centered difference approximation of Lu(τ, z), i.e., F/δz2 =
tridiag{1,−2, 1}/δz2. In the following, we will use the symbol tridiag{a, b, c} to in-
dicate a tridiagonal matrix, where the lower (resp. main and upper) diagonal contains
a (resp. b and c) entries only:

tridiag{a, b, c} =

⎡

⎢

⎢

⎢

⎢

⎣

b c

a b c

a
. . .

. . .
. . . b c

a b

⎤

⎥

⎥

⎥

⎥

⎦

. (4.37)

We have seen that the three schemes can be written as:

vi+1 = Avi + bi, (4.38)

where vector bi keeps track of boundary conditions and may vary over time, whilst
matrix A is set according to the following scheme:

Explicit
vi+1 − vi

δτ
= σ 2

2

F

δz2
vi �⇒ A = I + α

σ 2

2
F,

Implicit
vi − vi−1

δτ
= σ 2

2

F

δz2
vi �⇒ A =

(

I − α
σ 2

2
F

)−1

,

CN
vi − vi−1

δτ
= σ 2

2

Fvi+1 + Fvi

2δz2

�⇒ A =
(

I − σ 2 α

4
F

)−1(

I + σ 2 α

4
F

)

,

and where α = δτ/δz2.
Lax–Richtmyer stability requires that the solution remains bounded as i → ∞.

If v0 represents a stated initial condition, an iterative application of (4.37) leads to

4.4 Consistency, Convergence and Stability 113

vi = Aiv0 + Ai−1b0 + Ai−2b1 + · · · + bi−1.

Let us now consider the way a perturbation e0 (e.g., a numerical rounding) affecting
initial condition v0 propagates on the solution. The biased initial condition is now
v∗

0 = v0 + e0 and the corresponding solution at time step i reads as:

v∗
i = Aiv∗

0 + Ai−1b0 + Ai−2b1 + · · · + bi−1.

The error vector can be computed as:

ei = v∗
i − vi = Ai(v∗

0 − v0) = Aie0.

We need to establish the extent error ei stays bounded as i diverges. In other words,
we look for a constant M > 0 (independent of δτ and δz) such that:

‖ei‖ =
∥

∥Aie0
∥

∥ ≤
∥

∥Ai
∥

∥‖e0‖ ≤ M‖e0‖,

for compatible matrix and vector norms.8 In this case,
∥

∥Ai
∥

∥ =
∥

∥AAi−1
∥

∥ ≤ ‖A‖
∥

∥Ai−1
∥

∥ ≤ · · · ≤ ‖A‖i,

and the stability condition is satisfied provided that ‖A‖ ≤ 1.
Possible matrix norms are:

1. The 1-norm defined as the greatest among the sums of absolute values of column
entries of A:

‖A‖1 = max
j

m
∑

i=1

|aij |;

2. The ∞-norm defined as the greatest among the sums of absolute values of raw
entries of A:

‖A‖∞ = max
i

m
∑

j=1

|aij |;

3. The 2-norm defined as the spectral radius ρ(A) of matrix A, that is the largest
absolute eigenvalue of A:

‖A‖2 = ρ(A),

provided that A is real and symmetric.

We now verify the cited stability condition for each of the three schemes mentioned
above.

Explicit scheme Let us consider norm ‖ · ‖∞. Matrix A is given by:

I + α
σ 2

2
F = tridiag

{

α
σ 2

2
, 1 − ασ 2, α

σ 2

2

}

,

8 The norm of a matrix A is a real positive number giving a measure of the size of the
matrix. It satisfies the following axioms: (1) ‖A‖ > 0 if A �= 0 and ‖A‖ = 0 if A = 0,

(2) ‖cA‖ = |c|‖A‖ for a real or complex scalar c, (3) ‖A + B‖ ≤ ‖A‖+‖B‖, (4) ‖AB‖ ≤
‖A‖‖B‖. Matrix and vector norms are said to be compatible, or consistent, provided that
‖Ax‖ ≤ ‖A‖‖x‖, x �= 0.

114 4 Finite Difference Methods

and then

‖A‖∞ = α
σ 2

2
+

∣

∣1 − ασ 2
∣

∣ + α
σ 2

2
= ασ 2 +

∣

∣1 − ασ 2
∣

∣

=
{

1 if 1 − ασ 2 ≥ 0,

2ασ 2 − 1 > 0 if 1 − ασ 2 < 0.

Therefore, the explicit scheme is stable provided that

α ≤ 1

σ 2
.

In a standard heat equation, we have σ 2 = 2, so that the stability condition amounts
to requiring that α ≤ 1/2. This condition is actually violated in the experiment exhib-
ited in Fig. 4.6, where the numerical solution displays large oscillations. The explicit
scheme turns out to be conditionally stable and consistent. By the Lax equivalence
theorem, the scheme is also conditionally convergent.

Implicit scheme Let us consider norm ‖ · ‖2. Matrix A is given by (I − σ 2 α
4 F)−1.

F has known eigenvalues given by −4 sin2(sπ/(2m)) (see Smith (1985), pp. 58–59
and 154–156). The matrix A is symmetric and its eigenvalues are given by:

λs = 1

1 + σ 2α sin2(sπ

2m
)
, s = 1, . . . , m − 1.

Consequently,

‖A‖2 = ρ(A) = max
s

∣

∣

∣

∣

1

1 + σ 2α sin2(sπ

2m
)

∣

∣

∣

∣

< 1, ∀α > 0,

proving that the implicit scheme is unconditionally stable. The method is also con-
sistent and, by the Lax equivalence theorem, it is convergent.

Crank–Nicolson scheme Let us consider norm ‖ · ‖2. Matrix A is given by (I −
σ 2 α

4 F)−1(I + σ 2 α
4 F). It can be shown that A is symmetric and has eigenvalues:9

λs =
2 − σ 2α sin2(sπ

2m
)

2 + σ 2α sin2(sπ

2m
)
,

for s = 1, . . . , m. Consequently,

‖A‖2 = ρ(A) = max
s

∣

∣

∣

∣

2 − σ 2α sin2(sπ

2m
)

2 + σ 2α sin2(sπ

2m
)

∣

∣

∣

∣

< 1,

for any α > 0. This proves that the CN scheme is unconditionally stable. The method
is also consistent and, by the Lax equivalence theorem, it is convergent.

9 We exploit the fact that if two m × m symmetric matrices B and C commute (i.e.,
BC = CB), then B−1C = BC−1 and B−1C−1 are symmetric too. In the present case, F

is symmetric, and then (I ± σ 2 α
4 F) are also symmetric. Moreover, they commute. Hence,

A is symmetric too. The eigenvalues of F are −4 sin2(sπ/(2m)), where s = 1, . . . , m.

Henceforth, the claimed result about the eigenvalues of A follows.

4.4 Consistency, Convergence and Stability 115

Fig. 4.14. Eigenvalues of the CN iteration matrix for different values of α.

The discussion above explains the presence of exploding oscillations in the ex-
plicit scheme whenever α is larger than 1/2. It does not however justify the presence
of spurious oscillations in the Crank–Nicolson scheme near discontinuity points. For
this specific issue, we need to distinguish A0-stability (i.e., all eigenvalues lay in
[−1, 1]), from L0-stability (i.e., all eigenvalues lay in [0, 1]). (See, again, Smith
(1985, pp. 120–121).) The implicit scheme is unconditionally L0-stable, whilst the
CN scheme is conditionally L0-stable, that is the iteration matrix can have negative
eigenvalues. Although stability guarantees that the eigenvalues of A belong to the
interval [−1, 1], it is possible to find eigenvalues close to −1 for some value of α.
As a consequence, the numerical solution will be affected by spurious oscillations.
The phenomenon can be particularly pronounced in the neighborhood of points of
discontinuity of the initial condition. There, oscillations are damped out only very
slowly. For instance, while pricing a discrete barrier option, a discontinuity in the
price function is introduced on every monitoring date (e.g., we set the option value
equal to zero outside the barriers). Spurious oscillations can be avoided only by re-
ducing the time-step of the grid. With reference to the example previously discussed,
Fig. 4.14 shows the eigenvalues of the iteration matrix resulting from alternative
values for the constant α and for δz = 0.1. As long as α decreases, the resulting
eigenvalues all become positive. Of course, this fact implies a binding restriction on
the time step δτ . For example, let us set δτ = 0.1, α = 10, and a time to maturity 1.
The resulting algorithm requires 10 time steps only. However, the corresponding nu-
merical solution can be affected by spurious oscillations. By setting δτ = 0.005 and
α = 0.5, we can prevent from this problem to occur. However, the number of time
steps needs be increased to 200.

116 4 Finite Difference Methods

4.5 General Linear Parabolic PDEs

In the previous sections, we considered finite difference solutions to the standard
heat equation. In general, we cannot reduce a linear parabolic PDE to this kind of
equation. We now discuss how to numerically solve a general linear parabolic PDE:

−∂τu(τ, z) + a(τ, z)∂zzu + b(τ, z)∂zu + c(τ, z)u + d(τ, z) = 0, (4.39)

where the function a(τ, z) is assumed to be strictly positive. We associate an initial
condition at τ = 0 and boundary conditions at states zL and zU to the above PDE.
Here, zL = 0 and zU = +∞ are allowed assignments.

Example (Double knock out option) Assuming the underlying asset evolves ac-
cording to a square-root process, dz = rz dt + σ

√
z dWt , then a(τ, z) = σ 2z/2,

b(τ, z) = rz, c(τ, z) = −r , d(τ, z) = 0 and the pricing PDE is

−∂τu(τ, z) + 1

2
σ 2z∂zzu + rz∂zu − ru = 0.

For a double knock out option, the initial condition reads as u(0, z) = (z − k)+ and
boundary conditions are u(τ, zL) = u(τ, zu) = 0.

The application of finite difference schemes requires an approximation of the
partial derivative ∂zu. In order to preserve an O(δz2) accuracy, it is natural to use a
central difference approximation:

b(τ, z)∂zu = bi,j

ui,j+1 − ui,j−1

2δz
+ O

(
δz2).

We now examine three benchmark schemes.

4.5.1 Explicit Scheme

The explicit scheme reads as:

−vi+1,j − vi,j

δτ
+ ai,j

vi,j+1 − 2vi,j + vi,j−1

δz2

+ bi,j

vi,j+1 − vi,j−1

2δz
+ ci,jvi,j + di,j = 0,

leading to a recursion:

vi+1,j = vi,j + δτ

δz2
ai,j (vi,j+1 − 2vi,j + vi,j−1)

+ δτ

2δz
bi,j (vi,j+1 − vi,j−1) + ci,jvi,j + di,j

=
(

αai,j − β

2
bi,j

)

vi,j−1 + (1 − 2αai,j + δτci,j)vi,j

+
(

αai,j + β

2
bi,j

)

vi,j+1 + δτdi,j ,

where

4.5 General Linear Parabolic PDEs 117

α = δτ

δz2
and β = δτ

δz
.

Using a matrix notation, we have:

vi+1 = Aivi + bi, i = 1, 2, . . . ,

where Ai is the m × m tridiagonal matrix defined by

Ai = tridiag

{

αai,j − β

2
bi,j , 1 − 2αai,j + δτci,j , αai,j + β

2
bi,j

}

,

and bi is the m × 1 vector

b⊤
i =

[(

αai,j −
β

2
bi,j

)

vi,0 0 · · · 0

(

αai,j +
β

2
bi,j

)

vi,m+1

]

.

Here, vi,0 and vi,m+1 have been set according to the boundary conditions at states z =
zL and z = zU. Stability conditions now require that coefficients are all nonnegative
and sum up to a number smaller than 1. This gives conditions:

(2αai,j − ci,j δτ) < 1 and
β

2
|bi,j | < αai,j ,

which lead to restrictions on both space and time steps:

δz < 2
ai,j

|bi,j |
and δτ <

(

2

δz2
ai,j − ci,j

)−1

.

The restriction can become relevant when the diffusion coefficient a(τ, z) is much
smaller than the drift coefficient b(τ, z).

4.5.2 Implicit Scheme

Implicit discretization leads to:

−
(

αai,j − β
bi,j

2

)

vi,j−1 + (1 + 2αai,j − δτci,j)vi,j −
(

αai,j + β
bi,j

2

)

vi,j+1

= vi−1,j ,

for j = 1, . . . , m and i = 1, . . . , n. At each time step, we need to solve the linear
system:

Bvi+1 = vi + bi, i = 1, 2, . . . ,

where Bi is the tridiagonal matrix

Bi = tridiag

{

αai,j − β
bi,j

2
,−1 +

δτ

δz2
ai,j + δτci,j , αai,j + β

bi,j

2

}

,

and

118 4 Finite Difference Methods

b⊤
i =

[

−
(

αai,j − β
bi,j

2

)

vi+1,0 0 · · · 0 −
(

αai,j + β
bi,j

2

)

vi+1,m+1

]

.

Here, vi+1,0 and vi+1,m+1 are set according to the boundary conditions at z = zL
and z = zU.

Differently from discretizing a standard heat equation, Bi need not be a symmet-
ric matrix.

4.5.3 Crank–Nicolson Scheme

We use a Taylor series expansion around point (iδτ + δτ
2 , zL+jδz). After performing

tedious algebraic calculations, we arrive at a system of difference equations for vi,j :
(

α
a∗

2
− β

b∗

4

)

vi+1,j−1 −
(

1 + αa∗ − c∗

2
δτ

)

vi+1,j +
(

α
a∗

2
+ β

b∗

4

)

vi+1,j+1

=
(

−α
a∗

2
+ β

b∗

4

)

vi,j−1 −
(

1 − αa∗ + c∗

2
δτ

)

vi,j

−
(

α
a∗

2
+ β

b∗

4

)

vi,j+1 − d∗δτ,

where:

a∗ = a

(

iδz + δτ

2
, zL + jδz

)

,

b∗ = b

(

iδτ + δτ

2
, zL + jδz

)

,

c∗ = r,

d∗ = 0.

This iteration can be written in a shorter form by using a matrix algebra notation:

Cvi+1 = Dvi + bi, i = 1, 2, . . . ,

with matrices C and D defined by:

C = tridiag

{

α
a∗

2
− β

b∗

4
,−1 − αa∗ + c∗

2
δτ, α

a∗

2
+ β

b∗

4

}

,

D = tridiag

{

−α
a∗

2
+ β

b∗

4
,−1 + αa∗ − c∗

2
δτ,−α

a∗

2
− β

b∗

4

}

,

and vectors bi defined as:

bi =

⎡

⎢

⎢

⎢

⎣

−
(

α a∗
2 − β b∗

4

)

vi+1,0 +
(

−α a∗
2 + β b∗

4

)

vi,0 − d∗δτ
−d∗δτ

· · ·
−d∗δτ

−
(

α a∗
2 + β b∗

4

)

vi+1,m+1 −
(

α a∗
2 + β b∗

4

)

vi,m+1 − d∗δτ

⎤

⎥

⎥

⎥

⎦

.

4.7 Comments 119

Table 4.7. List of main VBA R© functions for numerically solving (4.39)

VBA R© function Description Default value
payoff Returns the option payoff (z − K)+
upperbc Returns the option value at the upper boundary z − e−rτ K

lowerbc Returns the option value at the lower boundary 0
PDEfunctionA Returns the function a(τ, z) in (4.39) 1

2σ 2z2

PDEfunctionB Returns the function b(τ, z) in (4.39) rz

PDEImplicit Solves (4.39) using implicit scheme and LU dec. –
PDECN Solves (4.39) using CN scheme and LU dec. –
PDEExplicit Solves (4.39) using explicit scheme and LU dec. –
PDECNSOR Solves (4.39) using CN scheme and SOR iteration –

4.6 A VBA R© Code for Solving General Linear Parabolic PDEs

A VBA R© code for solving a general linear parabolic PDE has been implemented
according to the description reported in Table 4.7. We assume the underlying asset
follows a geometric Brownian motion and we aim at evaluating the arbitrage-free
price a European call option. The user can easily modify the VBA R© routine for the
purpose of pricing other contracts. One needs only to modify the payoff function as
expressed through the upper and lower boundary conditions appearing in the code.
Under alternative driving processes, a change in the VBA R© function PDEfunc-
tionA is required.

4.7 Comments

The literature on PDE is vast. An introduction to analytical methods for PDEs can
be found in Strauss (1992) and Zauderer (2006). The most readable introductory
texts to numerical solution of PDEs are Smith (1985), Morton and Mayers (1994),
Mitchell and Griffiths (1980). The relationship between stability and convergence
(Lax Equivalence Theorem) was brought into organized form by Lax and Richtmyer
(1956). Interested readers can find a proof in Richtmyer and Morton (1967), pp. 34–
46. The different concepts of stability are discussed in Lambert (1991). More general
references to numerical methods are Atkinson (1989) and Press et al. (1992). In par-
ticular, Smith also discusses the problem of spurious oscillations in the CN method.
Morton and Mayers discuss how a small diffusion coefficient can alter the solution.
The use of PDE in finance has been introduced by Brennan and Schwartz, Brennan
and Schwartz (1977, 1978), Courtadon (1982) and Hull and White (1990). Nowa-
days, standard references in finance are Wilmott, Dewynne and Howison (1993),
Tavella and Randall (2000) and James and Webber (2000). The PDE approach to
solve problems in two or more dimensions is also discussed in these references.
Contributions on specific topics are by Boyle and Tian (1998), Carr (2000), Fusai
and Tagliani (2001), Pacelli, Recchioni and Zirilli (1999), Zvan, Forsyth and Vet-
zal (1998b). Extensions to jump processes are considered in D’Halluin, Forsyth and

120 4 Finite Difference Methods

Vetzal (2003), D’Halluin, Forsyth and Labahn (2005), Hirsa and Madan (2003) and
Zhang (1997). Several papers, among the others we recall Pooley and Forsyth (2002)
and Fusai, Sanfelici and Tagliani (2002), have studied how to cope with the oscilla-
tions that can affect the Crank–Nicolson solution. A finite element approach to PDEs
arising in finance is given in Forsyth, Vetzal and Zvan (1999) and in Topper (2005).
Sanfelici (2004) introduces the use in finance of the infinite element method, a sim-
ple and efficient modification of the more common finite element method. In the
setting of diffusion models for price evolution. Corielli (2006) suggests an easily im-
plementable approximate evaluation formula for measuring errors arising in option
pricing and hedging due to volatility misspecification.

5

Numerical Solution of Linear Systems

In this chapter we present several methods for solving linear systems of the form
Ax = b. Here A is a (m × m) matrix and both x and b are m-dimensional vectors.
Our interest in linear systems is related to the solution of PDEs and therefore we will
consider the case where the coefficient matrix A is tridiagonal, i.e.,

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

a1 c1 0 0 0

b2 a2
. . .

. . . 0

0
. . .

. . .
. . . 0

0
. . .

. . . am−1 cm−1
0 0 0 bm am

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

In the following we will adopt the notation tridiag({bi}i=2,...,n, {ai}i=1,...,n,

{ci}i=1,...,n) to denote a tridiagonal matrix with diagonal entries given respectively
by {bi}i=2,...,n, {ai}i=1,...,n, {ci}i=1,...,n. As a shorthand notation, we will also write
tridiag(bi, ai, ci). If the entries do not depend on the index i, we just write tridiag(b,

a, c). In the previous chapter, we saw that when we deal with the implicit or the
Crank–Nicolson discretization of a PDE, we have to solve a system of linear equa-
tions at each time step. In principle, if we compute the inverse A−1, assuming that it
exists, then the solution of the linear system can be obtained by matrix vector mul-
tiplication, x = A−1b. Indeed, this would require a number O(m3) of operations,
to which we add further O(m2) arithmetic operations for multiplying the resulting
inverse matrix by vector b. The problem with matrix inversion is that we lose the
tridiagonal structure of A, see Fig. 5.1. Therefore, storage requirements of A for
large enough values of m can also become an issue.

Fortunately, when the matrix A has a tridiagonal structure, we have highly effi-
cient algorithms exploiting this particular structure in the solution of the linear sys-
tem at our disposal. Therefore, in this chapter, we will focus our attention on the
solution of linear systems where the coefficient matrix A is tridiagonal. We will dis-
tinguish between direct and iterative methods. The former provide a solution in a
finite number of steps, i.e. they will come up to an exact solution of the linear sys-
tem in as many as O(m) operations: a striking improvement with respect to matrix

122 5 Numerical Solution of Linear Systems

Fig. 5.1. The structure of a (5 × 5) tridiagonal matrix and the non-sparseness of its inverse.

inversion. Iterative methods begin with an initial vector x(0) and generate a sequence
of vectors x(1), . . . , x(k), . . . which converge toward the desired solution as k → ∞.
Therefore, a stopping criteria, such as the norm of the difference between x(k) and
x(k−1), is introduced. The main feature of iterative methods is the fact that an individ-
ual iteration requires an amount of work which is comparable to the multiplication
of A with a vector, a very modest amount if A is tridiagonal. For this reason, one
can, with a reasonable amount of work, still carry out a relatively large number of
iterations. This is necessary, if for no other reason than the fact that these methods
converge only linearly, and very slowly at that. Iterative methods are therefore usu-
ally inferior to the elimination methods if A is a small matrix (a 100×100 matrix is
small in this sense) or not a sparse matrix. However, they prove their relevance when
we deal with American options, for which direct methods are inappropriate.

In Sect. 5.1 we present one of the most famous direct methods: LU decom-
position, a simplification of the Gaussian elimination procedure. Section 5.2 illus-
trates iterative methods, such as Jacobi, Gauss–Seidel, Successive over-relaxation
(SOR) and Conjugate Gradient (CG) methods; we will also discuss the convergence
properties of the different methods. Sections 5.3.1 and 5.3.2 present VBA R© and
MATLAB R© codes. Finally, we conclude with Sect. 5.4 presenting several applica-
tions of PDEs to pricing problems in finance.

5.1 Direct Methods: The LU Decomposition

The most appropriate algorithm for tridiagonal linear systems is based on the
Gaussian elimination procedure. A linear system where the matrix of coefficients
is lower triangular, i.e.,

5.1 Direct Methods: The LU Decomposition 123

[1 0 0
l21 1 0
l22 l23 1

][
x1
x2
x3

]

=
[

b1
b2
b3

]

,

can be solved by forward substitution, starting from the first equation and proceeding
upward to the last one. Similarly, a linear system with an upper triangular matrix of
coefficients, i.e.,

[
u11 u12 u13
0 u22 u23
0 0 u33

][
x1
x2
x3

]

=
[

b1
b2
b3

]

can be solved by backward substitution starting from last equation and proceeding
backward to the first one.

Let us now consider the linear system Ax = b, where A is a (m × m) matrix
and both x and b are m-dimensional vectors. The algorithm can be formalized by
factorizing the matrix A as:

A = LU,

where L is lower triangular and U is upper triangular. For example, if A is a (3 × 3)

matrix, we would write

A =
[1 0 0

l21 1 0
l22 l23 1

][
u11 u12 u13
0 u22 u23
0 0 u33

]

.

Therefore, the linear system Ax = b can be written as L(Ux) = b. If we set Ux = y,
then we have Ly = b. In other words, once the LU factorization has been done, the
original linear system can be solved in two steps:

1. Solve the linear system Ly = b for the unknown vector y by forward substitu-
tion, i.e.,

{
y1 = b1,

y2 = b2 − l21y1,

y3 = b3 − l22y1 − l23y2.

2. Given y, solve Ux = y for the vector x by backward substitution, i.e.,
⎧

⎪
⎨

⎪
⎩

x3 = y3
u33

,

x2 = y2−u23x3
u22

,

x1 = y1−l22y1−l23y2
u11

.

When matrix A is tridiagonal, one can immediately find the decomposition A = LU.
Indeed, most elements of L and U are equal to zero. This decomposition leads to the
following factorization:

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

a1 c1 0 0 0

b2 a2
. . .

. . . 0

0
. . .

. . .
. . . 0

0
. . .

. . . am−1 cm−1
0 0 0 bm am

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

124 5 Numerical Solution of Linear Systems

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0

l2 1 0
. . . 0

0
. . .

. . .
. . . 0

0
. . .

. . . 1 0
0 0 0 lm 1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

d1 u1 0 0 0

0 d2 u2
. . . 0

0
. . .

. . .
. . . 0

0
. . .

. . . dm−1 um−1
0 0 0 0 dm

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

If we multiply L and U we obtain a recursive procedure to compute d1, u1, l2,
d2, . . . , dm:

Algorithm (LU Decomposition)

Assign elements a(j), b(j), c(j) of the three main diag-
onals
d(1) = a(1)
For j = 2,...,m

u(j-1) = c(j-1)
l(j) = b(j)/d(i-1)
d(j) = a(j)-l(j)*c(j-1)

Next j
Return vectors l, d, u.

A numerical example is provided in Fig. 5.2.
Note that, once we have factorized A, we do not store the whole matrices L

and U, but just the 3m − 2 entries of vectors [l2, . . . , lm]⊤, [d1, . . . , dm]⊤ and
[u1, . . . , um−1]⊤. These are the only quantities entering the linear systems arising
from implicit and Crank–Nicolson schemes. The following pseudo-code details the
procedure that combines LU factorization with forward and backward substitution
and return the solution of the tridiagonal system.

Algorithm (Tridiagonal linear system)

Assign the three main diagonals and the constant vector
vecb.
auxvar = diag(1)

Fig. 5.2. An example of LU decomposition.

5.1 Direct Methods: The LU Decomposition 125

solution(1) = vecb(1)/auxvar
// Forward substitution
For j = 2 To m

gam(j) = updiag(j-1)/auxvar
auxvar = diag(j)-lowdiag(j)*gam(j)
solution(j) = (vecb(j)-lowdiag(j)*solution(j-1))/aux-

var
Next j
// Backward substitution
For j = m - 1 To 1 Step -1

solution(j)=solution(j)-gam(j+1)*solution(j+1)
Next j
End
Return solution.

A spreadsheet-based illustration of this algorithm is shown in Fig. 5.3. Figure 5.4
shows a chart detailing the implementation of a solution algorithm, using the user-
defined VBA R© function tridag, for the example

−∂τu(τ, z) + ∂zzu(τ, z) = 0, (5.1)

initial condition:

u(0, z) =
{

2z 0 ≤ z ≤ 1
2 ,

2(1 − z) 1
2 ≤ z ≤ 1,

(5.2)

and boundary conditions:
u(τ, 1) = u(τ, 0) = 0. (5.3)

Fig. 5.3. Implementing the tridiagonal algorithm using forward and backward substitution.

126 5 Numerical Solution of Linear Systems

Fig. 5.4. Implementing the Crank–Nicolson scheme using the tridiagonal solver at each time
step.

The total number of basic operations, i.e., multiplications and divisions, needed
to calculate L and U is 2m−2; in order to solve Ax = b, additional 3m−2 operations
are required. The amount of work is therefore O(m). However, the main advantage of
the procedure described above is that a limited amount of numbers, that is l2, . . . , lm,
u1, . . . , um, and d1, . . . , dm, needs to be stored, just 3m − 2 elements. Inverting
matrix A requires storing m2 numbers and the overall computation requires O(m3)

operations.
Atkinson (1989) performs an error analysis of the LU algorithm, focusing in

particular on the stability of the solution under small perturbations affecting vector b.
In particular, a measure for the degree of stability in this respect is given by the

5.2 Iterative Methods 127

condition number v of matrix A as defined by the ratio between the largest and the
smallest absolute eigenvalue of A:

v = maxλ∈Λ(A) |λ|
minλ∈Λ(A) |λ| .

Here, Λ(A) denotes the spectrum of A, i.e. the set of the eigenvalues of A. If this ratio
is nearly 1, the system is well-conditioned. As this ratio rises, the system becomes
more and more ill-conditioned, meaning that a small perturbation of b produces a
large variation in the solution of the corresponding linear system. This can be of great
concern for the final user due to the finiteness of the computer machine accuracy.1

Stability is guaranteed by the following conditions: (a) li > 0, di > 0, and ui > 0,
(b) di > li+1 + ui−1, for i = 1, . . . , m − 1, with lm = u0 = 0, (c) di > li +
ci , with l1 = um−1 = 0. Namely, conditions (a) and (b), or (a) and (c), ensure
that forward (backward) substitution is stable. These conditions are satisfied when
LU decomposition is applied to matrices obtained by discretizing the heat equation
according to both implicit and CN schemes.

5.2 Iterative Methods

Several pricing problems require highly accurate solutions. These can be achieved
by thoroughly refining the space grid. In all these cases, the LU decomposition can
be excessively time consuming. Iterative methods may constitute a valid alternative
in these instances. The basic idea is to provide a recursive procedure that keeps on
improving the degree of approximation until a confidence threshold is achieved. As
iterative methods operate on nonzero elements only, the tridiagonal form of matrix A

in the above examples is effectively exploited for the purpose of decreasing the num-
ber of computations. Moreover, no matrix inversion is required, hence the sparsity
of the original linear system is preserved. Finally, iterative methods can be used to
price American options, while direct methods are not applicable in that context. This
actually is the main reason for using iterative methods for solving PDE.

In this section we consider some of the most common and simple iterative meth-
ods for the solution of a linear system Ax = b. In particular, we describe four meth-
ods: (1) Jacobi, (2) Gauss–Seidel, (3) SOR, and (4) Conjugate Gradient Method.

Let us write the matrix A as a sum of three matrices, i.e., A = D + L + U,
where D is a diagonal matrix and L and U are a lower and an upper triangular matrix
with zeros on the main diagonal. The linear system Ax = b then becomes

(D + L + U)x = b,

so that Dx = −(L + U)x + b. By assuming that diagonal elements of A are all
nonzero,2 the last expression gives

1 This figure usually amounts to either 16 or 32 digits.
2 If A is nonsingular and has some diagonal element equal to zero, we can always interchange

rows and colums and obtain a nonsingular matrix D.

128 5 Numerical Solution of Linear Systems

x = −D−1(L + U)x + D−1b. (5.4)

This equation represents the starting point for the first three iterative methods which
will be developed below. Then the idea of iterative methods is to transform the above
equation into an iterative procedure. Given the result of the (k − 1)th iteration (the
right-hand side in (5.4)), a new vector is generated (the left-hand side in (5.4)) for
the kth step.

5.2.1 Jacobi Iteration: Simultaneous Displacements

In this iterative method, if we know the approximate solution x(k−1) at the (k − 1)th
iteration, we use (5.4) to update the solution according to the iteration

x(k) = −D−1(L + U)x(k−1) + D−1b.

By setting H = −D−1(L + U), we have the general iteration

x(k) = Hx(k−1) + D−1b.

The starting condition x(0) is somehow arbitrary. If the linear system arises in the
solution of a PDE, a possible choice is to use the solution of the PDE computed at
the previous time step i or just set x(0) = 0.

When A is tridiagonal, A = tridiag(li, di, ui), the iterations stemming from the
Jacobi method read as follows:

⎡

⎢
⎢
⎢
⎣

x
(k)
1

x
(k)
i

x
(k)
m

⎤

⎥
⎥
⎥
⎦

= −

⎡

⎢
⎢
⎢
⎣

1
d1

0 0

1
di

0 0
0 0 1

dm

⎤

⎥
⎥
⎥
⎦

×

⎛

⎜
⎜
⎝

⎡

⎢
⎢
⎢
⎣

0 0 0
l2

0
0 li+1 0
0 lm 0

⎤

⎥
⎥
⎥
⎦

+

⎡

⎢
⎢
⎢
⎣

0 u1 0 0
0

0 um−1
0 0 0

⎤

⎥
⎥
⎥
⎦

⎞

⎟
⎟
⎠

×

⎡

⎢
⎢
⎢
⎣

x
(k)
1

x
(k)
i

x
(k)
m

⎤

⎥
⎥
⎥
⎦

+

⎡

⎢
⎢
⎢
⎣

b1
d1

bi

di

bm

dm

⎤

⎥
⎥
⎥
⎦

.

Then, we have a simple recursive formula:

x
(k)
i = 1

di

(

bi − li−1x
(k−1)
i−1 − uix

(k−1)
i+1

)

, i = 1, . . . , m. (5.5)

where we have set l0 = um = 0. The order in which the equations are processed
is irrelevant: the Jacobi method deals with them independently. Hence, we have the
expression “simultaneous displacements” meaning that updates could in principle be
done simultaneously.

5.2 Iterative Methods 129

Example Let us consider the following linear system:

[3 1 0
−1 4 2
0 1 2

][
x1
x2
x3

]

=
[1

2
0

]

,

with a starting value x(0) = 0. The first three iterations read as:

k = 1:

x
(1)
1 = 1

3
(1 − 1 × 0) = 0.333 33,

x
(1)
2 = 1

4

(

2 − (−1) × 0 − 2 × 0
)

= 0.5,

x
(1)
3 = 1

2
(0 − 1 × 0) = 0;

k = 2:

x
(2)
1 = 1

3
(1 − 1 × 0.5) = 0.166 67,

x
(2)
2 = 1

4

(

2 − (−1) × (0.333 33) − 2 × 0
)

= 0.583 33,

x
(2)
3 = 1

2

(

0 − 1 × (0.5)
)

= −0.25;
k = 3:

x
(3)
1 = 1

3

(

1 − 1 × (0.583 33)
)

= 0.138 89,

x
(3)
2 = 1

4

(

2 − (−1) × 0.166 67 − 2 × (−0.25)
)

= 0.666 67,

x
(3)
3 = 1

2

(

0 − 1 × (0.583 33)
)

= −0.291 67.

The next iterations are reported in the Table 5.1. In last column, we indicate the
Euclidean distance between vectors x(k) and x(k−1). This figure provides a criterion
to decide upon terminating the recursive procedure. The iteration is broken as soon
as the distance ‖x(k) − x(k−1)‖ ≤ ε, where ε represents a tolerance threshold that is

Table 5.1. Iterations of the Jacobi method

k x
(k)
1 x

(k)
2 x

(k)
3 ‖x(k) − x(k−1)‖

4 0.1111 0.6806 −0.3333 0.0027
5 0.1065 0.6944 −0.3403 0.00026
6 0.1019 0.6968 −0.3472 0.00008
7 0.1011 0.6991 −0.3484 0.00001
8 0.1003 0.6995 −0.3495 2.1 × 10−6

9 0.1002 0.6998 −0.3497 2.0 × 10−7

10 0.1001 0.6999 −0.3499 5.8 × 10−8

11 0.1000 0.7000 −0.3500 5.6 × 10−9

130 5 Numerical Solution of Linear Systems

selected exogenously. A small value for ε determines a large number of iterations.
In our example, we set ε = 10−8, so that a break occurs after eleven iterations. The
exact solution is [1

10
7

10 − 7
20].

5.2.2 Gauss–Seidel Iteration (Successive Displacements)

In this iterative scheme, each new component of x(k) is immediately used in the
computation of the following component. The attribute “successive” underlines the
dependence of the iterates on the order in which equations are processed. This kind
of updating process is also convenient for reasons related to memory storage. The
new value can immediately be stored in the memory location of the previous value,
thus minimizing the overall storage cost. Compared to the Jacobi method, the storage
requirement for vector x is reduced by half.

Let us consider again the system (5.4). We may do the following transformation:

x = −D−1Lx − D−1Ux + D−1b.

If we need to compute the ith element of the vector x in the left-hand side, we observe
that in the right-hand side (a) the elements xj , with 1 ≤ j < i, are involved in the
product D−1Lx, (b) in the product D−1Ux we need the elements xj , with i < j ≤ m.
Therefore, to accelerate the convergence in doing the multiplication D−1Lx we can
use the already updated components. Then the iteration x(k) = −D−1Lx(k−1) −
D−1Ux(k−1) + D−1b is replaced by

x(k) = −D−1Lx(k) − D−1Ux(k−1) + D−1b, (5.6)

which gives the matrix-form of the Gauss–Seidel iteration:

x(k) =
(

I + D−1L
)−1

D−1(b − Ux(k−1)
)

.

When A is tridiagonal, the iterative relation (5.6) collapses to the following algo-
rithm:

x
(k)
i = 1

di

(

bi − li−1 x
(k)
i−1
︸︷︷︸

updated value

−uix
(k−1)
i+1

)

, i = 1, . . . , m, (5.7)

where we have set l0 = um = 0 once again.

Example With reference to the previous example, we have the following iterations,
where the bold figures represent the updated values that are used in the iterations:

k = 1:

x
(1)
1 = 1

3
(1 − 1 × 0) = 0.333 33,

x
(1)
2 = 1

4

(

2 − (−1) × 0.333 33 − 2 × 0
)

= 0.583 33,

x
(1)
3 = 1

2
(0 − 1 × 0.583 33) = −0.291 67;

5.2 Iterative Methods 131

Table 5.2. Iterations of the Gauss–Seidel method

k x
(k)
1 x

(k)
2 x

(k)
3 ‖x(k) − x(k−1)‖

4 0.10108 0.69946 −0.34973 3.8 × 10−5

5 0.10018 0.69991 −0.34995 1.1 × 10−6

6 0.10003 0.69998 −0.34999 3.0 × 10−8

7 0.10001 0.70000 −0.35000 8.2 × 10−10

k = 2:

x
(2)
1 = 1

3
(1 − 1 × 0.583 33) = 0.138 89,

x
(2)
2 = 1

4

(

2 − (−1) × (0.138 89) − 2 × (−0.291 67)
)

= 0.680 56,

x
(2)
3 = 1

2

(

0 − 1 × (0.680 56)
)

= −0.340 28;
k = 3:

x
(3)
1 = 1

3

(

1 − 1 × (0.680 56)
)

= 0.106 48,

x
(3)
2 = 1

4

(

2 − (−1) × 0.106 48 − 2 × (−0.340 28)
)

= 0.696 76,

x
(3)
3 = 1

2

(

0 − 1 × (0.696 76)
)

= −0.348 38.

The next iterations are given in the Table 5.2. If the stopping criterion is defined by a
tolerance threshold ε = 10−8, then exactly seven iterations are required to break the
loop, whereas the Jacobi method leads to eleven steps.

5.2.3 SOR (Successive Over-Relaxation Method)

Generally speaking, iterative methods show a regularly decreasing pattern in the ap-
proximation error. This property can be exploited in order to speed up the conver-
gence of the Gauss–Seidel method. At each step in the procedure, the SOR method
consists of looking for an optimal linear combination between the previous approx-
imate solution and the Gauss–Seidel iterate. To clarify this point, let us consider the
system Dx = −(L + U)x + b in the form:

(D + L)x = −Ux + b.

We may solve for x and obtain the following iterative procedure:

x(k) = (D + L)−1(−Ux(k−1) + b
)

.

By adding and subtracting x(k−1) on the right-hand side, we get to:

x(k) = x(k−1) − (D + L)−1(D + L)x(k−1)

︸ ︷︷ ︸

=0

+ (D + L)−1(−Ux(k−1) + b
)

= x(k−1) − (D + L)−1((L + D + U)x(k−1) − b
)

.

132 5 Numerical Solution of Linear Systems

Notice that ξ (k−1) = (L + D + U)x(k−1) − b represents the error at the (k − 1)th
iteration. We may then write:

x(k) = x(k−1) − (D + L)−1ξ (k−1).

It would be interesting to examine if we can accelerate convergence by giving a
larger correction to the previous iterate. This can make sense if successive corrections
display a regular pattern, e.g., they exhibit a common sign.

The idea underlining SOR is indeed to improve the convergence speed of the
algorithm by introducing an over-relaxation parameter ω as follows:

x(k) = x(k−1) − ω(D + L)−1ξ (k−1). (5.8)

This iterative relation is called the SOR method (Successive Over-Relaxation). The
case ω = 1 recovers the Gauss–Seidel method. An alternative way of interpreting
formula (5.8) is to represent it as a linear combination of the previous solution and
the regular Gauss–Seidel iterate, that is

= (1 − ω) x(k−1)
︸ ︷︷ ︸

previous iterate

+ ω
(

x(k−1) − (D + L)−1ξ (k−1)
)

︸ ︷︷ ︸

Gauss−Seidel iterate

= x(k−1) − ω(D + L)−1ξ (k−1).

When matrix A is tridiagonal, and setting l0 = um = 0, iteration (5.8) becomes

x
(k)
i = (1 − ω)x

(k−1)
i + ω

di

(

bi − li−1x
(k)
i−1 − uix

(k−1)
i+1

)

, i = 1, . . . , m. (5.9)

Example With reference to the previous example, Table 5.3 provides the first few
SOR iterations, for an optimal value of ω chosen according to criterion (5.19) to be
introduced in the next section. This figure is 1.045549. Table 5.4 provides us with
the SOR iteration when ω has been set equal to 1.2. Choosing a nonoptimal value for
ω increases the number of iterations necessary to achieve a given tolerance.

The three algorithms can be implemented using the following code.

Table 5.3. SOR iterations when ω = 1.045549

k x
(k)
1 x

(k)
2 x

(k)
3 ‖x(k) − x(k−1)‖

1 0.348516 0.613872 −0.320917 0.60129
2 0.118697 0.693606 −0.347982 0.05991
3 0.101377 0.699596 −0.349881 3.4 × 10−4

4 0.100078 0.699976 −0.349993 1.8 × 10−6

Table 5.4. SOR iterations when ω = 1.2

k x
(k)
1 x

(k)
2 x

(k)
3 ‖x(k) − x(k−1)‖

1 0.400000 0.720000 −0.432000 0.86502
2 0.032000 0.724800 −0.348480 0.14242
3 0.103680 0.695232 −0.347443 6.01 × 10−3

4 0.101171 0.699771 −0.350374 3.55 × 10−5

5.2 Iterative Methods 133

Algorithm (Jacobi/Gauss–Seidel/SOR method)

Assign the maximum number of allowed iterations (MAXITS)
Choose a termination scalar ε and an initial point x(0)

Set l(i) = u(m) = 0
While err > ε

//iteration: select the algorithm
Case JACOBI: temp(i) = Apply formula (5.5)
Case GAUSS-SEIDEL: temp(i) = Apply formula (5.7)
Case SOR: temp(i) = Apply formula (5.9)

err = 0
//Compute the error norm
For i = 1 To m
err = err + (temp(i) - v(i)) ^2
v(i) = temp(i)
Next i
Numberiterations = Numberiterations + 1
//Return a error number if MAXITS has been
If Numberiterations > MAXITS Then

Msg("Too many iterations in JACOBI/G-S/SOR")
Exit Function

End if
Wend

Return v

5.2.4 Conjugate Gradient Method (CGM)

This approach has be proposed by Hestenes and Stiefel (1952). Nowadays, CGM
is largely known as the algorithm for solving unconstrained optimization problems.
Indeed it has been proved to be extremely effective in dealing with general objective
functions. CGM is the oldest and best known method belonging to the class of non-

stationary iterative methods. It differs from the techniques presented above in that
computations involve information that changes at each iteration.

If we consider the problem of minimizing a quadratic function f (x) = 1
2 x⊤Ax−

bx, where matrix A is symmetric positive definite, the optimality conditions become
Ax = b. In this case, CGM can be very effective. Here, we illustrate the CGM when
A is symmetric positive definite.

The idea of the CGM is to accelerate the typically slow convergence associated
with the steepest descent method. This is defined by the iterative algorithm x(k+1) =
x(k) − αkg(k), where g(k) is the gradient of f and αk is the step length minimizing f

along the direction of the negative gradient. Each step in the CGM is at least as good
as the steepest descent step starting at the same point. The first directional vector in
CGM is the unit gradient.

The basic procedure in CGM is as follows:

(a) generate a sequence of iterates according to the following rule

134 5 Numerical Solution of Linear Systems

x(k+1) = x(k) + αkd(k),

where d(k) is the search direction and αk is the step length which minimizes
f (x + αd(k)) along d(k) starting from point x(k);

αk = −(g(k))⊤d(k)

(d(k))⊤Ad(k)
, (5.10)

(b) update directions d(k) by using formula:

d(k+1) = −g(k+1) + βkd(k),

where βk is a scalar given by formula (5.11).

The pseudo-code illustrated below refers to m × m symmetric and positive defi-
nite matrices and terminates within m steps at most.3,4

Algorithm (CGM)

1. Starting at x(0) compute g(0) = Ax(0) − b and set d(0) = −g(0).
2. For k = 0, 1, . . . , m − 1:

(a) Compute αk according to (5.10) and x(k+1) = x(k) + αkd(k).
(b) Compute the gradient of the function f

g(k+1) = Ax(k+1) − b.

(c) Unless k = m − 1, set

d(k+1) = −g(k+1) + βkd(k),

where

βk = (g(k+1))⊤Ad(k)

(d(k))⊤Ad(k)
(5.11)

and repeat (a).
3. Return x(m).

Note that if A = tridiag(li, di, ui), the (i, i) entry of the product Ax is:

(Ax)ii=lixi−1 + dixi + uixi+1.

Consequently, we just need to store the three main diagonals of A.

3 If matrix A is nonsymmetric and possibly indefinite, we can apply the CGM to the related
symmetric positive definite system A⊤Ax = A⊤b.

4 Due to rounding errors, in practice this is not the case, so we need a stopping criteria. In
addition, if the function is not quadratic, the CGM may not terminate in m iterations.

5.2 Iterative Methods 135

5.2.5 Convergence of Iterative Methods

We explore the convergence of iterative methods together with their rate of con-
vergence. The discussion focuses on the Jacobi and the SOR methods. Indeed, the
Gauss–Seidel method is merely a special case of the SOR method, namely the one
corresponding to ω = 1. A brief discussion of the CGM convergence properties is
also done.

All the iterative methods introduced so far solve Ax = b, where A = L+D+U.

The iterations can be represented as follows:

x(k) = Hx(k−1) + c, (5.12)

where H is the iteration matrix corresponding to the selected method. Table 5.5 re-
ports matrix H and vector c for the examined techniques. The solution of any iteration
satisfies

x = Hx + c,

and the error ε(k) = x − x(k) generated at the k-iteration satisfies

ε(k) = Hε(k−1) = Hnε(0). (5.13)

Convergence of the iteration (5.12), i.e., x(k) → x as k → ∞ or, equivalently,
ε(k) → 0 as k → ∞, is ensured provided that all the eigenvalues of H lie within the
unit circle. This means that ρ(H) = |λmax| = maxλ∈Λ(H) |λ(H)| < 1, where Λ(H)

denotes the set of all eigenvalues of H.
The rate of convergence indicates the number of iterations necessary to achieve

an assigned level of accuracy. In particular, this number provides an indication of
the number of decimal digits by which the error is decreased by each convergent
iteration. For a large k, the iteration (5.13) is mainly driven by the greatest eigenvalue
of H, i.e., λmax. Therefore:

ε(k) ≃ λmaxε
(k−1) ≃ (λmax)

kε(0).

The number p of iterations required to reduce the error size by 10−q is the smallest
value p for which

‖ε(p)‖
‖ε(0)‖ =

(

ρ(H)
)p ≤ 10−q .

This inequality can also be written as p log10 ρ(H) ≤ −q, i.e.,

Table 5.5. Iteration matrices for the Jacobi, GS and SOR methods

Iter. meth. Matrix H Vector c

Jacobi −D−1(L + U) D−1b

Gauss–Seidel −(I + D−1L)−1D−1U (I + D−1L)−1D−1b

SOR (I + ω(D−1 + L))−1((1 − ω)I − ωD−1U) ω(I + ω(D−1 + L))−1D−1b

136 5 Numerical Solution of Linear Systems

p ≥ q

− ln10 ρ(H)
= q

ln10(1/ρ(H))
= q

− ln ρ(H)
,

where log10 ρ(H) < 0. Consequently, we may use r = − ln ρ(H) to measure the as-

ymptotic rate of convergence. The attribute “asymptotic” underlines the significance
of r as a rate of convergence for large values of k.

We now examine the cases of Jacobi and SOR methods when A is tridiagonal.

Jacobi method

Let us consider the row norm μ of matrix H as defined by

μ(H) = max
1≤i≤m

m
∑

i=1

|hij |.

Condition μ(H) < 1 implies ρ(H) < 1. When matrix A is tridiagonal, H is tridiag-
onal as well

H = tridiag

(
li

di

, 0,
ui

di

)

,

where, as usual, li , di , and ui denote the elements appearing on the three main diag-
onals of A. Condition μ(H) < 1 amounts to requiring that the tridiagonal matrix A

be strictly diagonally dominant, in that its entries satisfy:

|li | + |ui | < |di |, i = 1, . . . , m.

In other words, the sum of the moduli of the diagonal elements must exceed the sum
of the moduli of the off-diagonal entries. Let us verify that this is the case for the
finite difference approximation to the heat equation. We do not consider the explicit
scheme, because it does not involve the solution of a linear system.5

• In the implicit scheme, matrix A is given by (5.14)

A = tridiag

(

−σ 2α

2
, 1 + σ 2α,−σ 2α

2

)

. (5.14)

The diagonally dominant condition reads as:

∣
∣
∣
∣
− σ 2α

2

∣
∣
∣
∣
+
∣
∣
∣
∣
− σ 2α

2

∣
∣
∣
∣
< |1 + σ 2α|,

i.e., σ 2α < 1 + σ 2α. This inequality is always satisfied.

5 However, note that in the explicit scheme the updated solution is given by vi+1 = Avi +
σ 2α

2 bi , where A = tridiag(σ 2α
2 , (1 −σ 2α), σ 2α

2). This corresponds to the Jacobi iteration,
where the iteration matrix H is exactly A. Therefore the convergence condition becomes

|σ 2α
2 | + |σ 2α

2 | < |1 − σ 2α|, i.e., σ 2α < 1. This is the stability condition already obtained
for the explicit scheme.

5.2 Iterative Methods 137

• In the Crank–Nicolson scheme, matrix A is given by (5.15)

A = tridiag

(

−σ 2α

4
, 1 + σ 2α

2
,−σ 2α

4

)

. (5.15)

The convergent condition reads as:
∣
∣
∣
∣
− σ 2α

4

∣
∣
∣
∣
+
∣
∣
∣
∣
− σ 2α

4

∣
∣
∣
∣
<

∣
∣
∣
∣
1 + σ 2α

2

∣
∣
∣
∣
,

i.e., σ 2α/2 < 1 + σ 2α/2. This is always satisfied.

To examine the rate of convergence, we need the eigenvalues of H. If matrix A is
obtained by discretizing the heat equation, e.g., it has a structure (5.14) or (5.15), we
can use a result stating that the eigenvalues of a tridiagonal matrix tridiag{c, a, b} of
order m are given by:6

λs = a + 2
√

bc cos

(
sπ

m + 1

)

, s = 1, . . . , m.

(See Smith (1985), pp. 154–155.) In particular, if A = D + L + U is tridiagonal,
H = −D−1(L + U) is tridiagonal too and we have the following two cases:

• In the implicit scheme, the eigenvalues of H are given by

λs = σ 2α

(1 + σ 2α)
cos

(
sπ

m + 1

)

, s = 1, . . . , m. (5.16)

• In the CN scheme, the eigenvalues of H are given by

λs = σ 2α

(2 + σ 2α)
cos

(
sπ

m + 1

)

, s = 1, . . . , m. (5.17)

Table 5.6 reports the spectral radius of the Jacobi iteration as applied to both
difference schemes. We can see that there is a trade-off between increasing spatial
accuracy (i.e., reducing δz = (zu − zl)/(m + 1)) and augmenting the asymptotic
rate of convergence. The spectral radius tends to 1 as m → ∞ (see rows 2 and 4
in Table 5.6), i.e. as the grid size is refined. Therefore, unless the matrix is strongly
diagonally dominant, the Jacobi method is not practical, since for a reasonable grid
size the iteration converges very slowly. To improve the things, as we increase the
number m of grid points, we can try to reduce the time spacing δτ , so that we keep
α = δτ/δz2 constant (see rows 3 and 5 in Table 5.6). But this again increases the
computational cost, because, for pricing an option with a given time to maturity,
more time steps will be necessary.

6 If instead the spectral radius of the Jacobi matrix is not known, it can be estimated for
large k by using (see Smith (1985), p. 273)

ρ(H) ≃ ‖x(k+1) − x(k)‖
‖x(k) − x(k−1)‖

,

where a possible vector norm is ‖x‖ = max1≤i≤m |xi |.

138 5 Numerical Solution of Linear Systems

Table 5.6. Behavior of the spectral radius in the Jacobi iteration when A comes from a finite
difference scheme. n is the number of time steps, m the number of space points. The time to
maturity has been fixed equal to 1. The spatial domain is the interval [0, 1]

Spectral radius ρ(H)

α = δτ/δx2 Scheme m = 10 m = 100 m = 1000

0.001/ 1
(m+1)2 Implicit 0.186954 0.952814 0.999496

0.1 Implicit 0.15991 0.166586 0.1666
(n = 1210) (n = 102010) (n = 1.002 × 107)

0.001/ 1
(m+1)2 CN 0.103567 0.910282 0.998998

0.1 CN 0.0872266 0.0908651 0.0909086
(n = 1210) (n = 102010) (n = 1.002 × 107)

SOR method

The following results illustrate the role of parameter ω in determining the rate of
convergence of the SOR method (Press et al. (1992)).

• Necessary condition for the convergence of the SOR method is that 0 < ω < 2.
If the iteration matrix is symmetric and definite positive, the condition is also
sufficient.

• Under constraints that are usually satisfied by matrices arising from a finite dif-
ference scheme, only over-relaxation (i.e., 1 < ω < 2) ensures a quicker con-
vergence than the one provided by the Gauss–Seidel method. If 0 < ω < 1, we
speak of under-relaxation.

• The eigenvalues λ of the SOR iteration matrix are related to the eigenvalues μ of
the Jacobi iteration matrix by the equation

(λ + ω − 1)2 = λω2μ2. (5.18)

• From the previous result it can be proved that if ρJacobi is the spectral radius of
the Jacobi iteration, then the optimal choice for ω is given by

ω = 2

1 +
√

1 − ρ2
Jacobi

. (5.19)

• For the optimal choice (5.19), the spectral radius of SOR is:

ρSOR =
(

ρJacobi

1 +
√

1 − ρ2
Jacobi

)2

. (5.20)

• The SOR method is more efficient than direct methods for solving finite differ-
ence schemes provided that ω is set equal to the optimal value given in (5.19).

• If we set ω = 1 in (5.18), we can also find the spectral radius of the Gauss–Seidel
method in terms of ρJacobi:

5.2 Iterative Methods 139

Table 5.7. Optimal value of ω and spectral radius in the SOR iteration when A stems from a
finite difference scheme. n denotes the number of time steps. Time-to-maturity has been fixed
equal to 1. The spatial domain is the whole interval [0,1]

α = δτ/δx2 Scheme m = 10 m = 100 m = 1000

0.001/ 1
(m+1)2 Implicit

ω 1.00889 1.53427 1.93848
ρSOR 0.0088941 0.534267 0.938483

0.1 Implicit
ω 1.00648 1.00704 1.00704
ρSOR 0.0064763 0.0070357 0.0070425

0.001/ 1
(m+1)2 CN

ω 1.0027 1.41444 1.91433
ρSOR 0.0026960 0.414438 0.914328

0.1 CN
ω 1.00191 1.00207 1.00207
ρSOR 0.0019094 0.0020727 0.0020747

ρGS = ρ2
Jacobi,

that is an improvement by a factor of 2 in the number of iterations over the Jacobi
method. This improvement is still modest, so this method is also slowly conver-
gent and not very useful to accelerate the convergence of the Jacobi method.

Formulae (5.19), (5.16) and (5.17) allow us to find the optimal value of ω for both
implicit and CN schemes applied to the heat equation −∂τu(τ, z) + ∂zzu (τ, z) = 0.
A numerical example is illustrated in Table 5.7. For more general problems than
the heat equation, the main difficulty with the SOR method is the estimation of the
optimal value ω. Indeed, the benefits of the SOR method are visible in a narrow
neighborhood of the optimal value ω. Figure 5.5 illustrates this problem. We con-
sider a 9 × 9 tridiagonal matrix with li = l = −0.2, di = d = 1.4, ui = u = −0.2.
The convergence criterion has been set equal to ε = 10−9. Using the optimal value
of ω, that is 1.02129, we achieve convergence in 8 iterations. As we move away from
this optimal value, the number of iterations required to obtain convergence increases
quite rapidly, as is illustrated in Fig. 5.5. If we have to solve similar problems several
times, we can perform sample experiments starting with alternative values for ω and
then select the figure that minimizes the number of iterations. For example, if we
need to solve linear systems arising from discretization of PDEs, we have to solve
a linear system at each time step. We may start with ω = 1; then, we may slightly
increase ω on the second time step and record the number of iterations necessary
to achieve convergence. After a few time steps, we can choose the value ω provid-
ing the smallest number of iterations. Sometimes the following heuristic estimate is
used: ω = 2 − O(δz), where δz is the mesh spacing of the discretization of the un-
derlying PDE. By inspecting the second and third rows in Table 5.7, we argue that
this prescription appears to be quite reasonable.

The error of CGM can be bounded in terms of the condition number ν defined as
the ratio of the largest and the smallest eigenvalue of the matrix A. If x is the exact
solution of the linear system and A is a symmetric positive definite matrix, then it
can be shown that

∥
∥x(k) − x

∥
∥

A
≤ 2γ k

∥
∥x(0) − x

∥
∥

A
,

140 5 Numerical Solution of Linear Systems

Fig. 5.5. Number of iterations required to achieve a tolerance of 10−8 as seen as a function of
the over-relaxation parameter ω.

where γ = (
√

ν − 1)/(
√

ν + 1) and ‖y‖2
A = y⊤Ay and ν is the condition number of

A defined previously. This is a conservative bound, implying poor convergence for
ill-conditioned problems. To increase the rate of convergence, we can transform the
problem Ax = b to an equivalent with a smaller condition number, so that the iterates
will converge more rapidly. The transformed problem is written as (MA)x = Mb,
where M is called a preconditioner and needs to be chosen carefully. A discussion
about the choice of a suitable preconditioner can be found in Barrett et al. (1994).

5.3 Code for the Solution of Linear Systems

5.3.1 VBA R© Code

In the Excel file available on the book web site, we provide Visual Basic codes for
all five methods presented in this chapter for the purpose of numerically solving a
linear system Ax = q, with a tridiagonal matrix A. The CG method applies provided
that A is a symmetric and positive definite matrix.

The VBA R© functions are named tridag,Jacobi, GaussSeidel, SOR and
CGM:

• tridag(subdiag As variant, diag As variant, superdiag

As variant, q As variant, NumberElements As Integer)

implements the LU decomposition, forward, and backward substitution to solve
the two triangular systems;

5.3 Code for the Solution of Linear Systems 141

• Jacobi(subdiag As variant, diag As variant, superdiag As

variant, q As variant, x0 As Object, NumberElements As

Integer, tol As Double, ByRef nits As Integer) implements the
Jacobi iteration;

• GaussSeidel(subdiag As variant, diag As variant, superdiag As

variant, q As variant, x0 As Object, NumberElements As Inte-

ger, tol As Double, ByRef nits As Integer) implements the Gauss–
Seidel iteration;

• SOR(subdiag As variant, diag As variant, superdiag As

variant, q As variant, x0 As Object, NumberElements As

Integer, tol As Double, ByRef nits As Integer) implements the
SOR iteration;

• CGM(subdiag As variant, diag As variant, superdiag As

variant, q As variant, x0 As Object, NumberElements As

Integer, tol As Double, ByRef nits As Integer) implements the
CGM method.

The arguments of these functions are as follows:

(a) subdiag, diag, and superdiag represent the three main diagonals of the
matrix A;

(b) q is the constant vector in the linear system;
(c) x0 the starting point for the iterative procedures;
(d) NumberElements is an integer number representing the number of rows (or

columns) of the matrix A;
(e) omega is the parameter ω required in the SOR iteration;
(f) tol is the assigned error margin (e.g., 10−9).
(g) nits is passed to VBA R© as a reference variable, so that it can be changed

inside the code. Indeed, when the iterative method terminates, nits contains
the number of iterations.

Vectors subdiag, diag, superdiag, q, x0, have to be passed to the function as
column vectors. The functions return the solution as a vector with NumberElements
components. The iterative methods also change the input parameter nits. When the
tolerance criterion has been satisfied and the linear system is solved, nits is updated
and contains the number of iterations necessary to achieve the required tolerance.

5.3.2 MATLAB R© Code

MATLAB R© has built in functions to solve linear systems, either using direct methods
or iterative methods. We briefly present them. In comparison to VBA R©, MATLAB R©

exploits its array structure, so that linear system of large dimensions can be solved in
a fraction of second. For example, VBA R© cannot invert 1000 × 1000 matrices. This
is not a problem for MATLAB R©.

142 5 Numerical Solution of Linear Systems

Solution of a linear system

The most direct method to solve a linear system in MATLAB R© is to use the ma-
trix division operator \. For example A\q returns the solution of the linear system
Ax = q. If A is triangular, MATLAB R© implements a triangular solver.

Matrix inversion

To get the solution of the linear system, we can also compute inv(A)*q, where
with inv(A) we compute the inverse of A.

LU factorization

LU factorization can be performed using the lu function, that expresses a matrix A

as the product of two essentially triangular matrices, one of them a permutation of a
lower triangular matrix and the other an upper triangular matrix. [L,U] = lu(A)
returns an upper triangular matrix in U and a lower triangular matrix in L, so that
A = L ∗ U. For example, if we write in the command window:

A = [1 2 3; 4 5 6; 7 8 0];

and check for its LU factorization, we may call lu with two output arguments, i.e.,

[L,U] = lu(A)

As a result, we obtain

L =

0.1429 1.0000 0

0.5714 0.5000 1.0000

1.0000 0 0

U =

7.0000 8.0000 0

0 0.8571 3.0000

0 0 4.5000

Notice that L is a permutation of a lower triangular matrix that has 1s on the permuted
diagonal, and that U is upper triangular. To check that the factorization does its job,
compute the product L ∗ U, which should return the original A. The solution of linear
system using LU decomposition and forward and backward substitution is depicted
in the following lines:

LU factorization [L,U] = lu(A);
Forward substitution y = L\q;
Backward substitution x = U\y

5.3 Code for the Solution of Linear Systems 143

The procedure in the second and third line can be replaced by the one shot operation
x = U\(L\q). In practice, this operation is equivalent to the tridag algorithm
implemented in VBA R©.

Tridiagonal solver

Several algorithms can be found on the web to solve the linear system when A is
tridiagonal. For example, the function:

function x = tridiag(a, b, c, q)
can be downloaded from the web site:

http://www.math.toronto.edu/almgren/tridiag/tridiag1.m
Here a, b, c are the three diagonals of the matrix A = tridiag(ai, bi, ci) whilst q is
the fixed term in the linear system Ax = q. Here q is a vector; m is determined from
its length, a, b, c must be vectors of lengths at least m−1, m, and m−1 respectively.
Similar programs can be downloaded from web sites:

http://www.columbia.edu/itc/applied/e3101/
http://www.dms.uaf.edu/~bueler/tri.m.

Iterative solvers

MATLAB R© code for iterative methods such as Jacobi and SOR can be downloaded
from the web site:

http://www.netlib.org/templates/matlab/
They are called using the commands

[x, error, iter, flag] = jacobi(A, x, q, max_it, tol)
[x, error, iter, flag] = sor(A, x, q, w, max_it, tol)

where x as input is the initial guess and as output is the solution of the linear system,
q is the constant vector, w is the relaxation parameter. Iterations are repeated until
the number of iterations is larger than maxit or until norm(xnew-xold)/norm(xnew)
is less than tol.

The conjugate gradient method is implemented as a built in function in
MATLAB R© and can be used only for symmetric positive definite matrices. The func-
tion name is pcg and can be used as

x = pcg(A,q,tol,maxit)
This function performs the CG method with initial guess the zero vector and stops
when the 2-norm of the residual vector is less than tol or the number of iterations
is larger than maxit. The m × m coefficient matrix A must be symmetric and posi-
tive and the right-hand side column vector q must have length m. tol specifies the
tolerance of the method. If tol is [] then PCG uses the default, 1e-6. maxit spec-
ifies the maximum number of iterations. If maxit is [] then PCG uses the default,
min(m, 20). MATLAB R© makes also available other functions that implement more
advanced iterative methods for sparse linear systems. All of them can make use of
preconditioners. More detailed information is available in the MATLAB R© help.

144 5 Numerical Solution of Linear Systems

5.4 Illustrative Examples

In this section, we present some applications of the presented numerical methods
to pricing financial contracts. We consider different processes and different prod-
ucts. The first example is related to the classical Black–Scholes model for pricing
call options. Then we present the pricing of the same contract, but assuming that
the dynamics of the underlying is described by the Constant Elasticity of Variance
(CEV) process. Then we price American options under both the GBM and the CEV
process and we introduce the PSOR method, an extension of the SOR algorithm that
allows to consider the possibility of early exercise. These examples have been imple-
mented using the VBA R© functions described in Sect. 5.3.1. The last two examples
are related to pricing double barrier options under the GBM process and options on
Coupon Bond in the Cox, Ingersoll and Ross (1985) model. These examples have
been implemented in MATLAB R© using the pdepe function discussed in the Ap-
pendix.

5.4.1 Pricing a Plain Vanilla Call in the Black–Scholes Model (VBA R©)

As a first example we compare the implicit and the CN method. We consider the
problem of pricing a plain vanilla call option and computing its Greeks in the stan-
dard Black–Scholes model. Therefore we numerically solve

−∂τu(τ, x) + σ 2

2
x2 ∂xxu + rx ∂xu + ru = 0,

u(0, x) = (K − x)+,
(5.21)

u(τ, xmax) = 0,

u(τ, 0) = Ke−rτ .

To this aim we use the VBA R© functions:

• PDEImplicit(phi As Integer, spot As Double, strike As

Double, t As Double, rf As Double, sg As Double, numspace-

step As Integer, numtimestep As Integer, Smin As Double,

Smax As Double)

• PDECN(phi As Integer, spot As Double, strike As Double, t

As Double, rf As Double, sg As Double, numspacestep

As Integer, numtimestep As Integer, Smin As Double,

Smax As Double)

• PDECNSOR(phi As Integer, spot As Double, strike As Double,

t As Double, rf As Double, sg As Double, numspacestep As

Integer, numtimestep As Integer, Smin As Double, Smax As

Double, omega As Double, tol As Double)

These functions, presented in the Chapter on PDE’s, allow one to solve the above
problem using LU decomposition (PDEImplicit and PDECN) or using the
SOR method (PDECNSOR).

5.4 Illustrative Examples 145

Table 5.8. Numerical results of different finite difference schemes for the Black–Scholes equa-
tion

Spot price Implicit Crank–Nicolson BS formula

LU SOR (ω = 1.3)
0.7 0.049569 0.049570 0.049605 0.049600
0.8 0.088912 0.088923 0.088962 0.088965
0.9 0.140579 0.140598 0.140636 0.140645
1 0.203115 0.203139 0.203173 0.203185
1.1 0.274675 0.274699 0.274727 0.274740
1.2 0.353412 0.353434 0.353456 0.353469
1.3 0.437690 0.437709 0.437724 0.437736

Table 5.9. Crank–Nicolson method implemented with the SOR iterative method and different
values of ω

ω = 1.1 ω = 1.2 ω = 1.3 ω = 1.5
MAE 0.000096 0.0000582 0.000010 0.000107925
SSE 0.0006016 0.0003254 0.000058 0.00060338

Model parameters have been set to r = 0.1, σ = 0.4, K = 1, T = 1. We
have used a 500 × 1000 grid, so that δx = 10/500 and δτ = 1/1000. The SOR
method has been implemented with ω = 1.3 and a stopping criterion of 10−9. The
Crank–Nicolson (CN) implemented with SOR method seems to perform better re-
spect to others methods, Implicit and Crank–Nicolson with LU decomposition, see
Table 5.8. However, in the SOR method the choice of ω, can make a difference.
Indeed, in general it is very hard to estimate its optimal value, so we have to try dif-
ferent values of ω and compare the results with alternative methods before choosing a
“good value”. For the example chosen, the best choice for ω appears to be around 1.3,
as illustrated in Table 5.9 where we report the mean absolute error (MAE) and the
sum of squared errors (SSE) of the SOR method implemented with different values
of ω (1.1, 1.2, 1.3 and 1.5). Figures 5.6 and 5.7 represent the difference between the
Black–Scholes price and delta versus the corresponding numerically computed quan-
tities. In particular, we observe that the greatest error occurs near the strike price, due
to the non-differentiability of the payoff condition. Moreover, as expected the error
is larger for the delta. The computational cost has been approximately 1 second. We
do not report the results relative to the explicit method, for which a very fine time
step is necessary to avoid stability problems.

5.4.2 Pricing a Plain Vanilla Call in the Square-Root Model (VBA R©)

We now examine the problem of pricing a call option given alternative assumptions
about the stock price dynamics. This example is also useful to illustrate the flexibility
of the PDE approach. Indeed, very little change in the VBA R© code is necessary. In
particular, we compare the GBM process and the CEV (constant elasticity of vari-
ance) process. For this process the price dynamics are given by:

146 5 Numerical Solution of Linear Systems

Fig. 5.6. Call option price varying the spot price (Implicit and Crank–Nicolson schemes).

Fig. 5.7. Call option delta varying the spot price (Implicit and Crank–Nicolson schemes).

dX(t) = rX(t) dt + σ
(

X(t)
)γ /2

dW(t).

In particular, we examine the three cases: γ = 2 (lognormal process), γ = 1 (square-
root process) and γ = 3 and we examine at first the prices of plain vanilla call
options. The VBA R© implementation of this model does not require particular ef-
fort. In the module mPDEIngredients, we then need to modify the code of the
VBA R© function PDEfunctionA(spot As Double, rf As Double, sg
As Double) that is used in the code in the following way. Lines

Dim gamma As Double
gamma = 2 ’lognormal model
PDEfunctionA = 0.5 * sg * sg * spot^gamma

should be modified as follows:
Dim gamma As Double
gamma = 1 ’square root process
PDEfunctionA = 0.5 * sg * sg * spot^gamma

for considering the square-root process, or into

5.4 Illustrative Examples 147

Table 5.10. Call option prices for different models: Square-root (γ = 1), GBM (γ = 2), CEV
(γ = 3)

Strike γ = 1 γ = 2 γ = 3
0.7 0.381200 0.386449 0.392787
0.80 0.348966 0.354652 0.361020
0.9 0.263868 0.267052 0.270700
1 0.203386 0.203139 0.203385
1.1 0.156680 0.152836 0.149616
1.2 0.126610 0.119314 0.112866
1.3 0.096124 0.086599 0.078166

Dim gamma As Double
gamma = 3 ’CEV model
PDEfunctionA = 0.5 * sg * sg * spot^gamma

for considering the CEV process.
In Table 5.10 we report the prices of call options for different strikes assuming

different values for the parameter γ . In order to have comparable models, we chose
volatility parameters such as

σ 2
γ=1X = σ 2

γ=2X
2 = σ 2

γ=3X
3,

and, given X = 1, we have simply σγ=1 = σγ=2 = σγ=3. In the example, we set
X = 1, r = 0.1, σ = 0.4, T = 1 and we let K vary. Table 5.10 shows that as
we increase γ , calls in-the-money (and therefore puts out-of-the-money) increase in
value. Vice versa, for calls out-of-the money (puts in-the-money). Therefore, choos-
ing γ > 2 we can generate an implied volatility curve with a skewed shape, as is
usually observed for index options.

5.4.3 Pricing American Options with the CN Scheme (VBA R©)

Let us consider a put option written at an initial time 0 with a strike price K and
maturity date T on a nondividend paying stock. Suppose the option may be exercised
early. As discussed in the chapter on Dynamic Programming the value of the option
is the greater of the value on immediate exercise and that from holding the option.
The latter equals the risk-neutral expectation of its value at the next possible exercise
date discounted at the risk-free rate r

u(x, τ) = max
(

K − ex, e−rδτ
E

∗
x,τ

(

u
(

xeξ , τ + δτ
)))

, n = 1, 2, . . .

and where ξ is N ((r − σ 2/2)τ, σ 2τ), at maturity v(x, 0) = (K − x)+. The largest
stock price at which the put option value equals its exercise value is the exercise
boundary, b(τ), which satisfies K−xeb(τ) = u(b(τ), τ). Therefore, u(x, τ) = K−x

when x ≤ b(τ) (stopping region). When the asset price is above the critical price,
x > b(τ), it is convenient to keep the option alive (rather than exercising it, it would
be better to sell it). Therefore, in this region (continuation region) u satisfies the
Black–Scholes equation

148 5 Numerical Solution of Linear Systems

−∂τu(τ, x) + σ 2

2
x2∂xxu + rx∂xu + ru = 0, x > b(τ).

We can combine the two conditions into the following single equation

(

−∂τu(τ, x) + σ 2

2
x2∂xxu + rx∂xu + ru

)
(

u(τ, x) − (K − x)
)

= 0, x > 0, (5.22)

and together the two inequalities and (5.22) constitute the so called linear comple-

mentarity formulation of the American option pricing problem. Using finite differ-
ences we can discretize (5.22) and obtain the following linear system of inequalities:

(Avi+1 − bi)(vi+1 − gi+1) = 0, (5.23)

(vi+1 − gi+1) ≥ 0, (5.24)

(Avi+1 − bi) ≥ 0, (5.25)

where vi is the vector containing the solution at time step i, A and b depend on
the finite difference scheme that we have adopted, and gi is the payoff function at
time step i. Cryer (1971) has suggested a numerical solution to it using the Projected
SOR, PSOR. In this algorithm, the early exercise condition is included in the SOR
algorithm with the additional line of code

temp(i) = maximum(temp(i), earlypayoff(i)).

This line compares the result of the i-th iteration with the early exercise condi-
tion and takes the largest of the two. Note that direct methods cannot incorpo-
rate the early condition in such a simple way. Indeed, using LU we first com-
pute the updated solution and then we compare it with the payoff condition. This
is suboptimal. The Projected SOR method is implemented in the VBA R© function
PSOR(earlypayoff As Variant, subdiag As Variant, diag As
Variant, superdiag As Variant, q As Variant, x0 As Vari-
ant, NumberElements As Integer, omega As Double, tol As
Double). In this function, we have included a column vector named early-
payoff and containing the early exercise value of the option, e.g. (K − x)+ for a
put option, as first input.

As a numerical example, we consider the evaluation of an American put option
when r = 0.05, σ = 0.4, X = 1 and we let the strike price vary. In Table 5.11
we examine the Black–Scholes model and we compare the European Black–Scholes
price (BS) with the CN solution implemented with the PSOR algorithm7 with a bi-
nomial tree (Bin) and the numerical approximation due to Barone-Adesi and Whaley
(BA–W) (1987). The three methods confirm each other quite well showing a corre-
spondence to the third digit.

7 The CN method has been implemented using a 500 × 1000 grid, so that δx = 10/500 and
δτ = 1/1000. The PSOR method has been implemented with ω = 1.2 and a stopping
criterion of 10−9.

5.4 Illustrative Examples 149

In Table 5.12, we compare American option prices using three different dy-
namics: square-root, GBM and CEV processes. The PSOR algorithm has been
implemented setting ω = 1.2. Table 5.12 confirms that puts out-of-the money
(K = 1.1, 1.2 and 1.3) increase in value with γ .

Table 5.11. American (A) option prices in the Black–Scholes model using different numerical
approximations: Crank–Nicolson (CN), Barone-Adesi and Whaley formula (BA–W) and a
binomial tree with 1000 steps (BIN)

Strike BS CN BA–W BIN
0.7 0.026007 0.026717 0.02712 0.026658
0.80 0.050748 0.052303 0.05275 0.052277
0.9 0.085954 0.088954 0.08932 0.088904
1 0.131459 0.136692 0.13681 0.136691
1.1 0.186395 0.194825 0.19453 0.194813
1.2 0.249535 0.262279 0.26146 0.262322
1.3 0.319548 0.337851 0.33650 0.337895

5.4.4 Pricing a Double Barrier Call in the BS Model (MATLAB R© and VBA R©)

Let us consider a double barrier down-and-out call option in the BS model. The two
barriers are fixed at the price level U and L. The option strike is K , with L < K < U .
Let us consider the BS PDE in the log-return form

∂τG(τ, z) = 1

2
σ 2∂2

zzG(τ, z) +
(

r − σ 2

2

)

∂zG(τ, z) − rG(τ, z),

and, in order to use the MATLAB R© PDE solver, let us write it in the following form

∂τG(τ, z) = +1

2
σ 2∂z

(

∂zG(τ, z)
)

+
(

r − σ 2

2

)

∂zG(τ, z) − rG(τ, z), (5.26)

Table 5.12. European (E) and American (A) option prices for different models: square-root
(γ = 1), GBM (γ = 2), CEV (γ = 3)

γ = 1 γ = 2 γ = 3

Strike E A E A E A
0.7 0.033484 0.034127 0.026059 0.026717 0.019815 0.020448
0.80 0.057184 0.058544 0.050791 0.052303 0.045042 0.046661
0.9 0.089773 0.092386 0.085978 0.088954 0.082635 0.085932
1 0.131713 0.136360 0.131456 0.136692 0.131670 0.137443
1.1 0.182880 0.190639 0.186364 0.194825 0.190445 0.199531
1.2 0.242665 0.254961 0.249480 0.262279 0.257113 0.270347
1.3 0.310122 0.328763 0.319472 0.337851 0.330016 0.337851

150 5 Numerical Solution of Linear Systems

Table 5.13. Functions to be used as arguments to PDEp to solve the problem (5.26)

pdefun c = 1 f = 0.5*DuDx*sg^2 s = (r-sg^2/2)*DuDx-r*u
pdex1ic (x>=log(strike)).*(exp(x)-strike)
pdex1bcfun pl = ul; ql = 0; pr = ur; qr = 0;

Table 5.14. Prices of double knock-out call options, with barriers at L and U . Results are from
Kunitomo and Ikeda (KI) and from the numerical solution of the PDE. Parameters setting:
T − t = 0.5, X = 1000, K = 1000, r = 0.05

PDE (m × n)

σ L U KI (1992) grid MATLAB R© VBA R© (CN)
0.2 500 1500 66.12866 (300 × 300) 66.126651 66.12262
0.2 800 1200 22.08201 (300 × 300) 22.081897 22.08121
0.2 950 1050 0.00066 (30 × 300) 0.00056 0.00057
0.4 500 1500 53.34555 (300 × 300) 53.34755 53.34348
0.4 800 1200 3.13712 (300 × 300) 3.137155 3.13556
0.4 950 1050 0.00098 (30 × 300) 0.00000 0.00000

G(0, z) =
(

ez − K
)

+,

G(τ, ln U) = 0,

G(τ, ln L) = 0.

As described in the Appendix on the MATLAB R© solver, we need to define functions
describing (a) the PDE, (b) the initial condition, (c) the boundary conditions. This has
been done in the M-file pdeBSDoubleBarrierExample.m, where the function
pdepe is called using the structure

pdepe(m,@pdefun,@pdex1ic,@pdex1bcfun,x,t,[],riskfree,

sigma,strike).

Notice the presence of the parameters (riskfree,sigma,strike) as ad-
ditional inputs in the function pdepe. The functions pdefun, pdex1ic and
pdex1bcfun define the PDE, the initial condition and the boundary conditions;
see Table 5.13.

The complete code can be found in the Matlab R© module

function [solpoints, UOUT, DUOUTDX]

= pdeBSDoubleBarrierExample

In Table 5.14 we report the prices of a double knock-out option taken from Ta-
ble 3.1 in Kunitomo and Ikeda (1992), which provides an analytical formula in the
GBM case. In Table 5.14, for comparison, we give numerical results obtained using
the VBA R© code (Crank–Nicolson with LU factorization).8 The numerical solution

8 In VBA R© we have solved the BS PDE expressed in prices and not in returns. Moreover,
we have considered a standardized problem with barriers set at U/K and L/K and the spot

5.4 Illustrative Examples 151

Fig. 5.8. Numerical pricing of a double barrier down-and-out call option. Parameters are set
as follows: σ = 0.2, r = 0.05, K = 1, L = 0.5, U = 1.5, τ = 0.5.

152 5 Numerical Solution of Linear Systems

(price and delta) is also illustrated in Fig. 5.8. Notice that at the starting time, we
have an inconsistency between the initial condition evaluated at z = ln U and the
upper boundary condition. This inconsistency produces inaccurate solutions for very
short maturities. However, as time progresses, this problem fades away, except when
the ratio of the time step to the square of the space step, i.e. δτ/δz2, is too large. In
such cases, as discussed in the chapter on PDEs, the Crank–Nicolson solution gen-
erates spurious oscillations. For this reason, in Table 5.14 we set the number of grid
points equal to (30 × 300) when the barriers are 950 and 1050. We suggest that the
reader modifies the MATLAB R© code and prices a double barrier option using the
CEV model.

5.4.5 Pricing an Option on a Coupon Bond in the Cox–Ingersoll–Ross Model

(MATLAB R©)

Let us consider the Cox, Ingersoll and Ross (1985) model that assigns the following
risk-neutral dynamics to the short rate r:

dr(t) = α
(

μ − r(t)
)

dt + σ
√

r(t) dW(t).

At time t, the price P(t, T) of a zero-coupon expiring in T can be obtained by
evaluating the following expectation

P
(

t, T ; r(t)
)

≡ P(t, T) = E
∗
t

(

e−
∫ T
t r(s) ds

)

,

that admits the closed-form expression (see Hull (2005))

P(t, T) = A(t, T)e−B(t,T)r(t),

where

A(t, t + τ) =
(

2φ1eφ2τ/2

φ2(eφ1τ − 1) + 2φ1

)φ3

, (5.27)

B(t, t + τ) = 2
eφ1τ − 1

φ2 + 2φ1
, (5.28)

φ1 =
√

α2 + 2σ 2, φ2 = φ1 + α, φ3 = 2αμ

σ 2
.

The zero coupon bond price can be also obtained numerically solving the pricing
PDE

price at X/K . We reobtain the correct solution multiplying the numerical one by K. The
VBA R© implementation of the double barrier model simply requires a modification of the
code of the VBA R© functions upperbc and lowerbc that must return 0. In particular,
the function upperbc has to be modified as follows. The line of code

upperbc = spot - strike * Exp(-rf * t) ’bc for a call
option

has to be commented out and we need to activate the line of code
upperbc = 0 ’bc for a up-out barrier option

5.4 Illustrative Examples 153

−∂τu(τ, r) + σ 2

2
r∂rru(τ, r) + α(μ − r)∂ru(τ, r) − ru(τ, r) = 0, (5.29)

with initial condition
u(0, r) = 1,

and boundary conditions at r = rmax and at r = rmin:

u(0, rmax) = 0, u(0, rmin) = 1.

Our aim is now to price, using PDEs, an option on a coupon bond. The option will
expire at time T . If we let ci to be the coupon that is paid at time Ti, Ti > T ,
i = 1, . . . , n, with cn inclusive of the notional, the option payoff with strike K is
(

φ

(
n
∑

i=1

P
(

T , Ti; r(T)
)

ci − K

))

+
=
(

φ

(
n
∑

i=1

A(T , Ti)e
−B(T ,Ti)r(T)ci − K

))

+
,

where the parameter φ has been introduced to distinguish between call option
(φ = 1) and put option (φ = −1). We need to compute

u(τ, r) = E
∗
t

(

e−
∫ t+τ
t r(s) ds

(

φ

(
n
∑

i=1

A(t + τ, Ti)e
−B(t+τ,Ti)r(t+τ)ci − K

))

+

)

,

or equivalently, we can solve the pricing PDE

−∂τu(τ, r) + σ 2

2
r∂rru(τ, r) + α(μ − r)∂ru(τ, r) − ru(τ, r) = 0,

with initial condition

u(0, r) =
(

φ

(
n
∑

i=1

A(T , Ti)e
−B(T ,Ti)r(T)ci − K

))

+
,

and boundary conditions at r = rmax and at r = rmin:

u(0, rmax) =
{

0, φ = 1,

−
∑n

i=1 A(t, Ti)e−B(t,Ti)rmaxci + A(t, T)e−B(t,T)rmaxK, φ = −1,

u(0, rmin) =
{∑n

i=1 A(t, Ti)e−B(t,Ti)rminci − A(t, T)e−B(t,T)rminK, φ = 1,

0, φ = −1.

The two boundary conditions state that if we have a call option (put option) and r is
sufficiently large (small), the price of the coupon bond will be so low that the exercise
will be unlikely (likely).

The above problem can again be solved using the MATLAB R© function pdepe.
This is done in the MATLAB R© script pdeCIRoptiononazcb. In order to use the
function pdepe we need to assign the PDE to be solved (pdefun), the initial con-
dition (pdex1ic)and the boundary conditions (pdex1bcfun). Table 5.15 illus-
trates how to construct these functions. In particular, we have introduced a quantity

154 5 Numerical Solution of Linear Systems

named r0 that represents the interest rate level for which the coupon bond price equals
the exercise price

n
∑

i=1

A(T , Ti)e
−B(T ,Ti)r0ci = K.

The coupon bond price is a decreasing function of r , so that if r(T) < r0, the call
option will be exercised. Vice versa, for the put option. In Table 5.16 we compare
the prices of an option on a zero coupon bond given by: (a) the numerical solution of
the PDE as described above, (b) Monte Carlo simulation with 500,000 runs, (c) the
analytical solution given in the CIR paper. However, note that in order to implement
the CIR formula for options on a zero coupon bond we need the cumulative distribu-
tion of a non-central chi-square distribution. For this we have used the approximation
due to Sankaran (1963).9 In the Monte Carlo simulation we generate the short rate di-
rectly at the option maturity, according to the algorithm described in the Monte Carlo
chapter. The different methods agree very well. In Table 5.17 we price an option on a
coupon bond. The coupon bond pays a notional at maturity and a 5% annual coupon
every year for four years, starting one year later the option expiry. The price of the
option on the coupon bond can be computed using the so-called “Jamshidian trick”,
Jamshidian (1996), that exploit the monotonicity of the coupon bond with respect to
the short rate and is able to express the option on the coupon bond as an appropri-
ate portfolio of options on zero-coupon bonds. Each option can then be still priced
using the Sankaran approximation.10 Unfortunately, this approximation results falls
outside the 95% MC interval most of the time. This is not the case for the numerical
solution of the PDE.

Exercise Write a MATLAB R© code using the function pdepe to price a zero-
coupon bond when the dynamics of the short rate are specified as

dr(t) = α
(

μ − r(t)
)

dt + σ
(

r(t)
)γ

dW(t),

where γ > 0. Use the solution to price a zero-coupon bond and a call option on it.

9 The Sankaran approximation is implemented in the Matlab R© module
Chi2RipSankaran.m. The corresponding option pricing formula is in the Matlab R©

module ZCBOption_CIR.m.
10 The Jamshidian trick is implemented in the Matlab R© module BondOption_CIR.m.

Table 5.15. Functions to be used as arguments to pdepe to solve the problem (5.26)

pdefun c = 1

f = σ 2

2 *x*DuDx;

s = α*(μ-x-σ 2

2α
)*DuDx-x*u;

pdex1ic (φ*(x-r0)<=0).*(
∑n

i=1 A(t, Ti)e
−B(t,Ti)xci-K)*φ

pdex1bcfun p1 = ul-phi*(
∑n

i=1 A(s, Ti)e
−B(s,Ti)xci+A(s, T)e−B(s,T)x*K);

ql = 0; pr = ur; qr = 0;

5.5 Comments 155

Table 5.16. Prices of options on zcb in the CIR model. Parameters α = 0.1, μ = 0.1, σ = 0.1,
rmin = 0, rmax = 0.5. Strikes have been set equal to the forward price of the zero-coupon
bond

Option Zcb Strike PDE MC (s.e. ×103 Sankaran
maturity maturity (m = 500, n = 1000) 500,000 runs
0.25 0.5 98.7132 0.106508 0.10645 0.106475

(0.0021)
0.25 5 75.3712 1.20600 1.20440 1.205606

(0.0242)
1 2 94.5136 0.731992 0.73481 0.734048

(0.0142)
1 5 78.4225 2.046608 2.04619 2.051997

(0.0406)
5 6 93.5933 1.0694595 1.07078 1.080315

(0.0236)
5 10 71.027 3.143115 3.15348 3.175804

(0.0732)

Table 5.17. Prices of options on a coupon bond in the CIR model. Parameters α = 0.1,
μ = 0.1, σ = 0.1, rmin = 0, rmax = 0.5. Strikes have been set equal to the forward price of
the coupon bond

Option Strike PDE MC (s.e.) Sankaran
maturity (m = 500, n = 1000) 500,000 runs
1 95.703393 2.3386243 2.3405161 (0.0036606) 2.343645
2 94.825867 2.9534488 2.9505254 (0.0046964) 2.968641
3 94.129268 3.2217921 3.2113425 (0.0052998) 3.245655
4 93.576725 3.3090647 3.3185218 (0.0057044) 3.338724
5 93.138299 3.2897274 3.2953126 (0.0059728) 3.322710

5.5 Comments

The literature on solving the linear systems arising from the numerical solution of
PDEs is very large. Standard reference texts are Mitchell and Griffiths (1980), Mor-
ton and Mayers (1994) and Smith (1985). Hageman and Young (1981) is devoted
to iterative methods applied to linear systems arising from PDEs. Introductory text-
books to numerical analysis are Atkinson (1989) and Burlisch and Stoer (1992).
Quarteroni, Sacco and Saleri (2000) provide theoretical insights combined with ex-
amples and counterexamples implemented in MATLAB R©. A general introduction to
numerical linear algebra is given in Stewart (1973) and Golub and Van Loan (1996).
The best codes for the direct solution of linear systems are given in the package LIN-
PACK, see Dongarra et al. (1979). A detailed treatment of iterative methods can be
found in the essential book of Varga (1962), and also in Young (1971). For a pre-
sentation and templates for the solution of linear systems, we suggest Barrett et al.
(1994), available at the web address:

http://www.netlib.org/templates

156 5 Numerical Solution of Linear Systems

From the same website, MATLAB R© codes can be downloaded free of charge. For
generalizations of the Conjugate Gradient Method see Luenberger (1989), Bazaraa,
Sherali and Shetty (1993) for optimization problems, and Barrett et al. (1994) for
methods with asymmetric matrices. A discussion about the choice of a suitable pre-
conditioner can be found in the same text. See also Golub and Van Loan (1996, Sects.
10.2 and 10.3).

A detailed treatment of exotic option pricing using PDEs is given in Sydel (2006),
Tavella and Randall (2000), and Wilmott, Dewynne and Howison (1993). Other use-
ful references are Kwok (1998), Zhu, Wu and Chern (2005). They present the appli-
cation of PDEs to pricing multiasset products as well as more advanced methods.

Analytical formulae for barrier options have first been obtained by Geman and
Yor (1996) and Kunitomo and Ikeda (1992). The square-root process has been in-
troduced by Feller (1951), who studied the existence and uniqueness of the solution.
Cox, Ingersoll and Ross (1985) used this process for the description of the dynamics
of term structure of interest rates. Chen and Scott (1995) present a multifactor exten-
sion. A detailed analytical treatment can be found in Lamberton and Lapeyre (1996)
and in Cairns (2004). Vetzal (1998) discusses how to set appropriate boundary con-
ditions when we apply finite difference methods to the CIR model. The Constant
Elasticity of Variance Option Pricing Model has been introduced in finance by Cox
(1996), and studied in Schroder (1989). Webber and Kuan (2003) investigate the
pricing of barrier options in one-factor interest rate models.

Since the appearance of the cornerstone papers by Samuelson (1967), McKean
(1967), the fast computation of American puts became practical with the works of
MacMillan (1986) and Barone-Adesi and Whaley (1987). Since then the literature
on numerical methods for American options has grown enormously. Barone-Adesi
(2005) reviews the most important references. Detemple (2005) and Salopek (1997)
provide a detailed overview from both theoretical and computational approaches.
Brennan and Schwartz (1977) propose the first model for valuing American puts
using finite difference (implicit method). Dempster and Hutton (1999) investigate
the use of a finite difference scheme for American option pricing using a direct
numerical solver based on the simplex method. Zvan, Forsyth and Vetzal (1998a)
(1998b) introduce the penalty method for American options. Broadie and Detemple
(1996) perform an extensive study comparing the performance of various methods.
Villeneuve and Zanette (2002) investigate the pricing problem of American options
with the payoff depending on two assets. Battauz (2002) investigates the pricing of
American options written on two assets using a change of numéraire technique.

Numerical methods for PDEs with jump diffusion processes are studied in
D’Halluin, Forsyth and Vetzal (2003), Hirsa and Madan (2003), Zhang (1997).

6

Quadrature Methods

Quadrature methods allow for numerical computations of integrals. In quantitative
finance, these methods directly evaluate conditional expected values representing
derivative prices. This task can be achieved whenever the distribution of the under-
lying variable is available in closed form. The resulting method turns out to be very
effective for low-dimensional problems.

Let us consider a one-dimensional diffusion describing the evolution of an un-
derlying asset price under the risk-neutral probability measure P

∗:

dX(s) = μ
(
s,X(s)

)

ds + σ
(

s,X(s)
)

dW(s), X(t) = x.

The arbitrage-free price of a derivative with payoff F is given by the conditional
expectation:

F
(

t, X(t)
)

= E
∗
t

(

e−
∫ T
t r(s) dsF

(
T ,X(T)

))
, (6.1)

where r(t) is the risk-free instantaneous rate for interest prevailing at time t . Let
f (s, y; t, x) denote the transition density from state x at time t to state y at time
s > t . The analytic expression of this quantity is available in a few instances. For
example, if X is a geometric Brownian motion, i.e., μ(s, x) = rx, σ(s, x) = σx,
then

f (s, y; t, x) = 1

y
√

2πσ 2(s − t)
exp

(
−1

2

(
ln y − ln x − (r − σ 2/2)(s − t)

σ
√

s − t

)2)
.

By assuming deterministic interest rates and defining the discount factor as P(t, T) =
exp(−

∫ T

t
r(s) ds), we can write (6.1) as follows:

E
∗
t

(
e−

∫ T
t r(s) dsF

(
T ,X(T)

))
= P(t, T)

∫ +∞

0
F(T , y)f (T , y; t, x) dy. (6.2)

Quadrature methods allow one to numerically evaluate this integral.1

1 If the integrand is continuous on a compact domain, then integral (6.2) is finite. (Sometimes,
this condition is not easy to verify.) From now on, we assume this is the case.

158 6 Quadrature Methods

This chapter is organized as follows. Section 6.1 introduces the general idea
underlying quadrature rules. Section 6.2 presents the Newton–Cotes formulas and
details rectangle, trapezoid, Romberg and Simpson rules. Section 6.3 illustrates
Gaussian rules which improve the computing accuracy compared to the Newton–
Cotes formulas. VBA R© code is detailed in Sect. 6.4. Adaptive quadratures and the
corresponding Matlab R© functions are shown in Sect. 6.5. Section 6.6 presents the
derivative pricing problem using the Fourier transform with VBA R© and Matlab R©

implementation. Section 6.7 presents numerical examples. Finally we conclude with
a few comments and bibliographic suggestions.

6.1 Quadrature Rules

Consider an integral

I (f) =
∫

A

f (x) dx,

where f is a real-valued function defined on a closed and bounded subset A of the
real line. This quantity is traditionally computed by using an approximating finite
sums corresponding to a suitable partition of the set A. A quadrature rule of order n

assumes the form

In(f) =
n∑

i=1

wif (xi), (6.3)

where the wi’s are called weights and the xi are called abscissas or quadrature nodes.
These quantities depend on n, however we suppress the explicit indication of this fact
whenever it does not produce any ambiguity. Alternative quadrature methods arise
from different ways of building the set

Rn = {(wi, xi): i = 1, . . . , n}

such that In(f) =I (f) for some class of functions f .
Each of the rules presented below is coupled with theoretical results showing that

the resulting In(f) converges to I (f) as n → ∞ for any integrable function f . As
a consequence, we can improve our estimate by increasing the number n, although
this fact cannot be practically guaranteed. Indeed, the finite precision of computer
arithmetic may lead to round-off errors that can deteriorate the estimate of I when n

increases. For instance, this problem occurs whenever weights are negative, so that
the rule becomes unstable and round-off errors dominate discretization errors.

The basic strategy for computing In is as follows:

• Approximate function f by an interpolating polynomial pn of order n in a way
that pn(xi) = f (xi) for all i’s;

• Integrate pn and return I (pn) as approximation to I (f).

We consider Newton–Cotes formulae, for which abscissas xi are evenly spaced, and
Gaussian quadrature formulae, where both weights and abscissas are selected in a
way to maximize the order of the interpolating polynomial.

6.2 Newton–Cotes Formulae 159

6.2 Newton–Cotes Formulae

The ith Lagrange polynomial of degree n − 1 with respect to {x1, . . . , xn} is defined
as:

Li(x) = (x − x1) · · · (x − xi−1)(x − xi+1) · · · (x − xn)

(xi − x1) · · · (xi − xi−1)(xi − xi+1) · · · (xi − xn)

=
n∏

k=1,k �=i

(x − xk)

(xi − xk)
,

for i = 1, . . . , n. These functions satisfy Li(xi) = 1 and Li(xk) = 0 for k �= i. The
interpolating polynomial pn−1 of a function f on the set of points {x1, . . . , xn} is:

pn−1(x) =
n∑

i=1

f (xi)Li(x). (6.4)

This expression is known as the Lagrange interpolation formula. It can be shown
that:

• Functions L1(x), . . . , Ln(x) form a basis for the linear space of polynomials of
degree up to n − 1;

• Expression (6.4) is the unique representation of the polynomial pn−1(x) with
respect to this basis.

Example Let us suppose that the function f assumes the values 2, 4 and 7 at x1 = 1,
x2 = 3 and x3 = 5, respectively. We look for a polynomial of order 2 such that
p2(xi) = f (xi), for i = 1, 2, 3. Then:

L1(x) =
(x − 3)(x − 5)

(1 − 3)(1 − 5)
=

1

8
x2 − x +

15

8
,

L2(x) =
(x − 1)(x − 5)

(3 − 1)(3 − 5)
=

3

2
x −

1

4
x2 −

5

4
,

L3(x) =
(x − 1)(x − 3)

(5 − 1)(5 − 3)
=

1

8
x2 −

1

2
x +

3

8
,

so that:

p2(x) = 2L1(x) + 4L2(x) + 7L3(x)

= 2

(
1

8
x2 − x +

15

8

)
+ 4

(
3

2
x −

1

4
x2 −

5

4

)
+ 7

(
1

8
x2 −

1

2
x +

3

8

)

=
1

2
x +

1

8
x2 +

11

8
.

It is natural to wonder how large the error f (x) − pn−1(x) can be for a fixed n,

whenever x �= xi ranges between x1 and xn. It is possible to show that if f ∈
Cn([a, b]), then there is a point ξ depending on x, with x1 < ξ < xn, such that

160 6 Quadrature Methods

f (x) − pn−1(x) = f (n)(ξ)

n!

n∏

i=1

(x − xi), ∀x ∈ A, (6.5)

for all x ∈ A. Here f (n)(ξ) = ∂nf (x)/∂xn. Unfortunately, the problem with the
application of this formula is that the point ξ is not known a priori. However, expres-
sion (6.5) will still be useful in evaluating the error in quadrature methods.

We now move to integration of the interpolating function. Let A = [a, b] and
consider a uniform partition such that

xi = a + (i − 1)h,

for i = 1, . . . , n− 1 and n ≥ 2. Therefore, x1 = a, xn = b and h = (b − a)/(n− 1).
This partition gives rise to the so-called “closed formulae”, i.e., those for which the
integrand function is also computed at the endpoints a and b. Conversely, “open
formulae” are obtained by setting h = (b−a)/(n+1) and xi = a+ih, i = 1, . . . , n,
(x1 = a + h, xn = b − h). These latter are useful whenever the integrand function is
not defined at the endpoints a and b. In what follows, we explicitly deal with closed
formulae. However, the results can be extended to open formulae as well.

By integrating the interpolation formula (6.4), we may approximate I (f) :=∫ b

a
f (x) dx by

In(f) =
∫ b

a

pn−1(x) dx =
n∑

i=1

f (xi)

∫ b

a

Li(x) dx.

In order to simplify the right-hand side of this expression, we consider the change of
variable x = x1 + (t − 1)h, so that:

x − xk

xi − xk

=
x1 + (t − 1)h − (x1 + (k − 1)h)

x1 + (i − 1)h − (x1 + (k − 1)h)

=
(t − k)

(i − k)
.

Consequently, Li(x) =
∏n

k=1,k �=i(t−k)/(i−k) = φi(t),
∫ b

a
Li(x) dx =

∫ n

1 φi(t)h dt

and

In(f) =
∫ b

a

pn−1(x) dx =
n∑

i=1

f (xi)

∫ n

1
φi(t)h dt

= h

n∑

i=1

f (xi)wi,

with wi =
∫ n

1 φi(t) dt . We remark that weights wi do not depend on the interval
[a, b], but only on the order n. This allows to tabulate quantities αi =

∫ n

1 φi(t) dt

and use their values for integrating other functions on various intervals.

6.2 Newton–Cotes Formulae 161

Example Let us consider the case n = 2. This corresponds to interpolating f with a
polynomial of order 1 and computing the function at two points only. As h = b − a,

w1 =
∫ 2

1
φ1(t) dt =

∫ 2

1

2∏

k=1,k �=1

(t − k)

(1 − k)
dt =

∫ 2

1

(t − 2)

(1 − 2)
dt =

1

2
,

w2 =
∫ 2

1
φ2(t) dt =

∫ 2

1

2∏

k=1,k �=2

(t − k)

(2 − k)
dt =

∫ 2

1

(t − 1)

(2 − 1)
dt =

1

2
.

As h = b − a, then I (f) is approximated by

I2(f) =
∫ b

a

f (x) dx = h
(
w1f (a) + w2f (b)

)
=

(b − a)

2

(
f (a) + f (b)

)
,

that is the average of the function f at the interval endpoints.

Combining interpolation using Lagrange polynomials and integration performed
as illustrated above gives rise to the so-called closed Newton–Cotes formulae:

∫ b

a

pn(x) dx = h

n∑

i=1

fiwi,

where fi = f (a + (i − 1)h), h = (b − a)/(n − 1) for closed formulae and
fi = f (a + ih), h = (b − a)/(n − 1) for open formulae providing an approxi-
mate value for

∫ b

a
f (x) dx. The coefficients (weights) wi are rational numbers sat-

isfying
∑n

i=1 wi = n − 1 for closed formulae and n + 1 for open formulae. They
are presented in Table 6.1 for closed formulae and Table 6.2 for open formulae. As
n increases, some of the values wi become negative and the corresponding formulae
become unsuitable for numerical purposes as long as cancellations tend to occur in
the sum h

∑n
i=1 fiwi . The approximation error in using Newton–Cotes formulae can

be computed through expression (6.5):

I (f) − In(f) =
{

enh
n+1f (n)(ξ) f ∈ C(n)([a, b]), n even,

onh
n+2f (n+1)(ξ) f ∈ C(n+1)([a, b]), n odd.

Table 6.1. Weights of closed Newton–Cotes formulae and corresponding error

Rule n − 1 w1 w2 w3 w4 w5 w6 w7 |Error|

Trapezoid 1 1
2

1
2 0 0 0 0 0 h3

12 f (2)(ξ)

Simpson 2 1
3

4
3

1
3 0 0 0 0 h5

90 f (4)(ξ)

3/8-rule 3 3
8

9
8

9
8

3
8 0 0 0 3

80h5f (4)(ξ)

Milne 4 14
45

64
45

24
45

64
45

14
45 0 0 8

945h7f (6)(ξ)

– 5 95
288

375
288

250
288

250
288

375
288

95
288 0 275

12096h7f (6)(ξ)

Weddle 6 41
140

216
140

27
140

272
140

27
140

216
140

41
140

9
1400h9f (8)(ξ)

162 6 Quadrature Methods

Table 6.2. Weights of open Newton–Cotes formulae and corresponding error

n − 1 w1 w2 w3 w4 w5 w6 w7 |Error|
0 1 0 0 0 0 0 0 h3

24 f (2)(ξ)

1 3
2

3
2 0 0 0 0 0 h3

4 f (2)(ξ)

2 8
3 − 4

3
8
3 0 0 0 0 28

90h5f (4)(ξ)

3 55
24

5
24

5
24

55
24 0 0 0 95

144h5f (4)(ξ)

4 66
20 − 84

20
156
20 − 84

20
66
24 0 0 41

140h7f (6)(ξ)

Here ξ is a suitable number in [a, b], and both en and on depend on n but not on the
integrand function f . Their values are given in the last column in Tables 6.1 and 6.2.

We conclude with a couple of remarks.

• If n is even (odd) and f is a polynomial of degree n − 1 (n), then f (n)(x) = 0
(f (n+1)(x) = 0) and the integration rule is exact in that we can exactly integrate
polynomials of degree n − 1 (n);

• As n → ∞, then h → 0 and the error bound vanishes. However, from a numer-
ical point of view, using n larger than 6 can generate round-off errors. This fact
compels one to consider alternative formulae such as the ones presented below.

6.2.1 Composite Newton–Cotes Formula

Newton–Cotes formulae are usually not applied to the entire interval of integration
[a, b]. A popular practice consists of splitting this interval into m − 1 evenly spaced
subintervals [xj , xj+1], j = 1, . . . , m − 1, i.e., xj = a + (j − 1)H with H = (b −
a)/(m − 1). The required integral is given by the sum of the integrals computed on
each subinterval, each one being calculated using a Newton–Cotes formula with n+1
equally spaced nodes. The resulting procedure is known as a composite Newton–
Cotes formula and can be described as follows. The integral

I (f) =
∫ b

a

f (x) dx =
m−1∑

j=1

∫ xj+1

xj

f (x) dx

is approximated by In,m(f) defined as

In,m(f) = h

m−1∑

j=1

n∑

i=1

fi,jwi,

where fi,j = f (x
j

i) and the x
j

i ’s are nodes refining subinterval [xj , xj+1] and where
h = H/(n − 1) for close formula and h = H/(n + 1) for open formula. We remark
that integers m − 1 and n − 1 respectively refer to the number of subintervals and to
the order of the interpolating polynomial.

The error associated to a composite Newton–Cotes formula is given by

6.2 Newton–Cotes Formulae 163

I (f) − In,m(f)

=
{

b−a
(n)!

en

(n−1)n+1 H nf (n)(ξ) f ∈ C(n)([a, b]) and n even,
b−a

(n+1)!
on

(n+1)n+2 H n+1f (n+1)(ξ) f ∈ C(n+1)([a, b]) and n odd,
(6.6)

where ξ ∈ [a, b]. This figure says that approximation In,m(f) is exact up to the
order n − 1 (resp. n) if n is even (resp. odd). In other words, it integrates exactly all
polynomials of degree n − 1 (resp. n). For a fixed value n, this error vanishes to zero
as m → ∞ (i.e. H → 0).

From expression (6.6), it is clear that estimating an approximation error requires
derivatives of f . If this is not the case, we may proceed as follows. We let n be
an even number and then compute the error corresponding to a half of the space
length h:

I (f) − In,m(f) =
b − a

n!
en

(n − 1)n+1
H nf (n)(ξ), (6.7)

I (f) − In,2m−1(f) =
b − a

n!
en

(n − 1)n+1

(
H

2

)n

f (n)(ξ), (6.8)

|In,m − In,2m−1(f)| =
b − a

n!
|en|

(n − 1)n+1

∣∣∣∣f
(n)(ξ)

(
H n −

H n

2n

)∣∣∣∣

=
b − a

n!
|en|

(n − 1)n+1

(
H

2

)n∣∣f (n)(ξ)
∣∣(2n − 1

)

= |I (f) − In,2m−1(f)|
(
2n − 1

)
.

Consequently, the error estimate of the Newton–Cotes formula reads as:

|I (f) − In,2m−1(f)| = |In,m − In,2m−1(f)|
(

1

2n − 1

)
(6.9)

for n even. Similarly, for n odd we get

|I (f) − In,2m−1(f)| = |In,m − In,2m−1(f)|
(

1

2n+1 − 1

)
. (6.10)

These formula can be used for estimating the error. We now detail composite
formulae corresponding to n = 1, 2, and 3. Higher values are usually not desirable
due to cancellation errors produced by abnormal weights arising in these instances.

Rectangle and Midpoint Rules (n = 1)

These are the simplest approximations. They work rather well whenever function
f is smooth and the space between points xi is adequately small (i.e., m is quite
large). In the Rectangle rule,2 the function f on each interval is approximated by
a piecewise constant function using the value attained at one of the two vertices of

2 To be precise this is not a Newton–Cotes formula.

164 6 Quadrature Methods

Fig. 6.1. Approximation of the integral using rectangles.

Table 6.3. Pseudo-code for implementing the rectangle rule

Input a, b, m and f.
Set H = (b - a)/(m - 1)
Initialize sum = 0
For i = 0 to m - 1

Compute f at abscissas xi = a+i*H
Update the sum according to sum = sum+H*f(xi)

Next i
Return sum

each subinterval. For example, in Fig. 6.1, we use the points x0 and x1. All weights
are equal to 1 and the approximated formula reads as:

I0,m(f) = h

m−1∑

j=1

fj .

Table 6.3 provides the pseudo-code for implementing the rectangle rule.
In the composite midpoint formula the function on each subinterval is approxi-

mated by the value attained at the subinterval midpoint, that is (xi+1 − xi)f ((xi+1 +
xi)/2), see Fig. 6.2. The composite formula reads as

I1,m(f) = h

m−1∑

j=1

f
j+ 1

2
,

where f
i+ 1

2
:= f ((xi+1 + xi)/2).

Example Let us consider the computation of the following integral

6.2 Newton–Cotes Formulae 165

Fig. 6.2. Approximation of the integral using the midpoint formula.

Fig. 6.3. Graph of the integrand function in expression (6.11).

5

eπ − 2

∫
π/2

0
e2x cos(x) = 1. (6.11)

The integrand function is shown in Fig. 6.3. Table 6.4 shows the behavior of
approximated value I0,m, error, En,m = I (f) − In,m(f), and ratio Rn,m = |I (f) −
In,m(f)|/|I (f)−In,2m−1(f)| across alternative values for m. Following expressions
(6.9) and (6.10), this ratio is expected to converge to 2 for large values of m as long
as n = 1. This means a reduction of the absolute error by a factor of 2 following a
transition from m to 2m − 1 subintervals, i.e., reducing length h of each subinterval

166 6 Quadrature Methods

Table 6.4. Example of the rectangle rule

m I0,m(f) E0,m(h) = (I (f) − I0,m(f)) E0,m(h)/E0,2m(n)−1
2 0.371510 6.285E–01
3 0.817605 1.824E–01 3.446
5 0.972004 2.800E–02 6.515
9 1.004241 −4.241E–03 −6.601

17 1.006842 −6.842E–03 0.620
33 1.004611 −4.611E–03 1.484
65 1.002604 −2.604E–03 1.771

129 1.001377 −1.377E–03 1.892
257 1.000707 −7.070E–04 1.947
513 1.000358 −3.581E–04 1.974

1025 1.000180 −1.802E–04 1.987
2049 1.000090 −9.041E–05 1.994

by a half. If m exceeds the threshold 2049, the discretization error becomes smaller
than the round-off error and the ratio does not tend to approach level 2 anymore.

Trapezoid Rule (n = 2)

This rule approximates the function on each subinterval using linear interpolation as
illustrated in Fig. 6.4, that is by replacing

∫ xj+1
xj

f (x) dx with (f (xj)+f (xj+1))h/2:

I1,m(f) = h

2

m−1∑

j=1

(
f (xj) + f (xj+1)

)

= h

(
1

2
f (x1) + f (x2) + · · · + f (xm−1) + 1

2
f (xm)

)
.

The resulting error can be computed by summing up all error terms for subinter-
vals and observing that h = H . If f ∈ C2([a, b]), we have:

|I (f) − I1,m(f)| =
m−1∑

j=1

h3

12
f (2)(ξj) =

h2

12

b − a

m − 1

m−1∑

j=1

f (2)(ξj),

where ξj ∈ [xj , xj+1]. Since minj f (2)(ξj) ≤
∑m−1

j=1 f (2)(ξj)/(m − 1) ≤
maxj f (2)(ξj) and f (2)(ξ) is continuous, a number ξ ∈ [minj ξj , maxj ξj] ⊂ [a, b]
exists, with f (2)(ξ) =

∑m−1
j=1 f (2)(ξj)/(m − 1). Therefore:

|I (f) − I1,m(f)| =
h2

12
(b − a)f (2)(ξ),

with ξ ∈ [a, b], showing that the error stemming from trapezoid rule approaches
zero at the same rate as h2. This rule is said to be of order 2 and integrates exactly
first-order polynomials.

6.2 Newton–Cotes Formulae 167

Fig. 6.4. Approximation of the integral using trapezium.

An interesting remark relative to the accuracy of the trapezoid rule can be made
by exploiting the so-called Euler–MacLaurin formula. This formula states that

I1,m(f) −
∫ b

a

f (x) dx =
k∑

l=1

h2l B2l

(2l)!
(
f (2l−1)(b) − f (2l−1)(a)

)

+ h2k+2 B2k+2

(2k + 2)! (b − a)
(
f (2k+2)(ξ)

)
, (6.12)

for a suitable ξ ∈ [a, b] and all f ∈ C2k+2([a, b]). Here, B2l are Bernoulli numbers:3

B2 =
1

6
, B4 = −

1

30
, B6 =

1

42
, B8 = −

1

30
,

In particular, if f ∈ C3([a, b]) and satisfies f (1)(b) = f (1)(a), we obtain

I1,m(f) −
∫ b

a

f (x) dx ≃ h4 B2

(2)!
(
f (3)(b) − f (3)(a)

)
.

In this case, the trapezoid rule exhibits an error of order h4. If f ∈ C5([a, b]), then
f (1)(b) = f (1)(a) and f (2)(b) = f (2)(a) and the error is of order h6. Therefore,
when f is a highly periodic smooth function, that is f (j)(b) = f (j)(a) holds true up

3 Bernoulli numbers are the values assumed by Bernoulli polynomials for x = 0. The kth
Bernoulli polynomial Bk(x) satisfies (−1)kBk(1 − x) = Bk(x). The first five Bernoulli
polynomials are: B0(x) = 1, B1(x) = x− 1

2 , B2(x) = x2−x+ 1
6 , B3(x) = x3− 3

2x2+ 1
2x,

B4(x) = x4 − 2x3 + 2x2 − 1
30 . Bernoulli numbers of an odd index k > 1 are all equal to

zero.

168 6 Quadrature Methods

to a large value for j , the trapezoid rule turns out to be a very accurate integration
formula. This fact is particularly useful for the numerical inversion of Fourier and
Laplace transforms, that involve the numerical integration of oscillating functions.

Again, the Euler–MacLaurin formula can be used for the purpose of improving
the trapezoid rule whenever both f (1)(b) and f (1)(a) are available. A formula of
order h4 reads as

I ∗
2,m(f) = I2,m(f) + h2

12

(
f (1)(a) − f (1)(b)

)
.

The corresponding error I (f) − I ∗
2,m(f) is (b − a)h4f (4)(ξ)/720, provided the f ∈

C4([a, b]). The order of trapezoid formula improves by a factor of 2 with a simple
computation of the first derivative at the boundaries.

If we replace derivatives with finite differences of suitably high order, we obtain
the so-called end corrections of a trapezoidal sum. For example, the following variant
of the trapezoid rule has an error of order 3:

Î2,m(f) = h

(
5

12
f (a) +

13

12
f (a + h) + f (a + 2h)

+ · · · + f (b − 2h) +
13

12
f (b − h) +

5

12
f (b)

)
. (6.13)

Example Let us consider the integral (6.11)

5

eπ − 2

∫
π/2

0
e2x cos(x) = 1. (6.14)

Table 6.5 shows the behavior of approximated values I2,m, errors En,m = I (f) −
In,m(f), and ratios Rn,m = |I (f)−In,m(f)|/|I (f)−In,2m−1(f)| across alternative
values for m. Following expressions (6.9) and (6.10), this ratio is expected to con-
verge to 4 (resp., 8) for large values of m as long as n = 2 – Trapezoid rule (resp.,
n = 3 – Extended Trapezoid rule).

The Romberg Extrapolation

The Trapezoid Rule can be further improved using Romberg integration.4 This pro-
cedure consists of using two estimates of the integral, say I2,m1(f) and I2,m2(f), in
order to extrapolate a better approximation to I (f). The estimates use different grid
spacing. Romberg integration starts with the Euler–MacLaurin formula and repre-
sents I2,m(f) in terms of step length h = (b − a)/(m − 1), that is:

I2,m(f) = I (f) + γ1h
2 + γ2h

4 + · · · + γkh
2k + C(h)h2k+2, (6.15)

4 Romberg integration is a particular case of the more general Richardson extrapolation as
applied to the trapezoid rule. This method exploits representation (6.15) of the error of the
trapezoid formula in terms of power of h2.

6.2 Newton–Cotes Formulae 169

Table 6.5. Example of trapezoid and extended trapezoid rules

Trapezoid Extended trapezoid

m I2,m(f) E2,m(h) Î2,m(f)

2 0.185755 8.142E–01
3 0.724727 2.753E–01 2.958
5 0.925565 7.443E–02 3.698 0.964759 3.524E–02 0
9 0.981022 1.898E–02 3.922 0.994570 5.430E–03 6.490

17 0.995232 4.768E–03 3.980 0.999247 7.531E–04 7.210
33 0.998807 1.193E–03 3.995 0.999901 9.914E–05 7.596
65 0.999702 2.985E–04 3.999 0.999987 1.272E–05 7.796

129 0.999925 7.462E–05 4.000 0.999998 1.610E–06 7.897
257 0.999981 1.866E–05 4.000 1.000000 2.026E–07 7.949
513 0.999995 4.664E–06 4.000 1.000000 2.541E–08 7.974

1025 0.999999 1.166E–06 4.000 1.000000 3.181E–09 7.987
2049 1.000000 2.915E–07 4.000 1.000000 3.981E–10 7.990

Table 6.6. Pseudo-code for implementing the trapezoid rule

Input a, b, m and f
Set h = (b - a)/(m - 1)
Initialize sum = 0.5 * h * (f(a) + f(b))
For i = 1 to m-2

Compute f at abscissas ai = a+i*h
Update the sum according to sum = sum+h*f(ai)

Next i
Return sum

where the expressions for γ1, . . . , γk and C(h) derive from (6.12). Therefore, we
have devised for I2,m(f) a polynomial expansion in powers of h2. The Romberg
extrapolation is based on the following idea. We halve the integration range and
compute I2,m(f) and I2,2m−1(f), see Fig. 6.5. According to formula (6.15), we have:

I2,m(f) = I (f) + γ1h
2 + γ2h

4 + · · · + γkh
2k + C(h)h2k+2,

I2,2m−1(f) = I (f) + γ14h2 + γ2(2h)4 + · · · + γk(2h)2k + C(h)(2h)2k+2.

We multiply the first of these expressions by 4 and then subtract the second one from
it. By solving with respect to I (f), we obtain:

I (f) = I2,m(f) + 1

3

(
I2,m(f) − I2,2m−1(f)

)
+ γ ∗

2 h4

+ · · · + γ ∗
k (2h)2k + C∗(h)(2h)2k+2,

that is an estimate of the integral with accuracy to the order of h4. If we approximate
the integral above using formula

I2,m(f) + 1

3

(
I2,m(f) − I2,2m−1(f)

)
,

170 6 Quadrature Methods

Fig. 6.5. Approximation of the integral using trapezium and Romberg extrapolation.

then we can exactly compute integrals of polynomials up to the third order.
We consider the following sequence of interval refinements:

h0 = b − a, h1 = h0

2
, . . . , hi = hi−1

2
, i = 2, 3, . . . (6.16)

and the corresponding trapezoid formula

Ti,0 = I1,m(hi)(f),

where m(hi) = (b−a)/hi +1. We can extrapolate the value of the integral by using
the recursion

Ti,s+1 = 4s+1Ti,s − Ti−1,s

4s+1 − 1
, s = 0, . . . , n − 1; i = s + 1, . . . , n, (6.17)

which can be represented by the diagram reported in Table 6.7. Starting on the upper-
west case and then proceeding downward in this table amounts to increasing the
number of subintervals used in the trapezoid rule, whereas moving towards the right
end refers to augmenting the order of the integration rule. Furthermore, as n → ∞,
the values on each column, as well as those on the diagonal, converge to the definite
integral. It can be proved that the error I (f) − Ti,n goes to zero as fast as h2(n+1)

does. The extrapolating procedure can be speeded up by using the fact that under
refinement (6.16), half of the function values required to compute the trapezoidal
sum Ti+1,0 stem from the calculation of Ti,0. This is illustrated in Fig. 6.6. In order
to avoid recomputing the function values at these points, we can use the following
updating rule:

T0,0 =
h0

2

(
f (a) + f (b)

)
, (6.18)

6.2 Newton–Cotes Formulae 171

Table 6.7. Romberg extrapolation

T0,0

T1,0
ց
→ T1,1

T2,0
ց
→ T2,1

ց
→ T2,2

T3,0
ց
→ T3,1

ց
→ T3,2

ց
→

...
...

...
...

Tn,0
ց
→ Tn,1

ց
→ Tn,2

ց
→

ց
→ Tn,n

Fig. 6.6. New points necessary to refine the grid in the trapezoidal rule, starting with h0 = b−a

and then setting hi = hi−1/2.

T1,0 =
T0,0

2
+ h1f (a + h1),

...

Ti+1,0 =
Ti,0

2
+ hi+1

(
f (a + jhi+1) + f (a + 3hi+1)

+ f (a + 5hi+1) + · · · + f (b − hi+1)
)
.

The Romberg algorithm provides no clue about the proper size of parameter i

defining the number of elements in the first column of diagram (6.7). In practice,
one only computes a few columns, seven or eight for example, and then interrupts
the calculation as soon as |Ti+1,6 − Ti,6| becomes “reasonably small”.5 However,
the stopping criteria related to |Ti+1,6 − Ti,6| sometimes leads to an early stopping.
Therefore, more refined stopping rules can be used. Table 6.8 provides the pseudo-
code for Romberg extrapolation.

5 This criterion has been implemented in the VBA R© function romberg(a, b, mmax).
Here, mmax is the maximum number of elements in the first column in Table 6.7. Alterna-
tive stopping rules are discussed in Stoer and Bulirsch (1980), p. 149.

172 6 Quadrature Methods

Table 6.8. Pseudo-code for implementing the Romberg extrapolation

Input a, b, maxiter, EPSILON and f
Set h = b - a; t(1) = 0.5*h*(f(a)+f(b));
For i = 1 to maxiter-1

h = 0.5*h //halve the integration length
compute t[i+1,1] using (6.18)
For j = 2 To i + 1

extrapolate up to t[i+1,j] using (6.17);
next j
err = Abs(t[i+1,i+1]-t[i,i])
If err < EPSILON return {t[i+1,i+1], err, i+1}

next i
return {t[maxiter, maxiter], err, maxiter}

Table 6.9. Example of the Romberg extrapolation

i h m(h)/s 0 1 2 3 4
1 1.570796 2 0.185755
2 0.785398 3 0.724727 0.904385
3 0.392699 5 0.925565 0.992510 0.998386
4 0.196350 9 0.981022 0.999507 0.999974 0.999999
5 0.098175 17 0.995232 0.999969 0.99999958 1.000000 1.000000

Example We aim at computing integral (6.19)

5

eπ − 2

∫
π/2

0
e2x cos(x) = 1 (6.19)

by using the Romberg extrapolation. The first rows in the iteration matrix indicated
in Table 6.7 are reported in Table 6.9. Numbers shown in the column “0” result from
applying the trapezoidal approximation and then halving the interval length h. The
remaining columns report extrapolated values obtained by using recursion (6.17). We
see that the level of accuracy is |T4,4 − T3,3| = 1.23 × 10−6. Notice that the trape-
zoidal rule would require as much as m = 1,025 subintervals in order to produce a
result with comparable accuracy.

Simpson Rule (n = 3)

The Simpson formula is based on a local quadratic approximation of the integrand
using nodes a, (a + b)/2 and b. From Table 6.1, we obtain:

∫ b

a

f (x) dx = h

3

(
f (a) + 4f

(
a + b

2

)
+ f (b)

)
.

If f ∈ C4([a, b]), then the error I (f)−In(f) is −h5f (4)(ξ)/90. For any even m, the
composite formula is obtained by applying the Simpson rule to consecutive nonover-

6.2 Newton–Cotes Formulae 173

lapping pairs of subintervals [x2j+1, x2j+2, x2j+3], for j = 0, 1, . . . , m/2 − 3, indi-
vidually, yielding the approximation (f (x2j+1)+ 4f (x2j+2)+f (x2j+3))h/3. Sum-
ming these contribution yields to the composite estimate

I3,m(f) = h

3

m/2−3∑

j=0

(
f (x2j+1) + 4f (x2j+2) + f (x2j+3)

)

= h

3
(f1 + 4f2 + 2f3 + 4f4 + · · · + 2fm−2 + 4fm−1 + fm).

It can be shown that the error in the composite Simpson formula is given by

I (f) − I3,m(f) = −b − a

180
h4f (4)(ξ), ξ ∈ [a, b],

provided that f ∈ C4([a, b]). Table 6.10 provides the pseudo-code for the Simpson
rule.

Example Table 6.11 reports values obtained for integrating

5

eπ − 2

∫
π/2

0
e2x cos(x) = 1

Table 6.10. Pseudo-code for implementing the Simpson rule

Input a, b, m and f
Set h = (b - a)/(m - 1)
sum = h * (f(a) + f(b)) / 3
For i = 1 To m - 2 Step 2

sum = sum + h * f(a + i * h) * 4 / 3
Next i
For i = 2 To m - 2 Step 2

sum = sum + h * f(a + i * h) * 2 / 3
Next i
return sum

Table 6.11. Integration of (6.11) using composite Simpson quadrature under alternative num-
bers of subintervals

m I3,m(f) Em = I (f) − I3,m(f) Em/E2m+1
3 0.904385 9.562E–02 0.000
5 0.992511 7.489E–03 12.767
9 0.999507 4.928E–04 15.196

17 0.999969 3.119E–05 15.803
33 0.999998 1.955E–06 15.951
65 1.000000 1.223E–07 15.988

129 1.000000 7.645E–09 15.996
257 1.000000 4.780E–10 15.992
513 1.000000 3.009E–11 15.887

174 6 Quadrature Methods

by using the Simpson rule. We can see that the ratio between absolute errors ap-
proaches 16. This figure is in accordance with expression (6.9) as applied to the
Simpson rule (n = 2).

6.3 Gaussian Quadrature Formulae

Newton–Cotes formulae use a fixed number of equally spaced abscissas and choose
the weights to achieve the highest order of accuracy. Moreover, they are usually im-
plemented in a composite form: the interval of integration is divided into subintervals
of equal size, then the rule is applied to each subinterval, and finally the sum of re-
sulting numbers is taken as an estimate of the overall integral. In this framework,
convergence to the actual value of the integral can be rather slow. Consequently,
an accurate estimation may require a excessively large number of subintervals and
corresponding evaluations of the integrand function.

Gaussian quadrature rules select both the n abscissas and the n weights to pro-
duce a rule of order 2n−1. This way we can exactly integrate polynomials of degree
2n − 1, that is the highest degree for which a polynomial can be integrated using
n points. Therefore, compared to the Newton–Cotes formulas, we may freely select
the abscissas at which the integrand function is evaluated.

Example We build a quadrature rule for integrating exactly all polynomials up to
the third order, i.e., combinations of 1, x, x2, and x3, over the closed interval [−1, 1]
by using 2 points only (n = 2). By setting {wi, xi}i=1,2 so that:

I (1) =
∫ 1

−1
1 dx = 2 = w1f (x1) + w2f (x2) = w1 + w2,

I (x) =
∫ 1

−1
x dx = 0 = w1f (x1) + w2f (x2) = w1x1 + w2x2,

I
(
x2) =

∫ 1

−1
x2 dx = 2

3
= w1f (x1) + w2f (x2) = w1x

2
1 + w2x

2
2 ,

I
(
x3) =

∫ 1

−1
x3 dx = 0 = w1f (x1) + w2f (x2) = w1x

3
1 + w2x

3
2 ,

we derive a set of nonlinear equations:
⎧
⎪⎪⎨
⎪⎪⎩

w1 + w2 = 2
w1x1 + w2x2 = 0
w1x

2
1 + w2x

2
2 = 2

3
w1x

3
1 + w2x

3
2 = 0.

The solution for this system is:

w1 = 1, w2 = 1, x1 = − 1
√

3
, x2 =

1
√

3
.

6.3 Gaussian Quadrature Formulae 175

Consequently, the 2-point quadrature rule for a function f reads as:

I (f) =
∫ 1

−1
f (x) dx ≃ 1f

(
−

1
√

3

)
+ 1f

(
1

√
3

)
.

If we are interested in integrating the same function in the interval [a, b], we define
α = (a + b)/2 and β = (b − a)/2, and compute

∫ b

a

f (x) dx =
∫ 1

−1
f (α + βx) dx ≃ 1f

(
α − β

1
√

3

)
+ 1f

(
α + β

1
√

3

)
.

We see that weights remain unchanged, while the two abscissas selected inside the
interval [a, b] are α − β 1√

3
and α + β 1√

3
, namely those resulting from applying a

linear transformation of the abscissas obtained in case of integration on the interval
[−1, 1]. As a sample case, we consider f (x) = 1/(0.2x + 3) on [−1, 1]. The exact
value is

∫ 1

−1

1

0.2x + 3
dx = 5 ln |3 + 0.2x|

∣∣1
−1 = 5 ln

(
8

7

)
= 0.6676569631.

By using a two-point Gaussian quadrature rule, we get to an approximated value

1
1

0.2(−1/
√

3) + 3
+ 1

1

0.2(1/
√

3) + 3
= 0.6676557864,

with a bias evaluated as 1.1768 × 10−6.

The quadrature formula illustrated above can be extended to integrate the product
of polynomials with any function φ. We need to select weights wi and abscissas xi

in a way that the approximated integral

∫ b

a

φ(x)f (x) dx ≃
n∑

i=1

wif (xi)

is exact provided that f is a polynomial of degree 2n − 1.
The error in the quadrature rule, when φ(x) ≡ 1, can be evaluated by the follow-

ing estimate. See Davis and Rabinowitz (1975)

∫ b

a

f (x) dx −
n∑

i=1

wif (xi) =
(b − a)2n+1(n!)4

(2n + 1)(2n!)3
f (2n)(ξ), (6.20)

where ξ ∈ (a, b), provided that f (2n)(ξ) is continuous on [a, b].
At first glance, we may think that computing abscissas and weights requires solv-

ing a nonlinear system with 2n unknown variables. However, it can be shown that
the abscissas are the zeros of a polynomial with degree n + 1, which in turn belong
to a sequence of polynomials that are orthogonal on [a, b]. (See Davis and Rabi-
nowitz (1975), pp. 95–100.) We now briefly illustrate this construction. The integral

176 6 Quadrature Methods

∫ b

a
φ(x)f (x)g(x) dx defines an inner product of functions g and f over [a, b] with

respect to the weighing function φ satisfying appropriate regularity conditions (i.e.,
positive, integrable and continuous on [a, b]). Following standard notation, we de-
note this quantity by (f, g). Two functions are said to be “orthogonal” on [a, b] with
respect to φ whenever (f, g) = 0. For a given weighing function φ, we can build a
sequence of pairwise orthogonal polynomials p0, p1, . . . , pn of degree 0, 1, . . . , n,
respectively, that is:

∫ b

a

φ(x)pn(x)pk(x) dx = 0 for k �= n.

Given such a sequence, we can obtain a new one (p∗
n)n≥1 where each element has a

unit norm, namely:

(
p∗

n, p
∗
k

)
=

∫ b

a

φ(x)p∗
n(x)p∗

k (x) dx =
{

0 if k �= n,
1 if k = n.

This is referred to as an “orthonormal system”. Notice, in particular, that p∗
n(x) =

pn(x)/(pn, pn)
1/2. From now on, we assume inner products are all computed with

respect to a given weighing function φ defined on [a, b].
We now report three results relating the zeros of orthogonal polynomials to the

abscissas in quadrature rules.

Result 1 (Properties of zeros of orthogonal polynomials) The zeros of (real) or-
thogonal polynomials are real, simple (i.e. not multiple), and located in the interior
of [a, b].
Result 2 (Construction algorithm for orthonormal polynomials) Orthogonal
polynomials satisfy the following iteration:

pn+1(x) = (x − an)pn(x) − bnpn−1(x), (6.21)

p−1(x) = 0, p0(x) = 1,

where

an =
(xpn, pn)

(pn, pn)
, (6.22)

bn =
(pn, pn)

(pn−1, pn−1)
.

This leads to an iterative rule for building orthonormal polynomials, that is:

p∗
n(x) =

pn(x)

(pn, pn)1/2
.

Result 3 (Relationship between polynomial zeros and quadrature abscissas) Let
the zeros of p∗

n(x) be denoted by x1, . . . , xn, where a < x1 < x2 < · · · < xn < b.
Then, we can find positive constants w1, w2, . . . , wn such that:

∫ b

a

φ(x)f (x) dx =
n∑

i=1

wif (xi), (6.23)

whenever f is a polynomial of order 2n− 1. Moreover, weights wk can be explicitly

6.3 Gaussian Quadrature Formulae 177

represented as:

wk = (pn−1, pn−1)

pn−1(xk)p
′
n−1(xk)

,

where p′
n−1(xk) is the first-order derivative of the orthogonal polynomial at the zero

point xj .

A Gaussian quadrature rule is one whose abscissas and weights have been de-
termined according to the prescriptions in Result 3. In summary, this rule requires:

(a) generate orthogonal polynomials p0, . . . , pn using iterations (6.21) and (6.22);
(b) determine the zeros of pn(x);
(c) compute the corresponding weights;
(d) return (6.23) as a result.

Nowadays, these steps are well understood for a quite large class of weighing func-
tions and integration ranges. Also, numerical routines are widely available. The most
important weighing functions and their quadrature rules are given in Table 6.12. The
error term of the Gauss–Legendre rule is given in expression (6.20). If we define
Mn = max−1≤x≤1 |f (n)(x)|/n, this error is superiorly bounded:

∣∣∣∣∣

∫ 1

−1
f (x) dx −

n∑

i=1

wif (xi)

∣∣∣∣∣ ≤
(2)2n+1(n!)4

(2n + 1)(2n!)2
M2n = enn2n,

so that as n → ∞, en ≃ π/4n and the error term is bounded by πM2n/4n, i.e.,
by an exponential rate of decrease as a function of n. The composite trapezoidal
and the composite Simpson rules have only polynomial rates of decrease, i.e. 1/m2

and 1/m4. Gaussian quadrature results to be always better than the trapezoidal rule,
except in the case of periodic integrands.

A pseudo-code for implementing the Gaussian quadrature rule is given in Ta-
ble 6.13. The algorithm is straightforward provided we have at our disposal a numer-
ical routine to compute abscissas and weights. For example, Chebyshev polynomials
have analytical abscissas and weights given by

xi = cos

(
π(i − 0.5)

n

)
,

wi =
π

n
.

Table 6.12. Principal Gaussian quadrature formulas

Rule φ(x) Range Recursion

Gauss–Legendre 1 −1 ≤ x ≤ 1 pj+1 = 2j+1
j+1 xpj − j

j+1pj−1

Gauss–Chebyshev 1√
1−x2

−1 ≤ x ≤ 1 pj+1 = 2xpj − pj−1

Gauss–Laguerre xαe−x 0 ≤ x < +∞ pj+1 = −x+2j+α+1
j+1 pj − (j+α)

j+1 pj−1

Gauss–Hermite e−x2 −∞ < x < +∞ pj+1 = 2xpj − 2jpj−1

178 6 Quadrature Methods

Table 6.13. Pseudo-code for implementing the Gaussian quadrature

Input a, b, m and f.
Compute the abscissas ai and the weights wi
Initialize sum = 0
For i = 1 to m

Compute f at abscissas ai
Update the sum according to sum = sum+wi*f(ai)

Next i
Return sum

VBA R© functions:

function gauleg(x1 As Double, x2 As Double,
n As Integer) as Variant

and

function gaulag(n As Integer, alfa As Double) As Variant

return a set {wi, xi}i=1,...,n for Gauss–Legendre and Gauss–Laguerre rules, respec-
tively. These functions are presented in Sect. 6.5.

Example We compute integral (6.11)

5

eπ − 2

∫
π/2

0
e2x cos(x) = 1

by using the 10-point Gauss–Legendre rule. The set {wi, xi}i=1,...,10 is reported in
Table 6.14. The first column contains the abscissas in [0, π/2], the second column
exhibits the weights, while the third column indicates the quantities f (xi)wi .

The last row contains the approximated value
∑10

i=1 wif (xi). In this example,
the absolute error is 8.90066 × 10−13.

Example We evaluate
∫ 1
−1 1/(1 + x2) dx by using the 10-point Gauss–Chebyshev

rule. The exact value of this integral is π/2 = 1.570796327. The weighing function
according to this rule is (1 − x2)−1/2, which we consider on the interval [−1, 1].
Then:

∫ 1

−1

1

(1 + x2)
dx =

∫ 1

−1

1

(1 − x2)1/2

(1 − x2)1/2

(1 + x2)
dx ≃

10∑

i=1

wif (xi),

where the function f is given by (1 − x2)1/2/(1 + x2). This point is illustrated in
Table 6.15. In particular, we have

∑10
i=1 wif (xi) = 1.57488489 and the absolute

error equals 0.00408856.

An important property of the Gaussian quadrature rule is that the all weights are
positive, so that Gaussian formulas display nice round-off properties even for large

6.3 Gaussian Quadrature Formulae 179

Table 6.14. Example of Gauss–Legendre quadrature

xi wi f (xi)wi

0.02049376 0.052363551 0.012899989
0.10597898 0.117378815 0.034123158
0.25179114 0.172070027 0.065214501
0.44501022 0.211481587 0.109939222
0.66847253 0.232104183 0.164022574
0.9023238 0.232104183 0.206788039
1.12578611 0.211481587 0.204601451
1.31900519 0.172070027 0.141798329
1.46481734 0.117378815 0.054975751
1.55030256 0.052363551 0.005636986

∑10
i=1 wif (xi) = 1

Table 6.15. Example of Gauss–Chebyshev quadrature

xi = cos(π(j − 1/2)/n) wi = π/n f (xi) × wi

0.987688 0.314159265 0.024877061
0.891007 0.314159265 0.079506053
0.707107 0.314159265 0.148096098
0.45399 0.314159265 0.232083777
0.156434 0.314159265 0.302879456

−0.156434 0.314159265 0.302879456
−0.45399 0.314159265 0.232083777
−0.707107 0.314159265 0.148096098
−0.891007 0.314159265 0.079506053
−0.987688 0.314159265 0.024877061

∑10
i=1 wif (xi) = 1.57488489

values of n. This does not hold true for Newton–Cotes formula for which the weights
associated to high-order quadratures can be negative, round-off errors are magnified,
and the rule fails to converge. We can also use a composite Gaussian rule, that is split
the interval into several bins and apply the formula over each bin independently of
the other. In contrast with the Newton–Cotes formula where old points can still be
used, here the new abscissas are all different from those computed one step before
and a new computation is required. This problem also occurs whenever we try to
increase the accuracy of the Gaussian rule. In this case, all information obtained
while computing the lower-order rule is discarded at the following step as long as
weights and abscissas of rules of distinct orders are different from each other. This
problem has been partially solved by the Gauss–Kronrod formulas which enable us
to add new abscissas and return a new rule with higher order. In practice, the weights
need to be recomputed whereas to the original n abscissas n + 1 new abscissas are
added, so that the rule becomes exact for all polynomials of degree less than or equal
to 3n + 1, when n is even, or of degree 3n + 2 when n is odd. Finally, note that
integration formulas of Gaussian type with a certain number abscissas assigned by

180 6 Quadrature Methods

the rule at the outset exist. Radau and Lobatto rules are among the most popular
integration methods. These rules prescribe abscissas at the endpoints of the intervals
and use a unit weight φ = 1.

Note that integrals over infinite or semi-infinite intervals can be computed
through several approaches. For instance, we can replace an infinite limit of integra-
tion by appropriately selecting finite values and then using a Gauss–Legendre rule.
Another option consists of transforming the variable of integration so that the new
interval is finite. Needless to say, some care is necessary in order to avoid introducing
singularities in the new system of variables. Another possibility is to use quadrature
rules designed for infinite intervals, such as Gauss–Laguerre and Gauss–Hermite.

6.4 Matlab R© Code

The Matlab R© implementation of Newton–Cotes rules is quite straigthforward. For
example, the following trap() integrates the function fun in the interval [a, b] using
the trapezoid rule.

6.4.1 Trapezoidal Rule

function result = trap(a,b,m,fun)
h = (b-a)/(m-1); x = [a:h:b]; y = eval(fun);
result = h*(0.5*y(1)+sum(y(2:end-1))+0.5*y(end));

Example Let us write in the command window

>> trap(0,pi/2,513,’exp(2*x).*cos(x)*5/(exp(pi)-2)’)

we get 0.99999535430049.

6.4.2 Simpson Rule

function result = simpson (a,b,m,fun)
m = m-1; h = (b-a)/m; x = [a:h/2:b]; y = eval(fun);
result = (h/6)*(y(1)+2*sum(y(3:2:2*m-1))

+4*sum(y(2:2:2*m))+y(2*m+1));

Example Let us write in the command window

>> simpson(0,pi/2,125,’exp(2*x).*cos(x)*5/(exp(pi)-2)’)

we get 0.99999999947464.

6.5 VBA R© Code 181

6.4.3 Romberg Extrapolation

function [T] = romberg(a,b,n,fun);
%generate the first column of the Romberg matrix
h = (b-a) ;
for i = 1: n+1, T(i,1) = trap(a,b,(b-a)/h+1,fun);
h = h/2; end;
%start the extrapolation
for s = 0:n-1, for i = s+1:n

ss = s+1; ii = i+1;
T(ii,ss+1) = (4ˆ(s+1)*T(ii,ss)

-T(ii-1,ss))/(4ˆ(s+1)-1);end ;end

Let us write in the command window

>> romberg(0,pi/2,3,’exp(2*x).*cos(x)*5/(exp(pi)-2)’)

and we obtain the Table 6.9.

6.5 VBA R© Code

The Newton–Cotes and Gauss–Legendre rules have been implemented in VBA R©,
in the modules associated to the Excel file Quadrature.xls. These functions take the
extremes of the integration range, a and b, and the number of subintervals m for the
composite Newton–Cotes or the number of points n for the Gaussian rules as inputs.

The integrating function must have the form

function f(x As Double, Optional Parameters as Variant)
as Double

where Parameters is a row vector containing the parameters that eventually enter
into the definition of the function. Examples of integrand are given in the VBA R©

module mf_x.
The Newton–Cotes functions, VBA R© module mNewtonCotes, return a num-

ber representing the estimated value of the integral (see Table 6.16). The function
romberg is an exception. Instead of requiring the number of subintervals m, it asks
for the maximum number (mmax) of subdivisions of the integration range that can
be used for extrapolating the final estimate, provided the stopping criterion is not
yet met. mmax cannot exceed 16. The function romberg returns a row vector con-
taining the estimated value of the integral, the difference between the last two di-
agonal elements, i.e. Ti,i and Ti−1,i−1 and the number of iterations. The functions
for the Gaussian quadrature are gauleg, gq (in the VBA R© module mLegendre)
and gaulag (in the VBA R© module mLaguerre) (see Table 6.17). The function
gaulag requires the parameter alfa as input that enters in the definition of the

182 6 Quadrature Methods

Table 6.16. Newton–Cotes functions in VBA R© module mNewtonCotes

function rectangular(a As Double, b As Double,
m As Integer) as Double.

function trap(a As Double, b As Double,
m As Integer) as Double.

function ExtendedTrap(a As Double, b As Double,
m As Integer) as Double.

function simpson(a As Double, b As Double,
m As Integer) as Double.

function romberg(a As Double, b As Double,
mmax As Integer) as Variant.

Table 6.17. Gaussian quadrature rules in VBA R© modules mLaguerre and mLegendre

function gauleg(a As Double, b As Double,
n As Integer) as Variant.

function gq(a As Double, b As Double, n As Integer) as Double.

function gaulag(n As Integer, alfa As Double) As Variant.

Fig. 6.7. Example of usage of the VBA R© integration routines.

weighing function (see Table 6.12). The functions gauleg and gaulag return an
n×2 array containing the abscissas in the first column and the weights in the second
column. The function gq applies the Gauss–Legendre quadrature. Figure 6.7 illus-
trates how to use the above VBA R© functions and compares the different numerical
routines in the computation of (6.11).

6.6 Adaptive Quadrature

This method is based on the following idea. We split the integration range [a, b]
and then keep on refining it until the composite quadrature formula produces the
required level of accuracy. First, we integrate f (x) by using two numerical methods
and come up with approximations I1 and I2. With no loss of generality, we may

6.6 Adaptive Quadrature 183

Fig. 6.8. Matlab R© adaptive routine quad is used to integrate sin(1/x) over the interval
[0.1, π/2]. Sample values are denoted by dots on the x-axis. The corresponding values of
the integrand function are indicated by dots.

assume that I1 is more accurate than I2. If the difference of the two approximations
is smaller than some prescribed tolerance, one accepts I1 as the value of the integral.
Otherwise, the interval [a, b] is split into [a, c] and [c, b], with c = (a + b)/2 and
the corresponding two integrals are computed independently of each other. Splitting
intervals into subintervals continues until the stopping criterion

|I1 − I2|
|I1|

< tol

is met for each integral. Here, I1 and I2 are two estimates for the integral computed
on the subinterval under consideration and tol is a predefined tolerance. In order
to prevent the procedure from generating an excessive number of subdivisions, the
suggested criterion is usually implemented with additional conditions.

Matlab R© functions quad and quadl are based on an adaptive recursive Simp-
son’s rule and on a recursive Lobatto quadrature, respectively. Figure 6.8 illustrates
the way function quad adaptively splits the integration range [0.1, π/2] for the pur-
pose of integrating sin(1/x). As it is clear from the graph, the integrand is more
thoroughly sampled in those portions of the domain where integration is more chal-
lenging, namely the ones where the integrand function exhibits an oscillatory behav-
ior. A typical problem arising from the use of adaptive routines is encountered while
dealing with discontinuous functions. In this case, a large number of successive eval-
uations may be produced by the algorithm. In order to circumvent this problem, it
may be useful to apply an adaptive quadrature routine on each of the two sides neigh-
boring the point of discontinuity.

The syntax of function quadl is reported in Table 6.18. Function
quadl(fun,a,b) computes the integral of function fun between a and b by

184 6 Quadrature Methods

Table 6.18. Syntax of the MATLAB R© function

Syntax quadl
[I,n] = quadl(fun,a,b)
[I,n] = quadl(fun,a,b,tol)
[I,n] = quadl(fun,a,b,tol,trace)

using a recursive adaptive Lobatto quadrature with a default tolerance equal to 10−6.
Here, fun is a function handle through either an M-file function or an anonymous
function. An anonymous function can be defined directly in the command window.
For example,

>> fun = @(x) exp(x).*cos(x);

is a function handle that defines f (x) = ex cos(x). Routine quadl returns the esti-
mated value I of the integral and the number n of function evaluations.
quadl(fun,a,b,tol) allows the user to specify the tolerance level to be adopted
in the stopping criterion, whereas quadl(fun,a,b,tol,trace) generates a ta-
ble [n|a|b−a|I], where n is the number of functional evaluations (first column), a is
the abscissas at which the integrand is computed (second column), b − a is the size
of each subinterval (third column), and I is the value of the integral in each subinter-
val (fourth column). quadl may issue one of the following warnings: “Minimum
step size reached” indicates that the recursive interval subdivision has pro-
duced a subinterval whose length is on the order of round-off error in the length
of the original interval. A nonintegrable singularity is possible. “Maximum func-
tion count exceeded” indicates that the integrand has been evaluated more
than 10,000 times. A nonintegrable singularity is likely. “Infinite or Not-
a-Number function value encountered” indicates a floating point over-
flow or division by zero during the evaluation of the integrand in the interior of the
interval.

Example Let us reconsider the integral (6.11)

5

eπ − 2

∫
π/2

0
e2x cos(x) = 1.

We want to compute this value by using quad and quadl. First, we define fun as
an anonymous function.6 In the Matlab R© command window we write:

>> c = 5/(exp(pi)-2);
>> fun = @(x) c.*exp(2.*x).*cos(x);

6 This is possible in Matlab R© 7. In Matlab R© 6 we need to use a different syntax:
>> fun = inline(’ c.*exp(2.*x).*cos(x)’,’x’,’c’);
>> c = 5/(exp(pi)-2);
>> quad(fun,0,pi/2,10ˆ-6,’trace on’,c)

6.7 Examples 185

Fig. 6.9. Subdivision of the integration range for computing the integral in (6.11) by using the
MATLAB R© function quad.

Then, we apply the quadrature rule:

>>[I,n] = quad(fun,0,pi/2,10ˆ-6)

and get to I = 0.99999999502151 and n = 37. If instead we use the command:

>>[I,n] = quadl(fun,0,pi/2,10ˆ-6)

we obtain I = 1.00000003176782 and n = 18. Another input may be:

>>[I,n] = quad(fun,0,pi/2,10ˆ-6,’trace on’)

which returns results reported in Fig. 6.9.

There, the first column states the number of function evaluations; the second
column indicates the abscissas at which the integrand function is computed; the third
column contains the size of each subinterval; the fourth column reports the value
of the integral on each subinterval; the last column underlines the subintervals that
contribute to the computation of the final integral.

6.7 Examples

In this section we consider several examples. First, we apply quadrature methods to
the pricing of options in the Black–Scholes model. Next, we consider the same prob-
lem under the assumption of square-root dynamics for the underlying asset. Then, we
consider the problem of pricing options on coupon bonds in the Cox–Ingersoll–Ross
model. Also, we examine the pricing of barrier options under discrete monitoring of
the hitting condition. Finally, we implement the FFT algorithm to price derivatives
in the case of underlying assets driven by Lévy processes.

186 6 Quadrature Methods

6.7.1 Vanilla Options in the Black–Scholes Model

Let us consider the pricing problem of a plain vanilla option in the Black–Scholes
setting. The option price requires computing the following integral:

c = e−rτ

∫ +∞

ln K

(
eξ − K

)
h(ξ, τ ; z) dξ,

where

h(ξ, τ ; z) =
1

√
2πσ 2τ

exp

(
−

1

2σ 2τ

(
ξ − z −

(
r −

σ 2

2

)
τ

)2)
,

z = ln x, and x denotes the spot price. In practice, we consider a range of possi-
ble log-prices at maturity, starting from ln K and moving up to zmax, a value se-
lected such that (ezmax − K)h(zmax, τ ; z) turns out to be a small quantity, e.g., no
greater that 10−8. Numerical quadrature approximates the integral under consider-
ation as

∑n−1
i=1 wi(eξi − K)h(ξi, τ ; z). Here, spacing between ξi’s equals the con-

stant h = (ln xmax − ln K)/(m − 1), where xmax = ezmax , in composite Newton–
Cotes methods, whereas it varies in the Gauss–Legendre quadrature. The result-
ing assessment can be compared to the well-known Black–Scholes formula. We
consider a call option with strike price K = 100 and time to maturity τ = 1.
We also assume an instantaneous volatility σ = 0.2, a risk-free rate of inter-
est r = 0.1, and a standing market price of the underlying asset x = 100. The
Black–Scholes price is 13.26967658466089. We set zmax = ln 400. Table 6.19 re-
ports prices for four alternative quadrature methods along successive halvings of h,
taking h = (ln xmax − ln K)/8, (ln xmax − ln K)/16, (ln xmax − ln K)/32, and so
on. Gaussian quadrature provides a result that is accurate to the sixth digit with
m = 33. As theory suggests, among Newton–Cotes formulas, Simpson’s is the pre-
ferred one, immediately followed by the Extended Trapezoidal formula. Table 6.20
shows the behavior of the absolute error En,m = |I (f) − In,m(f)| and of the ratio
Rn,m = |I (f)−In,m(f)|/|I (f)−In,2m−1(f)| for varying values of m. In particular,
Rn,m corresponding to the Newton–Cotes formulae converge to 2n+1 for n odd (e.g.,
4 for the Trapezoidal rule, n = 2), and to 2n+2 for n even (e.g., 16 for the Simpson
rule, n = 3). The order of the extended Trapezoidal formula (6.13) is h3, so that
halving h results into a reduction of the error by a factor 8. For the Gauss–Legendre
formula, m stands for the number of points in the quadrature rule. Table 6.21 reports
results relative to the Romberg integration. After just 9 iterations, i.e., by extrapolat-
ing results out of the Trapezoidal formula with m = 2, 3, 5, 9, 17, 33, 65, 129, 257
and 513, we get to an option price equal to 13.26967658, that is an absolute error
equal to 1.672 × 10−11.

Finally, we have used the built-in Matlab R© integration routine quadl. We have
constructed a *.m file containing the function to be integrated as functionGBM.
The calling command is

integrand = functionGBM(x,phi,spot,strike,
maturity,rf,volatility)

6.7 Examples 187

Table 6.19. Pricing a call option in the Black–Scholes model using numerical quadrature:
T (Trapezoid), ET (Extended Trapezoid), S (Simpson), GL (Gauss–Legendre)

m T ET (6.13) S GL
9 12.713444 13.254415 13.547893 13.690968

17 13.134627 13.286321 13.275021 13.269557
33 13.236146 13.272851 13.269985 13.269677
65 13.261308 13.270135 13.269696 13.269677

129 13.267585 13.269737 13.269678 13.269677
257 13.269154 13.269684 13.269677 13.269677
513 13.269546 13.269678 13.269677 13.269677

Table 6.20. Absolute error and relative error in pricing call options using different quadrature
methods: T (Trapezoid), ET (Extended Trapezoid), S (Simpson), GL (Gauss–Legendre)

T ET S GL

m En,m Rn,m En,m Rn,m En,m Rn,m En,m

9 5.562E–01 5.501 1.526E–02 145.643 −2.782E–01 0.832 −4.213E–01
17 1.350E–01 4.119 −1.664E–02 −0.917 −5.345E–03 52.055 1.195E–04
33 3.353E–02 4.028 −3.174E–03 5.244 −3.086E–04 17.319 4.165E–10
65 8.369E–03 4.007 −4.581E–04 6.929 −1.893E–05 16.305 3.921E–11

129 2.091E–03 4.002 −6.081E–05 7.533 −1.177E–06 16.075 2.771E–11
257 5.228E–04 4.000 −7.813E–06 7.783 −7.349E–08 16.022 3.553E–10
513 1.307E–04 4.000 −9.896E–07 7.895 −4.576E–09 16.059 4.862E–10

Table 6.21. Pricing a call option in the Black–Scholes model using
Romberg extrapolation
Price Iterations Error
13.5379776782 4 2.683E–01
13.2510395962 5 −1.864E–02
13.2699407831 6 2.642E–04
13.2696756268 7 −9.578E–07
13.2696765856 8 8.943E–10
13.2696765846 9 −1.672E–11

If we restrict the infinite integration interval to [0, 6], we can type (notice that we
scale the spot price dividing it by the strike)

>>[price numeval] = quadl(@functionGBM,0.000001,6,
10ˆ-6,’trace off’,1,100/100,
1,1,0.1,0.2);

in the command window and obtain

price*100 = 13.26969508049296

and
numeval=168

188 6 Quadrature Methods

Table 6.22. Pricing a call option in the Black–Scholes model using the MATLAB R© adaptive
quadrature routine

Tolerance Price Function evaluations (s)
10−6 13.26969517231181 169
10−7 13.26967472206082 199
10−8 13.26967662879438 349
10−9 13.26967662880944 409
10−10 13.26967662880941 439
10−11 13.26967658467796 589

In Table 6.22 we report prices obtained by running function quadl under varying
tolerance levels. Results appear to be highly accurate.

6.7.2 Vanilla Options in the Square-Root Model

Most of the research in option pricing assumes that the underlying asset follows
a simple GBM. However, it is well known that this model has several drawbacks,
e.g., the volatility smile effect. In this section we reconsider the constant elasticity
of variance (CEV) already presented in the context of pricing using PDEs. In this
model, the dynamics of the underlying price are given by:

dx(t) = rx dt + σxλ/2 dW(t),

where 0 ≤ λ < 2. We obtain the lognormal model as a special case by setting λ = 2.
The transition density of the process can be expressed in terms of a noncentral chi-
squared distribution. As an illustrative example, we consider the case λ = 1.7 The
(time-homogenous) transition density is given by

w(y, τn; x) =

√
xerτ

y
γ e−γ (xerτ +y)I1

(
2γ

√
xerτy

)
, (6.24)

where γ = 2r/(σ 2(erτ − 1)) and I1(z) is the modified Bessel function of order 1

I1(x) =
1

2
x

∞∑

k=0

(x2/4)k

k!Ŵ(k + 2)
,

7 Notice that by using the transformation y = x2−λ and then applying Itô’s lemma we obtain:

dy(t) =
(

rxx1−λ +
1

2
σ 2xλx−λ

)
dt + σx1−λxλ/2 dW(t)

=
(

1

2
σ 2 + ry

)
dt + σ

√
y dW(t),

i.e., y is a square-root process. Therefore, the numerical example we are discussing with re-
gard to the square-root process can be easily extended to processes with λ different from 1.

6.7 Examples 189

Table 6.23. Comparison of different quadrature methods, T (Trapezoid), ET (Extended Trape-
zoid), R (Romberg), S (Simpson), GL (Gauss–Legendre), AL (Adaptive Lobatto), in pricing
options under the square-root process. RSSE stands for the root of the sum squared errors,
taking as benchmark the GL rule

Strike T ET R S GL AL
80 24.703785 24.704346 24.704262 24.704259 24.704261 24.704251 (828)

90 15.905726 15.907228 15.907108 15.907108 15.907108 15.907102 (618)

95 11.994622 11.996561 11.996465 11.996466 11.996465 11.996460 (618)

100 8.601314 8.603483 8.603437 8.603439 8.603437 8.603433 (618)

105 5.832221 5.834345 5.834354 5.834356 5.834354 5.834352 (558)

110 3.722808 3.724647 3.724697 3.724699 3.724697 3.724696 (558)

120 1.251160 1.252142 1.252208 1.252208 1.252208 1.252207 (468)

RSSE 0.004388 0.000200 0.000001 0.000004 – 0.0000133

and where Ŵ(z) is the Gamma function

Ŵ(z) =
∫ +∞

0
tz−1e−t dt.

If we set:

τ(t) =
(1 − e−rt)

r
; v = 1; γ =

4x

σ 2τ(t)
,

then the random variable 4e−rty/(σ 2τ(t)) has a non-central chi-squared density with
four degrees of freedom and noncentrality parameter γ .

In Table 6.23 we compare the different quadrature methods for pricing a plain
vanilla option. The quadrature methods have been implemented setting m = 200.
The Romberg (R) extrapolation quadrature has been implemented by using 8 recur-
sions, i.e., by extrapolating the trapezoidal rule starting from m equal to 2, 3, 5, 9,
17, 33, 65 and 129 according to the sequence hi+1 = hi/2. Last column refers to the
Adaptive Lobatto rule (AL) implemented in Matlab R© by the function quadl.8 Model
parameters are: r = 5.91%, σ = 1.353885, τ = 1 year, and x(0) = 100.

In Table 6.24 we still use the Adaptive Lobatto rule to price a call option using
the quadl Matlab R© function. The tolerance has been set equal to 10−11. In the
example, we set X = 1, r = 0.1, σ = 0.4, T = 1 and we let K vary.

8 In particular, the numbers in the last column have been obtained with the commands:
k = [80,90,95,100,105,110,120]
for i = 1:7
[op(i) neval(i)]

= optionpricegbmcev(1,2,100,k(i),1,0.0591,1.353885,300,
10ˆ-11)

end
op’;neval’

This function makes use of the function
prob = densityGBMCEV(spotT,spot,maturity,rf,

volatility,model)
that returns the density of the GBM and square-root process.

190 6 Quadrature Methods

Table 6.24. Call option prices for different models: square-root (λ = 1),
GBM (λ = 2), CEV (λ = 3)

Strike λ = 1 λ = 2
0.7 0.392836 0.386449
0.8 0.321699 0.316001
0.9 0.258349 0.254849
1 0.203433 0.203185
1.1 0.157091 0.160499
1.2 0.118996 0.125858
1.3 0.088464 0.098142

This example has been done using the function

function [op, neval]
= optionpricegbmcev(phi,model,spot,strike,maturity,

rf,volatility,upperlimit,tol)

6.7.3 Bond Options in the Cox–Ingersoll–Ross Model

The Cox, Ingersoll and Ross (1985) model (CIR) assumes short rate risk-neutral
dynamics:

dr(t) = α
(
μ − r(t)

)
dt + σ

√
r(t) dW(t).

The time t price of a zero-coupon expiring at time T is:

P
(
t, T ; r(t)

)
≡ P(t, T) = E

∗
t

(
e−

∫ T
t r(s) ds

∣∣r(t)
)
.

This expression admits a closed-form:

P(t, T) = A(t, T)e−B(t,T)r(t), (6.25)

where

A(t, t + τ) =
(

2φ1eφ2τ/2

φ2(eφ1τ − 1) + 2φ1

)φ3

, (6.26)

B(t, t + τ) = 2
eφ1τ − 1

φ2 + 2φ1
, (6.27)

φ1 =
√

α2 + 2σ 2, φ2 = φ1 + α, φ3 =
2αμ

σ 2
.

We aim at pricing coupon bearing bond options by using quadrature methods. This
problem can also be solved by using the PDE approach as illustrated in the chapter
on the numerical solution of linear systems.

Let the option expire at time T and define ci as the coupon paid off at time Ti ,
where Ti > T for all i = 1, . . . , n (cn includes the bond notional). The option
pay-off with strike price K is given by:

6.7 Examples 191

Pay-off =
(

φ

(
n∑

i=1

P
(
T , Ti; r(T)

)
ci − K

))

+

=
(

φ

(
n∑

i=1

A(T , Ti)e
−B(T ,Ti)r(T)ci − K

))

+
,

where parameter φ has been introduced to distinguish a call option (φ = 1) from a
put option (φ = −1). We aim at computing the arbitrage free price:

u(τ, r) = E
∗
t

(
e−

∫ t+τ
t r(s) ds

(
φ

(
n∑

i=1

A(t + τ, Ti)e
−B(t+τ,Ti)r(t+τ)ci − K

))+)
,

where the time to maturity is defined by τ = T − t . The pricing problem can be
considerably simplified by using an appropriate change of numéraire. Precisely, let
P

t+τ denote the equivalent probability measure that makes prices martingales once
discounted by the zero coupon bond maturing at t + τ. This is the so-called t + τ

forward measure. The pricing problem requires computing

u(τ, r) = P(t, t + τ)Et+τ
t

((
φ

(
n∑

i=1

A(t + τ, Ti)e
−B(t+τ,Ti)r(t+τ)ci − K

))+)
,

where expectation is taken with respect to rate dynamics under the forward mea-
sure P

t+τ .
We observe that the coupon bond price is a strictly decreasing function of the

instantaneous rate. Therefore, the call (resp. put) option is exercised provided that
r(t + τ) < r0 (resp. r(t + τ) > r0), where r0 is the unique solution of equation

n∑

i=1

A(T , Ti)e
−B(T ,Ti)r0ci = K. (6.28)

The option price can be computed as follows:

V (t) = E
t+τ
t

((
φ

(
n∑

i=1

A(t + τ, Ti)e
−B(t+τ,Ti)r(t+τ)ci − K

))+)
(6.29)

=
{∫ r0

0 π(r)f (r) dr, φ = 1,∫ +∞
r0

π(r)f (r) dr, φ = −1,
(6.30)

where π(r) = φ(
∑n

i=1 A(t + τ, Ti)e−B(t+τ,Ti)r(t+τ)ci − K) and f (r) is the density
function of the instantaneous rate r(t + τ) under the forward measure P

t+τ . This
latter is given by

f (r) =
1

k2
χ2

(
x

k2
, d, λ2

)
,

with

192 6 Quadrature Methods

k2 = σ 2(eφ1(t+τ) − 1)

2(2φ1 + (φ1 + α)(eφ1(t+τ)) − 1)
,

λ2 =
8φ2

1eφ1(t+τ)r(t)

σ 2(eφ1(t+τ) − 1)(2φ1 + (φ1 + α)(eφ1(t+τ) − 1))
,

and χ2(x, d, λ) representing the density of a non-central chi-square variable with d

degrees of freedom and non-centrality parameter λ, namely:

χ2(x, d, λ) = e−λ/2e−x/2
(

x

λ

)d/4−1/2

Id/2−1
(√

xλ
)
.

Here Id(x) is the modified Bessel function of the first kind as defined by

Id(x) =
(

x

2

)d +∞∑

k=0

(x2/4)k

k!Ŵ(d + k + 1)
.

In Table 6.25, we price an option on a coupon bond. The coupon bond pays a yearly
coupon of 5% per annum for four years, beginning just one year after the option
maturity. We compare the results obtained by numerical integration to those stem-
ming from either solving the pricing PDE or running Monte Carlo simulations. Both
numerical solution of the pricing PDE and the quadrature formula often provide es-
timates within the 95% MC confidence interval. Numbers reported in last column
of this table have been obtained using a Matlab R© code. In particular, the integral in
(6.30) has been computed using function quadl with a tolerance level set equal to
10−9. The MATLAB R© function to be called is:

[op, nf]
= OptionCouponBond_CIR(phi,strike,optionexpiry,

vCouponDates,vCouponAmount,
shortratet,speed,mu,volatility)

This routine implements the pseudo code given in Table 6.26 and returns option
price and number of function evaluations required to compute the integral by using
the quadl adaptive routine. Notice that this implementation requires a routine to
compute the noncentral chi-squared density and the price of a zero-coupon in the CIR
model through formula (6.25). As an example, 2.3386119 (408) in the last column
have been obtained by writing in the command window:

>> [op,nf]
= OptionCouponBond_CIR(1,95.703393,1,[1, 2, 3, 4],

[5 5 5 105],0.05,0.1,0.1,0.1)

6.7.4 Discretely Monitored Barrier Options

Let us consider a double barrier knock-out option. That is a call option that expires
worthless provided that one of two given barriers has been hit at any monitoring date

6.7 Examples 193

Table 6.25. Prices of options on a coupon bond in the CIR model. Parameters α = 0.1,
μ = 0.1, σ = 0.1, rmin = 0, rmax = 0.5. Strikes have been set equal to the forward price of
the coupon bond

Option Strike MC (s.e.) PDE Adaptive quadrature
maturity 500,000 runs (m = 500, n = 1,000) (s.e.)
1 95.703393 2.3405161 2.3386243 2.3386119

(0.0036606) (408)
2 94.825867 2.9505254 2.9534488 2.9535513

(0.0046964) (348)
3 94.129268 3.2113425 3.2217921 3.2220002

(0.0052998) (348)
4 93.576725 3.3185218 3.3090647 3.3093217

(0.0057044) (348)
5 93.138299 3.2953126 3.2897274 3.2898931

(0.0059728) (348)

Table 6.26. Pseudo-code for pricing an option on a coupon bond in the CIR model

Inputs:
model parameters: α, μ, σ, r,
vector of payment dates and coupon amounts
option expiry and payoff (call or put)

Solve (6.28)
Define the integrand π(r)f (r) in (6.30)
Compute using a quadrature method the integral (6.30)

during the contract lifetime. Let 0 = t0 < t1 < · · · < tp < · · · < tn = T be
the monitoring dates and define l (resp. u) the lower (resp. upper) barrier active at
time tp. By setting l = 0 or u = +∞ we recover the payoff of a more traditional
single barrier option. To simplify our exposition we assume constant barriers and a
time-homogenous process, i.e. the transition density does not depend on t . Therefore,
we may denote by p(y, τ ; x) the conditional transition density from state x at time t

to state y at time t + τ . Both GBM and the square root process are examples of time-
homogeneous processes. Let us denote the price of the barrier option when t > tn
by v(x, t, n) ≡ v(x, t, n; l, u). By setting τ = t − tn, the option price satisfies the
recursion relation:

v(x, tn + τ, n) = e−rτ 1{x∈[l,u]}

∫ +∞

−∞
p(ξ, τ ; x)v(ξ, tn, n − 1) dξ, (6.31)

where 1{x∈[l,u]} is the indicator function for the interval [l, u] as defined as:

1{x∈[l,u]} =
{

1 if x ∈ [l, u],
0 if x /∈ [l, u].

This function has been introduced to take into account the possibility of hitting the
barrier at the monitoring date tn. By using the fact that v(ξ, tn, n−1) is zero whenever
ξ /∈ [l, u], we have:

194 6 Quadrature Methods

v(x, tn + τ, n) = e−rτ

∫ u

l

p(ξ, τ ; x)v(ξ, tn, n − 1) dξ for l < x < u.

The option price is given by a recursive univariate integration consisting of a single
integral for every monitoring date. In order to exploit the recursive structure of the
problem, we compute the option price at the monitoring dates t1, t2, . . . , tn only.
Then we use (6.31) at the intermediate date tn + τ . In other words, we want to
compute v(x, tn, n), for n ≥ 0. Actually, this is the main advantage of the present
methodology compared to lattices and finite-difference techniques. More precisely,
here we need not consider intermediate time steps and can move to any value of the
underlying at each monitoring date. This procedure simply requires knowledge of
the transition density in closed form.

As an example, let us consider the GBM process and then let us consider the log-
return z = ln x and define g(z, tn, n) = v(ez, tn, n). The recursion formula becomes

g(z, tn + τ, n) = e−rτ

∫ ln u

ln l

h(ξ, τ ; z)g(ξ, tn, n − 1) dξ, ln l < z < ln u

where

h(ξ, τ ; z) = 1
√

2πσ 2τ
exp

(
−

1

2σ 2τ

(
ξ − z −

(
r −

σ 2

2

)
τ

)2)
.

We compute the above integral using a quadrature with weighing coefficients wj and
abscissas yj ∈ [l, u]:

g(z, tn + τ, n) =
m∑

j=1

wjh(yj , τ ; z)g(yj , tn, n − 1).

If we consider the option price computed at the m points z = (z1, . . . , zm), we can
write:

g(z, n + 1) = Kg(z, n),

where K is an m×m matrix whose element (i, j) is given by wjh(yj , τ ; zi)e−rτ , and
g(z,n) is a vector with entries g(zi, tn + τ, n). The pricing procedure is described in
Table 6.27. The computational cost is linear in the number of monitoring dates and
requires the construction of the matrix K, which involves m2 operations, plus an
additional m operations to compute the product Kg. Therefore the resulting cost is
in the order of O(m2 + nm). Let us consider a double barrier option with lower
threshold l = 95, upper threshold u = 110, risk-free rate r = 10%, instantaneous
volatility σ = 20%, a number of 25 monitoring dates, 0.5 years to go and strike price
K = 100. In Table 6.28, we compare different quadrature methods for m = 301.
Note the excellent agreement (within 5 digits!) between the results from Extended
Trapezoid, Simpson and Gauss–Legendre methods, whereas the Rectangular method
appears inaccurate. Figure 6.10 shows the price, delta and gamma of a discrete bar-
rier option as function of the spot price. Figures 6.11–6.13 illustrate the way the
number of monitoring dates affects option prices (that have been computed by using

6.7 Examples 195

Table 6.27. Pseudo-code for pricing discrete barrier options

Set g(z,0)
Build iteration matrix K
i = 1
While i<n Do g = Kg, i = i+1.

Table 6.28. Prices of discrete barrier options for different quadrature methods (m = 301).
Romberg extrapolation has been conducted using m = 2, 3, 5, 9, 17, 33, 65, 129, 257, for a
total of eight iterations. Parameters r = 0.1, σ = 0.2, K = 100, l = 95, u = 110, t = 0.5,
n = 25

Spot Rectangular T R ET S GL
95.00022 0.069795 0.068124 0.068132 0.068131 0.068131 0.068132
97 0.117652 0.115172 0.115186 0.115184 0.115184 0.115185
99 0.154918 0.151925 0.151942 0.15194 0.151939 0.151939
99.5 0.161189 0.158119 0.158139 0.158135 0.158134 0.158134

100 0.166097 0.162971 0.162987 0.162986 0.162985 0.162984
100.5 0.169626 0.166463 0.166479 0.166479 0.166478 0.166476
102 0.172133 0.168965 0.168983 0.168981 0.16898 0.168981
105 0.145087 0.142324 0.142340 0.142337 0.142337 0.142338
107 0.109937 0.107695 0.107707 0.107706 0.107706 0.107707
109.9997 0.052086 0.050837 0.050843 0.050843 0.050842 0.050843

the Gauss–Legendre quadrature method). Values can vary from 0.46455 with 5 mon-
itoring dates up to 0.08255 with 100 monitoring dates. The continuous monitoring
formula, developed by Kunitomo and Ikeda (1992), returns 0.02939. These price dif-
ferences support the need for a numerical method to take into account monitoring in
discrete time. Figure 6.11 illustrates the way delta and gamma may vary with the
number of monitoring dates.

All numerical results in this section have been obtained by using the VBA R©

function:

Function DiscreteBarrier(quadrature As Integer,
phi as Integer, EuAm as Integer, spot As Double,
strike As Double, rf As Double, sg As Double, dt
As Double, ndates As Integer, lowbarrier As Dou-
ble, upbarrier As Double, npoints As Integer) As
Variant

The first argument (quadrature) allows the user to select the quadrature rule (1 =
“Rectangular”, 2 = “Trapezoidal”, 3 = “Extended Trapezoidal”,
4 = “Simpson”, 5 = “Gauss-Legendre”). The second argument (phi) al-
lows to distinguish between call (phi = 1) and put options (phi = -1). The
third argument (EuAm) allows to distinguish between the European (EuAm = 1)

196 6 Quadrature Methods

Fig. 6.10. Price, Delta and Gamma of a discrete barrier option vs. spot price. Parameters:
r = 0.1, σ = 0.2, t = 0.5, K = 100, n = 25, l = 95, u = 110.

Fig. 6.11. Price of a discrete barrier option and monitoring dates. Parameters: r = 0.1, σ =
0.2, t = 0.5, K = 100, x = 100.0194, l = 95, u = 110.

and the American version (EuAm = 0).9 The last parameter (npoints) represents
the number of abscissas in the selected quadrature rule. Remaining parameters are
easily understood. The function returns an array with two columns, one reporting the
abscissas, the other indicating the corresponding option value.

9 In this case, we compare at each monitoring date and node by node, the intrinsic value
of the option to the residual value stemming from holding the option at each step of the
iteration.

6.8 Pricing Using Characteristic Functions 197

Fig. 6.12. Price of a discrete barrier option as function of the spot price, for different mon-
itoring dates (5, 10, 15, 20, 25, 30). Parameters: r = 0.1, σ = 0.2, t = 0.5, K = 100,
x = 100.0194, l = 95, u = 110.

Fig. 6.13. Delta and Gamma of a discrete barrier option and monitoring dates. Parameters:
r = 0.1, σ = 0.2, t = 0.5, K = 100, x = 100.0194, l = 95, u = 110.

6.8 Pricing Using Characteristic Functions

Several option pricing models generate analytical expressions for the characteristic
function of the underlying variables. This allows us to price derivative contracts by
using numerical approximations of the required probability distributions as obtained
by Fourier inversion. In this section, we define the characteristic function of a r.v. and
we show how it can be used for option pricing purposes. Then, we illustrate the way
quadrature methods can be used to make usable this important tool. In particular, we
present the Fast Fourier Transform (FFT) algorithm.

198 6 Quadrature Methods

The characteristic function ϕ(γ) of a random variable Z is defined as

ϕ(γ) = Et

(
eiγZ

)
,

where i :=
√

−1 is the imaginary unit and γ is a complex number. Observe that ϕ

is a complex-valued function, except when z has a symmetric distribution, in which
case it is real-valued. If Z has density function Pt (Z ∈ dz), we can equivalently
write

ϕ(γ) =
∫ +∞

−∞
eiγ z

Pt (Z ∈ dz).

It can be shown (e.g., Kendall (1994)) that if
∫

R
|ϕ(γ)| dγ < ∞, then Z has con-

tinuous probability density function that can be recovered by the following Fourier
inversion formula:

Pt (Z ∈ dz) =
1

π

∫ +∞

0
Re

(
e−iγ zϕ(γ)

)
dγ, (6.32)

where Re(·) stands for the real part of its argument.10 Expression (6.32) shows that
the characteristic function identifies the distribution of Z. More generally, it can
be shown that characteristic functions unequivocally identify distribution functions.
Elementary properties of the characteristic function are given in Table 6.29.

Example If Z ∼ N (0, 1), then

ϕ(γ) = e−γ 2/2.

Moreover, if Y = μ + σZ ∼ N (μ, σ 2), using property (d) in Table 6.29, we get

Et

(
eiγ Y

)
= eiγμ−γ 2σ 2/2.

Table 6.29. Elementary properties of the characteristic function

(a) ϕ(0) = 1.
(b) |ϕ(γ)| ≤ 1.
(c) If Y = −Z, then Et (eiγ Y) = ϕ̄(γ), where ϕ̄(γ) is the

complex conjugate of ϕ(γ).
(d) If Y = a + bZ, then Et (eiγ Y) = eiγ aϕ(bγ).

(e) Et (Z
n) = (i)n ∂nϕ(γ)

∂γ n

∣∣∣
γ=0

, n ∈ N.

(f) If Z1 and Z2 are independent r.v.s with c.f. ϕ1(γ) and ϕ2(γ)

then, Y = Z1 + Z2 has c.f. given by ϕ1(γ)ϕ2(γ).

10 Sometimes the inversion formula is given by 1
2π

∫ +∞
−∞ e−iγ zϕ(γ, T) dγ . The two expres-

sions coincide when the original function is a real function.

6.8 Pricing Using Characteristic Functions 199

In order to understand the importance of the characteristic function in option
pricing, we start with a simple example. Recall that the arbitrage-free price of a con-
tingent claim can be expressed as a conditional expectation of its discounted payoff.
If we consider a standard call option, then the price reads as:

c(K, T) = E
∗
t

(
e−r(T −t)

(
X(T) − K

)+)

= e−r(T −t)
{
E

∗
t

(
(X(T)1{X(T)>K})

)
− KE

∗
t (1{X(T)>K})

}
.

If we define z(T) = ln X(T) and k = ln K , we can write

c
(
ek, T

)
= e−r(T −t)

{
E

∗
t

(
ez(T)1{z(T)>k}

)
− ek

E
∗
t (1{z(T)>k})

}

= X(t)Π1 − eke−r(T −t)Π2.

Quantities Π1 and Π2 can be interpreted as “stock-adjusted” and “money-market
adjusted” probabilities, i.e., these probabilities have been computed by using respec-
tively the stock and the money market account as numéraires. Π1 and Π2 both rep-
resent the probability of ending up in-the-money at the option expiry. However, they
are computed under martingale measures for two different numéraires: Π1 uses as a
numéraire the stock itself, whereas Π2 uses the money market account:

Π1 = PrXt
(
X(T) > K

)
,

Π2 = PrBt
(
X(T) > K

)
,

where the apex underlines that in the first case we are using as probability measure
the one that makes erT /X(T) a martingale, whereas in the second case the ratio
X(T)/erT must be a martingale.

The two expectations above can be evaluated using the characteristic function of
Z(T). Let us define:

ϕ1(γ) =
∫ +∞

−∞
eiγ z

P
X
t

(
Z(T) ∈ dz

)
,

ϕ2(γ) =
∫ +∞

−∞
eiγ z

P
B
t

(
Z(T) ∈ dz

)
,

where P
X
t and P

B
t denotes the density function of Z(T) under the two different

numéraires (stock and money market account) and where we omit the dependence
of the characteristic function on the option expiry T . The functions ϕ1(γ) and ϕ2(γ)

are the Fourier transforms of the probability density functions P
X
t (Z(T) ∈ dz) and

P
B
t (Z(T) ∈ dz). It can be shown (e.g., Kendall (1994) or Duffie, Pan and Single-

ton (1998)) that the probabilities Π1 and Π2 can be recovered using the inversion
formulas

Π1 =
1

2
+

1

π

∫ +∞

0
Re

(
e−iγ kϕ1(γ)

iγ

)
dγ, (6.33)

Π2 =
1

2
+

1

π

∫ +∞

0
Re

(
e−iγ kϕ2(γ)

iγ

)
dγ, (6.34)

200 6 Quadrature Methods

and Re(·) stands for the real part of its argument.
Integrals (6.33) and (6.34) can be computed by quadrature. To this end, some

care is necessary if we are to tackle instability issues linked to the oscillatory nature
of the integrand function, due to the presence of the complex exponential function.
Recalling our previous discussion, the trapezoidal rule is expected to perform much
better than other Newton–Cotes rules and should be comparable to Gaussian quadra-
ture. However a more efficient approach has been proposed in Geman and Eydeland
(1995) and in Carr and Madan (1998). These authors, instead of computing Π1 and
Π2 separately, calculate the Fourier transform of an adjusted call option price with
respect to the logarithmic strike price k. These authors introduce a dumping parame-
ter α > 0 and define the following quantity:

cα

(
ek, T

)
:= eαkc

(
ek, T

)
, (6.35)

where α has to be chosen so that cα (ek, T) is square-integrable and therefore admits
the Fourier transform F[cα](γ):

F[cα](γ) =
∫ +∞

−∞
eiγ kcα

(
ek, T

)
dk.

It can be shown that this quantity can be expressed in terms of the characteristic
function ϕ2(γ) by

F[cα](γ) =
e−rT ϕ2(γ − αi − i)

α2 + α − γ 2 + i(2α + 1)γ
. (6.36)

If the characteristic function of z(T) is known in closed form, we also have an ana-
lytical expression for F[cα](γ) at our disposal. Similarly, for a put-option we define

pα

(
ek, T

)
:= e−αkp

(
ek, T

)
.

Its Fourier transform F[pα](γ) =
∫ +∞
−∞ eiγ ke−αkp(ek, T) dk can be written as:

F[pα](γ) =
e−rT ϕ2(γ + αi − i)

α2 − α − γ 2 + i(−2α + 1)γ
. (6.37)

As a last step, Fourier inversion yields the option prices

c
(
ek, T

)
=

e−αk

π

∫ +∞

0
e−iγ kF[cα](γ) dγ, (6.38)

p
(
ek, T

)
=

eαk

π

∫ +∞

0
e−iγ k

F[pα](γ) dγ. (6.39)

It is possible to prove that this method is viable provided that the moment of order
1 + α exists and is finite for some α > 0:

E
∗
t

(
X(T)1+α

)
< ∞.

6.8 Pricing Using Characteristic Functions 201

It turns out that any α ∈ [1.5, 2] works quite well for most cases.
Computing (6.32) and (6.38) (or (6.39)) can be done by using either the trape-

zoidal rule or the Gauss–Legendre quadrature. The trapezoidal rule can be imple-
mented very efficiently by means of the Fast Fourier Transform (FFT) algorithm.
We end this section by illustrating this procedure. Let us consider the problem of
computing the N × 1 vector H = {H0, . . . , Hn, . . . , HN−1} given the N × 1 vector
h = {h0, . . . , hk, . . . , hN−1}, such that:

Hn =
N−1∑

j=0

e+ijn 2π

N hj , n = 0, . . . , N − 1. (6.40)

Let H = {H0, . . . , Hn, . . . , HN−1} be the discrete Fourier transform of the vector
h = {h0, . . . , hk, . . . , hN−1}. Vice versa, using the discrete inverse Fourier transform
we can also recover h from H as:

hk =
1

N

N−1∑

j=0

e−ijk 2π

N Hj , k = 0, . . . , N − 1. (6.41)

The only difference between (6.40) and (6.41) is represented by the change of sign
in the exponential and the multiplicative constant 1/N .

In general, if we try to compute H from h, or vice versa, we need N2 multi-
plications involving complex quantities, plus additional N(N − 1) complex sums.
Exploiting the fact that these computations are not independent of each other, in the
1960s Cooley and Tukey discovered an algorithm requiring only N ln2(N)/2 oper-
ations. This algorithm is known as the Fast Fourier Transform and its discovery has
greatly stimulated the use of the Fourier transform in several technical disciplines.
An important aspect of FFT is that the algorithm is based on a recursive procedure
that allows one to express the FFT of length N as the sum of two FFT (each one of
length N/2). This fact implies that the best choice for N is a power of 2.

In order to exploit the FFT algorithm, we discretize the inversion integral (6.38)
using the trapezoidal rule with step η:11

c
(
ek, T

)
≃

e−αk

π

N−1∑

j=0

e−iηjk
F[cα](jη)wjη. (6.42)

Here w1 = 1/2, w2 = 1, . . . , wN−2 = 1, wN−1 = 1/2. This quadrature introduces
two types of error: first, a truncation error due to the finiteness of the upper limit
in the numerical integration; second, a sampling error due to the evaluation of the
integrand at grid points only. The FFT returns the option value over a grid of N

evenly spaced logarithmic strike prices k0, . . . , kN−1, with kn = k0 + nλ, k0 =
−Nλ/2, and kN−1 = Nλ/2. By setting kn = k0 + nλ into expression (6.42), we
obtain:

11 The trapezoidal rule can be applied to (6.32) or (6.39) as well.

202 6 Quadrature Methods

Table 6.30. Pseudo-code for option pricing via the FFT algorithm

(1) Assign N , λ, α, ϕ(γ);
(2) Construct the Fourier transform of dampened option price F [cα](γ) in (6.38);
(3) Construct vector h with components (6.44);
(4) Apply the FFT algorithm and obtain a vector H with N components;
(5) Multiply the nth component of H by exp(−αkn)N/π, where kn = −Nλ/2 + nλ.

c
(
ekn , T

)
≃

e−αkn

π

N−1∑

j=0

e−iηj (k0+nλ)F[cα](jη)ηwj

=
e−αkn

π

N−1∑

j=0

e−iηjnλe−iηjk0F[cα](jη)ηwj ,

for n = 0, . . . , N − 1. Finally, if we set

λη ≡
2π

N
,

we can apply the FFT algorithm (6.41). The choice λη ≡ 2π/N highlights a trade-
off arising between the accuracy of the integral, which is determined by the sam-
pling rate η of the Fourier transform, and the degree of space refinement as repre-
sented by λ. A finer discretization of the strike price space comes with a rougher
discretization step η in the transform plane (and vice versa). Unfortunately, nu-
merical experiments are required to determine the best compromise between the
two quantities involved in this trade-off. If we choose λη = 2π/N , we then have
ηk0 = −Nλη/2 = −π and thus:

c
(
ekn , T

)
≃

e−αkn

π

N−1∑

j=0

e−ijn 2π

N hj , (6.43)

where
hj = eijπ

F[cα](jη)ηwj . (6.44)

Given the FFT algorithm, option prices can be computed according to the proce-
dure described in Table 6.30.

6.8.1 MATLAB R© and VBA R© Algorithms

Matlab R© includes built-in routines fft(x) and ifft(x) which implement dis-
crete Fourier and inverse transforms. The Matlab R© FFT code is based on FFTW
(The Fastest Fourier Transform in the West) developed at MIT and available from
http://www.fftw.org. The fft(x) Matlab R© function operates the following sum

X(k) =
N∑

k=1

x(j)e−i 2π

N
(k−1)(j−1)

6.8 Pricing Using Characteristic Functions 203

and therefore if we need to compute (6.43), we need to construct a vector x having
as element at position j exactly the quantity hj given in (6.44).

Here, we illustrate the Matlab R© implementation in the Gaussian case. Implemen-
tation in a stochastic volatility model is illustrated in the case-study “Fixing Volatile
Volatility” in the second part of this book. In the Gaussian model, the risk neutral
characteristic function is

ϕ(γ) = exp

(
iγ

(
r −

σ 2

2

)
(T − t) −

1

2
γ 2σ 2(T − t)

)
.

Below, we use subfunctions to place all the functions required by the numerical
inversion in a single M-file that is named FFT_Pricing_CallPut.m. This file
can be run from the Matlab R© command window. The function

function [K, Y]
= FFT_Pricing_CallPut(S,rf,sg,t,alpha,npower)

returns two vectors K and Y containing strikes and corresponding option prices. The
arguments correspond to the spot price (S), the risk-free rate (rf), the volatility (sg),
the time to maturity (t), the dumping parameter (alpha), the exponent for deter-
mining the power of 2 (npower).12 In particular, if alpha is positive (negative) we
are pricing a call (put) option. Standard values for npower are 12 or 13, whilst the
absolute value of alpha can be 1.5.

function [K, Y]
= FFT_Pricing_CallPut(S,rf,sg,t,alpha,npower)

%find the number of points
N = 2ˆnpower;
%spacing in the strike
lambda = 0.01;
% parameters for the cf grid (0,N*eta)
eta = 2*pi/(N*lambda);
% create grid for the cf
g = (0:N-1) * eta;
%create grid for the strike
k0 = -N*lambda/2;
k = k0 + (0:N-1) * lambda;
%compute the ch. function
fc = ft_option(rf,sg,t,alpha,g);
w = [0.5 ones(1,N-2) 0.5]; % trapezoidal rule
h2 = exp(-i*k0*g) .* fc .* w*eta;
%Fourier inversion
g = fft(h2);
g2 = real(exp(-alpha.*k) / pi .* g);

12 The FFT computes the sum using 2n power points.

204 6 Quadrature Methods

K = S * exp(k); K = K’;
Y = exp(-rf*t) * S * g2; Y = Y’;
plot(K,Y);
axis([S*0.4 S*2 0 S])
xlabel(’strike’)
ylabel(’Option price’)
% fourier transform of the modified option price
function y = ft_option(rf,sg,t,a,g)
y1 = ft_pdf(rf,sg,t, g - i*(a+1));
y2 = aˆ2 + a - g.ˆ2 + i*(2*a+1)*g;
y = y1./ y2;
% characteristic function of the gaussian density
function res = ft_pdf(rf,sg,t,g)
mu = rf-sg*sg/2;
res = exp(i*t*mu.*g-0.5*t*sg*sg.*g.ˆ2);

Example Writing in the Matlab R© command window,

>>[K, callprice,putprice]
= FFT_Pricing_CallPut(1,0.05,0.2,1,1.5,12);

we can generate Fig. 6.14 that shows that in the range of strikes (0.6 × S, 1.4 × S)
the error (Black–Scholes price-FFT inversion) appears to be of order 10−16.

The inversion of the Fourier transform of the option can be performed using
the quadl integration function. The following code available in the Matlab R© module
quad_Pricing_CallPut.m illustrates the procedure. In the following code, the

Fig. 6.14. Black–Scholes price–FFT price. Parameters: X(0) = 1, r = 0.05, σ = 0.2, T = 1
year, α = 1.5, N = 212.

6.8 Pricing Using Characteristic Functions 205

argument gmaxx is introduced in order to truncate the upper limit of integration.

function [callprice,putprice,errcall,errput]
= quad_Pricing_CallPut(S,K,rf,sg,t,alpha,gmaxx)

fun = inline(‘real(exp(-i*x*logK).*ft_option(rf,sg,t,
alpha,x))’,‘x’,‘rf’,‘sg’,‘t’,‘logK’,
‘alpha’);

optprice = quad(fun,0,gmaxx,10ˆ-6,‘trace off’,rf,sg,t,
log(K),alpha)
*exp(-rf*t-alpha*log(K))*S/pi;

if alpha>0
callprice = optprice;
%put-call parity
putprice = callprice-S+exp(-rf*t)*K;

else
putprice = optprice;
callprice = putprice+S-exp(-rf*t)*K’;

end
[bscall, bsput]=blsprice(S,K,rf,t,sg,0);
errcall = bscall-callprice;
errput = bsput-putprice;

Example Let us write in the Matlab R© command window

>>[cp ,pp,errcall,errput]
=quad_Pricing_CallPut(1,0.9, 0.05,0.2,1 ,1.5,50);

and we get
cp 0.16699453941906
pp 0.02310102146970
errcall −0.00000005533490
errput −0.00000005533490

The reader can verify how the error depends on the truncation.

We have also implemented the FFT inversion in VBA R© translating the C code
provided in Antia (2002). The VBA R© function is

function fft(N As Integer,cg As Variant,iflg As Integer)
As Integer

where N is the number of points, which must be a power of 2; cg is an array of
length 2N containing the data points (real and complex part), iflg is a flag to de-
cide whether to calculate forward (iflg = 1) or inverse transform (iflg = -1).
After execution, the FFT algorithm replaces the original data points in the cg vector
by either the Fourier or inverse transform according to the selected value for iflg.
The function returns 0 provided the execution has been successful; the number 611
if N < 2; and 631 if N is not a power of 2.

206 6 Quadrature Methods

Numerical examples are presented in the next section along with a description of
Matlab R© and VBA R© codes for specific models. Notice that VBA R© does not support
complex calculations, so that the implementation requires a preliminary step defining
what is a complex number and then how to perform operations on it, such as division
between two complex numbers. For this purpose, we have defined a complex number
as a Variant array, with the first component being the real part and the second one
the imaginary part. Then we have constructed the basic complex functions (available
in the VBA R© module mComplexFunctions). These are adapted from C routines
available in Press et al. (1992), pp. 948–950. As an example, we report the code for
computing the difference of two complex numbers A and B:

Function Csub(A As Variant, B As Variant) As Variant
Dim c As Variant
ReDim c(2)
c(1) = A(1) - B(1) ‘Compute the real part of the difference’
c(2) = A(2) - B(2) ‘Compute the imaginary part of the difference’
Csub = c

End Function

Arguments A and B in CSub are complex numbers represented by vectors with two
elements, containing (respectively) the real and the imaginary part of the two com-
plex numbers. Csub returns a vector with two elements, containing the real and the
imaginary part of the difference. Examples on the use of the main complex functions
are given in the spreadsheet ComplexFunctions.

6.8.2 Options Pricing with Lévy Processes

A large class of models can be processed by using characteristic functions of the
involved random quantities. An example is provided by Lévy processes, which dis-
play a number of interesting features. First, they are the most direct generalization
of model based on Brownian motion (BM); second, they are analytically tractable;
third, they are general enough to include a wide variety of patterns, so that they
can account for smile and skew effects occurring in option prices; fourth, the i.i.d.
structure of Lévy processes simplifies the estimation of the corresponding parame-
ters under the historical probability measure. Any Lévy process is fully determined
by the characteristic function of its increments

E
∗
t

(
eiγ z(T)

)
= emΔ+ψ�(γ), (6.45)

where Δ = T − t and m is the drift parameter. Equivalently, we can specify the price
process in terms of the characteristic exponent ψΔ(γ) of the logarithmic increments,
which is defined as the logarithm of the characteristic function. In Table 6.31, we list
a few parametric Lévy processes and their associated characteristic exponent. The
normal model is a benchmark assumption: we have the purely diffusive Brownian
motion, which gives rise to the geometric Brownian motion (GBM) process for the

6.8 Pricing Using Characteristic Functions 207

Table 6.31. Characteristic exponents of some parametric Lévy processes: G (Gaussian), NIG
(Normal Inverse Gaussian), M (Meixner), VG (Variance Gamma), CGMY (Carr–Geman–
Madan–Yor), DE (Double Exponential), JD (Jump Diffusion or Merton), S (Stable)

Model (parameters) ψΔ(γ)

G(σ) −σ 2

2 γ 2Δ

NIG(α, β, δ) −δΔ(
√

α2 − (β + iγ)2 −
√

α2 − β2)

M(α, β, δ) 2δΔ ln(
cos(β/2)

cosh((αγ−iβ)/2)
)

VG(σ, v, θ) −Δ
v ln(1 − iθvγ + (σ 2v/2)γ 2)

CGMY(C, G, M, Y) CΔΓ (−Y)((M − iγ)Y − MY + (G + iγ)Y − GY)

DE(σ, λ, p, η1, η2) − 1
2σ 2γ 2Δ + λΔ(

(1−p)η2
η2+iγ + pη1

η1+iγ − 1)

JD(σ, α, λ, δ) − 1
2σ 2γ 2Δ + λΔ(eiγα−γ 2δ2/2 − 1)

S(κ, α, β) −κα |γ |αΔ(1 − iβ sign(γ) tan(απ

2))

Table 6.32. Parameter restrictions of some parametric Lévy processes

Model Parameters restriction
G σ > 0
NIG α > 0, −α < β < α, δ > 0
M α > 0, −π < β < π, δ > 0
VG v > 0, G > 0, M > 0
CGMY C > 0, G > 0, M > 0, Y < 2
DE σ > 0, λ > 0, p > 0, η1 > 0, η2 > 0
JD σ > 0, λ > 0, δ > 0

price of the underlying. The model introduced by Merton (1976) and the double ex-
ponential model developed in Kou (2002) are jump-diffusion processes that account
for the presence of fat tails in the empirical distribution of the underlying asset. The
remaining models reported in Table 6.31, are pure jump processes with finite varia-
tion that can display both finite and infinite activity. They are subordinated Brownian
motions: in other words, they can be interpreted as Brownian motions subject to a
stochastic time change which is related to the level of activity in the market. In par-
ticular, stable processes display the additional feature that their distribution does not
depend on the monitoring interval, modulo a scale factor. The parameters of the dif-
ferent models must satisfy some constraints, as given in Table 6.32. So far, the drift
parameter m in (6.45) has been left unspecified. Moreover, due to the incompleteness
of the market, we have to choose a martingale measure for the risk-neutral pricing
of derivatives. In particular, a mathematical tractable choice consists in choosing the
value of m such that the stock price discounted by the money-market account is a
martingale, i.e. E

∗
t [X(T)/B(T)] = X(t)/B(t), ∀T ≥ 0. A simple algebraic manip-

ulation shows that m must be set equal to

m = r −
ψ�(−i)

�
, (6.46)

where r denotes the constant risk-free rate.

208 6 Quadrature Methods

Tables 6.33 and 6.34 illustrate the main VBA R© functions that allow one to price
under Lévy dynamics. In these functions, dT stands for the time to maturity of the
option, rf represents the risk-free interest rate, model is an integer number that al-
lows the user to select the pricing model according to the order given in Table 6.31,
g is the Fourier parameter γ in the definition of the Fourier transform, parame-
ters is a row vector containing the parameters characterizing the chosen model.
For example, if the chosen model is given by the Meixner process (see Table 6.31),
then model = 3 and parameters is a 3 × 1 row vector containing the numerical

Table 6.33. VBA R© functions for the inversion of the Fourier transform

Function cfLevy(model As Integer, dT As Double, g As Variant,
parameters As Variant) as Variant

Function cfrn(model As Integer, rf As Double, dT As Double,
g As Variant, parameters As Variant) as Variant

Function cfrncall(model As Integer, rf As Double,
dT As Double, g As Variant, aa As Double,
parameters As Variant) as Variant

Function cfrnput(model As Integer, rf As Double, dT As Double,
g As Variant, aa As Double,
parameters As Variant) as Variant

Function TableIFT(choice As Integer, model As Integer,
spot as double, rf As Double, dT As Double,
n As Integer, dx As Double, aa As Double,
parameters As Variant) as Variant

Sub macroIFT()

Table 6.34. Structure of VBA R© modules containing the main VBA R© functions for the inver-
sion of the Fourier transform

mComplexFunctions Operations between complex numbers

Module Name Function Formula Sub-routines
mcfLevy cfrn (6.45) and (6.46) cfLevy

cfNig
cfMeixner
cfVarianceGamma
cfCgmy
cfDe
cfMerton

mcfcallput cfrncall (6.36) and (6.37) cfrn
cfrnput

mFFT fft (6.40) and (6.41)

mFFTInversion TableIFT (6.43) cfrn
cfrncall
cfrnput
mFFT

6.8 Pricing Using Characteristic Functions 209

Table 6.35. Parameters setting for Lévy models

Model Parameters
G(σ) 0.18850
NIG(α, β, δ) 6.18820 −3.89410 0.16220
M(α, β, δ) 0.39770 −1.49400 0.34620
VG(σ, v, θ) 0.01440 0.20000 −0.14000
CGMY(C, G, M, Y) 0.02440 0.07650 7.55150 1.29450
DE(σ, λ, π, η1, η2) 0.14163 0.04534 0.08982 0.24672 0.40000
JD(σ, α, λ, δ) 0.13358 −0.54976 0.11870 0.25651
S(κ, α, β) 0.13358 1.50000 0.11870

values for the parameter set (α, β, δ). The order in which the parameters are read is
the one given in the first column of Table 6.31. Quantity n represents the number of
points necessary to invert the Fourier transform. It must be a power of 2, not greater
than 211. Lag dx is the spacing at which the density of the option prices are returned.
Parameter aa is the dumping value α given in formula (6.35). The argument choice
in the function TableIFT is an integer number that must be set equal to 1 if the
user wants to obtain the density function or equal to 2 (resp. 3) if the user wants to
compute call (resp. put) option prices. Finally, spot is the current spot price of the
underlying asset. Function cfLevy returns the complex number Variant repre-
senting the characteristic function in the selected model. Routine cfrn performs
risk-neutralization on the characteristic function returned by cfLevy according to
formula (6.46). Function cfrncall returns the Fourier transform of the damp-
ened call option price. The output of function TableIFT is an n × 2 array. This
figure varies according to the value of parameter choice. If choice = 2, the array
contains the possible future spot prices and the corresponding values of the density
function. If choice = 2 (or 3) the array contains the possible strike prices and the
corresponding call (or put) prices. This function works only if n = 2j , where j is
an integer no greater than 11. In order to perform the FFT inversion with j larger
than 11, we need to run the macro macroIFT. This macro reads the relevant infor-
mation in the spreadsheet IFFT and then prints the output starting from cell I36. As
a numerical example, we consider the parameter set provided by Schoutens (2003,
pp. 82) and reported in Table 6.35 for the reader’s convenience. The example is
implemented in the Excel file Levy.xls. Figure 6.15 illustrates the way we set para-
meters to be passed to the VBA R© functions. Parameters stem from calibrating the
considered models to market option prices for varying strikes and times to maturity.
We consider a risk-free rate equal to 3.7% and a 1 year time to maturity. The spot
price is 25.67. Figure 6.16 compares the risk-neutral densities of logarithmic returns
with reference to NIG and Gaussian models. In the Gaussian case, the volatility has
been selected so that the log-returns in the two models display the same variance,
that is σ = 22.0078%.13 In particular, Figure 6.16 displays the two densities in a
logarithmic scale. In the Gaussian model, this curve is a parabola, whereas the NIG
model produces an asymmetric shape and a nearly linear decay in the left-hand tail.

13 For both models, E(x(T)) = x(0)erT .

210
6

Q
uadrature

M
ethods

Fig. 6.15. Excel screen for setting the parameters in the Lévy models and in the FFT algorithm.

6.9 Comments 211

Fig. 6.16. Log-density: Gaussian and NIG models. Parameters are given in Table 6.35.

Table 6.36. Call and put option prices in the Black–Scholes and in the NIG model

K cNIG(K, T) pNIG(K, T) cBS(K, T) pBS(K, T)

21.4414 5.5710 0.5635 5.3114 0.3039
22.7672 4.5074 0.7776 4.2856 0.5559
24.1751 3.4588 1.0858 3.3255 0.9524
25.6700 2.4677 1.5352 2.4677 1.5352
27.2573 1.5964 2.1936 1.7415 2.3388
28.9428 0.9183 3.1398 1.1629 3.3845
30.7326 0.4741 4.4204 0.7313 4.6776

This behavior reflects into higher prices for out-of-the money put options compared
to the Black–Scholes price. Indeed, OTM puts and ITM calls, as it can be argued
from the put-call parity, depend on the thickness of the left-hand tail of the under-
lying asset distribution density. This phenomenon is illustrated in Table 6.36 where
option prices are reported for varying strikes. There, the volatility parameter corre-
sponding to the Gaussian model has been set in a way that at-the-money options
in the Black–Scholes and in the NIG have the same price, that is σ = 19.5898%.
Similar results can be obtained with reference to the other models by selecting the
appropriate routine in the spreadsheet Levy.xls.

6.9 Comments

Standard references for quadrature methods are Davis and Rabinowitz (1975), Stoer
and Bulirsch (1980), Evans and Swartz (2000) and Antia (2002). A detailed dis-

212 6 Quadrature Methods

cussion on adaptive methods can be found in Gander and Gautschi (2000). Details
on the CEV model can be found in Cox and Ross (1976), Emanuel and MacBeth
(1982), Goldenberg (1991) and Cox (1996). Schroder (1989) shows that the transi-
tion density of the CEV process can be written in terms of the non-central chi-square
distribution function. A good approximation to it is given by Sankaran (1963) and
discussed by Johnson and Kotz (1995). The CIR model has been introduced by Cox,
Ingersoll and Ross (1985). See also Feller (1951), Lamberton and Lapeyre (1996)
and Cairns (2004). Closed form expressions for European options on coupon bonds
have been obtained by Jamshidian (1991) and Longstaff (1993). A listing of pricing
formulae for different types of barrier options can be found in Rubinstein and Reiner
(1991). A mathematically oriented discussion of the barrier option pricing problem
is contained in Rich (1994). In a nutshell, there are several approaches to barrier op-
tion pricing: (a) the probabilistic method, see Kunitomo and Ikeda (1992); (b) the
Laplace Transform technique, see Pelsser (2000), Sbuelz (1999, 2005), Jamshidian
(1997), Geman and Yor (1996); (c) the Black–Scholes PDE, which can be solved us-
ing separation of variables, see Hui, Lo and Yuen (2000) or finite difference schemes,
see Boyle and Tian (1998) and Zvan, Vetzal and Forsyth (2000), (d) binomial and
trinomial trees, see Boyle and Lau (1994), Cheuk and Vorst (1996), Figlewski and
Gao (1999), Ritchken (1995), Tian (1999); (e) Monte Carlo simulations with various
enhancements, see Andersen and Brotherton-Ratcliffe (1996), Baldi, Caramellino
and Iovino (1999), Beaglehole, Dybvig and Zhou (1997); (f) quadrature methods,
see Aitsahlia and Lai (1997), Sullivan (2000), Andricopoulos et al. (2003), Duan
et al. (2003), Fusai and Recchioni (2001); (g) approximated formulae, see Broadie,
Glasserman, and Kou (1997, 1999), Hörfelt (2003); (g) Wiener-Hopf methods, see
Fusai, Abrahams and Sgarra (2006). The Fourier transform approach to option pric-
ing has been used in several papers, for example Heston (1993), Bates (1991), Duffie,
Pan and Singleton (1998). Biffis and Millossovich (2006) price guaranteed annuity
options using affine processes and Fourier inversion. Useful references are Carr et al.
(2005), Cerny (2003), Lewis (2000) and Lipton (2001). The Fast Fourier algorithm
has been introduced in finance by Carr and Madan (1999). For a thorough intro-
duction to Lévy processes see Sato (2000) and Applebaum (2004). Applications to
finance can be found in Merton (1976), Kou (2002), Carr et al. (2003), Schoutens
(2003), Cont and Tankov (2004). In pricing using Lévy models, we have used the
risk-neutral measure. Another possible choice is to choose a different martingale
measures, such as the Esscher transform, as advocated at first in Gerber and Shiu
(1994).

7

The Laplace Transform*

Key words: integral transform, numerical inversion, PDE, ODE

In this chapter, we illustrate the use of the Laplace transform in option pricing.
Using the Laplace transform method we can transform a PDE into an ordinary dif-
ferential equation (ODE) that in general is easier to solve. The solution of the PDE
can be then obtained inverting the Laplace transform. Unfortunately when we con-
sider interesting examples, such as pricing Asian options, usually it is difficult to
find an analytical expression for the inverse Laplace transform. Then the necessity
of the numerical inversion. For this reason, in this chapter we also discuss the prob-
lem of the numerical inversion, presenting the Fourier series algorithm that can be
easily implemented in MATLAB R© or VBA R©. The numerical inversion is often dis-
believed generically referring to its “intrinsic instability” or for “its inefficiency from
a computational point of view”. So the aim of this chapter is also to illustrate that
the numerical inversion is feasible, is accurate and is not computational intensive.
For these reasons, we believe that the Laplace transform instrument will gain greater
importance in the Finance field, as already happened in engineering and physics.

In Sect. 7.1 we define the Laplace transform and we give its main properties.
In Sect. 7.2, we illustrate the numerical inversion problem. Section 7.3 illustrates a
simple application to finance.

7.1 Definition and Properties

In this section we give the basic definition and the properties of the Laplace trans-
form. We say that a function F is of exponential order, if there exist some constants,
M and k, for which |F(τ)| ≤ Mekτ for all τ ≥ 0. The Laplace transform F̂ (γ) of a

∗ with Marina Marena.

214 7 The Laplace Transform

function F(τ) is defined by the following integral:

F̂ (γ) = L(F (τ)) =
∫ +∞

0
e−γ τF(τ) dτ (7.1)

where γ is a complex number and F(τ) is any function which, for some value of γ ,
makes the integral finite. The integral (7.1) then exists for a whole interval of values
of γ , so that the function F̂ (γ) is defined. The integral converges in a right-plane
Re(γ) > γ0 and diverges for Re(γ) < γ0. The number γ0, which may be +∞ or
−∞, is called the abscissa of convergence.

Not every function of τ has a Laplace transform, because the defining integral
can fail to converge. For example, the functions 1/τ , exp(τ 2), tan(τ) do not possess
Laplace transforms. A large class of functions that possess a Laplace transform are
of exponential order. Then the Laplace transform of F(τ) surely exists if the real part
of γ is greater than k. In this case, k coincides with the abscissa of convergence γ0.
Also there are certain functions that cannot be Laplace transforms, because they do
not satisfy the property F̂ (+∞) = 0, e.g. F̂ (γ) = γ . An important fact is the
uniqueness of the representation (7.1), i.e. a function F̂ (γ) cannot be the transform
of more than one continuous function F(τ). We have indeed:

Theorem 1 Let F(τ) be a continuous function, 0 < τ < ∞ and F̂ (γ) ≡ 0, for

γ0 < Re(γ) < ∞. Then we have F(τ) ≡ 0.

In Table 7.1 we give the most important properties of the Laplace transform. In
particular, we stress the linearity property

L
(
aF1(τ) + bF2(τ)

)
= aL(F1(τ)) + bL(F2(τ)),

and the Laplace transform of a derivative

L(∂τF(τ)) = γL(F (τ)) − F(0).

In Table 7.2 we give several examples of the Laplace transform F̂ (γ) and the corre-
sponding function F(τ).

If the Laplace transform is known, the original function F(τ) can be recovered
using the inversion formula (Bromwich inversion formula), that can be represented
as an integral in the complex plane. We have the following result:

Theorem 2 If the Laplace transform of F(τ) exists and has abscissa of convergence

with real part γ0, then for τ > 0

F(τ) = L
−1(F̂ (γ)) = lim

R→∞
1

2πi

∫ a+iR

a−iR
F̂ (γ)eτγ dγ,

where a is another real number such that a > γ0 and i is the imaginary unit, i =√
−1.

7.1 Definition and Properties 215

Table 7.1. Basic properties of the Laplace transform

Property Function Laplace transform

Definition F(τ) F̂ (γ) =
∫ +∞

0 e−γ τ F(τ) dτ

Linearity aF1(τ) + bF2(τ) aF̂1(γ) + bF̂2(γ)

Scale aF (aτ) F̂ (γ /a)

Shift eaτ F(τ) F̂ (γ − a)

Shift

{
F(τ − a), τ > a

0, τ < a
e−aγ F̂ (γ)

Time derivative ∂F (τ)
∂τ

γ F̂ (γ) − F(τ)|τ=0

Differentiation ∂nF(τ)
∂τn γ nF̂ (γ) − γ n−1F(0) + · · ·

− γ n−2F ′(0) − · · · − F (n−1)(0)

Integral
∫ τ

0 F(s) ds
F̂ (γ)

γ

Multiplication τnF(τ) (−1)nF̂ (n)(γ)

by polynomials
Convolution

∫ τ
0 F(s)G(τ − s) ds F̂ (γ)Ĝ(γ)

Ratio of polynomials
∑n

k=1
P(αk)
Q′(αk)

eαkτ
∑n

k=1
P(γ)
Q(γ)

P(x) polynomial of degree < n; Q(x) = (x − a1)(x − a2) · · · (x − an)

where a1
= a1
= · · ·
= an

Final value limτ→∞ F(τ) limγ→0 γ F̂ (γ)

Initial value limτ→0 F(τ) limγ→∞ γ F̂ (γ)

Inversion limk→∞ 1
2πi

∫ a+ik
a−ik f (γ)eτγ dγ F̂ (γ)

where c is the real part of the rightmost singularity in the image
function

Table 7.2. Some Laplace transforms and their inverses. The function δ(t) is the delta-Dirac
function, the function Jn(x) is the Bessel function of the first kind and of order n, Erfc(x) is
the complementary error function, i.e. Erfc(x) = 2N(−

√
2x), where N(x) is the cumulative

normal distribution

F̂ (γ) F (τ)

1 1 δ(τ)

2 e−aγ δ(τ − a)

3 1
γ 1

4 1
γ 2 τ

5 1
γ n , n > 0 τn−1

Ŵ(n)

6 1
(γ−a)n

, n > 0 τn−1eaτ

(n−1)!
7 1√

γ−a+b
eaτ (1√

πτ
− beb2τ Erfc(b

√
τ))

8 e−|a|√γ√
γ

e−a2/4τ√
πτ

9 e−|a|√γ ae−a2/4τ

2
√

πτ 3

10 e−a
√

γ√
γ (

√
γ+b)

eb(bτ+a) Erfc(b
√

τ + a
2
√

τ
)

11 e−a/γ

γ n+1 (τ
a)n/2Jn(2

√
aτ)

216 7 The Laplace Transform

The real number a must be selected so that all the singularities of the image
function F̂ (γ) are to the left of the vertical line γ = γ0. The integral in the complex
plane can be sometimes evaluated analytically using the Cauchy’s residue theorem.
But this goes beyond an elementary treatment of the Laplace transform and we refer
the reader to some textbooks on complex analysis, such as Churchill and Brown
(1989). Moreover, this analytical technique often fails and the Bromwich’s integral
must be integrated numerically.

7.2 Numerical Inversion

Aim of this section is to illustrate how simple and accurate can be the numerical
inversion of the Laplace transform. The general opinion that the inversion of the
Laplace transform is an ill-conditioned problem1,2 is due to one of the first tentatives
of inversion that reduce the inversion problem to the solution of an ill-conditioned
linear system. If we consider a quadrature formula for the integral defining the
Laplace transform, we get

F̂ (γ) =
n∑

i=1

wie
−γ τi F(τi). (7.2)

Writing this equation for n different values of γ , where γ is supposed to be a real

number, we are left with an n×n linear system to be solved wrt the n unknown values
F(τi). Unfortunately, the solution of this linear system can change abruptly given lit-
tle changes in F̂ (γ). The ill-conditioning of the above inversion method is common
to all numerical routines that try the inversion computing the Laplace transform only
for real values of the parameter γ . The exponential kernel that appears in the defini-
tion of the Laplace transform smooths out too much the original function. Therefore,
to recover F(τ) given values of the Laplace transform on the real axis can be very
difficult. This problem occurs when F̂ (γ) is the result of some physical experiment,
so that it can be affected by measurement errors. Instead, this problem does not arise
when the Laplace transform is known in closed form as a complex function. In this
case instead of discretizing the integral defining the forward Laplace transform, we

1 The concept of well-posedness was introduced by Hadamard and, simply stated, it means
that a well-posed problem should have a solution, that this solution should be unique and
that it should depend continuously on the problem’s data. The first two requirements are
minimal requirements for a reasonable problem, and the last ensures that perturbations,
such errors in measurement, should not unduly affect the solution.

2 “The inversion of the Laplace transform is well known to be an ill-conditioned problem.
Numerical inversion is an unstable process and the difficulties often show up as being
highly sensitive to round-off errors”, Kwok and Barthez (1989). “The standard inversion
formula is a contour integral, not a calculable expression These methods provide con-
vergent sequences rather than formal algorithms; they are difficult to implement (many
involve solving large, ill-conditioned systems of linear equations or analytically obtaining
high-order derivatives of the transform) and none includes explicit, numerically computable
bounds on error and computational effort”, Platzman, Ammons and Bartholdi (1988).

7.2 Numerical Inversion 217

Fig. 7.1. Sample points for the inversion with the Fourier series method using the Bromwich
contour and sample points for the inversion on the real axis using the definition of Laplace
transform.

can operate the inversion using directly the Bromwich contour integral, and then
using values of the transform in the complex plane. The different approach of in-
verting the Laplace transform on the real axis or on the complex plane is illustrated
in Fig. 7.1. This section describe a very effective Laplace inversion algorithm that
involves complex calculations.3

Letting the contour be any vertical line γ = a such that F̂ (γ) has no singularities
on or to the right of it, the original function F(τ) is given by the inversion formula:

F(τ) = 1

2πi

∫ a+i∞

a−i∞
eγ τ F̂ (γ) dγ, τ > 0. (7.3)

Alternatively, setting a+iu = γ and using the identity from complex variable theory,
eγ = ea(cos(u) + i sin(u)), Re(F̂ (a + iu)) = Re(F̂ (a − iu)), Im(F̂ (a + iu)) =
− Im(F̂ (a − iu)), sin(uτ) = − sin(−uτ), cos(uτ) = cos(−uτ), and from the fact
that the integral in (7.3) is 0 for τ < 0, we get

F(τ) = 2eaτ

π

∫ +∞

0
Re

(
F̂ (a + iu)

)
cos(uτ) du (7.4)

and

F(τ) = −2eaτ

π

∫ +∞

0
Im

(
F̂ (a + iu)

)
sin(uτ) du.

F (τ) can be calculated from (7.4) by performing a numerical integration (quadra-
ture). Since there are many numerical integration algorithms, the remaining goal is

3 Certain computer languages such as Matlab R©, Mathematica, Fortran and C++ have auto-
matic provision for doing complex calculations. In VBA R© or C we need instead to define
a new type of variable and to say how operations between complex numbers must be per-
formed.

218 7 The Laplace Transform

to exploit the special structure of the integrand in (7.4) in order to calculate the inte-
gral accurately and efficiently.

The algorithm we describe is named Fourier series method and has received great
attention recently in finance, for the simplicity of implementation and the accuracy
in the numerical results. The underlying idea of the method is to discretize (7.4)
using the trapezoidal rule. Then the inversion is given as a sum of infinite terms. The
convergence of the series is accelerated using the Euler algorithm. This algorithm
allows one to compute a series with great accuracy using a limited number of terms
(in several examples founded in the literature no more than 30).

7.3 The Fourier Series Method

The Fourier series algorithm has been originally proposed by Dubner and Abate
(1968) and then improved by Abate and Whitt (1992b). It is essentially a trapezoidal
rule approximation to (7.4). An essential feature of this method is that an expres-
sion for the error in the computed inverse transform is available. Therefore, one can
control the maximum error in the inversion technique. Since the trapezoidal rule is
a quite simple integration procedure, its use can appear surprising. It turns out to
be surprisingly effective in this context with periodic and oscillating integrands, be-
cause the errors tend to cancel. In particular, it turns out to be better than familiar
alternatives such as Simpson’s rule or Gaussian quadrature for inversion integrals.

If we apply the trapezoidal rule with step size Δ to the expression in (7.4), we
get

F(τ) ≃ F DA
Δ (τ) = Δeaτ

π

Re(F̂ (a)) + 2Δeaτ

π

∞∑

k=1

Re
(
F̂ (a + ikΔ)

)
cos(kΔτ).

If we set Δ = π/(2τ) and a = A/(2τ), we can eliminate the cosine terms and
we obtain an alternating series

F DA
Δ (τ) = eA/2

2τ
Re

(
F̂

(
A

2τ

))
+ eA/2

τ

∞∑

k=1

(−1)k Re

(
F̂

(
A + 2kπi

2τ

))
. (7.5)

The choice of A has to be made in such a way that a falls at the left of the
real part of all the singularities of the function F̂ (γ) (a = 0 suffices when F is a
bounded continuous probability density). Assuming that |F(τ)| < M , Abate and
Whitt (1992b) show that the discretization error can be bounded by

∣∣F(τ) − F DA
Δ (τ)

∣∣ < M
e−A

1 − e−A
≃ Me−A, (7.6)

so that we should set A large in order to make the error small. In order to obtain a
discretization error less than 10−δ , we can set A = δ ln 10. However, increasing A

can make the inversion (7.5) harder, due to roundoff errors. Thus A should not be
chosen too large. In practice, Abate and Whitt (1992b) suggest to set A equal to 18.4.

7.4 Applications to Quantitative Finance 219

The remaining problem consists in computing the infinite sum in (7.5). If the
term Re(F̂ ((A + 2kπi)/(2τ))) has a constant sign for all k, it can be convenient
to consider an accelerating algorithm for alternating series. Abate and Whitt (1992b)
propose the use of the Euler algorithm. This algorithm consists in summing explicitly
the first n terms of the series and then in taking a weighted average of additional m

terms. In practice, the Euler algorithm estimates the series using E(τ ; n,m), where

F DA
Δ (τ) ≈ E(τ ; n,m) =

m∑

k=0

(
m

k

)
2−msn+k(τ), (7.7)

and where sn(τ) is the nth partial sum:

sn(τ) = eA/2

2τ
Re

(
F̂

(
A

2τ

))
+ eA/2

τ

n∑

k=1

(−1)k Re

(
F̂

(
A + 2kπi

2τ

))
. (7.8)

As pointed out in Abate and Whitt (1992b, p. 46), in order for Euler summation
to be effective, ak = Re(F̂ ((A + 2kπi)/(2τ))) must have three properties for suffi-
ciently large k: (a) to be of constant sign, (b) to be monotone, (c) the higher-order
differences (−1)mΔman+k are monotone. On a practical side, these properties are
not checked, so that the algorithm is used in a heuristic way. Usually, E(τ ; n,m)

approximates the true sum with an error of the order of 10−13 or less with the choice
n = 38 and m = 11, i.e. using just 50 terms. The direct computation of the series can
require more than 10,000 terms. The Abate–Whitt algorithm gives excellent results
for functions that are sufficiently smooth (say, twice continuously differentiable).
However, the inversion algorithm performs less satisfactorily for points at which the
function f (t) or its derivative is not differentiable.

Example Let us test the algorithm with the series
∑+∞

k=1(−1)k/k, that converges to
− ln 2 = −0.6931471805599453. Computing the sum using 100,000 terms, we get
−0.6931421805849445, i.e. a five digits accuracy. Using the Euler algorithm with
n = 19 and n + m = 30, we get −0.693147180559311, i.e. a ten digits accuracy!
This is illustrated in Fig. 7.2.

The procedure for the numerical inversion is then resumed in Table 7.3.

7.4 Applications to Quantitative Finance

In this section we illustrate how the Laplace transform method can be useful in solv-
ing linear parabolic equations. We consider two examples: (a) pricing a call option
in the standard Black–Scholes model; (b) pricing an Asian option in the square-root
model.

7.4.1 Example

For this, let us consider the Black–Scholes PDE satisfied by the price F(τ,X) of a
derivative contract having time to maturity T − t

220 7 The Laplace Transform

Fig. 7.2. Euler algorithm for computing
∑∞

k=1
(−1)k

k
.

∂tF + rx∂xF + 1

2
σ 2x2∂xxF = rF, (7.9)

F(T , x) = φ(x),

and appropriate boundary conditions. Let us define

τ = σ 2

2
(T − t), z = ln x,

and let us introduce the new function

F(t, x) = f (τ, z).

7.4 Applications to Quantitative Finance 221

Table 7.3. Pseudo-code for implementing the numerical inversion of the Laplace transform

Define the Laplace Transform F̂ (A
2τ

)

Assign A, n, m

Compute sj in (7.8), j = 1, m + m.
Using sn, . . . , sn+m compute E(τ ;n, m)

Then f solves the PDE

−∂τf (τ, z) +
(

r

σ 2/2
− 1

)
∂zf (τ, z) + ∂zzf (τ, z) − r

σ 2/2
f (τ, z) = 0, (7.10)

with initial condition f (0, z) = F(T , ez). In the following, we consider as payoff
function

f (0, z) = F
(
T , ez

)
=

(
ez − ek

)
+,

i.e. a plain vanilla option (and therefore f (τ, z) → ez − ek as z → +∞ and
f (τ, z) → 0 as z → −∞). If we Laplace transform the above partial differen-
tial equation with constant coefficients, the result will be an algebraic equation in
the transform of the unknown variable. Indeed, from the properties illustrated in Ta-
ble 7.1, we have

L(f (τ, z)) =
∫ ∞

0
e−γ τf (τ, z) dτ = f̂ (γ, z),

L(∂τf (τ, z)) =
∫ ∞

0
e−γ τ ∂τf (τ, z) dτ = γ f̂ (γ, z) − f (0, z),

L(∂zf (τ, z)) =
∫ ∞

0
e−γ τ ∂zf (τ, z) dτ = ∂zf̂ (γ, z),

L(∂zzf (τ, z)) =
∫ ∞

0
e−γ τ ∂zzf (τ, z) dτ = ∂zzf̂ (γ, z).

Therefore, we have the means of turning the PDE (7.9), for the linearity of the
Laplace transform, into the second-order ordinary differential equation (ODE):

−
(
γ f̂ (γ, z) −

(
ez − ek

)
+
)
+

(
r

σ 2/2
− 1

)
∂zf̂ (γ, z)

+ ∂zzf̂ (γ, z) − r

σ 2/2
f̂ (γ, z) = 0.

Then setting m = r/(σ 2/2) we get

∂zzf̂ (γ, z) + (m − 1)∂zf̂ (γ, z) − (m + γ)f̂ (γ, z) +
(
ez − ek

)
+ = 0 (7.11)

with boundary conditions given by the Laplace transform of the boundary conditions
of the original PDE:

222 7 The Laplace Transform

Table 7.4. Laplace transform and PDE

Original space

{ PDE
+IC

+BC’s

}
Solution

րտ
analytical numerical

↓ տր
L-transform L−1-transform

↓ ↑
Image space

{
ODE

+BC’s

}
→ Solution

f̂ (γ, z) → L
(
ez − e−mτ ek

)
= ez

γ
− ek

γ + m
as z → +∞, (7.12)

f̂ (γ, z) → L(0) = 0 as z → −∞. (7.13)

The initial condition of the PDE has been included in the ODE, where now there
is the appearance of the term (ez − ek)+. Therefore, instead of solving the PDE
(7.10) we are left with the second-order differential equation in (7.11), that actually
is simpler to solve. Then, the problem will be to recover the solution of the PDE from
the solution of the ODE, i.e. to find the inverse Laplace transform. The procedure is
illustrated in Table 7.4.

In order to solve (7.11), let us define

f̂ (γ, z) = exp(αz)ĝ(γ, z),

where α = (1 − m)/2. Then ĝ(γ, z) solves

∂zzĝ(γ, z) − (b + γ)ĝ + e−αz
(
ez − ek

)
+ = 0,

with b = α2 + m = (m − 1)2/4 + m. We can solve this ODE separately in the two
regions z > k and z ≤ k to get

ĝ(γ, z) =
{

e−(α−1)z

γ
− e−αz+k

γ+m
+ h1(γ, z)A1 + h2(γ, z)A2, z > k,

h1(γ, z)B1 + h2(γ, z)B2, z ≤ k,

where
h1(γ, z) = e−

√
b+γ z, h2(γ, z) = e+

√
b+γ z.

Here A1, A2, B1 and B2 are constants to be determined according to the boundary
conditions (7.12) and (7.13) and requiring that f̂ (γ, z) is continuous and differen-
tiable at z = k (smooth pasting conditions). We observe that the singularities of
ĝ(γ, z) are 0, −m and −b. Therefore the abscissa of convergence of ĝ(γ, z) is given
by

γ0 = max(0,−m,−b).

Given that when γ > γ0, limz→+∞ eαzh1(γ, z) = 0 and limz→+∞ eαzh2(γ, z) =
∞, we must set A2 = 0. Similarly, when z < k we need to set B1 = 0. We are
therefore left with

7.4 Applications to Quantitative Finance 223

ĝ(γ, z) =
{

e−(α−1)z

γ
− e−αz+k

γ+m
+ h1(γ, z)A1, z > k,

h2(γ, z)B2, z ≤ k,

and now we determine A1 and B2 with the additional conditions

lim
z→k+

f̂ (γ, z) = lim
z→k−

f̂ (γ, z),

lim
z→k+

∂zf̂ (γ, z) = lim
z→k−

∂zf̂ (γ, z).

With some tedious algebra, we get

A1(γ) = e(1−a+
√

b+γ)k(γ − (a − 1 +
√

b + γ)m)

2γ
√

b + γ (γ + m)
,

B2(γ) = e(1−a−
√

b+γ)k(γ − (a − 1 −
√

b + γ)m)

2γ
√

b + γ (γ + m)
,

and finally we obtain the following expression for the function f̂ (γ, z)

f̂ (γ, z) = eaz

[(
e−(α−1)z

γ
− e−αz+k

γ + m

)
1(z>k)

+ e−
√

b+γ |z−k|+(1−a)k(γ − (a − 1 +
√

b + γ sgn(z − k))m)

2γ
√

b + γ (γ + m)

]
,

(7.14)

where sgn(z) = 1(z≥0) − 1(z<0).
We can also easily obtain the Laplace transform of the Delta and the Gamma of

the option differentiating with respect to x = ez the Laplace transform.

Numerical Inversion

The numerical inversion has been implemented in MATLAB R© and in VBA R©. In
MATLAB R©, we have built the following functions

function [lt] = ltbs(spot, strike, sg, rf, gamma)
function [euler] = AWBS(spot, strike, expiry, sg, rf,

aa, terms, extraterms)
The function ltbsm returns the Laplace transform in (7.14), taking as inputs the

spot price (spot), the strike (strike), the volatility (sg), the risk-free rate (rf)
and the Laplace parameter γ (gamma). The function AWBS performs the numerical
inversion (Fourier series with Euler summation) returning the Black–Scholes price.
The parameter aa is the constant A that determines the discretization error in (7.6),
terms is the number of terms n we use to estimate sn, and extraterms is the
additional number of terms m needed to perform the Euler summation. Similar func-
tions have been constructed in VBA R© for Excel. Here below, we give the Matlab R©

code.

224 7 The Laplace Transform

function [optprice] = AWBS(spot, strike, expiry, sg,
rf, aa, terms, extraterms)

tau = expiry * sg * sg / 2;
sum = 0;
%%compute the LT at gamma = aa / (2 * tau)
lt = ltbs(spot, strike, sg, rf, aa / (2 * tau));
sum = lt* exp(aa / 2) / (2 * tau);
%apply the Euler algorithm
k = [1:terms + extraterms];
arg = aa / (2 * tau)+i*pi.*k / tau;
term = ((-1) .ˆk) .* ltbs(spot, strike, sg, rf, arg)

* exp(aa / 2) / tau;
csum = sum+cumsum(term);
sumr = real(csum(terms:terms+extraterms));
j=[0:extraterms];
bincoeff = gamma(extraterms+1)./(gamma(j+1).

* gamma(extraterms-j+1));
%extrapolated result
optprice = (bincoeff*sumr’)*(2) ˆ(-extraterms);

function [lt] = ltbs(spot, strike, sg, rf, gamma)
m = 2 * rf / (sg * sg); a = (1 - m) / 2; b = a ˆ2 + m;
z = log(spot); k = log(strike);
%%%FORMULA 14: NUMERATOR
term0 = (b+gamma).ˆ0.5;
%’the numerator
if spot >strike

term1 = term0;
else

term1 = -term0;
end
term1 = a - 1+term1;
term1 = m*term1;
num = gamma-term1;
%’the denominator
den = 2.*gamma .* term0.*(m+gamma);
%’the exponential term
term2 = exp(k*(1-a)-term0*abs(z-k));
result = term2.*num./ den;
if spot > strike
%’exp(-(a-1)*z)/gamma

cterm1 = exp(-(a - 1) * z)./gamma;
%’exp(-a*z+k)/(gamma+m)

cterm2 = exp(-a * z + k)./(gamma +m);
%’A1*h1

result = cterm1-cterm2+result;
end
lt = exp(a * z).*result;

7.4 Applications to Quantitative Finance 225

Table 7.5. Pricing of a call option: analytical Black–Scholes (3rd column) and numerical
inversion of the Laplace transform (4th and 5th columns). Parameters: strike = 100, r = 0.05,
σ = 0.2

Expiry Spot BS A = 18.4, n = 15, m = 10 A = 18.4, n = 50, m = 10
0.001 90 0.00000 0.00000 0.00000
0.001 100 0.254814 0.254814 0.254814
0.001 110 10.00500 10.00500 10.00500
0.5 90 2.349428 2.349428 2.349428
0.5 100 6.888729 6.888729 6.888729
0.5 110 14.075384 14.075384 14.075384
1 90 5.091222 5.091222 5.091222
1 100 10.450584 10.450584 10.450584
1 110 17.662954 17.662954 17.662954
5 90 21.667727 21.667727 21.667727
5 100 29.13862 29.13862 29.13862
5 110 37.269127 37.269128 37.269128

20 90 57.235426 57.235426 57.235427
20 100 66.575748 66.575748 66.575749
20 110 76.048090 76.048090 76.048091

m.s.e. 0.00000147 0.00000203

In Table 7.5 we report the exact Black–Scholes price and the one obtained by nu-
merical inversion. The numbers in Table 7.5 can be obtained running the MATLAB R©

module main.

7.4.2 Example

As a second example, we consider the use of the Laplace transform with respect
to the strike and not with respect to the time to maturity. This different approach is
possible when the moment generating function (m.g.f.) of the underlying variable is
known in closed form. The m.g.f. of a random variable Z is defined as E0[e−γZ]. In
particular, if Z is a non-negative r.v. and admits density fZ(z), we have

E0
[
e−γZ

]
=

∫ +∞

0
e−γ zfZ(z) dz,

and hence the interpretation of the m.g.f. as Laplace transform of the density func-
tion. Notice that the existence of the m.g.f. is not always guaranteed because it is
required that the m.g.f. is defined in a complete neighborhood of the origin. For ex-
ample, this is not the case when Z is lognormal.

If the m.g.f. of the random variable Z is known, we can also obtain the Laplace
transform of a call option written on Z(t). Let us consider a contingent claim with
payoff given by α(Z(t) − Y)+, where α and Y are constants. By no-arbitrage argu-
ments, the option price is:

226 7 The Laplace Transform

C
(
Z(0), t, Y

)
= αe−rt

∫ +∞

0
(z − Y)+fZ(z) dz

= αe−rt

∫ +∞

Y

(z − Y)fZ(z) dz, (7.15)

where fZ(z) is the risk-neutral density of Z(t). Let us define the Laplace transform
wrt Z of the above price

c
(
Z(0), t; γ

)
= L

[
C

(
Z(0), t, Y

)]
=

∫ +∞

0
e−γ Y C

(
Z(0), t, Y

)
dY.

Replacing (7.15) in this formula and using a change of integration, we get

c
(
Z(0), t; γ

)
= αe−rt

∫ +∞

0
e−γ Y

∫ +∞

x

(z − Y)fZ(z) dz dY

= αe−rt

∫ +∞

0

(∫ z

0
e−γ Y (z − Y) dY

)
fZ(z) dz

= αe−rt

∫ +∞

0

(∫ z

0

(
ze−γ Y − Y e−γ Y

)
dY

)
fZ(z) dz

= αe−rt

∫ +∞

0

e−γ z + γ z − 1

γ 2
fZ(z) dz

= αe−rt

(
E0[e−γZ(t)]

γ 2
+ E0[Z(t)]

γ
− 1

γ 2

)
.

Using the fact that the Laplace inverse of 1/γ is 1 and the Laplace inverse of 1/γ 2

is Y , we can write the option price as follows

C
(
Z(0), t, Y

)
= αe−rt

(
L−1

(
E0[e−γZt]

γ 2

)
+ E0[Zt] − Y

)
, (7.16)

and the pricing problem is reduced to the numerical inversion of E0[e−γZt]/γ 2.
As a concrete example, let us consider the square root process

dX(t) = rX(t) dt + σ
√

X(t) dW(t),

and our aim is to price a fixed strike Asian call option, having payoff

1

t

(∫ t

0
X(u) du − Kt

)

+
.

In order to obtain the price of the Asian option, we compute the moment gener-
ating function of

∫ t

0 X(u) du:

v
(
X(0), t; γ

)
= E0

[
e−γ

∫ t
0 X(u) du

]
. (7.17)

7.4 Applications to Quantitative Finance 227

By the Feynman–Kac theorem, v(X(0), t; γ) is the solution of the PDE:

−∂tv + rx ∂xv + 1

2
σ 2x ∂xxv = γ xv

with initial condition
v
(
X(0), 0; γ

)
= 1.

To solve this PDE, we exploit the linearity of the drift and variance coefficients
and, following Ingersoll (1986), pp. 397–398, we consider a solution of the type:

v(X, t; γ) = e−A(t; γ)X−B(t;γ).

Replacing this function in the PDE, it is then easy to show that B(t; γ) = 0 and

A(t; γ) = 2γ (exp(tλ) − 1)

λ + r + (λ − r) exp(tλ)
, (7.18)

where λ =
√

r2 + 2γ σ 2. Therefore, using (7.16), we can write the price of the Asian
option as

αe−rt

(
L−1

(
e−A(t;γ)X−B(t;γ)

γ 2

)
+ E0

[∫ t

0
X(u) du

]
− X

)
,

where L−1 is the Laplace inverse. In particular, we have:

E0

[∫ t

0
X(u) du

]
=

∫ t

0
E0[X(u)] du

=
∫ t

0
X(0)eru du

= X(0)
ert − 1

r
.

Numerical inversion

Table 7.6 provides some numerical example. In the numerical inversion of the
Laplace transform we have used A = 18.4, and the Euler algorithm has been ap-
plied using a total of 20 + 10 terms.

Table 7.6. Prices of an Asian option in the square-root model

K σ = 0.1 σ = 0.3 σ = 0.5
0.9 0.137345 0.15384 0.18691
0.95 0.09294 0.12001 0.15821
1 0.05258 0.09075 0.13253
1.05 0.02268 0.06640 0.10987
1.1 0.00687 0.04696 0.09016

228 7 The Laplace Transform

These examples have been obtained writing the Matlab R© functions
AWSR(spot, strike, expiry, sg, rf, aa, terms,

extraterms)
ltsr(spot, expiry, sg, rf, gamma)

The function AWSR performs the numerical inversion of the Laplace transform
according to the Abate–Whitt algorithm. The function ltsr returns the quantity
v(X, t; γ)/γ 2. The complete code is given here below.

function [optprice]=AWSR(spot, strike, expiry, sg, rf,
aa, terms, extraterms)

X = strike*expiry;
sum = 0;
%%compute the LT at gamma = aa / (2 * strike)
lt = ltsr(spot , expiry , sg , rf , aa / (2 * X));
sum = lt* exp(aa / 2) / (2 * strike);
%apply the Euler algorithm
k = [1:terms + extraterms];
arg = aa / (2 * X)+i*pi.*k / X;
term = ((-1) .ˆk) .* ltsr(spot, expiry, sg, rf, arg)

* exp(aa / 2) / X;
csum = sum+cumsum(term);
sumr = real(csum(terms:terms+extraterms));
j = [0:extraterms];
bincoeff = gamma(extraterms+1)./(gamma(j+1).

* gamma(extraterms-j+1));
%extrapolated result
euler = (bincoeff*sumr’)*(2) ˆ(-extraterms);
%apply the final formula
optprice = exp(-rf*expiry)*(euler+spot*(exp(rf*expiry)

-1)/rf - X)/expiry;

function [lt] = ltsr(spot, expiry, sg, rf, gamma)
lambda = sqrt(rfˆ2+2*gamma*sg*sg);
numerator = 2*gamma.*(exp(expiry.*lambda)-1);
denominator = lambda+rf+(lambda-rf).*exp(expiry.

*lambda);
lt = exp(-spot*numerator./denominator)./gamma.ˆ2;

7.5 Comments

A good introduction to the Laplace transform topic can be found in Dyke (1999),
whilst a classical but more advanced treatment is Doetsch (1970). Extensive ta-
bles for analytical inversion of the Laplace transform are available: see for exam-
ple Abramowitz and Stegun (1965). Davies and Martin (1970) provide a review and

7.5 Comments 229

a comparison of some numerical inversion available through 1979. More recently
Duffy (1993) compares three popular methods to numerically invert the Laplace
transform. The methods examined in Duffy are (a) the Crump inversion method,
Crump (1970); (b) the Weeks method that integrates the Bromwich’s integral by
using Laguerre polynomials, Weeks (1966); (c) the Talbot method that deforms the
Bromwich’s contour so that it begins and ends in the third and second quadrant of the
γ -plane, Talbot (1979). If the locations of the singularities are known, these schemes
may provide accurate results at minimal computational expense. However, the user
must provide a numerical value for some parameters and therefore an automatic in-
version procedure is not possible. At this regard, a recent paper by Weideman (1999)
seems to give more insights about the choice of the free parameters. Another sim-
ple algorithm to invert Laplace transforms is given in Den Iseger (2006). In general
this algorithm outperforms the Abate–Whitt algorithm in stability and accuracy. The
strength of the Den Iseger algorithm is the fact that in essence it boils down to an
application of the discrete FFT algorithm. However, the Den Iseger algorithm may
also perform unsatisfactorily when the function or its derivative has discontinuities.
Other interesting numerical inversion algorithms can be found in Abate, Choudhury
and Whitt (1996), Garbow et al. (1988a, 1988b). Finally, we mention the often quoted
Gaver–Stehefest algorithm, Gaver, Jr. (1966) and Stehfest (1970), a relatively simple
numerical inversion method using only values of the Laplace transform on the real
axis but requiring high precision.4

The numerical inversion of multidimensional Laplace transforms is studied in
Abate, Choudhury and Whitt (1998), Choudhury, Lucantoni and Whitt (1994), Sing-
hal and Vlach (1975), Singhal, Vlach and Vlach (1975), Vlach and Singhal (1993),
Chpt. 10, Moorthy (1995a, 1995b). Among the others, papers that discuss the insta-
bility of the numerical inversion are Bellman, Kalaba and Lockett (1966), Platzman,
Ammons and Bartholdi (1988), Kwok and Barthez (1989), Craig and Thompson
(1994). An useful source for the solution of ordinary differential equations is Ince
(1964).

Selby (1983) and Buser (1986) have introduced the Laplace transform in fi-
nance. Useful references are Shimko (1991) and Fusai (2001), that have lots of ex-
amples on which to practice. Laplace transform has been used in finance for pric-
ing (a) barrier options, Geman and Yor (1996), Pelsser (2000), and Sbuelz (1999,
2005), Davydov and Linetsky (2001a, 2001b); (b) interest rate derivatives, Leblanc
and Scaillet (1998) and Cathcart (1998); (c) Asian options, Geman and Yor (1993),
Geman and Eydeland (1995), Fu, Madan and Wang (1998), Lipton (1999), and Fusai
(2004); (d) other exotic options (corridor, quantile, parisian and step options), Aka-
hori (1995), Ballotta (2001), Ballotta and Kyprianou (2001), Chesney et al. (1995),
Chesney et al. (1997), Dassios (1995), Hugonnier (1999), Linetsky (1999), Fusai
(2000), Fusai and Tagliani (2001); (e) credit risk, Di Graziano and Rogers (2005);
(f) options on hedge funds, Atlan, Geman and Yor (2005). A review can be found
in Craddock, Heath and Platen (2000). Useful formulae related to the Laplace trans-

4 A Matlab R© implementation can be found at http://www.mathworks.com/matlabcentral/
fileexchange/loadFile.do?objectId=9987&objectType=file

230 7 The Laplace Transform

form of the hitting time distribution and to exponential functionals of the Brownian
motion can be found in Yor (1991), Rogers (2000), Borodin and Salminen (2002),
Salminen and Wallin (2005).

Finally, we mention the web page mantained by Valko,5 a useful reference for
finding the most important algorithms for the numerical inversion of the Laplace
transform.

5 http://pumpjack.tamu.edu/valko/public_html/Nil/index.html

8

Structuring Dependence using Copula Functions*

The Latin word “copula” denotes linking or connecting between parts. This word
has been adopted in statistics to denote a class of functions allowing to build cross-
dependent multivariate distributions. Although the terms “correlation” and “depen-
dence” are often used interchangeably, the former is a rather particular kind of depen-
dence measure between random variables. As such, it suffers from inconveniences
due to its limitation in capturing other forms of dependence. For instance, it is not
difficult to find examples of dependent variables displaying zero correlation. The
problem of modeling dependence structures is that this feature does not always show
out of the joint distribution function under consideration. It would be of some help
to separate the statistical properties of each variable from their dependence structure.
Copula functions provide us with a viable way to achieve this goal.

This chapter is organized as follows. Section 8.1 introduces the notion of copula
and related definitions. Section 8.2 presents an overview of major concepts of de-
pendence and examines their link to copulas. Sections 8.3 and 8.4 exhibit the most
important families of copulas together with their properties. Section 8.5 is devoted
to the statistical inference of copula functions. Section 8.6 discusses Monte Carlo
simulation techniques. Section 8.7 concludes with a few remarks and comments.

8.1 Copula Functions

A copula is a mathematical function C representing a joint distribution F as a func-
tion of the corresponding marginal distributions Fj , j = 1, . . . , n, i.e., F(x1, . . . ,

xn) = C(F1(x1), . . . , Fn(xn)). We begin with a definition and then present a theo-
retical result stating the claimed property.

Definition (Copula function) An n-copula (function) is a real-valued function C

from the unit cube [0, 1]n onto the unit interval [0, 1], such that:

(1) Groundness: C(u) = 0 if at least one coordinate uj is zero;

∗ with Davide Meneguzzo.

232 8 Structuring Dependence using Copula Functions

(2) Reflectiveness: C((1, . . . , 1, uj , 1, . . . , 1)) = uj ;
(3) N-increasing property: For all u1=(u1

1, . . . , u
1
n) and u2=(u2

1, . . . , u
2
n) in [0, 1]n

with u1 ≤ u2, i.e., u1
i ≤ u2

i for all i, the C-volume of the hypercube with corners
u1 and u2 is positive, i.e.,1

∑

i1=1,2

· · ·
∑

in=1,2

(−1)i1+i2+···+inC
(
u

i1
1 , . . . , uin

n

)
≥ 0.

It is easy to see that these properties follow from the fact that the composite
function C ◦ (F1, . . . , Fn) is a cumulative distribution function (c.d.f.); moreover,
any copula function is itself the joint c.d.f. of n standard uniform random variables
(r.v.’s) U1, . . . , Un, i.e., C(u1, . . . , un) = P(U1 ≤ u1, . . . , Un ≤ un).

The following theorem is a key result. It states a relation between distributions
and copulas.

Theorem (Sklar, 1959) Let F be an n-dimensional c.d.f. with marginal c.d.f.’s
F1, . . . , Fn. Then, there exists a function C : R

n → [0, 1] such that for all y in R
n:

F(y1, . . . , yn) = C
(
F1(y1), . . . , Fn(yn)

)
.

If all margins F1, . . . , Fn are continuous, then C is unique. Conversely, if C is a n-

copula and F1, . . . , Fn are c.d.f.’s, then the function defined by F(y1, . . . , yn) =
C(F1(y1), . . . , Fn(yn)) is a joint n-dimensional c.d.f. with marginals c.d.f.’s F1,

. . . , Fn.

This theorem elucidates the main idea of dependence modelling using copula
functions: the statistical properties of margins and their association structure can be
disentangled, so that one may model one independently of the other.

An immediate corollary of Sklar’s theorem states that the copula corresponding
to an n-dimensional distribution function F with continuous margins F1, . . . , Fn can
be computed from these functions as

C(u1, . . . , un) = F
(
F−1

1 (u1), . . . , F
−1
n (un)

)
, (8.1)

where F−1
i is the quasi-inverse function of Fi as defined in subsection “Transforma-

tion Methods” in chapter “Static Monte Carlo”.

1 The case n = 2 is self-evident: the C-volume is the area

VC = (−1)1+1C(u1
1, u1

2) + (−1)1+2C(u1
1, u2

2) + (−1)2+1C(u2
1, u1

2)

+ (−1)2+2C(u2
1, u2

2)

= C(u1
1, u1

2) − C(u1
1, u2

2) − C(u2
1, u1

2) + C(u2
1, u2

2).

This is exactly the probability that a bivariate random variable with distribution func-
tion C assumes a value in the rectangle with vertices (u1

1, u1
2), (u1

1, u2
2), (u2

1, u1
2) and

(u2
1, u2

2).

8.2 Concordance and Dependence 233

8.2 Concordance and Dependence

This section discusses the relationship between copula functions and association

measures for pairs of random variables. These notions allow one to model the sta-
tistical dependence between prices, indices and other financial quantities. It is worth
pointing out that most notions involving statistical distributions can be formulated in
terms of the corresponding copulas.

8.2.1 Fréchet–Hoeffding Bounds

It is clear that the copula function of mutually independent variables is given by the
following function defined in [0, 1]n:

C⊥(u1, . . . , un) =
n∏

j=1

uj .

This is known as the product copula.
What about the extreme cases of perfect positive and negative dependence? The

answer to this question is linked to the Fréchet–Hoeffding theorem stating upper and
lower bounds for copula functions.

Definition A copula C1 is smaller than a copula C2, and we write C1 ≺ C2, if:

1. C1(u) ≤ C2(u), and
2. �C1(u) ≤ C2(u),

for all u in [0, 1]n, where C denotes the joint survival function

C(u1, . . . , un) = P(U1 > u1, . . . , Un > un). (8.2)

Theorem (Fréchet–Hoeffding, 1957) If C is an n-copula, then

C− ≺ C ≺ C+,

where

C−(u1, . . . , un) = max

(
n∑

j=1

uj − n + 1, 0

)
,

C+(u1, . . . , un) = min(u1, . . . , un).

Functions C⊥ and C+ are n-copulas for all n ≥ 2, whereas C− is not a copula
for n ≥ 3. To see this, we compute the volume of the n-cube [1/2, 1]n using the
lower copula bound:

max(1 + · · · + 1 − n + 1, 0) − n max(1/2 + 1 + · · · + 1 − n + 1, 0)

+
(

n

2

)
max(1/2 + 1/2 + 1 + · · · + 1 − n + 1, 0)

+ max(1/2 + · · · + · · · + 1/2 − n + 1, 0)

= 1 − n/2 + 0 + · · · + 0.

234 8 Structuring Dependence using Copula Functions

This number is negative for n ≥ 3, hence C− is not a copula according to the defin-
ition above. However, C− is the best possible lower bound in the sense that for any
n ≥ 3 and any u in [0, 1]n, there exists an n-copula C such that C(u) = C−(u).

The Fréchet–Hoeffding theorem has a clear interpretation in the bivariate case:
two random variables X1 and X2 exhibit copula C− (resp. C+) if and only if they
are discordant (resp. concordant) functions of a common r.v. Y , i.e., X1 = f1(Y) and
X2 = f2(Y) with f1 increasing and f2 decreasing (resp. both f1 and f2 increasing).

8.2.2 Measures of Concordance

Roughly speaking, two random variables are said to be concordant if large values of
one come with large values of the other and small values of one come with small
values of the other. Two samples (xi, yi) and (xj,yj) of a continuous random vector
(X, Y) are concordant if (xi − xj)(yi − yj) > 0. This means that either xi < xj and
yi < yj or xi > xj and yi > yj . Since dependence between variables X1 and X2 is
driven by their copula C, we interchangeably use symbols κX1X2 and κC to denote a
measure of concordance as defined as follows:

Definition (Measure of concordance) A function κ defined on pairs of random
variables is a measure of concordance if for every pair X1 and X2 of r.v.’s it satisfies
the following properties:

(1) Completeness: κX1,X2 is well defined;
(2) Normality: −1 ≤ κX1,X2 ≤ 1;
(3) Symmetry: κX1,X2 = κX2,X1 ;
(4) Weak nullity: κX1,X2 = κC⊥ = 0 if X1 and X2 are statistically independent;
(5) Specularity: κ−X1,X2 = κX1,−X2 = −κX1,X2 ;
(6) Monotony: for all pairs of copulas such that C1 ≺ C2, then κC1 ≤ κC2 ;
(7) Continuity: if (X1,n, X2,n) has copula Cn and (Cn)n≥1 converges pointwise to C,

then limn→∞ κCn = κC .

It can be shown that κ is invariant under any strictly increasing transformation T

of the underlying r.v.’s:

κ(T (X1), T (X2)) = κ(X1, X2).

Kendall’s tau and the Spearman’s rho are measures of concordance playing an impor-
tant role within nonparametric statistics. They provide us with viable alternatives to
the linear correlation coefficient as a measure of association for nonelliptical distri-
butions. (As will be shown below, in this case the linear correlation coefficient turns
out to be incapable of properly representing the notion of dependence.) We define
these measures through their copulas as follows:

1. Kendall’s tau:

τ = 4
∫∫

[0,1]2
C(u1, u2) dC(u1, u2) − 1

= 1 − 4
∫∫

[0,1]2

∂C(u1, u2)

∂u1

∂C(u1, u2)

∂u2
du1 du2.

8.2 Concordance and Dependence 235

It can be shown that Kendall’s tau matches the difference between the probability
of concordance and the probability of discordance for two independent random
vectors (X1, Y1) and (X2, Y2) sharing a common joint distribution function F and
copula C:

τ = P
(
(X1 − X2)(Y1 − Y2) > 0

)
− P

(
(X1 − X2)(Y1 − Y2) < 0

)
.

2. Spearman’s rho:

̺ = 12
∫∫

[0,1]2
C(u1, u2) du1 du2 − 3

= 12
∫∫

[0,1]2
u1u2 dC(u1, u2) − 3.

Spearman’s rho can also be expressed in terms of probabilities of concordance
and discordance. More precisely, given three i.i.d. vectors (X1, Y1), (X2, Y2) and
(X3, Y3) sharing a common copula C, we have

̺ = 3
[
P
(
(X1 − X2)(Y1 − Y3) > 0

)
− P

(
(X1 − X2)(Y1 − Y3) < 0

)]
.

Example Independent variables feature the product copula C⊥. Since the partial
derivative ∂C⊥/∂u1 ∂u2 = 1, we have

τC⊥ = 1 − 4
∫∫

[0,1]2
u1u2 du1 du2 = 0,

̺C⊥ = 12
∫∫

[0,1]2
u1u2 du1 du2 − 3 = 0.

Kendall’s tau and Spearman’s rho are linked through a well-established relationship.
The attainable region for the two concordance measures is defined as the set of pairs
(τ, ̺) that are compatible with this relation. For positive values of τ , ̺ lies in the
interval 0.5[3τ − 1, 1 + 2τ − τ 2]; for negative values of τ , ̺ lies in the interval
0.5[τ 2 + 2τ − 1, 1 + 3τ]. Figure 8.1 exhibits a graph of the resulting region in the
(τ − ̺)-Cartesian system.

8.2.3 Measures of Dependence

In the previous section, we have introduced Kendall’s tau and Spearman’s rho as
measures of concordance. A major drawback of this notion is that, according to
Property (4) in the definition of concordance measure, statistical independence is
not implied by a vanishing concordance measure. In this section, we introduce the
notion of measure of dependence as a way to overcome this difficulty. A measure
of dependence provides us with an indication about the extent to which two vari-
ables are mutually related. The key idea is to assess a distance between the copula
associated to a given pair of random variables and the product copula C⊥. The next
definition gathers a minimal number of properties for a function of two random vari-
ables to be a measure of dependence.

236 8 Structuring Dependence using Copula Functions

Fig. 8.1. Attainable region for Kendall’s tau and Spearman’s rho.

Definition (Measure of dependence) A function δ defined on pairs of random
variables is a measure of dependence if it satisfies the following properties:

(1) Completeness, symmetry, specularity, monotony and continuity, as in the defini-
tion of concordance;

(2) Normality and positiveness: 0 = δC⊥ ≤ δC ≤ δC+ = 1;
(3) Strong nullity: κX1,X2 = κC⊥ = 0 if, and only if, X1 and X2 are statistically

independent.

The most popular dependence measures are defined as follows:

1. Hoeffding’s phi:

φ = 3

√
10

∫∫

[0,1]2

(
C(u1, u2) − u1u2

)2
du1 du2.

2. Schweitzer–Wolff’s sigma:

σ = 12
∫∫

[0,1]2
|C(u1, u2) − u1u2| du1 du2.

8.2.4 Comparison with the Linear Correlation

Pearson’s linear correlation coefficient ρ between two random variables X1 and X2
is defined by:

ρ(X1, X2) =
Cov(X1, X2)√

Var(X1) Var(X2)
.

This is not a measure of dependence. In particular:

8.2 Concordance and Dependence 237

(1) A null ρ is compatible with some structure of dependence between variables.

Example The cubic copula is defined as

C(u1, u2) = u1u2 + α[u1(u1 − 1)(2u1 − 1)][u2(u2 − 1)(2u2 − 1)],

with α ∈ [−1, 2]. This copula differs from the product copula. Consequently, the
two variables exhibit a dependence structure. However, the corresponding linear cor-
relation coefficient is zero:

Cov(X1, X2) =
∫∫

[0,1]2

(
C(u1, u2) − u1u2

)
du1 du2

= α

∫

[0,1]
[u1(u1 − 1)(2u1 − 1)] du1

∫

[0,1]
[u2(u2 − 1)(2u2 − 1)] du2

= α

(

1

2
u4

1 − u3
1 +

1

2
u2

1

)
∣∣∣∣
1

0
×

(
1

2
u4

2 − u3
2 +

1

2
u2

2

) ∣∣∣∣
1

0
= 0.

It is interesting to notice that the Hoeffding’s phi detects the aforementioned depen-
dence between X1 and X2:

φ = 3

√
10

∫∫

[0,1]2

(
C(u1, u2) − u1u2

)2
du1 du2

= 3

√
10

∫∫

[0,1]2

(
2u3

1 − 3u2
1 + u1

)2(
2u3

2 − 3u2
2 + u2

)2
du1 du2

= 3

√
10

∫

[0,1]

[
4u6

1 − 12u5
1 + 13u4

1 − 6u3
1 + u2

1

]
du1

×

√∫

[0,1]

[
4u6

2 − 12u5
2 + 13u4

2 − 6u3
2 + u2

2

]
du2 = 0.0451.

(2) ρ needs not span the whole interval [−1, 1]. We may show that for a suitable
pair of margins, the linear correlation ranges over a strict subinterval of [−1, 1]
across all possible copulas.

Example Wang (1999) shows that the minimum and maximum values attained
by the linear correlation of lognormal variables X1 ∼ LN (μ1, σ1) and X2 ∼
LN (μ2, σ2) are given by

ρ− =
e−σ1σ2 − 1

(eσ 2
1 − 1)1/2(eσ 2

2 − 1)1/2
≤ 0,

ρ+ =
eσ1σ2 − 1

(eσ 2
1 − 1)1/2(eσ 2

2 − 1)1/2
≥ 0.

If we set σ1 = 1 and σ2 = 3, the correlation coefficient ranges over the interval
[−0.008, 0.16].

238 8 Structuring Dependence using Copula Functions

(3) A null ρ is compatible with perfect dependence between variables.

Example Consider the following copula:

C =

⎧
⎪⎨
⎪⎩

u1 if 0 ≤ u1 ≤ 1
2u2 ≤ 1

2 ,
1
2u2 if 0 ≤ 1

2u2 < u1 ≤ 1 − 1
2u2,

u1 + u2 − 1 if 1
2 ≤ 1 − 1

2u2 ≤ u1 ≤ 1.

We have Cov(U1, U2) = 0, but P{U2 = 1 − |2U1 − 1|} = 1, meaning that one
variable can be perfectly forecasted from the knowledge of the other.

8.2.5 Other Notions of Dependence

Copula functions allow one to control tail dependence. This quantity measures the
extent of dependence between r.v.’s arising from extreme observations. From a geo-
metric perspective, tail dependence represents the concentration on the lower and
upper quadrant tail of the joint distribution function of two r.v.’s X1 and X2. More
formally:

Definition (Upper and lower tail dependence) Given r.v.’s X1 and X2 with mar-
ginal distributions F1 and F2, the upper and lower tail dependence numbers are de-
fined as

λU = lim
u↑1

P
[
X2 > F−1

2 (u)
∣∣X1 > F−1

1 (u)
]
,

λL = lim
u↓0

P
[
X2 ≤ F−1

2 (u)
∣∣X1 ≤ F−1

1 (u)
]
.

If λU (resp. λL) is positive, then the two random variables are said to be asymp-
totically dependent in the upper (resp. lower) tail; if, instead, λU (resp. λL) vanishes,
then they are said to be asymptotically independent. This definition can be recast in
terms of the copula function associated with the two variables:

λU = lim
u↑1

1 − 2u + C(u, u)

1 − u
,

λL = lim
u↓0

C(u, u)

u
.

Example Consider the bivariate Clayton copula C(u, u) with α > 0 as defined in
Sect. 8.7. The lower tail is given by:

λ
Clayton
L = lim

u↓0

C(u, u)

u

= lim
u↓0

(2u−α − 1)−1/α

u

= lim
u↓0

−
1

α

(
2u−α − 1

)−(1+α)/α(
−2αu−(1+α)

)

8.2 Concordance and Dependence 239

Fig. 8.2. Lower tail dependence of the Clayton copula varying α.

= lim
u↓0

2
(
2u−α − 1

)−(1+α)/α(
u− (1+α)

α
α
)

= lim
u↓0

2
(
uα

(
2u−α − 1

))−(1+α)/α

= lim
u↓0

2
(
2 − uα

)−(1+α)/α = 2−1/α > 0.

Figure 8.2 shows the behavior of the lower tail dependence λL across different values
for the parameter α.

The ability of copula functions to describe the way two random variables jointly
behave under tail events is useful for the purpose of examining the joint behavior
of excessive negative returns of financial time series. An important notion in this
respect is the one of positive quadrant dependence proposed by Lehmann (1966).
Roughly speaking, two r.v.’s are positive quadrant dependent if the probability of
being simultaneously small is an upper bound for the probability of the same event
under the assumption that the two r.v.’s are statistically independent. More precisely:

Definition (Positive quadrant dependence) Two random variables X1 and X2 are
said to be positive quadrant dependent (PQD) if

P(X1 ≤ x1, X2 ≤ x2) ≥ P(X1 ≤ x1) × P(X2 ≤ x2),

for all (x1, x2) ∈ R
2.

The PQD inequality may be easily rewritten in terms of copulas: X1 and X2 are
PQD provided that

240 8 Structuring Dependence using Copula Functions

C(u1, u2) ≥ u1u2,

for all (u1, u2) ∈ [0, 1]2. By applying Bayes’ rule, the PQD inequality may be rewrit-
ten as

P(X1 ≤ x1|X2 ≤ x2) ≥ P(X1 ≤ x1).

A typical restriction arising in financial applications requires that this conditional
probability be a non-increasing function of x2. This can be interpreted as saying that
the probability a price or index return X1 assumes a small value does not rise with
the increase of another price or index return X2.

Definition (Left tail decreasing) We say that a random variable X1 is left tail
decreasing (LTD) in X2, if the conditional distribution function P(X1 ≤ x1|X2 ≤ x2)

is a non-decreasing function of x2, for all x1 ∈ R. This is equivalent to requiring that
the ratio C(u1, u2)/u2 be non-decreasing in u2 for all u2 ∈ [0, 1].

The cumulative distribution function of both the minimum and the maximum of
n random variables X1, . . . , Xn with c.d.f.’s F1, . . . , Fn can be expressed in terms
of their copula C. Let X1, . . . , Xn be r.v.’s with a common range J and set m =
min(X1, X2, . . . , Xn) and M = max(X1, X2, . . . , Xn). Since FM(a) = P(M ≤
a) = P(X1 ≤ a,X2 ≤ a, . . . , Xn ≤ a) = F(a, a, . . . , a), we have:

Fmax(X1,X2,...,Xn)(a) = C
(
F1(a), F2(a), . . . , Fn(a)

)
.

Moreover, Fm(a) = P(m ≤ a) = 1 − P(m > a) = 1 − P(X1 > a,X2 >

a, . . . , Xn > a), so that

Fmin(X1,X2,...,Xn)(a) = 1 − C
(
F1(a), F2(a), . . . , Fn(a)

)
,

where a ∈ J and C is the survival copula defined in formula (8.2).

8.3 Elliptical Copula Functions

Elliptical distributions share several properties with the multivariate normal distrib-
ution. Elliptical copulas are the corresponding copula functions.

Definition (Elliptical distributions) The n-dimensional random vector Y has an
elliptical distribution with parameters μ, Σ and φ if there exists a vector μ ∈ R

n and
an n × n positive definite symmetric matrix Σ such that the characteristic function
of Y − μ is written as a function of the quadratic form t⊤Σt, i.e.,

ϕY−μ(t) = φ
(
t⊤Σt

)
,

for some regular φ : R+ → R. We denote this by Y ∼ En(μ,Σ, φ).

Example Consider an n-dimensional multivariate Gaussian distribution Y ∼
Nn(0, In), with In representing the n × n identity matrix. Since vector components

8.3 Elliptical Copula Functions 241

are independent univariate normals, each one with characteristic function given by
exp(−t2/2), the characteristic function of Y reads as

exp

(

−1

2

(
t2
1 + · · · + t2

n

))
= exp

(

−1

2
t⊤t

)

.

Consequently, the multivariate normal is elliptical.

Definition (Multivariate Gaussian copula) Let R be a symmetric, positive defi-
nite matrix with unit diagonal entries. The multivariate Gaussian copula (MGC) is
defined as

C(u1, . . . , un; R) = ΦR

(
Φ−1(u1), . . . , Φ

−1(un)
)
, (8.3)

where ΦR denotes the standardized multivariate normal distribution with correlation
matrix R.

In terms of density, we have the canonical representation

f (x1, . . . , xn) = c
(
F1(x1), . . . , Fn(xn)

)
×

n∏

j=1

fj (xj),

where c is the nth mixed derivative of copula C in expression (8.3), namely:

c
(
F1(x1), . . . , Fn(xn)

)
= ∂n

u1,...,un
C(u1, . . . , un)

∣∣
u1=F1(x1),...,un=F1(xn)

, (8.4)

and fj is a standard normal density fj (xj) = d
dx

Fj (x)|x=xj
. The function c is called

copula density.

The copula density is the ratio between the joint density f and the product of all
marginals fj . We prove this result in the bivariate case. Let X1 ∼ F1 and X2 ∼ F2 be
continuous random variables in R with joint c.d.f. F . We define probability integral
transforms as U1 = F1(X1) and U2 = F2(X2). Consequently, X1 = F−1

1 (U1)

and X2 = F−1
2 (U2), where we adopt generalized inverse functions (see chap-

ter “Static Monte Carlo”). If J denotes the Jacobian of the multivalued function
(F−1

1 (U1), F
−1
2 (U2)), the change of variable formula leads to

c(u1, u2) = f
(
F−1

1 (u1), F
−1
2 (u2)

)
det J

= f
(
F−1

1 (u1), F
−1
2 (u2)

)

×
(
∂U1F

−1
1 (u1)∂U2F

−1
2 (u2) − ∂U2F

−1
1 (u1)∂U1F

−1
2 (u2)

)

= f
(
F−1

1 (u1), F
−1
2 (u2)

)(
∂U1F

−1
1 (u1)∂U2F

−1
2 (u2)

)

= f
(
F−1

1 (u1), F
−1
2 (u2)

)(
∂X1F1(x1)∂X2F2(x2)

)−1

=
f (F−1

1 (u1), F
−1
2 (u2))

f1(F
−1
1 (u1))f2(F

−1
2 (u2))

.

If the two r.v.’s are statistically independent, the numerator in the last expression
matches the denominator and the copula degenerates into the unit constant. From the
definition of MGC we can easily determine the corresponding density.

242 8 Structuring Dependence using Copula Functions

Example In the case of a multivariate normal distribution, we have:

1

(2π)n/2|R|1/2
exp

(

−1

2
x⊤R−1x

)

= c
(
Φ(x1), . . . , Φ(xn)

) n∏

j=1

(
1

√
2π

exp

(
−

1

2
x2
j

))
,

and thus

c
(
Φ(x1), . . . , Φ(xn)

)
=

1
(2π)n/2|R|1/2 exp(− 1

2 x⊤R−1x)
∏n

j=1(
1√
2π

exp(− 1
2x2

j))
. (8.5)

By letting uj = Φ(xj), we can write:

c(u1, . . . , un) =
1

|R|1/2
exp

(
−

1

2
ω⊤(

R−1 − I
)
ω

)
,

with ω = (Φ−1(u1), . . . , Φ
−1(un))

⊤.

In the case of distributions with a Gaussian copula, there is a relationship between
Kendall’s tau and Pearson’s linear correlation rho:

τ =
2

π

arcsin ρ.

A similar result can be obtained for the Spearman’s rho:

̺ =
6

π

arcsin ρ.

Figure 8.3 shows the surface of the Gaussian copula density as depicted in equation
(8.5) for the bivariate case, with ρ = 0.5. Figure 8.4 exhibits the contour plot of the
MGC density for different values of correlation. These figures can be obtained by
running the MATLAB R© code BivGCDens.m; see Table 8.1.

Definition (Student T -copula) For a symmetric and positive definite matrix R

with unit diagonal entries, let TR,v denote the standardized multivariate Student’s t

distribution with correlation matrix R and v ≥ 1 degrees of freedom:

TR,v(y1, . . . , yn) =
∫ y1

−∞
· · ·

∫ yn

−∞

Ŵ(v+n
2)|R|−1/2

Ŵ(v
2)(vπ)n/2

×
(

1 +
1

v
x⊤R−1x

)−(v+n)/2

dx1 · · · dxn.

The multivariate Student T-copula (MTC) is defined as:

C(u1, . . . , un; R, v) = TR,v

(
T −1

v (u1), . . . , T
−1
v (un)

)
,

where T −1
v is the inverse of the univariate Student’s t cumulative distribution func-

tion with v degrees of freedom.

8.3 Elliptical Copula Functions 243

Fig. 8.3. Density of a two-dimensional Gaussian copula with ρ = 0.5.

Fig. 8.4. Contour plots of a bivariate Gaussian copula across different values of ρ.

The corresponding copula density can be computed using formula (8.4) as

c(u1, . . . , un; R) = |R|−1/2 Ŵ(ν+n
2)

Ŵ(ν
2)

(

Ŵ(ν
2)

Ŵ(ν+1
2)

)n (1 + 1
ν
ω⊤R−1ω)−(ν+n)/2

∏n
j=1(1 + (ς2

j)/υ)−(ν+1)/2
,

(8.6)
where ωj = T −1

υ (uj). It can be proved that the Student t copula exhibits identical
upper and lower tail dependence coefficients, namely:

λU = λL = 2�Tυ+1

(√
υ + 1

√
1 − ρ

√
1 + ρ

)
,

244 8 Structuring Dependence using Copula Functions

Table 8.1.

function c = BivGCDens(rho)

ul = 0.01:0.01:0.99;
u2 = u1;

for i=1:length(ul)
for j=l:length(u2)

c(i,j) = (1/(sqrt(l-rho*2))) * exp(-((norminv(u1(i))ˆ2 +
norminv(u2(j))ˆ2 -
...

2*rho*norminv(ul(i))*norminv(u2(j)))/(2*(1 - rhoˆ2)))
+ ...

((norminv(ul(i))ˆ2 + norminv(u2(j))*2)/2));
end

end

[X,Y] = meshgrid(ul);
surf(Y,X,c);

xlabel(’ul’);
ylabel(’u2’);
title(’Bivariate Gaussian Copula density’);

Fig. 8.5. Density of a two-dimensional Student t-copula with ρ = 0.5 and ν = 3.

where �Tv+1 denotes the survival probability for a univariate Student t with v + 1
degrees of freedom. Clearly, this coefficient is increasing with ρ, decreasing with
v, and vanishes as the number of degrees of freedom diverges to infinity, provided
that ρ < 1. Figure 8.5 displays the surface of a T -Student copula density in two

8.4 Archimedean Copulas 245

Fig. 8.6. Contour plots of a two-dimensional Student t-copula with ρ = 0.5 across different
values of ν.

dimensions under the assumption that ρ = 0.5 and ν = 3. Figure 8.6 shows the
contour plot of this density across different values of ν.

These figures can be obtained by running the code TCDens.m; see Table 8.2.

8.4 Archimedean Copulas

Archimedean copulas constitute an important class of copula functions due to their
analytical tractability and ability to reproduce a large spectrum of dependence struc-
tures.

An Archimedean copula generator is a convex and strictly decreasing function
ϕ from the unit interval [0, 1] onto R+ with ϕ(1) = 0. The pseudo-inverse of ϕ is
defined as a function ϕ[−1] from [0,∞] onto [0, 1] such that:

ϕ[−1](z) =
{

ϕ−1(z) if 0 < z ≤ ϕ(0),
0 if ϕ(0) ≤ z < ∞.

(8.7)

If ϕ(0) = ∞, then the pseudo-inverse collapses into an ordinary inverse function,
that is ϕ[−1] = ϕ−1, and the generator is said to be strict. In this instance, an explicit
expression for the copula function can be obtained.

Definition (Archimedean copula) Let ϕ be an Archimedean copula generator. The
function

C(u1, u2) = ϕ[−1](ϕ(u1) + ϕ(u2)
)

is an Archimedean copula.

Archimedean copulas are symmetric:

246 8 Structuring Dependence using Copula Functions

Table 8.2.

function c = TCDens(v,rho)

ul = 0.01:0.01:0.99;
u2 = ul;

const = (1/sqrt(1-
rhoˆ2))*(gamma((2+v)/2)/gamma(v/2))*(((gamma(v/2))/
gamma((v+1)/2))*2);

for i = 1:length(ul)
for j = 1:length(u2)

varsigmal_sqr = tinv(ul(i),v)ˆ2;
varsigma2_sqr = tinv(u2(j),v)ˆ2;
qF = varsigmal_sqr + varsigma2_sqr -

2*rho*tinv(ul(i),v)*tinv(u2(j),v);

c(i,j) = 0.5*(l+qF/(l-rho*2)/v)/M-(v+2)/2)/...
((1+varsigmal_sqr/v)*(l+varsigma2_sqr/v))ˆ(-

(v+1)/2)*const;

end
end

[X,Y] = meshgrid(ul);
surf (Y,X,c) ;

xlabel(’ul’);
ylabel(’u2’);
title(’Bivariate Student Copula density’);

C(u1, u2) = C(u2, u1),

and associative

C
(
u1, C(u2, u3)

)
= C

(
C(u1, u2), u3

)
.

Moreover, their Kendall’s tau can be computed in terms of the copula generator as:

τ = 1 + 4
∫ 1

0

ϕ(u)

ϕ′(u)
du.

Recall that a function f (t) is completely monotone on a given interval if it is contin-
uous and has derivatives of all orders with alternating signs, namely if:

(−1)k
dk

dtk
f (t) ≥ 0,

for all t in the interior of the interval and all positive integers k. The next result allows
us to generalize Archimedean copulas to the multivariate case.

8.4 Archimedean Copulas 247

Theorem (Kimberling, 1974) Let ϕ be an Archimedean copula generator. The

function C : [0, 1]n → [0, 1] defined by:

C(u1, . . . , un) = ϕ[−1](ϕ(u1) + · · · + ϕ(un)
)
,

is a copula if and only if ϕ[−1] is completely monotone on [0,∞].

We now list a few parametrized families of Archimedean copulas.

Example (Gumbel copula) The Gumbel n-copula is defined by the strict generator
ϕ(u) = (− ln(u))α , with α ∈ [1,∞). For all α > 1, the copula reads as:

C(u1, . . . , un) = exp

{
−

[
n∑

i=1

(− ln ui)
α

]1/α}
.

The Kendall’s tau can be computed as τ = 1 − α−1. It can be shown that Gum-
bel copulas have upper tail dependence λU = 2 − 21/α and lower tail dependence
vanishing as α diverges to infinity. Figure 8.7 shows the surface of a Gumbel cop-
ula density for the bivariate case with α = 10. Figure 8.8 exhibits contour plots of
Gumbel copula densities for varying assignments of parameter α. These figures can
be obtained by running code BivGDens.m; see Table 8.3.

Example (Clayton copula) The Clayton n-copula is defined by formula (8.7) with
ϕ(u) = u−α − 1, for any α > 0. It can be written in analytic terms as:

C(u1, . . . , un) =

[
n∑

i=1

u−α
i − n + 1

]−1/α

.

Fig. 8.7. Density of a two-dimensional Gumbel copula with α = 10.

248 8 Structuring Dependence using Copula Functions

Fig. 8.8. Contours of a two-dimensional Gumbel copula for different values of α.

Table 8.3.

function c = BivGDens(alfa)

u1 = 0.01:0.01:0.99;
u2 = u1;

for i=1:length(u1)
for j=1:length(u2)

u1tilde = - log(u1(i));
u2tilde = - Iog(u2(j));
w = (u1tildeˆalfa) + (u2tildeˆalfa);
pdf = ((u1tilde*u2tilde)ˆ(alfa-1))*((wˆ(1/alfa))

+ alfa - 1)/(wˆ(2-(1/alfa)))/(u1(i)*u2(j));
cdf = exp(-((-log(u1(i)))ˆalfa + (-

log(u2(j)))ˆalfa)*(1/alfa));
c(i, j) = pdf*cdf;

end
end

[X,Y] = meshgrid(u1);
surf (Y,X,c);

xlabel(’u1’);
ylabel(’u2’);
title(’Bivariate Gumbel Copula density’);

8.4 Archimedean Copulas 249

Fig. 8.9. Density of a two-dimensional Clayton copula with α = 3.

The Kendall’s tau can be computed as τ = α/(α + 2). Unfortunately, the Spear-
man’s rho does not admit an analytical expression. The lower tail dependence is
λL = 2−1/α , showing that Clayton copulas exhibit asymptotic lower tail dependence
provided that α > 0. We can also show that this copula exhibits an asymptotically
independent upper tail:

λU = lim
u↑1

1 − 2u(2uα − 1)1/α

1 − u

= lim
u↑1

−2 + 2(2u−α − 1)−1/α−1u−α−1

−1

= lim
u↑1

−2 + 2(2 − ua)−1/α−1

−1
= 0.

Figure 8.9 shows the surface of a Clayton copula density in the bivariate case with
α = 3. Figure 8.10 exhibits contour plots of Clayton copula densities across vary-
ing assignments of parameter α. We see that increasing values for α are accompa-
nied by a stronger tail dependence. These figures can be obtained by running code
BivCDens.m; see Table 8.4.

Example (Frank copula) The Frank n-copula is defined by generator ϕ(u) =
− ln(

exp(−αu)−1
exp(−α)−1) with α �= 0. As a result,

C(u1, . . . , un) = −
1

α
ln

{
1 +

∏n
i=1(e

−αui − 1)

(e−α − 1)n−1

}
.

For n ≥ 3, the generator is strict provided that α > 0. Kendall’s tau is given by τ =
1−4α−1[1−D1(α)] and the Spearman rho is computed as ̺ = 1−12α−1[D1(α)−

250 8 Structuring Dependence using Copula Functions

Fig. 8.10. Contour plots of a two-dimensional Clayton copula across different values of α.

Table 8.4.

function c = BivCDens.m(alfa)

u1 = 0.01:0.01:0.99;
u2 = u1;

for i=1:length(u1)
for j =1:length(u2)

c(i,j) = (1 + alfa) * (u1(i)ˆ(-alfa-1))
* (u2(j)ˆ(-alfa-1)) *...

(((u1(i)ˆ(-alfa)) + (u2(j)ˆ(-alfa)) -
1)ˆ((-1/alfa)-2));

end
end

[X,Y] = meshgrid(u1);
surf(Y,X,c);

xlabel(’u1’);
ylabel(’u2’);
title(’Bivariate Clayton Copula density’);

D2(α)], where D denotes Debye’s function

Dj (x) = j

xj

∫ x

0
tj

(
exp(t) − 1

)−1
dt.

This copula is neither lower nor upper tail dependent, i.e., λL = λU = 0. Figure 8.11
shows the surface of a Frank copula density in the bivariate case for α = 3. Fig-
ure 8.12 exhibits contour plots of Frank copula densities for varying assignments

8.5 Statistical Inference for Copulas 251

Fig. 8.11. Density of a two-dimensional Frank copula with α = 3.

Fig. 8.12. Contour plots of a two-dimensional Frank copula for different values of α.

of parameter α. These figures can be obtained by running code BivFDens.m; see
Table 8.5.

8.5 Statistical Inference for Copulas

We present three methods for estimating parameters identifying a copula within a
given family:

A. Exact maximum likelihood (EML);
B. Inference functions for margins (IFM);
C. Nonparametric kernel (NK).

252 8 Structuring Dependence using Copula Functions

Table 8.5.

function c = BivFDens(alfa)

ul = 0.01:0.01:0.99;
u2 = u1;

for i=1:length(u1)
for j =1:length(u2)

A = -alfa * (exp(-alfa)-1) * exp(-alfa*u1(i)) *
exp(-alfa*u2(j));

B = ((exp(-alfa)-1) + (exp(-alfa*u1(i)) -1) *
(exp(-alfa*u2(j)) - 1))ˆ2;

c(i,j) = (A/B);

end
end

[X,Y] = meshgrid(u1);
surf (Y,X,c);

xlabel(’u1’);
ylabel(’u2’);
title(’Bivariate Frank Copula density’);

We consider a strictly stationary n-dimensional stochastic process X. Input data
consists of a time series (X1,t , X2,t , . . . , Xn,t)t=1,...,T of sample vectors recorded at
times t = 1, . . . , T . These data may represent observed returns of n financial asset
prices observed at consecutive dates. In what follows, we consider continuous distri-
butions only. In particular, both copula and marginal distributions are assumed to be
continuous. By inspecting the canonical representation (8.4), estimating a multivari-
ate statistical model requires three steps:

(1) Select marginal distributions and estimate them on univariate data;
(2) Select a family of copula functions representing the dependence structure of mul-

tivariate data;
(3) Estimate the copula parameters.

The first step uses classical estimation methods from univariate statistics. The second
step is the most delicate one: though little work has been published on this issue, we
briefly examine it later on in this chapter. Here, we are more concerned with the last
step. This can be performed by maximizing the likelihood function resulting from
the previous steps. The EML method solves (1) and (2) in one fell swoop. However,
this comes at the price of having a burdensome computational algorithm. IMF splits
univariate from dependence structure estimations and therefore is more reasonable
in the context of a copula-based model description. NK assumes no particular form

8.5 Statistical Inference for Copulas 253

for the distribution functions involved in the estimation process, but it requires large
data sets.

8.5.1 Exact Maximum Likelihood

Let {x1t , x2t , . . . , xnt }t=1,...,T be the sample data matrix. The logarithmic likelihood
function is given by

L(θ) =
T∑

t=1

ln c
(
F1(x1t), F2(x2t), . . . , Fn(xnt)

)
+

T∑

t=1

n∑

j=1

ln fj (xj t), (8.8)

where θ gathers all parameters defining bo the the marginals and the copula.
The maximum likelihood estimator is obtained by maximizing the function L

above on a compact domain Θ for the parameter choice:

θ̂MLE = arg max
θ∈Θ

L(θ).

Under suitable regularity conditions, this estimator is consistent, asymptotically ef-
ficient, and asymptotically normal, that is:

√
T (θ̂MLE − θ0) → N

(
0,ℑ−1(θ0)

)
.

Here, θ0 is the exact value for the unknown parameter and ℑ(θ0) denotes Fisher’s
information matrix defined entry by entry as:

ℑ(θ0)i,j = E[∂xi
L(θ0)∂xj

L(θ0)].

Example (Multivariate Gaussian copula) Let C be a multivariate Gaussian copula
as defined in formula (8.5). The corresponding log-likelihood function is defined as
follows:

L(θ) = −
T

2
ln |R| −

1

2

T∑

t=1

ω⊤
t

(
R−1 − I

)
ωt ,

where ωt = (Φ−1(x1t), . . . , Φ
−1(xnt))

⊤, Φ denotes the standard normal c.d.f., R is
a symmetric and positive definite matrix, and the parametric space is Θ = R

n×n.
Since [∂/∂R−1]L(θ) = 2−1[T R −

∑T
t=1 ω⊤

t ωt], then the maximum likelihood esti-
mator is computed as:

θ̂MLE = R̂MLE =
1

T

T∑

t=1

ω⊤
t ωt .

254 8 Structuring Dependence using Copula Functions

8.5.2 Inference Functions for Margins

ML may require an excessive computational effort as it requires to jointly estimate
both parameters of the marginal distributions and the ones that identify the copula.
If we take a closer look at the log-likelihood function (8.8), we see that estimating
a copula requires to specify parametric univariate marginal distributions. These pa-
rameters can be estimated on univariate time series and then plugged into the full
likelihood. This latter finally depends on the copula parameters. This method ex-
ploits the fundamental role played by copula functions: that is to separately specify
univariate margins and a dependence structure. This observation leads to the follow-
ing estimation procedure developed by Joe and Xu (1996):

Algorithm (IFM)

1. Define log-likelihood functions L for the joint distribution, Lj for the j th mar-
ginal, and Lc for the copula function c:

L(ω, θ) =
T∑

t=1

ln c
(
F1(x1t ; θ1), F2(x2t ; θ2), . . . , Fn(xnt ; θn); ω

)

+
T∑

t=1

n∑

j=1

ln fj (xj t ; θj),

Lj (θj) =
T∑

t=1

ln fj (xj t ; θj),

Lc(ω) =
T∑

t=1

ln c
(
F1(x1t ; θ̂1), . . . , Fn(xnt ; θ̂n); ω

)
.

(Here vector θ = (θ1, . . . , θn) collects all parameters of the marginal distributions
and vector ω gathers all copula parameters.)

2. For each univariate marginal, estimate parameters θj over a compact domain Θj

by maximum likelihood (ML):

θ̂j = arg max
θj ∈Θj

Lj (θj).

3. Estimate the copula parameters ω over a compact domain Ω by ML:

ω̂ = arg max
ω∈Ω

Lc(ω).

4. Calculate β̂IFM = (ω̂, θ̂).

The IFM estimator solves the set of equations
(

∂L1

∂θ1
, . . . ,

∂Ln

∂θn

,
∂Lc

∂ω

)
= 0,

8.5 Statistical Inference for Copulas 255

whereas the MLE results from solving
(

∂L

∂θ1
, . . . ,

∂L

∂θn

,
∂L

∂ω

)

= 0.

Therefore, in general the two estimators do not agree. IFM estimation can also be
adopted as a starting point to speed up the optimization for a classical ELM proce-
dure. To address the issue of the asymptotic efficiency of the IFM estimator compared
to the MLE, we need to consider the corresponding asymptotic covariance matrices.
Under regularity conditions, the IFM estimator turns out to be asymptotically nor-
mal, namely √

T
(
β̂IFM − β0

)
→ N

(
0, h̄−1(β0)

)
.

Here h̄(β0) represents Godambe’s information matrix

h̄(β0) = D−1V
(
D−1)⊤

,

D = E[∇βs(β)] , V = E[s(β)s(β)⊤], and s(β) = (∂L1∂θ1, . . . , ∂Ln∂θn, ∂Lc∂ω)⊤

is a score vector.
Estimating the covariance matrix h requires a computation of several partial

derivatives. Joe (1997) suggests using the Jacknife method or other bootstrap meth-
ods to achieve this goal. In a time series context, it may be useful to adopt a block-
bootstrap, especially when the time series in hand shows a low autocorrelation.

8.5.3 Kernel-based Nonparametric Estimation

A potential problem arising while adopting the IFM method is that the number of
possible arrangements can be very high and one can easily get lost looking for the
best combination of marginals and the copula. This problem can be overcome by
adopting a nonparametric approach to model margins and copulas. This framework
allows for data to deliver distributions and a copula without calling for a subjective
choice about their functional form.

We consider a nonparametric method to estimate copula functions in the context
of multivariate stationary processes satisfying strong mixing conditions. In particu-
lar, we present a kernel-based approach providing differentiable estimates.

The starting point of this method is the usual representation C(u1, . . . , un) =
F(F−1

1 (u1), . . . , F
−1
n (un)) as in formula (8.1). Here, F−1

1 , . . . , F−1
n are the pseudo-

inverse functions of the univariate c.d.f.’s F1, . . . , Fn. (For a clear definition of
pseudo-inverse function, see chapter “Static Monte Carlo”.) Consequently, estimat-
ing a copula function amounts to providing estimates of F and the marginals Fj .
Each of these estimations is performed by means of a kernel-based method.

Let ξj (uj) denote the unique solution of the equation Fj (y) = uj for any ar-
bitrary uj ∈ (0, 1). A kernel is any bounded, symmetric, and normalized (i.e.,∫

k(x) dx = 1) real-valued function k(x) defined on R. An n-dimensional kernel
is defined in terms of kernels by:

256 8 Structuring Dependence using Copula Functions

k(x) =
n∏

j=1

kj (xj),

where x = (x1, . . . , xn).
Consider a bandwidth matrix H made by collecting positive functions hj (T) on

the main diagonal in a diagonal matrix, that is:

H =
(

h1(T) 0 0
0 . . . 0
0 0 hn(T)

)
.

We assume that |h| + (T |h|)−1 → 0 as T diverges to infinity. We consider an
n-dimensional kernel of the form:

k(x; h) =
n∏

j=1

kj

(
xj

hj

)
.

A single probability density function (p.d.f.) of Yj t computed at yj can be estimated
as:

f̂j (yj) =
1

T hj

T∑

t=1

kj

(
yj − Yj t

hj

)
,

while the joint p.d.f. of a random vector Yt computed at y = (y1, . . . , yn)
⊤ can be

estimated as:

f̂ (y) =
1

T |h|

T∑

t=1

k(y − Yt ; h).

By integrating on the appropriate domains, we obtain estimates for c.d.f.’s of both
Yj t and Yt :

F̂j (yj) =
∫ yj

−∞
f̂j (x) dx,

F̂ (y) =
∫ y1

−∞

∫ y2

−∞
· · ·

∫ yn

−∞
f̂ (x) dx.

The copula is obtained through

Ĉ(u) = F̂ (̂ξ),

where u =(u1, . . . , un), ξ̂ = (̂ξ1, . . . , ξ̂n)
⊤, and ξ̂j = infy∈R{y: F̂j (y) ≥ uj }.

Notice that ξ̂j is a kernel estimate of the quantile of the distribution of Yj t with a
probability level uj .

Example (Gaussian kernel) For a Gaussian kernel kj (x) = ϕ(x), we obtain:

8.6 Monte Carlo Simulation 257

F̂j (yj) = T −1
T∑

t=1

�

(
yj − Yj t

hj

)
,

F̂ (y) = T −1
T∑

t=1

n∏

j=1

�

(
yj − Yj t

hj

)
,

where � is the standard Gaussian c.d.f. in n dimensions.

8.6 Monte Carlo Simulation

The standard simulation problem can be cast as follows. We wish to simulate a sam-
ple of a random vector X = (X1, . . . , Xn) with distribution function FX defined by
assigning marginals FX1, . . . , FXn and a copula function C, that is:

FX(x) = C
(
FX1(x1), . . . , FXn(xn)

)
,

where x =(x1, . . . , xn). Since (FX1(X1), . . . , FXn(Xn)) is an n-dimensional uniform
vector with distribution function C, then a sample of X can be obtained through the
following:

Algorithm (Monte Carlo simulation)

1. Sample an n-dimensional uniform vector U = (U1, . . . , Un) ∼ C;
2. Return X = (F−1

X1
(U1), . . . , F

−1
Xn

(Un)).

Therefore, all we need is to (1) simulate a random sample of a [0, 1]n-valued
random vector U with distribution function C, i.e., FU(u) = C(u1, . . . , un), and
(2) compute the (pseudo) inverse functions F−1

X1
, . . . , F−1

Xn
. The latter problem has

been solved in section “Inverse Function Method” within chapter “Static Monte
Carlo” (Chapt. 1). We now address the problem of sampling from a distribution func-
tion on the hypercube [0, 1]n with uniform margins.

8.6.1 Distributional Method

We start with relation (8.1), which we reproduce here for the reader’s convenience:

C(u1, . . . , un) = F
(
F−1

1 (u1), . . . , F
−1
n (un)

)
. (8.9)

Here F is any multivariate distribution function with continuous margins F1, . . . , Fn

and copula function C (Sklar theorem). In particular, we consider a distribution func-
tion F whose samples are easy to obtain. Of course, it would be pointless to set
F = FX as long as our original issue is just to simulate a sample of FX using the
algorithm above stated. From this relation, we may recast the problem as follows:
look for random variables U1, . . . , Un such that

P(U1 ≤ u1, . . . , Un ≤ un) = F
(
F−1

1 (u1), . . . , F
−1
n (un)

)
. (8.10)

258 8 Structuring Dependence using Copula Functions

Let Y be a random vector with multivariate distribution F . Then, the right-hand side
in the last expression equals

P
(
Y1 ≤ F−1

1 (u1), . . . , Yn ≤ F−1
n (un)

)
,

which can be written as

P
(
F1(Y1) ≤ u1, . . . , Fn(Yn) ≤ un

)
.

By equating this expression to the left-hand side in formula (8.10), we see that

(U1, . . . , Un)
d= (F1(Y1), . . . , Fn(Yn)). This leads to the following algorithm.

Algorithm (Distributional method)

1. Given a copula function C, find a distribution F such that (8.9) holds true.
2. Simulate a sample Y = (Y1, . . . , Yn) from distribution F .
3. Return (F1(Y1), . . . , Fn(Yn)), where Fi is the ith marginal of F .

Example (Gaussian copula simulation) To simulate a random vector (u1, . . . , un)

distributed according to a Gaussian copula CN with correlation matrix R, we start
with the canonical representation:

CN (u1, . . . , un) = Φn

(
Φ−1(u1), . . . , Φ

−1(un)
)
,

where Φn is the c.d.f. of an n-variate normal distribution function with linear cor-
relation matrix R and Φ is the univariate standard normal c.d.f.; next, we apply the
procedure described above, with Fi = Φ for all i. To generate a sample Y from Φn,
it suffices to:

(1) Find the Cholesky decomposition of R, so that AA⊤ = R, with A lower trian-
gular;

(2) Generate a sample of n independent random variates Z1, Z2, . . . , Zn from
N(0, 1);

(3) Set Y =AZ (with Z = (Z1, Z2, . . . , Zn)
⊤ and Y = (Y1, Y2, . . . , Yn)

⊤); and fi-
nally,

(4) Deliver (Φ(Y1), . . . , Φ(Yn)).

Figure 8.13 shows 1,000 random samples of a Gaussian copula with correlation
matrix R = diag(0.5, . . . , 0.5). Function GCSimul.m (see Table 8.6) implements
this sampling method.

Example (T -Student copula simulation) In order to simulate a random vector
(u1, . . . , un) distributed according to a T -Student copula with correlation matrix R

and ν degrees of freedom, we start with the canonical representation:

Ct-Student(u1, . . . , un) = Tn,ν,R

(
T −1

ν (u1), . . . , T
−1
ν (un)

)
,

where Tn,ν,R is the c.d.f. of an n-variate t-Student distribution function with ν de-
grees of freedom and covariance matrix ν

ν−1R, and Tν denotes a univariate t-Student

8.6 Monte Carlo Simulation 259

Fig. 8.13. 1,000 samples from a Gaussian copula with ρ = 0.5.

Table 8.6.

function u = GCSimul (Corr, simul)

y = randn(size(Corr,1), simul); % indipendent gaussian random
variables
A = chol(Corr); % Cholesky factorization
x = (A’*y); % Correlated gaussian random variables
u = normcdf(x); % gaussian Copula simulation

c.d.f. Then, we apply the usual procedure with Fi = Tν , for all i. To generate a sam-
ple Y from Tn,ν,R , it suffices to set

Y =
√

ν√
χ2

ν

Z,

where Z ∼ N (0,Σ), with Σhk: Rhk = Σhk/
√

ΣhhΣkk , and χ2
ν is a chi-squared

sample with ν degrees of freedom (see chapter “Static Monte Carlo” for the simula-
tion of these variables), under the assumption that χ2

ν and Z are independent. Finally,
we deliver (Tν(Y1), . . . , Tν(Yn)). Figure 8.14 shows 1,000 random simulations from
a t-Student copula, with v = 3 and R = 0.5 for each element. Function TCSimul.m
(see Table 8.7) requires as inputs the correlation matrix R, the degree of freedom ν,
and the number n of simulations. It delivers a sample of an n-vector with distribution
Ct-Student.

8.6.2 Conditional Sampling

We want to generate a sample of uniformly distributed r.v.’s whose joint distri-
bution is a copula function C = C(u1, u2, . . . , un). Let Ck(u1, u2, . . . , uk) =

260 8 Structuring Dependence using Copula Functions

Fig. 8.14. 1,000 samples from a Student t-copula with ρ = 0.5 and ν = 3.

Table 8.7.

function u = TCSimul(Corr, V, simul)

z = randn(size(Corr, 1), simul); % indipendent gaussian random
variables
A = chol(Corr); % Cholesky factorization
y = (A*z); % Correlated gaussian random variables

s = chi2rnd(V,[1 simul]); % Random numbers from the chi-square
distribution

x = (sqrt(V./s)’*ones(1,size(Corr,1)))’.*y; % Multivariate
Student-t distribution simulation

u = tcdf(x,V); % Student Copula simulation

C(u1, u2, . . . , uk, 1, . . . , 1) denote the k-dimensional margin of C, for all k =
1, . . . , n (with obvious conventions for k = 1, k = n). The conditional distribution
of Uk given U1, . . . , Uk−1 is given by

FUk |U1,...,Uk−1(uk|u1, . . . , uk−1) = P(Uk ≤ uk|U1 = u1, . . . , Uk−1 = uk−1)

=
∂k−1
u1...uk−1

Ck(u1, . . . , uk)

∂k−1
u1...uk−1Ck−1(u1, . . . , uk−1)

.

Naturally, we assume that both the numerator and the denominator exist and the latter
does not vanish.

Algorithm (Conditional sampling)

1. Simulate a random sample u1 from U(0, 1);

8.6 Monte Carlo Simulation 261

2. Simulate a random sample u2 from F.U2|U1(·|u1);
...

n. Simulate a random variate un from FUn|U1,...,Un−1(·|u1, . . . , un−1).

To simulate a sample uk from FUk |U1,...,Uk−1(uk|u1, . . . , uk−1), we draw v from
U[0, 1] and set uk = F−1

Uk |U1,...,Uk−1
(v|u1, . . . , uk−1). This often requires us to nu-

merically solve the equation v = FUk |U1,...,Uk−1(uk|u1, . . . , uk−1) in the unknown
variable uk . Clearly, this task may be computationally intensive.

In the case of Archimedean copulas the conditional sampling method may be
rewritten by using the following results:

Theorem Let C(u1, u2, . . . , un) = ϕ−1(ϕ(u1) + ϕ(u2) + · · · + ϕ(un)) be an

Archimedean n-variate copula with generator ϕ(·). Then, for k = 2, . . . , n,

FUk |U1,...,Uk−1(uk|u1, . . . , uk−1)

= ϕ−1(k−1)(ϕ(u1) + ϕ(u2) + · · · + ϕ(uk))

ϕ−1(k−1)(ϕ(u1) + ϕ(u2) + · · · + ϕ(uk−1))
, (8.11)

where ϕ−1(k) denotes the kth ordinary derivative of the inverse function ϕ−1.

We now apply this result to the Clayton, Gumbel, and Frank copulas.

Example (Clayton n-copula simulation) For a Clayton copula, the main ingredi-
ents involved in the sampling procedure are:

• Copula generator: ϕ(u) = u−α − 1.
• Inverse generator: ϕ−1(t) = (t + 1)−1/α .
• Ordinary derivatives: ϕ−1(k)(t) = (−1)k

(α+1)(α+2)···(α+k−1)

αk (t + 1)−1/α−k .

For instance, ϕ−1(1)(t) = − 1
α
(t + 1)−1/α−1, ϕ−1(2) = 1

α
α+1
α

(t + 1)−1/α−2. This
provides us with the following algorithm.

Algorithm

1. Simulate n independent uniformly distributed random variables v1, v2, . . . , vn;
2. Set u1 = v1;

3. Compute FU2|U1(u2|u1) = ϕ−1(1)(ϕ(u1)+ϕ(u2))

ϕ−1(1)(ϕ(u1))
according to expression (8.11),

where ϕ(u1) = u−α
1 − 1 and ϕ(u1) + ϕ(u2) = u−α

1 + u−α
2 − 2;

4. Set u2 = F−1
U2|U1

(v|u1) = (v−α
1 (v

−α/(α+1)

2 − 1) + 1)−1/α;
...

2n. Set un = {(u−α
1 + u−α

2 + · · · + u−α
n−1 − n + 2)(v

α/(α(1−n)−1)
n − 1) + 1}−1/α;

2n + 1. Return (u1, . . . , un).

Figure 8.15 shows 1,000 random samples from a Clayton copula using the algo-
rithm described above. These results can be obtained by running the ClayCSim.m
(see Table 8.8) routine. Input figures are the number N of simulations, dimension M

of the copula and parameter α. The program returns an N × M vector of random
numbers drawn from a Clayton copula.

262 8 Structuring Dependence using Copula Functions

Fig. 8.15. 1,000 samples from a Clayton copula with α = 3.

Table 8.8.

function v = ClayCSim(N,M,alfa)

for i=1:N

u = rand(1,M);

for j=2:M

v(i,1) = u(1);
u_vec = [v(i,1: j-1) u(j)];
k = length(u_vec);
v(i,j) = ((sum(u_vec(1:k-1).ˆ(-alfa),2) - k +2) *...

((u_vec(k)ˆ(alfa/((alfa* (1-k))-1))) - 1) +
1)ˆ(-1/alfa);

end
end

Example (Gumbel n-copula simulation) For a Gumbel copula, the main ingredi-
ents involved in the sampling procedure are:

• Copula generator: ϕ(u) = (− ln(u))α .
• Inverse generator: ϕ−1(t) = exp(−t1/α).
• Ordinary derivatives: ϕ−1(1)(t) = −e−t1/α 1

α
t1/α(1−α), ϕ−1(2)(t) = 1

α2 e−t1/α ×
t (1−2α)/α(w + 1 − α),

This provides us with the following algorithm.

Algorithm

1. Simulate n independent uniformly distributed random variables v1, v2, . . . , vn;

8.6 Monte Carlo Simulation 263

2. Set u1 = v1;

3. Compute FU2|U1(u2|u1) = ϕ−1(1)(ϕ(u1)+ϕ(u2))

ϕ−1(1)(ϕ(u1))
according to expression (8.11),

where ϕ(u1) = (− ln(u1))
α and ϕ(u1) + ϕ(u2) = (− ln(u1))

α + (− ln(u2))
α;

4. Set u2 = F−1
U2|U1

(v2|u1), which needs to be computed numerically;
...

2n. Set un by numerically solving a nonlinear equation.
2n + 1. Return (u1, . . . , un).

Example (Frank n-copula simulation) For a Franck copula, the main ingredients
involved in the sampling procedure are:

• Copula generator: ϕ(u) = ln(
exp(−αu)−1
exp(−α)−1).

• Inverse generator: ϕ−1(t) = − 1
α

ln(1 + et (e−α − 1)).
• Ordinary derivatives: ϕ−1(1)(t) = − 1

α
w, . . . , ϕ−1(k)(t) = (−1)k 1

α
gk(w), where

w = et (e−α−1)
1+et (e−α−1)

, and gk(w) = w(w − 1) ∂wgk−1(w).

This provides us with the following algorithm.

Algorithm

1. Simulate n independent uniformly distributed random variables v1, v2, . . . , vn;
2. Set u1 = v1;

3. Compute FU2|U1(u2|u1) = ϕ−1(1)(ϕ(u1)+ϕ(u2))

ϕ−1(1)(ϕ(u1))
according to expression (8.11),

where ϕ(u1) = ln(
exp(−αu1)−1

exp(−α)−1) and ϕ(u1) + ϕ(u2) =
ln(

(exp(−αu1)−1)(exp(−αu2)−1)

(exp(−α)−1)2).

4. Set u2 = F−1
U2|U1

(v|u1) = − 1
α

ln{1 + v2(1−e−α)

v2(e−αu1−1)−e−αu1
};

5. Compute FU3|U1,U2(u3|u1, u2) = ϕ−1(1)(ϕ(u1)+ϕ(u2)+ϕ(u3))

ϕ−1(1)(ϕ(u1)+ϕ(u2))
according to expres-

sion (8.11), where ϕ(u1) + ϕ(u2) = ln(
(exp(−αu1)−1)(exp(−αu2)−1)

(exp(−α)−1)2) and ϕ(u1) +
ϕ(u2) + ϕ(u3) = ln(

(exp(−αu1)−1)(exp(−αu2)−1)(exp(−αu3)−1)

(exp(−α)−1)3);

6. Set u3 = F−1
U3|U1,U2

(v3|u1, u2), which need be computed numerically by solving
a polynomial equation of the second order in the variable x = e−αu3 − 1;

...

2n. Set un by solving a polynomial equation of degree k − 1.
2n + 1. Return (u1, . . . , un).

Figure 8.16 shows 1,000 random samples distributed according to a Frank copula
as obtained through the algorithm just described.

8.6.3 Compound Copula Simulation

This is a simulation method for Archimedean copulas involving the Laplace trans-
form and its inverse function.

264 8 Structuring Dependence using Copula Functions

Fig. 8.16. 1,000 samples from a Frank copula with α = 3.

Definition (Laplace transform) The Laplace transform of a non-negative random
variable X with distribution function F(x) and density function f (x) is defined by:

LX(t) = E
[
e−tX

]
=

∫ ∞

0
e−tx dF(x) =

∫ ∞

0
e−txf (x) dx = Lf (t),

for t ≥ 0.

Definition (Inverse Laplace transform) The inverse Laplace transform of a func-
tion γ : R+ → [0, 1] is defined as the function ψ : R+ → [0, 1] which solves:

Lψ (t) =
∫ ∞

0
e−txψ(x) dx = γ (t),

for t ≥ 0.

Let ϕ be an Archimedean copula generator and ϕ[−1] its pseudo inverse as de-
fined in (8.7). Then, compound copula simulation algorithm can be written as fol-
lows.

Algorithm (Compound copula simulation)

1. Generate X1, . . . , Xn i.i.d. uniformly distributed r.v.’s on (0, 1);
2. Generate a random variable Y that is independent on X1, . . . , Xn and whose

Laplace transform is ϕ[−1];
3. The random samples from the Archimedean copula with generator ϕ are defined

as:

Ui = ϕ[−1]
(

−
1

Y
ln Xi

)
, 1 ≤ i ≤ n.

In the following table, we exhibit generator, inverse generator and Laplace trans-
form for some Archimedean copulas. This is all we need in order to apply the Com-
pound copula simulation algorithm.

8.7 Comments 265

Fig. 8.17. 1,000 samples from a Gumbel copula with α = 3.

ϕ(t) ϕ[−1](s) Y -distribution
Clayton (t−α − 1) (1 + s)−1/α Gamma(1/α)

Gumbel (− ln t)α exp(−s1/α) Alpha-stable(1/α)

We see that, in order to generate a Clayton and a Gumbel copula, we need to draw
samples from a Gamma (see chapter “Static Monte Carlo”) and an alpha-stable dis-
tribution. A common procedure to get a draw from a Stable(1, 0, 0) with parameter
β is based on the following result. Let υ be a uniform sample on (−π

2 , π

2) and let ξ

be an independently drawn exponential sample with mean 1. Then

γ = sin(βυ)

(cos υ)1/β

[
cos((1 − β)υ)

ξ

](1−β)β

,

is a random sample from a stable distribution.
Figure 8.17 shows 1,000 random samples from a Gumbel copula using the al-

gorithm described above. The results can be obtained running the function GumbC-
Sim.m; see Table 8.9.

The inputs of the code are the number N of simulations, the dimension M of
the copula and α. The program returns an N random vectors with a Gumbel copula
using the compound copula algorithm.

8.7 Comments

The term “copula function” was first adopted in Sklar (1959), although related re-
sults can be traced back to Hoeffding (1940). The body of research origin is Fréchet
(1951), who discovered the lower and the upper bounds for bivariate copulas. For a
complete discussion on the early years and a detailed presentation of the mathemati-
cal theory of copula functions, the reader can consult Nelsen (1999) and Joe (1997).

266 8 Structuring Dependence using Copula Functions

Table 8.9.

function u = GumbCSim(N,M,alfa)

for 1=1:M

% Uniform [-pi/2,pi/]

V = pi*rand(1,1) - (pi/2);

% Indipendent exponential with mean 1

xi = exprnd(1);

% 1/alfa stable

beta = 1/alfa;
Z = (sin(beta*V)/(cos(V)ˆ(1/beta)))*(((1/xi)*(cos((1-

beta)*V)))ˆ((1-beta)/beta));

R = rand(1,N);

for j=1:N
u(i,j) = exp((-abs((-(1/Z)*log(R(j)))/(beta))));

end

end

Cherubini, Luciano and Vecchiato (2004) provide an excellent monograph on the
use of copulas in quantitative finance. Other interesting applications can be found
in Jouanin, Riboulet and Roncalli (2003). Our treatment follows several sources.
The notions of concordance and dependence measures are detailed in Embrechts,
Lindskog and McNeil (2001). The concept of positive quadrant dependence is from
Lehmann (1966). Mikusinski, Sherwood and Taylor (1992) deal with properties of
comonotonic and countermonotonic variables. Nelsen (1999) contains a proof of the
statement that C− is the pointwise greatest lower bound within the class of copula
functions. Hu, Müller and Scarsini (2003) provide interesting counterexamples to
show the subtlety of the notion of positive dependence. Schweizer and Wolff (1981)
detail the homonymous index. The Kimberling (1974) theorem is the main result for
Archimedean copulas. The IFM method has been introduced by Joe and Xu (1996).
The nonparametric kernel method is presented in Scaillet (2000), who also derives
corresponding asymptotic distributions. Extending the static notion of copula func-
tions to a dynamic framework is not a trivial task. Seminal papers in this respect are
van den Goorbergh, Genest and Werker (2003), Fermanian and Wegkamp (2004),
Kallsen and Tankov (2004), and Tankov (2005). Cherubini and Luciano (2001) pro-
vide applications to the risk assessment of financial portfolios, while Fermanian and
Scaillet (2004) illustrate some pitfalls arising upon modelling with copula functions.

8.7 Comments 267

An application to credit risk and basket option pricing is developed through a case-
study in Part II of the present book (see also Meneguzzo and Vecchiato (2004)).
Rebonato (1999) details several techniques for tracking volatile market conditions
within implied option pricing models. Extreme events have been extensively studied
in Embrechts, Klüppelberg and Mikosch (1997), Longin (1996, 2000), Longin et al.
(2001), Longin and Solnik (2001), Poncet and Gesser (1997), among others.

Portfolio Management and Trading

9

Portfolio Selection: “Optimizing” an Error*

Key words: estimation risk, simulation, optimization, asset allocation

Markowitz mean-variance theory (MV) provides a classic solution to the port-
folio selection problem. The risk of a portfolio (as measured by the variance of its
return) can be reduced by combining assets whose returns are imperfectly correlated.
Diversification, however, is not boundless.

Implementation of this approach nonetheless requires knowledge of both the ex-
pected returns on all assets comprised in a portfolio and their covariances; an infor-
mation set which by definition is not available. A common way to circumvent this
problem is thus to use sample estimates of such measures in the optimization pro-
cedure (the so-called plug-in approach). It follows that a prototypical investor is not
only exposed to market risk, but also to estimation risk. The latter can, therefore, be
defined as the loss of utility which arises from forming portfolios on the basis of sam-
ple estimates rather than true values. Clearly, even if the true moments of the asset
return distributions of a portfolio were known with certainty, MV optimized portfo-
lios would not beat other portfolios in every future investment period, since return
realizations usually differ from their expected values. However, over an appropri-
ately large investment period, MV would provide on average the optimal portfolio
composition.

The aim of this case is to discuss a few relevant problems caused by the expo-
sure to estimation risk when investors deal with portfolio selection and illustrate the
resampling technique as originally proposed by Michaud (1998).1 By relying on a
statistical view of MV optimization, this method leads to a better understanding of
estimation risk exposure. Sample measures provide the initial moment estimate to a

∗ with Giovanna Boi, Riccardo Grassi and Alessandra Palmieri.
1 Resampled Efficiency optimization was co-invented by Richard Michaud and Robert

Michaud, U.S. patent 6,003,018, worldwide patents pending. New Frontier Advisors, LLC
(NFA) is exclusive worldwide licensee.

274 9 Portfolio Selection: “Optimizing” an Error

multivariate normal distribution which is used to generate asset returns. A number
of independent draws are then sorted out of this multivariate population of returns
in order to simulate new return series. For each resampled series, sample moments
are calculated and corresponding efficient frontier portfolios are computed. The dis-
persion in the asset allocation of simulated portfolios comes from the estimation
risk that can affect the MV frontier constructed using the plug-in approach. For any
given level of expected return, an average of the portfolio weights over the simu-
lated portfolios yields the resampled efficient portfolios. Following the procedure
in Herold and Maurer (2002), the resampling approach is empirically tested and in-
sample and out-of-sample performances are compared with plug-in approach results.
A detailed discussion of the pros and cons of the resampling procedure can be found
in Scherer (2002), whilst alternative procedures for coping with estimation risk are
presented in great detail in Meucci (2005) and in Brandt (2006). Other important
references are Best and Grauer (1991), Brandt (2006), Britten-Jones (1999), Chopra
and Ziemba (1993) and Jobson and Korkie (1980). Extensions to dynamic portfolio
strategies have been proposed by Lacoste, El Karoui and Jeanblanc (2005), Karatzas
et al. (1986), Karatzas, Lehoczky and Shreve (1987), Merton (1971), Portait, Bajeux-
Besnainou and Jordan (2001, 2003), and Portait and Nguyen (2002).

The structure of this case is as follows. In Sect. 9.1, classic MV portfolio op-
timization is presented together with major issues – such as lack of diversification
across assets and instability of the optimal portfolio both in time and along the effi-
cient frontier – which may arise from exposure to estimation risk. Section 9.2 details
the resampling technique. Section 9.3 describes the MATLAB R© functions we used to
perform resampling. Section 9.4 presents the results of the in-sample/out-of-sample
analysis.

9.1 Problem Statement

In modern finance, Markowitz’s MV portfolio selection technique provides the par-
adigmatic solution to the problem of optimally allocating capital among risky as-
sets. According to this approach, in each period an investor chooses a portfolio
ω = [w1, w2, . . . , wK], such that portfolio variance is minimized given a prede-
termined level m of expected return. Therefore the investor’s problem, assuming no
short-selling, may be summarized as follows:

min
ω

ωΣω′

sub: ωµ = m,
(9.1)

ω1 = 1,

ω ≥ 0,

where µ is the (K × 1) vector of expected returns, Σ the (K × K) variance–
covariance matrix of returns, 1 the (K ×1) vector with all elements equal to 1. Thus,
in each period the investor trades off portfolio expected return with portfolio vari-
ance. The minimum variance frontier represents the combination variance–expected

9.1 Problem Statement 275

returns, constructed considering portfolios that have minimum variance for a given
level of expected return. The efficient frontier is the upward sloping portion of the
minimum variance frontier and every investor will choose a portfolio on the effi-
cient frontier on the basis of his personal attitude towards risk. A strongly risk averse
agent will prefer low variance and low expected return efficient portfolios. A less
risk averse agent will choose higher expected return and therefore riskier portfolios.

The inputs to the classical portfolio selection model are the expected return vec-
tor µ and the variance–covariance matrix Σ . However, since these parameters are
not known with certainty, they need to be estimated from sample data, thereby ex-
posing the asset allocation choice to an estimation risk. The optimization problem
then becomes

min
ω

ωΣ̂ω′

sub: ωµ̂ = m,
(9.2)

ω1 = 1,

ω ≥ 0,

where µ̂ and Σ̂ represent the estimates of µ and Σ . Therefore, estimation risk refers
to the difference between the optimal solution to (9.1) and the optimal solution
to (9.2). As an example, suppose we build a portfolio using assets with equal ex-
pected returns and variances–covariances. If, because of estimation errors, sample
estimates differ across assets, MV optimization will favour some assets over others,
giving to the former a higher weight vis-à-vis the latter. As a result, over-weighted
assets will be those with large estimated expected returns, low variances and low
correlations. Alas, these assets are likely to be the ones most affected by estimation
errors!

To summarize, the consequences of estimation risk on MV optimized portfolios
are of three kinds:

(a) Low degree of diversification. MV portfolios often involve very extreme posi-
tions. In particular, as the number of assets grows, the weight on each single
asset does not tend to zero as suggested by a naive notion of diversification;

(b) Sudden shifts in the allocation of the optimal weights along the efficient frontier,
i.e., the composition of the optimal portfolio is very different for individuals that
differ slightly in their attitude towards risk;

(c) High sensitivity of portfolio weights to small variations in expected returns.
Since little changes in expected returns can completely alter the composition of
MV optimal portfolios, while modifications in the variance–covariance matrix
have smaller impact, it follows that errors in the sample estimates of expected
return have great bearing on allocation choices. For instance, Chopra and Ziemba
(1993) find that errors in mean estimates are about ten times as important as er-
rors in variance estimates. Errors in variance estimates are in turn about twice as
important as errors in covariance estimates.

As consequence, MV optimized efficient portfolios constructed using sampled means
and sampled variance–covariance matrices from a given population generally score

276 9 Portfolio Selection: “Optimizing” an Error

badly once their performance is verified using out of sample data. In other words,
their ex-post reward/risk ratio is lower than expected.

9.2 Model and Solution Methodology

In order to improve MV optimization and address estimation risk, Michaud (1998)
proposes a statistical procedure based on a well-known statistical procedure named
bootstrapping, Maddala and Li (1996). More specifically, a resampling procedure
aimed at the construction of a region of statistically equivalent efficient portfolios is
introduced, and the concept of resampled efficiency defined. In this way, the tradi-
tional curve representing the efficient frontier becomes a region the area of which
may be viewed as a measure of the uncertainty affecting the construction of the effi-
cient frontier.

More precisely, Michaud’s resampling procedure requires:

1. Collecting T historical returns on a set of K asset classes, i.e. on investments
such as stocks, bonds, real estate, or cash.

2. Computing sample means µ̂ and the sample variance–covariance matrix Σ̂ .
3. Finding optimal weights for a set of Z mean-variance efficient portfolios. Target

expected returns to solve problem (9.1) are fixed in the following way. Let ErM
be the higher, among asset classes, expected return and let ErGMV be the ex-
pected return on the global minimum variance portfolio.2 Then divide the range
(ErGMV, ErM) in Z − 1 sub-intervals

{
ErGMV, ErGMV + δ, . . . , ErGMV + (Z − 1) × δ = ErM

}
,

where

δ = ErM − ErGMV

(Z − 1)
.

The portfolio whose expected return is ErGMV is called portfolio with rank 1,
while the one whose expected return is ErM is called portfolio with rank Z.
Portfolios with intermediate expected return are then named accordingly.

4. Assuming that asset returns are from a multivariate normal distribution, with
mean and variance–covariance matrix equal to the sample ones and estimated in
Step 2.

5. Simulating N independent draws (i.e., resampling) for each asset class from the
multivariate normal distribution as defined in Step 4, with each draw consisting
in T random numbers for each asset class.

6. For each simulation i = 1, . . . , N , re-estimating a new set of optimization in-
puts, µi and Σ i , and finding Z simulated efficient portfolios (i.e., repeating N

times Step 3).

2 This means that ErM = maxi=1,...,n µ̂i . Instead, ErGMV is the expected return of the
portfolio that solves the selection problem minω ωΣ̂ω′, under the constraints ω1 = 1 and
ω ≥ 0. The constraint on the target expected return is not included.

9.2 Model and Solution Methodology 277

Fig. 9.1. Mean-variance efficient frontier and statistical equivalence region.

7. For each rank j , j = 1, . . . , Z, computing the average composition across the
N simulations. The Z portfolios with this average composition are called resam-
pled portfolios of rank j .

Figure 9.1 provides a graphical representation of the statistical equivalence re-
gion and gives an immediate idea on how estimation errors can affect the determi-
nation of an efficient frontier. Note that Fig. 9.1 is constructed with the following
additional steps.

(a) Calculate the expected return and the standard deviation of each of the Z mean-
variance efficient portfolios using the sample mean and the sample variance–
covariance matrix obtained in Step 2. Plot the MV efficient frontier.

(b) Calculate the expected return and the standard deviation of each of the (N × Z)

resampled portfolios using the original sample mean and variance–covariance
matrix. Plot these (N × Z) combinations variance–expected return on the same
graph as the true MV efficient frontier.

Clearly, resampled portfolios will lie below the MV efficient frontier, as they are
sub-optimal with respect to optimized portfolios based on sample estimates of the
mean and the variance–covariance matrix. Nonetheless, all of these portfolios may
still be considered statistically equivalent to portfolios plotted along the MV efficient
frontier.

278 9 Portfolio Selection: “Optimizing” an Error

This procedure can be very useful for two main reasons. First, it provides a
means of testing whether portfolios can be considered to be statistically equivalent.
This may be useful in asset allocation as it may increase the stability of the optimal
portfolios in time (issue (c) mentioned in the previous section) and avoid costly re-
balancing. Second, the adoption of resampled portfolios may be a way of increasing
portfolio diversification and stability along the frontier (problems (a) and (b) men-
tioned in the previous section), while maintaining coherence with the postulations of
the Markowitz theory.

9.3 Implementation and Algorithm

In this section we present the MATLAB R© functions used to perform the analysis and
simulations. Functions used are:

• effront.m
• resampfront.m
• simul.m
• stateqregion.m
• confregion.m
• resampstats.m

Function effront.m computes the efficient frontier solving a standard
quadratic programming problem. Optimal portfolios satisfy the expected return rank-
ing constraint, i.e. they are equally distant in terms of expected return. A short-selling
constraint is also imposed. Note that we are presenting a very simple code just to
highlight basic computational steps. The reader is invited to extend the code. For
instance, by adding a procedure to check if the variance–covariance matrix is semi-
definite positive, or by inserting new constraints so as to limit the exposure of some
asset classes.3

Resampfront.m is a loop function. It repeatedly applies effront.m by re-
lying on time series generated by mvnrnd.m.4 Note that the resampfront.m
code strictly follows on a step-by-step basis the procedure described in Sect. 9.2.
Using codes presented here, both our in-sample and out-of-sample analyses can be
viably conducted. In-sample analysis is performed using the m-files stateqre-
gion.m, confregion.m and resampstats.m. The function stateqre-
gion.m jointly plots the mean-variance set and the statistical equivalence region.

3 Note that if the global minimum variance portfolio and the maximum expected return port-
folio coincide, the efficient frontier reduces to a single point. This event is unlikely but defi-
nitely possible. As the resampling procedure is based on averaging the simulated portfolios,
we require that the algorithm always generates the same number of portfolios. Therefore,
when only one efficient portfolio exists effront.m builds a (K × Z) matrix of weights
which replicates the existing portfolio weights Z times. A standard mean-variance algo-
rithm would output a single weight vector (K × 1), resulting in a dimensionality error for
the resampling code.

4 mvnrnd.m is the multivariate random number generator built in MATLAB R©.

9.3 Implementation and Algorithm 279

effront.m �⇒ resampfront.m �⇒ simul.m

⇓

stateqregion.m

confregion.m

resampstats.m

Fig. 9.2. Flow-chart.

Command confregion.m finally plots confidence regions for a given set of re-
sampled portfolios. Confidence regions are computed following the procedure de-
scribed in Michaud (1998), which may be summarized as follows:

1. For each portfolio on the efficient frontier, 500 statistically equivalent portfolios
are generated by simulation;

2. Resampled portfolios are computed as a mean across simulated portfolios;
3. The variance of a generic simulated portfolio, ωS, relative to the correspondent

resampled portfolio, ωR, is defined as

rv = (ωS − ωR)Σ(ωS − ωR)′;

4. Portfolios belonging to the α% confidence region are those for which rv ≤ rv∗,
where rv∗ is the α percentile of the distribution of relative variances.

Function resampstats.m generates a structure array5 which collects sample
statistics on the distribution of portfolio weights. Function simul.m is a loop func-
tion used to simultaneously construct the MV frontier and perform the resampling
procedures (results presented in next section are based on simul.m). The following
flow-chart (Fig. 9.2) presents the logic relationships between functions described in
this section.

To perform in-sample analysis:

1. Load a return time series, RetSeries, into the workspace. RetSeries needs
to be a (T ×K) matrix, where T indicates the number of returns and K the num-
ber of assets. Returns in RetSeries start from more recent observations going
back into the past. Fix the number of portfolios NumPortf to be generated
along the efficient frontier and the number N of simulations to be run.

2. Call function resampfront.m to generate the mean-variance and the resam-
pled frontiers.

>> [Wrsp,ERrsp,SDrsp,Wmv,ERmv,SDmv,Wmv_S]
= resampfront(RetSeries,NumPortf,N)

3. Call function stateqregion.m to generate a plot of the statistical equiva-
lence region.

>> stateqregion(RetSeries, ERmv, SDmv, Wmv_S)

5 Structure arrays are particular arrays having fields. Each field can store data of different
type and dimension.

280 9 Portfolio Selection: “Optimizing” an Error

4. Call function confregion.m. This function generates a plot of the confi-
dence region for a set of resampled portfolios – specify the portfolio set by mean
of the input vector (PortfSet), specify the confidence level (ConfLevel) .

>> confregion(Wrsp,ERrsp,SDrsp,ERmv,SDmv,Wmv_S,
RetSeries,PortfSet,ConfLevel)

5. Call function resampstats.m to obtain sample statistics about the distribu-
tion of portfolio weights.

>> [Stats] = resampstats(Wmv, Wmv_S, Wrsp, PortfSet,
ConfLevel)

Note that Steps 3–5 can be performed independently. For instance, one can de-
cide to obtain simply confidence regions performing Steps 1, 2 and 4.

To perform out-of-sample simulation:

1. Load a return time series, RetSeriesTotal – postscript Total has been
chosen to indicate a time series which spans the entire simulation period.

2. Call function simul.m – this function will repeatedly call mean variance and
resampling procedure comparing the performance of the two methods and stor-
ing results period by period. Input data T indicates the time length of the in-
sample period; N and NumPortf respectively indicate the number of simulations
to perform in resampling procedure and the number of portfolios defining mean
variance and resampled set.

>> [ASRmv,ASRrsp,ATOmv,ATOrsp]
= simul(RetSeriesTotal,T,N,NumPortf)

9.4 Results and Comments

In this section, we provide a description of data used to perform simulations and dis-
cuss our results. In Sect. 9.4.1, we analyze the relationship between mean-variance
and resampled portfolios. Section 9.4.2 presents results of the out-of-sample simula-
tion.

Table 9.1 shows the input asset classes used together with benchmarks chosen
to represent them. We consider the MSCI equity indices of six countries (Canada,
US, Germany, Japan, France, UK),6 plus Merril Lynch bond indices for the Euro
and US area. All returns are expressed in US dollars. Stock Benchmark indices are
downloaded from Datastream, and bond benchmarks from Bloomberg.

For each asset class we compute monthly logarithm returns for the period 1/1/85
to 8/31/02, for a total of T = 200 observations. We start our analysis by generating

6 MSCI provides global equity indices, which, over the last 30 years, have been the most
widely used international equity benchmark indices by institutional investors. Additional
information on the construction of these indices can be found at www.msci.com.

9.4 Results and Comments 281

Table 9.1. Asset classes for empirical analysis

Asset class Benchmark
Canada MSCI Canada
US MSCI US
Germany MSCI Germany
Japan MSCI Japan
France MSCI France
UK MSCI UK
Euro Bonds ML Euro aggregate
US Bonds ML US aggregate

Fig. 9.3. 90% confidence regions for global minimum variance and intermediate return port-
folios.

mean-variance and resampled efficient frontiers (see Figs. 9.1 and 9.3) with respect
to the first 50 observations, i.e., T = 50. We then perform a rolling out-of-sample
simulation by comparing the performance of mean-variance and resampled efficient
portfolios. The in-sample period is respectively set equal to 30, 60 and 90 periods.
The out-of-sample period is kept fixed and equal to T = 100. Further details of these
simulations will be given in Sect. 9.4.2 where we describe the results obtained.

282 9 Portfolio Selection: “Optimizing” an Error

9.4.1 In-sample Analysis

The results of the in-sample analysis are presented in Figs. 9.1, 9.3 and 9.4. Table 9.2
supports the results obtained.

Figure 9.1 shows the mean-variance efficient frontier together with the statistical
equivalence region (SER). The first is computed using a standard quadratic program-
ming algorithm; the second is obtained applying the procedure described in Sect. 9.3.
Sample data is of length T = 50 and asset classes are those described in Table 9.1.
As previously mentioned, 25500 statistically equivalent portfolios are “evaluated”
using the true mean vector and variance–covariance matrix. As a consequence they
all plot under the efficient frontier. This is a rather obvious result. Less obvious is
the high level of dispersion that characterizes the statistically equivalent portfolios
with respect to the mean-variance set. This result brings us to at the heart of the
problem: even small changes in the sample data can cause a drastic change of the
mean-variance efficient curve. In the words of Michaud, one can say that Fig. 9.1
“dramatically illustrates the enormous, even startling, variability implicit in efficient

frontier portfolio estimation”. The size of the SER suggests that much of the effort
put in the optimization procedure can be worthless or even dangerous. Note that not
only the dimension but also the shape of the SER should be considered. SER exhibits

Fig. 9.4. Mean-variance and resampled portfolio weights.

9.4 Results and Comments 283

a characteristic “comet” shape. Dispersion increases moving from the lower to the
upper part of the efficient frontier (i.e., moving from lower expected return portfolios
to the higher expected return portfolios). In order to understand this, examine Fig. 9.3
displaying the mean-variance efficient frontier together with the resampled efficient
frontier (REF). Let us focus on three specific portfolios on the mean-variance effi-
cient frontier: GMV (the Global Minimum Variance portfolio; which ranks as the 1st
portfolio), I (the Intermediate Return portfolio; which ranks as the 26th portfolio)
and M (the Maximum Expected Return portfolio; which ranks as the 51st portfo-
lio). Each of these three portfolios has a corresponding matching portfolio on the
resampled frontier. These matching portfolios all plot along a curve, the REF, which
is located below the efficient frontier (a fact given the construction7). The distance
between portfolios on the mean-variance frontier and their match on the resampled
efficient frontier is then increasing as one moves towards higher return variance (that
is, to the right) in the standard deviation–expected return (SD, ER) space. Moreover,
the resampled frontier is “shorter” than the mean-variance frontier, since resampling
rules out extreme and poorly diversified portfolios. As a result, the method is im-
plicitly providing investors with a prudential and safer set of portfolios, and this
implicit protection is increasing in the horizontal axis. When low levels of risk are
considered, mean-variance and resampled portfolios are very similar in terms of re-
ward/risk ratio (for instance, look at the case of GMV portfolios). When intermediate
or high levels of risk are considered, differences in terms of reward/risk ratio between
mean-variance and resampled portfolios are instead remarkable (as for the I and M
portfolios).

In Fig. 9.3, we also identify the 90% confidence interval regions for the Global
Minimum Variance and the Intermediate portfolios. These confidence regions dif-
fer from each other. The region surrounding the GMV portfolio (the dark nebula)
appears very dense and compact. On the contrary, the confidence region around the
Intermediate portfolio (the green nebula) circumscribes a larger area. Admittedly, the
confidence region around portfolio M (Maximum Expected Return portfolio), which
is not represented here, would cover an even wider portion of the (SD, ER) space.
These results are consistent with the higher level of estimation error that character-
izes intermediate and extreme portfolios vis-à-vis the GMV portfolio. It is thus easy
to understand why the statistical equivalence region in Fig. 9.1 exhibits a ‘comet’
shape: the simulation procedure highlights the growing level of instability to which
one is exposed when moving upward and to the right on the efficient frontier.

The analysis just illustrated is further supported by data provided in Table 9.2,
where a comparison between resampled and mean-variance weights, respectively for
portfolios GMV, I and M is presented. At the GMV portfolio level, differences in the
portfolio weights between resampling and mean-variance are practically negligible.
Moving to the intermediate return level, differences in portfolio weights become re-

7 Each resampled portfolio is determined by averaging the weights of the rank associated
simulated portfolios. As these portfolios are sub-optimal by definition (as they are evaluated
using the original sample mean vector and var/cov matrix), the resampled portfolios will
be sub-optimal too.

284 9 Portfolio Selection: “Optimizing” an Error

Table 9.2. Distribution statistics

Resampled St. dev. 5% perc. Median 95% perc. MV weights
weights

Global minimum variance portfolio
Canada 3.96 2.15 0.36 4.02 7.44 5.13
US 0.79 1.57 0 0 4.21 0
Germany 1.17 1.44 0 0.60 4.36 1.11
Japan 0.49 0.74 0 0 2.04 0.17
France 0.06 0.26 0 0 0.4 0
UK 0.33 0.78 0 0 1.96 0
Euro Bonds 3.23 2.65 0 2.95 8.06 3.53
US Bonds 89.96 3.24 84.19 90.39 94.57 90.05

Intermediate (expected) return portfolio
Canada 1.14 4.46 0 0 6.44 0
US 19.18 19.33 0 13.64 49.54 35.65
Germany 0.31 1.56 0 0 0.41 0
Japan 1.09 4.5 0 0 7.35 0
France 8.86 14.88 0 0 43.67 0
UK 4.71 12.03 0 0 39.78 0
Euro Bonds 22.92 20.33 0 23.04 50.63 36.37
US Bonds 41.78 19.55 17.09 40.81 64.62 27.99

Maximum expected return portfolio
Canada 0.10 5.45 0 0 0 0
US 43.20 44.62 0 0 100 100
Germany 2.00 14.07 0 0 0 0
Japan 5.00 21.90 0 0 0 0
France 33.00 47.26 0 0 100 0
UK 11.00 31.45 0 0 100 0
Euro Bonds 4.90 4.26 0 0 0 0
US Bonds 0.80 3.41 0 0 0 0

markable. Resampling tends to preserve diversified portfolios, whilst mean-variance
optimization tends to concentrate allocation (only 3 asset classes are invested in).
The striking case is the M portfolio case. The resampling portfolio shows a tendency
towards the ‘star’ asset class (US stocks = 43% of the portfolio), but diversification
is still preserved. In the mean-variance setting, diversification is instead completely
abolished and an extreme 100% US stock portfolio is built. Alas, a portfolio with
such characteristics is likely to maximize estimation errors and will get poor out-of-
sample performances.

Table 9.2 also collects information on the statistical properties of the portfolio
weights. First, consider standard deviations. These increase moving from GMV to M.
Now consider the percentile intervals. Again their magnitude increases moving from
GMV to M. This is consistent with the affirmation that estimation risk affects extreme
portfolios more than low-risk ones.

9.4 Results and Comments 285

Figure 9.4 exhibits efficient portfolio weights generated both in mean-variance
and resampling settings. Lack of diversification and tendency towards extreme po-
sitions are evident. Two main observations can be drawn. First, mean-variance and
resampled portfolios are quite similar for low levels of expected return, while they
tend to diverge moving to higher expected return levels. This justifies previous com-
ments on Fig. 9.3. Second, instability of portfolio weights grows moving upward
along the frontier. Note, for instance, the abnormal difference in weights between
rank 50 and rank 51 in the mean-variance setting: at least 15% of portfolio composi-
tion is changed.

9.4.2 Out-of-sample Simulation

In the previous section, we have illustrated problems that may arise in asset alloca-
tion when investors are exposed to estimation risk. The analysis we have conducted
was based on an in-sample approach. We now move to an out-of-sample approach.
Using data on the eight asset classes, we implement a rolling out-of-sample analysis.
Our aim is to test which asset allocation strategy performs better between the mean-
variance approach and the resampled procedure. Three simulations are performed.
They differ for the size of the estimation period. Three different sampling lengths
are considered: T = 30, T = 60 and T = 90. In each case, the out of sample pe-
riod length remains the same: T = 100. Simulations are performed considering three
portfolios: GMV, Intermediate return and Maximum (expected) return portfolios. For
each period optimal portfolios are computed, then the sample period is moved for-
ward one month and optimization is repeated. Using the optimal weights computed
for the previous period together with the actual returns of the asset classes, the algo-
rithm computes realized returns generated by the optimal portfolios. Realized returns
are then averaged across the out of sample period and normalized for the average risk
of the portfolio. In this way, an (average) realized Sharpe ratio is computed for all
three portfolios in both the cases of the mean-variance and resampling strategies.
Note that resampling is carried out by generating return series of a length equal to
that of the sample period considered.8 The number of simulations for resampling the
frontier is set equal to 500. Thus, a resampled portfolio with rank j is obtained as
an average of 500 simulated portfolios, always with same rank j . Tables 9.3 and 9.4
present the results. A comparison of the mean-variance and resampling techniques
can be done by considering both the out-of-sample performance and the turnovers.
The out-of-sample performance is summarized by the average Sharpe ratios reported
in Table 9.3. For T = 30, resampled portfolios perform better than mean-variance
portfolios in all cases. This makes sense. The estimation period in this case is quite
short and it is therefore reasonable to expect that the effect of estimation risk will be
more significant, penalizing mean-variance and favoring resampling methods. Note
that the over-performance of the resampling procedure with respect to mean-variance
increases when moving from GMV to M. We can justify this result by recalling that

8 For instance, when the estimation period is of length T = 30, the simulated series have
length T = 30.

286 9 Portfolio Selection: “Optimizing” an Error

Table 9.3. Sharpe ratios for different horizons

Mean-variance Resampling

Return Risk Sharpe ratio Return Risk Sharpe ratio
T = 30

GMV 0.5587 1.0828 0.5160 0.5443 1.0941 0.5249
I 0.4822 2.1829 0.2209 0.5628 1.9390 0.2903
M 0.1376 4.5968 0.0299 0.4688 3.7186 0.1261

T = 60
GMV 0.5536 1.1574 0.4783 0.5597 1.1631 0.4812
I 0.6561 1.9438 0.3376 0.5682 1.9009 0.2989
M 0.7969 3.9009 0.2043 0.5352 3.4432 0.1554

T = 90
GMV 0.5454 1.2255 0.4450 0.5470 1.2294 0.4449
I 0.5684 2.0567 0.2764 0.5144 1.9775 0.2601
M 0.7668 3.9053 0.1963 0.4294 3.5797 0.1200

Table 9.4. Portfolio turnovers

Mean-variance turnover Resampling turnover Differential turnover
T = 30

GMV 3.3453 3.0274 0.3179
I 13.2883 8.2368 5.0516
M 17.1717 13.3697 3.8020

T = 60
GMV 1.5135 1.5050 0.0084
I 6.7243 5.3784 1.3459
M 16.1616 10.5455 5.6162

T = 90
GMV 1.1279 1.1205 0.0074
I 4.9018 4.5062 0.3956
M 5.0505 9.1131 −4.0626

estimation risk affects more extreme portfolios (refer to Fig. 9.2). If we move to the
second and third simulations, T = 60 and T = 90 respectively, results go in the op-
posite direction: mean-variance optimization over-performs resampling in all cases
(except the case of the GMV portfolio in simulation 2 where resampling obtains a
small over-performance). Thus, increasing the sample size leads to a better perfor-
mance of mean-variance portfolio selection with respect to the resampling technique.
This result could depend on the following:

1. By increasing sample size, estimation risk decreases and the quadratic program-
ming procedure is more likely to produce portfolios that are real winners.

2. The improvement that resampling can give to the performance of a portfolio
“critically depends on the relevance of the inputs for the forecast horizon” as
stressed by Michaud (1998).

9.4 Results and Comments 287

3. Sample period considered: in strong trending markets, like the one considered,
to assume extreme positions can be highly rewarding.

Therefore, we are unable to conclude that resampled portfolios out-perform
mean-variance portfolios in terms of average out-of-sample Sharpe ratios. This lack
of exhaustive indications should be nonetheless read in conjunction with the con-
siderations that follow on the marginal cost of portfolio selection in the two cases.
In particular, consider the (average) turnover of the portfolios. This quantity mea-
sures the rate of trading activity across portfolio assets and, hence, it represents the
percentage of portfolio that is bought and sold in exchange for other assets. There
are several ways to calculate this quantity. In the present study turnover has been
computed as the sum of the absolute values of purchases and sales during a pre-set
time period, divided by 2. Let ω(t − 1) and ω(t) be K-dimensional column vectors
representing portfolio weights at time t − 1 and t respectively. Then, the portfolio
turnover from time t − 1 to time t , TO(t − 1, t), is defined as

TO(t − 1, t) =
∑K

i=1 |ωi(t − 1) − ωi(t)|
2

, (9.3)

where ωi(t) and ωi(t +1) indicate the weight of the generic asset class i at time t −1
and t respectively.

As an example, let us consider the case in which

K = 2, ω′(t − 1) =

[
1
0

]
, ω′(t) =

[
0
1

]
.

Therefore,

TO(t − 1, t) =
|1 − 0| + |0 − 1|

2
= 1

i.e., a one hundred percent turnover moving from time t − 1 to time t . Formula (9.3)
can be easily converted in MATLAB R© code. Using the functions sum and abs, we
can write

TO = sum(abs(W_minus1-W))/2.

This syntax has been used in the simul.m code.
In all cases (except for portfolio M when T = 90) the differential turnover is

positive (i.e., mean-variance portfolios exhibit higher turnovers compared to resam-
pled portfolios). Therefore, the over-performance obtained in simulations 2 and 3
through mean-variance quadratic optimization was obtained at the cost of a higher
turnover. As trading is costly, this result can modify the judgement on which of the
two methods is really optimal.

10

Alpha, Beta and Beyond*

Key words: beta estimation, OLS, robust estimate, Bayesian method, Kalman
filter, shrinkage, backtesting

Although academics and practitioners continue to debate its relevance,1 the beta,
which is a measure of stock sensitivity to market movements, has become the best
known and most widely employed measure for market risk. Similarly, the use of the
beta to estimate expected returns, finds in the Capital Asset Pricing Model (CAPM)
the theoretical foundation for justifying the current practice in the investment indus-
try (for a presentation of the CAPM we refer to Barucci (2003), Cochrane (2001) and
Sharpe, Alexander and Bailey (1999)). Indeed, as early as in 1982, Gitman and Mer-
curio (1982) were already reporting that slightly more than 50 percent of managers
were familiar with the beta and were using it in their financial activities. Sixteen
years later, Bruner et al. (1998) confirmed that betas had, by that time, become the
dominant technique to estimate the firm cost of equity. Similar evidence was then
provided by Block (1999) during the following year. According to his survey, at the
turn of the century, more than 30 percent of respondents considered the beta an im-
portant tool in the valuation process and were using it in their business.

Besides providing evidence on the affirmation of the beta, these surveys show that
managers, traders and analysts in the investment management industry generally pur-
chase beta estimates from commercial providers. And since multifactor return mod-
els have become increasingly popular among practitioners, they have extended this
habit to the purchase of other return factor estimates. In this manner, commercially
prepared estimations have acquired unparalleled importance in the financial industry.

A review of a variety of commercial providers (such as Bloomberg and Reuters)
reveals that, in estimating betas, ordinary least squares (OLS) (or some adjusted ver-
sions of it) is the preferred technique. The use of OLS is justified by the fact that

∗ with Samuele Marafin, Francesco Martinelli and Carlo Pozzi.
1 See the seminal work by Fama and French (1992).

290 10 Alpha, Beta and Beyond

square error minimization is the best way to estimate parameters in linear models,
provided some stringent assumptions hold. Unfortunately, these assumptions often
fail to verify, as many stylized facts complicate empirical estimations. As a result,
many techniques have been devised to circumvent different problems and should
today be considered when using simple or multiple regression models as an aid to
decision-making activities.

In this chapter, we provide a review of some relatively simple and more advanced
estimation methodologies. In Sect. 10.1, we begin with OLS and then we describe
how stylized facts can be dealt with an appropriate estimation methodology. First, we
tackle the problem of the occurrence of exceptionally-large or exceptionally-small
return observations (outliers), which confer non-Gaussian features to the distribu-
tion of data samples (normality assumption is fundamental in OLS estimation). So
in Sect. 10.2.2 robust regression is reviewed as a possible solution for this problem.
Then, we consider complications given by small data samples and in Sects. 10.2.3
and 10.2.4 we discuss shrinkage and Bayesian estimates as a means of fortifying
estimation by using information in the cross-section of multiple return time series.
Next, changes in the correlation structure across return factors are taken into account.
Indeed, the way return factors influence observed returns evolves in time and so do
factor sensitivities (i.e., the regression parameters that linearly link observed returns
to return factors). Simple methods, such as rolling regressions, which update beta
estimates and keep track of factor changes can be applied; but they tend to average
out past factor sensitivities rather than predicting where these are going to be in the
future. Therefore, we propose an adaptive procedure, like the exponential smoothing
in Sect. 10.2.5 and the Kalman filter in Sect. 10.2.6, so as to consider the tendency of
the beta to vary over time. Finally in Sect. 10.4, all considered estimation approaches
are comparatively examined. OLS, shrinkage, Bayesian and robust estimation, expo-
nential smoothing and Kalman filter are juxtaposed in order to draw inference on
their estimation performance. The comparison between them is provided by an out-
of-sample analysis to gauge their predicting power in value at risk modelling. This
analysis concludes the chapter.

10.1 Problem Statement

We now introduce the market model, wherein the return on equity assets is related
on a market index in a linear way

ri,t = αi + βirI,t + εi,t , (10.1)

where ri,t denotes the return on the ith stock, rI,t the return on a market index (such
as the S&P 500) and εi,t the part of stock return which is not explained by the market
index, all referred at time t . This model is also known as the one factor model and
is different from the CAPM for at least two reasons. Unlike the CAPM, it is not an
equilibrium model that aims to explain how asset prices are set. Second, in (10.1)
we use a market index such as the S&P 500 as factor, whilst the CAPM involves the
market portfolio, i.e. the portfolio composed of all securities (not only the financial
ones) in the market place.

10.2 Solution Methodology 291

The standard estimation assumptions underlying equation (10.1) are:

E(εi,tεj,t) =
{

σ 2
εi
, i = j,

∀t,
0, i �= j,

E(εi,tεi,s) = 0, t �= s,∀i,

E(εi,t rI,t) = 0, ∀i, t.

The coefficient βi measures how stock returns respond to changes in the market
index and therefore constitutes an important element in risk-management analysis.
Beta is mathematically defined as

βi =
σi,I

σ 2
I

,

where σi,I is the unconditional covariance of the ith stock returns with returns on
the market index I , and σ 2

I is the unconditional variance of the market I . The for-
mula for βi arises from the following remark. If we consider the equation ri,t =

αi + βirI,t + εi,t , we observe that for given αi and βi we get a value for the residual
εi,t . Let us define a measure of goodness of the linear relationship as the percentage
of the variance that is explained by the regression, i.e. R2 = 1 − Var(εi,t)/ Var(ri,t).
The term in the numerator is a measure of the amount of randomness in the residual,
which is zero if and only if the approximation (10.1) is exact. The term in the denom-
inator is a measure of the amount of randomness in the original invariants, as it is
proportional to the average of the variances of all the invariants. The model (10.1) is
viable if the R2 approaches one. A value close to zero indicates that the factor model
performs poorly. Therefore, if we look for the value of {αi, βi} that maximizes R2,
then we obtain βi = σi,I/σ

2
I and αi = E(ri,t) − βiE(rI,t). Greater details can be

found in Meucci (2005).
From the financial point of view, Var(ri,t) measures the total riskness of the as-

set i, Var(εi,t) measures the risk that can be diversified away and β2
i Var(rI,t) tracks

the source of asset risk which is systematic in the market (indeed is related to the
variance of the market index) and therefore cannot be diversified away. Given the
market index variance, investors thus expect a remuneration which is explained by
beta, because such a term measures the non-diversifiable risk of an equity. In particu-
lar, the CAPM states that a higher beta, i.e. a larger exposure to market risk, requires
a higher expected return. Residuals (εi,t) tend instead to offset each other when more
stocks are pooled into an equity portfolio. As such, the risk they bear (observe that,
given our assumptions, the covariance of residuals with the market index is zero) is
unimportant because it is easy and inexpensive to diversify it away through portfolio
management. In the literature on the CAPM, this type of risk is also often called
idiosyncratic risk, since it is the specific risk of a single equity.

10.2 Solution Methodology

Once applied to empirical data, the single-index model may pose challenges to an-
alysts confronting the task of finding the best estimates for betas. In particular, the

292 10 Alpha, Beta and Beyond

difficulty is knowing which way is preferable to estimate β, considering that different
techniques are available to solve different problems. As discussed in the introduction,
non-normality in the data sample, small samples, variations in risk factors and differ-
ent possible estimation periods represent common complications. We discuss these
challenges and their solutions. But first we need to clarify how OLS estimation de-
termines β in order to understand why the complications just cited limit its validity
as an estimation technique. In the following our attention will be concentrated on the
single index model, although multifactor models are becoming popular in the finan-
cial industry because they allow a better understanding of the multivariate facets of
risk, see Meucci (2005), Sects. 3.4, 4.2.2 and 7.3.

10.2.1 Constant Beta: OLS Estimation

Linear regression estimation requires minimizing the sum of squared residuals be-
tween predicted and observed values of the dependent variable. Let us suppose to
have collected T historical observations on the stock and on the market. The OLS
estimators âi,OLS and β̂i,OLS of the unknown parameters ai and βi in the simple linear
model admit the following matrix representation

[âi,OLS, β̂i,OLS]′ =
(
X′X

)−1
X′r,

where X is a T × 2 matrix, having in the first column all elements equal to 1 and in
the second column the returns on the market index. r is a T ×1 vector containing the
stock returns.

In econometric investigation, it is often preferable to choose an estimation
method that produces unbiased, efficient and consistent estimators. These three cri-
teria denote the statistical properties that an estimator of β should have. Admittedly,
OLS estimators are widely employed because – besides being fairly easy to deter-
mine – they enjoy the above quoted properties under certain general conditions. They
are unbiased, since their expected value is equal to the parameter they estimate, i.e.
E(β̂i,OLS) = βi and E(âi,OLS) = ai . They are efficient, as the volatility of their
value, measured through variance, attains a certain minimum threshold. Indeed, ac-
cording to the Gauss–Markov Theorem, OLS are the best linear unbiased estimator
(BLUE): they have the smallest variance among all linear unbiased estimates of β.
In particular, the variance–covariance matrix of these estimators is

Var
(
[âi,OLS, β̂i,OLS]

′
)

= σ̂ 2
εi

(
X′X

)−1
,

where σ̂ 2
εi

is the mean squared error of the regression model,

σ̂ 2
εi

=
(r − r̂)′(r − r̂)

T − 2
.

Moreover, âi,OLS and β̂i,OLS are also consistent because they converge in probability
to the real value they are meant to estimate as the size of the sample increases to
infinity.

10.2 Solution Methodology 293

Once the normality assumption is made about the random error in (10.1), the
maximum likelihood estimator for βi and ai is the same as the OLS estimator. Also,
since [âi,OLS, β̂i,OLS] is a linear function of the normally distributed random vector r,
we have

[âi,OLS, β̂i,OLS]′ ∼ N
(
[a, β]′, σ̂ 2

εi

(
X′X

)−1)
.

Given these properties, OLS should produce better estimates when long periods of
data are used, although there will be a bigger possibility of introducing a bias due to
old data. Instead, when short-term risk exposures need to be modelled, since sensi-
tivities to different sources of risk (i.e., the parameters to be estimated) may change
over time, determining them as an average across the entire time span of the data
sample cancels out every temporal variation and darkens the impact of recent market
dynamics on risk factors. Averaging observations across the entire dataset may then
have an opposite effect vis-à-vis the one just cited. Moreover, with OLS estimations,
a single large movement in the variables occurring during the period analyzed tends
to have a persistent effect on betas and does not decrease in time until it drops out
of averages (the so-called “ghost feature”). Finally, when exceptional observations
(outliers) in a sample become numerous (hence, the sample under investigation is
significantly non-normal), OLS estimators lose their statistical qualities and expose
beta estimates to serious errors.

10.2.2 Constant Beta: Robust Estimation

Let us begin reviewing solutions to overcome OLS drawbacks by focusing on the
presence of outliers that can have a substantial influence on the values of least squares
estimates.2 In financial markets, outliers are observed both among equity and mar-
ket returns. However, because of portfolio effects, they are found with considerably
greater frequency in the return time series of individual equities. Outliers can occur
because an individual stock or the market (or both) makes an unusual move, because
a split or reverse split occurs and is not removed from the data, or because of a data
error. Outliers occur more frequently for companies with small capitalizations than
for companies with large market caps. In many cases, the deletion of a small number
of outliers, sometimes even a single outlier, changes the value of the OLS beta. Such
sensitivity of the OLS beta to outliers can result in quite misleading interpretations
of the risk and return characteristics of a company. We argue here that practitioners
should not rely solely on OLS betas but should also compute resistant betas that are
not significantly influenced by a small fraction of outliers. By now a number of alter-
natives exist to least squares that are robust according to various statistical criteria.
Here we consider some of them. Two remedies are possible in this case. Under a
first approach, outliers are just ignored and data samples are simply cleaned from
undesirable observations defined with reference to an adequate benchmark (e.g., ob-
servations which are too distant from their mean or median). Alternatively, outliers

2 See for example Judge et al. (1988), Huber (1981), Rousseeuw and Leroy (1987), and
Hampel (1986).

294 10 Alpha, Beta and Beyond

can be winsorized, that is altered and transformed into more suitable values for fur-
ther quantitative treatment. In this chapter, we privilege a winsorizing procedure as
suggested in Martin and Simin (1999).

Consider the linear model (10.1). A robust regression estimate [ai,M ,βi,M] is
defined as3

[ai,M ,βi,M] = arg min
ai ,βi

T∑

t=1

ρ

(
ri,t − ai − βirI,t

s

)
, (10.2)

where s is a robust scale estimate for the residuals and ρ is a symmetric loss function.
Dividing the residual by the scale estimate s makes the estimator invariant with re-
spect to the scale of the error ǫi . We recall two measures resistant (robust) to outliers:
the median and the trimmed mean. The median is the 50th percentile of the sample,
which only changes slightly if you add a large perturbation to any value. The idea
behind the trimmed mean is to ignore a small percentage of the higher and lower
values of a sample and then to determine the center of the sample. Another robust
regression methodology uses an iteratively reweighted least squares algorithm, with
the weights at each iteration calculated by applying an appropriate function to the
residuals from the previous iteration. This algorithm gives lower weight to points
that do not fit well. The results are less sensitive to outliers in the data as compared
with ordinary least squares regression.

Least Median of Squares

One of the earliest types of robust regression is called median regression, which has
the advantage of reducing the influence of the outliers. This algorithm minimizes the
median of ordered squares of residuals to obtain the regression coefficients:

[ai,med,βi,med] = arg min
ai ,βi

median
t

(
ri,t − ai − βirI,t

s

)2

.

Least Trimmed Squares

One way to eliminate possible outliers is to run the analysis on trimmed or winsorized
distributions. This means setting the values smaller than the α quantile to that of the
α quantile on one tail and setting those values larger extreme than the 1 − α quantile
to those of that quantile. The winsorized distribution is then estimated by minimizing
the sum of squared absolute residuals. Let us define qα and q1−α to be the relevant
quantiles. The least trimmed squares estimator is given by

[ai,lts,βi,lts] = arg min
ai ,βi

T∑

t=1

ρ(ri,t − ai − βirI,t),

3 For a complete description of the overall computational methodology, see Yohai, Stahel
and Zamar (1991).

10.2 Solution Methodology 295

where

ρ(ε) =

⎧
⎨
⎩

q2
α if ε < qα,

ε2 if qα < ε < q1−α,

q2
1−α if ε > q1−α.

Iteratively Reweighted Least Squares

Another robust regression analysis is performed with Iteratively Reweighted Least
Squares, where we minimize a weighted sum of squared errors. If the residual is
small the weight is equal to one, but if it is larger the weight is equal to a tuning
constant divided by the absolute value of the scale. These are the so-called “Huber
weights” referred to in Huber (1981). Since the weights are recalculated in each step
we speak of an iteratively reweighted least squares algorithm. The iterations will
be stopped when the parameter estimates and/or the residuals do not change signif-
icantly anymore. Other different weighting procedures can be used. For example,
with biweights, all cases with small residuals are downweighted and cases with large
residuals are assigned zero weights, thereby eliminating their influence altogether.
Because Huber weights sometimes have problems with extreme outliers and because
biweights sometimes have trouble converging on one solution, Huber weights are
first used in the early iterations and then biweights are used during later iterations of
the regression until final convergence is reached. Other functions to weight the resid-
ual are the ‘Andrews’ function, the ‘Cauchy’, the ‘Fair’, the ‘Huber’, the ‘Logistic’,
the ‘Talwar’ or the ‘Welsch’ functions.

10.2.3 Constant Beta: Shrinkage Estimation

When sample observations are relatively few but regard multiple assets, shrinkage

estimation can improve the determination of single-asset betas. A mathematical pre-
sentation can be found in Judge et al. (1988), whilst the importance of such an ap-
proach in finance is detailed in Meucci (2005). An empirical examination is per-
formed in Lavely, Wakefield and Barrett (1980). Shrinkage exploits the information
in the cross-section of betas, thereby providing less extreme estimations for a single
asset. Using OLS, basically we construct a beta vector just grouping the betas indi-
vidually estimated. This procedure produces a beta vector that is too dispersed, i.e.
too sensible to sampling errors. Let us consider n assets. For each asset we run an
OLS regression separately. The resulting n OLS estimates are grouped in a vector β

whose expected length can be proved to be

E
(
β̂

′
β̂
)

= β ′β + σ̂ 2
εi

n∑

j=1

1

λj

,

where λj are the eigenvalues of the matrix X′X. If this matrix has small eigenvalues
(X′X is said to be ill-conditioned), then the estimated betas can be very dispersed
in relation to the true ones. The ill-conditioning problem can become serious as we

296 10 Alpha, Beta and Beyond

increase the number of assets with respect to the number of observations. In order
to avoid this problem, shrinkage adjusts single-asset OLS estimates and constrains
their single values near a mean target value. In general, this procedure works well
if the number of assets under examination is greater than three and observations are
relatively limited. The simplest shrinkage technique is given by the so-called James–
Stein estimator

βi,JS = β̄ + αi(β̂i,OLS − β̄). (10.3)

In this equation, β̂i,OLS is a single-stock OLS beta estimate, β̄ is a mean determined
across all stocks, and αi is the shrinkage parameter. The shrinkage parameter pro-
duces a biased estimator, but with a lower variance with respect to the OLS estimator:
what we pay for introducing the bias we get back reducing the variance. Admittedly,
the value of αi makes the most of this technique and analysts should pay particular
attention to its determination. For example, Sharpe, Alexander and Bailey (1999, pp.
503–505) report some ad-hoc procedure to adjust historical common stock betas that
have been adopted by investment firms. For example, a common practice is to adjust
the historical beta toward a target value of 1 giving a 2/3 weight on the OLS esti-
mate and a 1/3 weight on the value of 1. Here instead it is considered the case of the
shrinkage parameter equals

αi = 1 − (k − 3)v

(β̂i,OLS − β̄)′(β̂i,OLS − β̄)
,

where k is the number of assets (k > 3), v is the pooled variance of betas obtained
through k individual regressions (with assets in excess of at least three stocks), with

v =
1

k
(β̂i,OLS − β̄)′(β̂i,OLS − β̄).

This adjustment procedure has solid theoretical foundations in the work by James
and Stein (1961), and can be also justified using a Bayesian approach to estimation,
as described in the next subsection. For details see Judge et al. (1988).

10.2.4 Constant Beta: Bayesian Estimation

The Bayesian procedure extends the shrinkage estimation technique by integrat-
ing prior information about model parameters into the model fitting process. The
Bayesian procedure extends the classical viewpoint that is based only on the likeli-
hood of the sample data given assumed parameter values, so that prior information
about model parameters becomes part of the model fitting process. Bayesian esti-
mates are then a combination of prior beliefs and sample information. The idea is to
express uncertainty about the true value of a model parameter with a prior density
that describes one’s beliefs about this true value. Then sample information is added
and is summarized in a likelihood function that is used to update the prior density to
a posterior density, using the Bayes’ rule,4 see Fig. 10.1.

4 For an introduction to Bayesian estimation and application in finance we refer to Meucci
(2005).

10.2 Solution Methodology 297

Fig. 10.1. Combining prior (density in the right) and likelihood (density to the left) to obtain
the posterior (density in the middle).

The basic formula used in Bayesian analysis reads

f (θ |r) ∝ h(θ)L(r|θ), θ ∈ Ω ⊆ Rm.

Here, a posterior distribution f of the parameter set θ , given the observations r, is
related to the prior distribution h(θ) and to the likelihood function L(r|θ), i.e. the
distribution of r given θ . The posterior distribution is therefore a synthesis of the
overall information in the problem: model specification, observations and prior dis-
tribution. If many parameters are involved, it is possible to integrate all from their
joint posterior distribution. However, the objective is to obtain the marginal distribu-
tion of each parameter, since marginal distributions can be used to infer about single
parameters.

Therefore, once the posterior distribution is computed, in order to obtain an es-
timate for an unknown parameter θ , it is necessary to define a function l(θ , θ̂) that
associates a possible loss in the estimate θ̂ given that the true parameter is θ . The
Bayesian estimate will try to minimize the expected loss, using the posterior distrib-
ution:

min
θ̂

E[l(θ , θ̂)] = min
θ̂

∫

Ω

l(θ , θ̂)f (θ |r) dθ .

For instance, with a quadratic loss function, l(θ , θ̂) = (θ − θ̂)′A(θ − θ̂) with A a
semidefinite positive matrix, the parameter θ is estimated by the mean of the poste-
rior distribution, i.e. θ̂ =

∫
Ω

f (θ |r) dθ .
In finance, Bayesian estimators for betas were first advocated by Vasicek (1973).

After their academic introduction, they have become relatively well known and the

298 10 Alpha, Beta and Beyond

financial industry has begun to use them. In this project, we follow Vasicek (1973)
and we consider the single index model,

ri,t = ai + βirI,t + ǫi,t

= η + βi(rI,t − r̄I) + ǫi,t ,

where η = ai + βi r̄I and ǫi,t ∼ N (0, σ 2
εi
). Vasicek (1973) assumes that the prior

distribution of betas is normal with parameters bi and s2
i and that the prior density of

η and σ 2
εi

is uninformative and independent of the prior distributions of the betas:

h
(
η, σ 2

εi

)
∝

1

σεi

, h(βi) ∝ exp

(
−

(βi − bi)
2

2s2
i

)

�⇒ h
(
βi, η, σ 2

εi

)
∝

1

σεi

exp

(
−

(βi − bi)
2

2s2
i

)
.

The posterior density of βi, η, σ 2
εi

can be obtained by exploiting the fact that residuals
are normal. The marginal posterior density of βi is obtained as:

f
(
βi |r̄i, v, b; σ 2

εi
, s2

i

)
∝ exp

(
−

(βi − bi)
2

2s2
i

)(
T − 2 +

v(βi − bi)
2

s2
i

)−(T −1)/2

,

where r̄i = 1
T

∑T
t=1 ri,t and v =

∑T
t=1(rI,t−r̄I)

2. For T larger than 20, the posterior
distribution of βi is approximately normal with mean and variance,

E[βi] = (1 − wi)βi,OLS + wibi,

Var[βi] =
1

1/s2
i + 1/σ 2

i

with

wi =
1

s2
i

1

1/s2
i + 1/σ 2

i

, σ 2
i =

σ 2
i,OLS

v
,

σ 2
i,OLS =

1

T − 2

T∑

t=1

(ri,t − âi,OLS − β̂i,OLSrI,t)
2.

With a Bayesian approach, the estimation of betas closely depends on the variance
of the distribution of prior betas. Figure 10.2 shows that when s2

i is low, i.e. there
is a strong confidence in the prior, the weight wi is high and E[βi] as an estima-
tor converges to the prior estimate bi . On the other hand, with larger values of s2

i ,
wi tends to be lower and E[βi] tends to the OLS estimate, i.e. only sample infor-
mation is exploited. In substance, the greater the variance of the prior, the lower the
informational value of the view, the greater the reliance of the model on classic OLS
estimates. Vasicek (1973) suggests using the cross-sectional distribution of betas as
a source to extract plausible values of the parameters bi and s2

i in the prior density.

10.2 Solution Methodology 299

Fig. 10.2. Behavior of E[βi] (thick size) and wi varying si when βOLS = 0.9, bi = 0.2,
σ 2
i

= 0.12.

10.2.5 Time-Varying Beta: Exponential Smoothing

So far we have not considered the possibility that true betas can change over time.
Since the appearance of the market model, the question of the beta stability has been
indeed of great concern in the financial community. The first work in this sense is
by Blume (1975) and since then considerable general evidence exists that the beta
stability assumption is invalid. For example, during a recession financial leverage of
firms in relatively poor shape may increase sharply relative to other firms, causing
their stock betas to rise. At the same time, the decrease in the uncertainty about the
growth prospects of the firms can cause their betas to decrease. Other reasons like
technology or taste shocks, can change the relative share of different sectors in the
economy, inducing fluctuations in the betas of firms in these sectors. Blume indeed
presented theoretical and empirical arguments documenting a tendency of the beta
coefficient towards a steady-state value, as extreme values are likely to be moderated
over time.

With the exponential smoothing technique we introduce this aspect in the estima-
tion. Observe that, by construction, OLS estimations assign equal weights to all ob-
servations in a time series. Hence, if betas follow a temporal path, OLS betas are not
a good choice, since it is preferable to assign different weights to return observations
across time. In order to do this, a common approach among practitioners is to rely
on the exponentially-weighted moving average (EWMA) procedure. With this type
of estimation, recent observations are privileged vis-à-vis older ones, thereby taking
into account the dynamic ordering in returns. When EWMA beta estimations are fit-
ted on squared return time series, unusually large returns have an immediate impact
on estimated betas. The effect of return innovations, however, gradually diminishes
over time, since a smoothing parameter λ allows for weighting past observations in
the estimation according to their age. More precisely, in an EWMA model, the larger

300 10 Alpha, Beta and Beyond

the value of λ, the greater the weight given to old observations and the smoother the
impact of innovations on estimation results. To illustrate this procedure in detail, let
us compute an EWMA estimate for the volatilities of the index and asset returns, as
well as for the correlation between them. Assuming we use the same smoothing para-
meter λ, we have the following conditional estimations for their respective variances
(i = I) and covariance (i �= I)

σ 2
iI,t = (1 − λ)

∞∑

j=1

λj−1ri,t−j rI,t−j

= (1 − λ)ri,t−1rI,t−1 + λσ 2
iI,t−1.

With these conditional values it is then possible to determine a time varying beta for
the time series through

βi,t =
σ 2

iI,t

σ 2
I,t

.

EWMA beta estimates depend on two separate components. A first component tracks
the reaction to market innovations and is controlled by (1−λ)r2

i,t−1. The impact of an
unusually large observation on this component is thus smaller the greater the smooth-
ing parameter. A second component tracks instead the persistence in volatility and is
modeled by λσ 2

i,t−1. Through this term, the larger the λ, the greater the persistence in
return volatility. As a result, with λ values closer to 1, little role is assigned to market
events while much of the variance σ 2

i,t is driven by the observed behavior of return
volatility in the past. Conversely, with λ values closer to 0, market events acquire
importance while past return volatility has less of an explanatory role.

The choice of λ, however, does not need to be discretional. Its selection can in
fact be assisted by some assumptions on the distributional properties of stock returns.
If these are conditionally normally distributed, an optimal value for λ can be found
by constructing and maximizing the likelihood function of the sample with respect
to it. We have opted for the suggestion in the Technical Document of RiskMetrics
(1996) of setting λ equal to 0.97 for daily data and 0.94 for monthly data. The starting
values in the above recursion when t = 0 can be setted equal to the sample variance,
using a pre-sample dataset.

10.2.6 Time-Varying Beta: The Kalman Filter

In this paragraph we describe the Kalman filter (KF) algorithm and its use in esti-
mating the beta at time t , based on the information available at time t . In the Kalman
filter formulation we model a dynamical system using a state or observation equation
and a transition equation. The state and transition equations represent the so-called
state space formulation of the model. The state space form is a powerful tool which
opens the way to handling a wide range of time series models. Once the model has
been put in its state space form, the Kalman filter may be applied, and this leads to
algorithms for prediction and smoothing. The Kalman filter also opens the way to

10.2 Solution Methodology 301

the maximum likelihood estimation of the unknown parameters in the model. This
can be done by the prediction error decomposition as shown in this section. More in
detail, the KF algorithm is a recursive procedure that allows to compute the optimal
estimator of the state variable at time t (the beta), using the information available
until time t . Note that beta is an unobservable quantity, and then we try to use all
information in the data up to time t to estimate the unobservable state variable in t .

The observation equation specifies how the return process depends on the para-
meter βt , given the return on the index. Basically, this is the classical linear equation
(10.1):

rt = a + βt rI,t + ǫt , (10.4)

where we now allow for a time-variation in beta and where, for notational simplicity,
we have omitted the dependence on the index i. As in (10.1), ǫt are the measurement
errors that we assume to be normally distributed, ǫt ∼ N (0, σ 2

ǫ). The transition
equation then specifies how the beta evolves over time. We assume:

βt = β̄ + φ(βt−1 − β̄) + ηt , (10.5)

where ηt ∼ N (0, σ 2
η) and E(ǫtηt) = 0. The above transition equation encopasses

several specifications: (a) the OLS specification is obtained with σ 2
η = 0 and φ = 0;

(b) the random coefficient model assuming that beta fluctuates randomly around a
mean value, βt = β̄ + ηt , is obtained setting φ = 0; (c) the random walk model,
βt = βt−1 + ηt , is obtained setting β̄ = 0 and φ = 1; (d) the mean reverting model,
βt = (1−φ)β̄ +φβt−1 +ηt , finally assumes that next period beta will be a weighted
average of this period’s coefficient and its long term mean value β̄.

Let us denote β̄t |t−1as an estimator of the unknown state variable βt , based on
the available information (i.e. the observed return on the asset and on the market) up
to time t − 1. The available information in t includes rt and rI,t and their past values
but excludes βt . We say that β̄t |t−1 is the optimal estimator in the sense of mean
square error if it minimizes Σt |t−1 = Et−1[(βt − β̄t |t−1)

2]. Similarly, β̄t ≡ β̄t |t is
the optimal mean square estimator if it minimizes Σt ≡ Σt |t = Et [(βt − β̄t)

2] and
now the conditioning takes into account all available information up to time t . It is
well known that, minimizing the mean square forecast error provides the conditional
mean of βt as optimal estimators:

β̄t |t−1 = Et−1(βt) and β̄t = Et (βt). (10.6)

The Kalman filter algorithm provides a procedure for computing the estimators
β̄t |t−1 and β̄t and their mean square errors Σt |t−1 and Σt |t . To this aim the KF algo-
rithm is based on two steps: (1) prediction equations that allow us to estimate β̄t |t−1
and Σt |t−1; (2) updating equations that, given the new information, allow for the es-
timation of β̄t and Σt |t . In particular, for the univariate linear model, the prediction
equations are

β̄t |t−1 = (1 − φ)β̄ + φβ̄t−1|t−1, (10.7)

Σt |t−1 = φ2Σt−1|t−1 + σ 2
η , (10.8)

302 10 Alpha, Beta and Beyond

whilst the updating equations are

β̄t = β̄t |t−1 + Σt |t−1rI,t

ft

vt , (10.9)

Σt = Σt |t−1

(
1 −

Σt |t−1r
2
I,t

ft

)
, (10.10)

vt = rt − Et−1(rt) = rt − (α + β̄t |t−1rI,t), (10.11)

ft = r2
I,tΣt |t−1 + σ 2

ǫ . (10.12)

Notice that the above equations say that the optimal estimates are linear in the ob-
servation. However, this is true only when the disturbances in the state space model
are normally distributed. Otherwise (10.6) is still true, i.e. the optimal mean square
estimator is equal to the conditional mean of the state vector, but now the Kalman
filter algorithm provides linear estimators that are suboptimal, i.e. they minimize the
mean square error only among all linear estimators. But the truly optimal estimator
can be nonlinear.

Once we have obtained the optimal estimate of the state vector and of its vari-
ance, we need to estimate the parameters of the model, i.e. α, φ, σ 2

η , σ 2
ǫ , β̄ and the

initial state of the system i.e. β0 and Σ0. If the disturbances and the initial state are
normally distributed, these parameters can be obtained by maximizing the maximum
likelihood function through the so-called “prediction error decomposition”. When
the observations are independent, their joint density can be constructed using a se-
ries of conditional probability density functions:

p(r) ≡ p(rt , rt−1, . . . , r1, r0)

= p(rt |rt−1, . . . , r1, r0)p(rt−1|rt−2, . . . , r1, r0) · · · p(r1|r0).

Then the likelihood function for T observations can be obtained from the conditional
probability density function:

L
(
r|r0; α, φ, σ 2

η , σ 2
ǫ , β̄, β0,Σ0

)
=

T∏

t=1

p(rt |rt−1, . . . , r1, r0),

and p(r1|r0) = p(r1) is the unconditional density of r1. Given the assumption of
normality of ǫt , we obtain that p(rt |rt−1, . . . , r1, r0) is normal with mean Et−1(rt)

and variance Vart−1(rt). In particular,

Et−1(rt) = α + β̄t |t−1rI,t ,

Vart−1(rt) = Et−1
(
rt − Et−1(rt)

)2

= Et−1
(
(βt − β̄t |t−1)rI,t + ǫt

)2

= r2
I,tΣt |t−1 + σ 2

ǫ .

The prediction error decomposition form of the log-likelihood function is then:

10.2 Solution Methodology 303

lnL
(
r|r0; α, φ, σ 2

η , σ 2
ǫ , β̄, β0,Σ0

)
= ln

T∏

t=1

p(rt |rt−1, . . . , r1, r0)

= −T

2
ln 2π − 1

2

T∑

t=1

ln |ft | − 1

2

T∑

t=1

v2
t

ft

,

where vt and ft are defined in (10.11) and in (10.12). The maximum likelihood esti-
mate of the model parameters can be done performing the maximization of lnL with
respect to θ = (α, φ, σ 2

η , σ 2
ǫ , β̄, β0,Σ0). The Kalman filter algorithm thus consists

of the following steps:

Step 1 (initialization step):

assign a starting value to β0 and 0.

Step 2 (prediction step):

using equations (10.7) and (10.8) compute β̄1|0 and 1|0.

Step 3 (updating step):

using equation (10.9) and (10.9) compute β̄1 and 1.

Step 4:

repeat step 2 and compute β̄2|1 and 2|1.

Step 5:

repeat step 3 and compute β̄2 and 2.

Repeat the procedure up to last observation available.

The state space formulation allows us to model the beta dynamics in different ways
(mean reverting, random walk and random coefficient). The best specification can be
then chosen using an Information Criterion, i.e. a measure of the distance between
the true model and the Kalman estimates. Here we recall the Akaike Information

Criterion (AIC) and the Bayes Information Criterion (BIC), defined as

AIC = − 2

T
ln L̂ + 2

k

T
, BIC = − 2

T
ln L̂ + k

ln T

T
,

where L̂ is the maximized likelihood function, k the number of estimated parameters,
and T the number of observations. The AIC and the BIC try to strike a balance
between goodness of fit and parsimonious specification of the model. The model
that minimizes the AIC or the BIC is the preferred one; although there is a tendency
of AIC to choose overparameterized models. The Information Criterion is useful if
we compare non-nested models like the random coefficient model versus the random
walk model. When we compare nested models, such as random coefficient versus
mean reverting, other tests can be used, like the likelihood ratio test or the Wald test.
A detailed description can be found in Harvey (1994).

304 10 Alpha, Beta and Beyond

10.2.7 Comparing the models

In this section, we describe how to compare the different models examining their
ability in predicting future betas and in estimating value at risk (VaR). As suggested
in Alexander (2001), we consider statistical and operational criteria for evaluating
the success of a forecast. Statistical evaluation methods compare model predictions
with observable quantities such as return. An operational evaluation method is the
backtesting of a value at risk model by counting losses greater than those predicted
by the VaR measure. In both cases, the most important test of the forecasting power
is in out-sample with a certain amount of the historic data that should be withheld
from the period used to estimate the model, so given the one-period ahead forecasts,
we can compare the accuracy of the different forecasting models.

Statistical Criteria

We measure the predictive ability of the alternative beta estimators, computing at
time t for each estimator a return forecast for time t + 1 and comparing it to the
realized return in the successive period. Several statistical measures of accuracy of
forecasts can be computed, like mean square error, mean error, mean absolute er-
ror and mean absolute percentage error. Another statistical procedure is to perform
a regression of the realized return on the return forecast. If the beta model is cor-
rectly specified, the constant from this regression should be zero and the slope coef-
ficient should one. The R2 from this regression will assess the amount of variation
in squared returns that is explained by the successive forecast of β.

Operational criteria

Operational evaluation methods are mainly based on the profit and loss (P&L) gen-
erated by a trading strategy or on backtesting a VaR model by counting the VaR
violations, i.e. the times the actual return is lower than the VaR trigger. We recall that
the VaRα,τ is that number such that the probability of losing VaRα,τ or more over the
next τ days is

Prt

(
πt+τ − πt

πt

< − VaRα,τ

)
= α,

where πt denotes the value of the portfolio at time t . Any percentage loss over a pe-
riod of length τ will be less than the value at risk with (1−α)100% confidence level.
If we add to the linear structure of the model a normality assumption on the distrib-
ution of the residuals and of the factors, we can use the model for VaR calculations
under the normality assumption. In particular we have

VaRα,τ = −zα

√
τσ 2, (10.13)

where zα is the quantile of order α of the N (0, 1) distribution, and σ 2 is the vari-
ance of return in the unit of time. The linear structure of factor models allows for a

10.2 Solution Methodology 305

simple computation of the portfolio variance and for its decomposition in risk due to
fundamental and specific factors.5 Indeed, for the single asset, we have

Var(ri,t) = β2
i,t Var(rI,t) + Var(εi,t),

i.e. we can decompose the risk of the asset, measured by Var(ri,t), in its two main
components: market risk, β2

i,t Var(rI,t), and specific risk, Var(εi,t). If in addition we
assume that factors and residuals have a normal distribution and are serially uncor-
related, then:

ri,t ∼ N
(
0, β2

i,t Var(rI,t) + Var(εi,t)
)
.

This decomposition is valid at aggregate level as well. If we denote with w the N ×1
vector of weights of the portfolio, then the portfolio return rwt , is

rw,t =

N∑

i=1

wirit = ai +

(
N∑

i=1

wiβi,t

)
rI,t +

N∑

i=1

wiεit ,

and then the variance of the portfolio return to be used in the VaR formula (10.13) is

Var(rwt) = w′β tβ tw Var(rI t) + w′Dw.

The total number of exceptional losses, actual loss greater than predicted by the VaR
measure, may be regarded as a random variable that has a binomial distribution. Then
the expected number of exceptional losses is np, where the probability of “success”
of an exceptional loss is p and the variance of the exceptional losses is np(p − 1).

Using the fact that a binomial distribution is approximately normal when n is large
and p is small, the (1 − α) confidence interval for the number of exceptional losses
is approximately:

(
np − z1− α

2

√
np(1 − p), np + z1− α

2

√
np(1 − p)

)
.

This backtesting is named Kupiec Test (1995) and it provides an unconditional eval-
uation, because the forecast performance is examined over the sample period without
reference to the information available at each point in time. A conditional backtest-
ing has been proposed by Christoffersen (1998). He observes that violations should
occur not only 1% or 5% of time, but they should also be independent and identically
distributed (i.i.d.) over time. The corresponding test is referred as conditional cover-
age, with respect to the unconditional test that just compares the nominal coverage,
for which the ordering of zeros and ones in the indicator sequence does not matter
and only the total number of ones plays a role. However, in our empirical application
we have only considered the Kupiec Test.

5 The decomposition is possible for the assumption that factors and residuals are not corre-
lated, Cov(rI,t , εt) = 0.

306 10 Alpha, Beta and Beyond

10.3 Implementation and Algorithm

Functions and market data are stored in the folder BetaEstimation. Before running
the code, you must include this folder and its subfolders in the MATLAB R© directory
list. To do so select Set Path from the File Menu and follow the instructions. The
Beta Estimation folder contains the following MATLAB R© scripts to estimate the
beta according to the different procedures:

Par1OLS, Par1EWMa, Par1BetaBAYES, Par1BetaTrimming,

Par1BetaMedRobust, Par1BetaRobust, Par01BetaKALMAN,

KalmanRunOpt, Kalmanottimilsqnlfmin, Par02BetaKALMAN,

ForecastingBeta, LMSregor, ForecastingtrimBeta,

Backesting.

The scripts for plotting the estimated beta are: Graph1Ols, Graph1EWMA,
Graph1bayes, Graph1robusta, Graph1kalman, Graphforec,
GraphVaR.

To run the code from the Excel spreadsheet you need to have the Excel link.
Estimating the Kalman filter requires the MATLAB R© Optimization Toolbox.

Par1OLS.m and Graph1Ols.m – These return the beta estimation using the
linear regression model (ordinary least squares (OLS)) from a rolling-window of
260 days. The input prices are those quoted by Bloomberg. The output structure also
contains some regression diagnostics, like the R2 statistic, the adjusted R2 statistic,
the Student’s t statistics, p-values for each t-statistic. The Graph1Ols.m script
plots the beta estimate using a rolling-window of 260 day periods.

Par1EWMa.m and Graph1EWMA.m – These return the beta estimation using
the exponential smoothing model EWMA from a rolling-window of 260 day period.
The input prices are market prices and the λ factor that controls the smoothing ef-
fect. In the sheet Engine.xls of the worksheet Nasdaqcomp there is a cell named
“lambda” where we can set the value of this parameter, see Fig. 10.3. The default
value is 0.94. The script Graph1EWMA.m plots the beta estimate using a rolling-
window of 260 day period.

Par1BetaBAYES.m and Graph1bayes.m – These return the beta estima-
tion according to the Bayesian procedure using a rolling-window of 260 days. The
input prices are the market data and the parameters of the prior distribution, i.e. the
mean bi and the variance s2

i , as shown in Fig. 10.4. Graph1bayes.m plots the
estimated beta.

Fig. 10.3. Engine to estimate the beta according to EWMA.

10.3 Implementation and Algorithm 307

Fig. 10.4. Engine to estimate the beta according to the Bayesian procedure (Vasicek model).

Fig. 10.5. Engine to estimate the beta according to the robust procedure (trimmed mean,
reweighted least squares, LMS).

For the robust procedure, the estimation can be run according to three different
procedures: trimming, reweighted least squares and least median of squares. The
corresponding scripts are given here below. The choice of the robust methodology
can be done choosing the desired specification as illustrated in Fig. 10.5. The script
Graph1robust.m generates the plot of the estimated beta.

Par1BetaTrimming.m – This returns the beta estimation using the Least
Trimmed Squares from a rolling-window 260 day period. The input prices are the
market data. The output structure contains also some regression diagnostics, such as
the R2 statistic, the adjusted R2 statistic, the Student’s t statistics, p-values for each
t statistic.

Par1BetaMedRobust.m – This returns the beta estimation applying the ro-
bust regression model to a rolling-window of 260 days. The input prices are the
market data. The output structure also contains some regression diagnostics: such as
the R2 statistic, the adjusted R2 statistic, the Student’s t statistics, p-values for each
t statistic. The robust fit function uses an iteratively reweighted least squares algo-
rithm, with the weights at each iteration calculated by applying the bisquare func-

308 10 Alpha, Beta and Beyond

tion to the residuals from the previous iteration. However, the user can replace the
bisquare function by any of the following list: ‘Andrews’, ‘Cauchy’, ‘Fair’, ‘Huber’,
‘Logistic’, ‘Talwar’, ‘Welsch’.

LMSregor.m – This returns the beta estimation applying the Least Median of
Squares (LMS) to a rolling-window of 260 days. The input prices are the market
data. The output structure also contain some regression diagnostics: such as the R2

statistic, the adjusted R2 statistic, the Student’s t statistics, p-values for each t statis-
tic.

Par01BetaKALMAN.m – This returns the value of the likelihood function in
the Kalman filter algorithm using a rolling-window of 260 days. The inputs are the
market data and the starting values for the parameters. In the worksheet “Engine”
there is a range named “Parameter” where they can be set, see Fig. 10.6.

KalmanRunOpt.m – This maximizes the likelihood function of the Kalman
filter algorithm through the lsqnonlin.m built in algorithm provided by the
MATLAB R© Optimization toolbox and returns optimized parameters;

kalmanottimilsqnlfmin.m – This is the maximum likelihood function of
the Kalman filter algorithm.

Par02BetaKALMAN.m – This returns the beta estimation using the Kalman
filter model on a rolling-window of 260 day period. The input price are the market
data and the return optimized parameter from the previous procedure.

Graph1kalman.m – Plots the beta estimated using the Kalman filter model on
a rolling-window of 260 day period.

The beta forecasts can be obtained using the script Forecasting.m, except for
the Least Trimmed Squares Model where the relevant script is named Forecast-
ingtrim.m. The different forecasts can be visualized using the script Graph-
forec.m.

Backtesting.m and GraphVaR.m – This executes a backtesting on the dif-
ferent models and then computes the Kupiec Test (1995) described in the previous
section. The VAR forecasts are plotted using the script GraphVaR.m.

Fig. 10.6. Engine to estimate the beta according to the Kalman filter (mean reverting, random
walk, random coefficient).

10.4 Results and Comments 309

10.4 Results and Comments

The data employed in this study have been downloaded from Bloomberg and refer
to daily closing prices of the 100 stocks belonging to the S&P100 index, that we
consider to represent the market index. The period under examination runs between
January 4th, 1999 and December 4th, 2004, that represents the sample period. The
out of sample period is taken to be December 4th, 2004 to April 2005. Market data
are stored in the sheet Nasdaqcomp. In the same Excel file, in the sheet Engine you
can select the optional parameters for the different estimation procedures.

We report here only the results relative to ALLSTATE CORP. The user can con-
duct the analysis on the remaining stocks. The setup for the different estimation pro-
cedures is as follows. In the Bayesian estimation we fix the mean and the variance
of the prior equal to the mean and to the standard deviation of the betas computed
across all securities. The parameter λ in the EWMA procedure has been set equal
to 0.94. In order to choose among the different possible specifications in the Kalman
filter, we have computed the AIC and the BIC statistics, see Table 10.1. These statis-
tics do not appear to be significantly different, although the RW specification seems
to be the preferred one. Taking into account the economic interpretation underlying
the different specifications, we have decided to use the mean-reverting process in the
testing period.

In the first out of sample test, we use the estimated beta and the current market
return to make forecasts on the future return

r̂it = α̂i,t−1 + β̂i,t−1rI,t ,

and then we regress this forecast on the realized return

ri,t = δ + γ r̂it + ηt .

The results of this regression are reported in Table 10.2, together with the mean
error (ME), the mean absolute error (MAD), the mean square error (MSE), the R2

Table 10.1. Choosing the Kalman filter specification

Model parameter RW RC MR
φ 1.000 0.000 0.147
β̄ 0.000 0.737 0.738
α 0.025% 0.021% 0.022%
β0 0.849 0.613 0.351
Σ0 0.000% 0.000% 0.000
σ 2
η 0.006% 17.093% 16.703%

σ 2
ǫ 0.036% 0.032% 0.032%

L̂ 3836.482 3844.710 3845.057
Number of observation, T 1246 1246 1246
Number of parameters, k 5 6 7

AIC −6.150 −6.162 −6.161
BIC −6.129 −6.137 −6.132

310 10 Alpha, Beta and Beyond

Table 10.2. Results of the return forecasting exercise

ME MAD MSE R2 γ̂ δ̂

OLS 1 yr 0.110% 0.886% 0.013% 35.842% 0.347 0.001
EWMA 1 yr 0.082% 0.888% 0.013% 34.820% 0.324 0.001
Bayes 1 yr 0.032% 0.878% 0.013% 35.837% 0.346 0.001
Robust regression 0.104% 0.886% 0.013% 35.883% 0.343 0.001
Kalman filter 0.049% 0.902% 0.013% 36.098% 0.285 0.001

Table 10.3. Results of the VAR forecasting exercise

Obs. Sign. Expected violations Conf. interval Num. viol.
OLS 1 yr 138 5.000% 7 (2.689, 11.111) 8
EWMA 1 yr 138 5.000% 7 (2.689, 11.111) 9
Bayes 1 yr 138 5.000% 7 (2.689, 11.111) 8
Robust regression 138 5.000% 7 (2.689, 11.111) 8
Kalman filter 138 5.000% 7 (2.689, 11.111) 8

of the regression and the estimated values for δ and γ . An unbiased forecast should
return δ̂ = 0 and γ̂ = 1. The different models appear to provide similar forecasting
ability, but all of them appear biased (γ̂ is on average approximately equal to 0.30).

The second forecasting exercise consists in counting the VAR violations for the
different models, as discussed in Sect. 10.2.7. The results are given in Table 10.3.
Due to the low number of observations, we are (unfortunately) unable to distinguish
between the performance of the different models: all of them show a number of
violations (8 or 9) in line with the expectations (between 3 and 11).

11

Automatic Trading: Winning or Losing in a kBit*

Key words: random walk, AR(1), GARCH, bootstrapping, technical analysis,
Monte Carlo simulation

Technical analysis focuses on historical information concerning price movements in
order to forecast future price trends. In this manner, technical analysts argue that
changes in the psychology of the market can be used to profit from trading. With
technical analysis profits can be obtained in two different ways. Under a first ap-
proach, the analyst purely relies on charting and “reads” historical price trajectories
to find clues on trend reversals. Under a second approach, the role of the analyst
is reduced. An automatic trading system uses historical information to implement a
trading process governed by a set of well-defined rules, while traders just need to
choose the strategy to implement.

Despite its long history (one of the first attempts to forecast stock prices is at-
tributed to Charles H. Dow in the late 1800s), academics have traditionally regarded
technical analysis with a mixture of suspicion and contempt (see, for instance, Fama
and Blume (1966), Fama (1969) and Jensen and Benington (1970)). In fact the ef-
ficient market paradigm holds that in capital markets all relevant information is re-
flected in current prices. Therefore, for traditional researchers, trading rules based
on past prices are meaningless. But with the accumulation of evidence on the inef-
ficiency of many marketplaces,1 the idea that some technical rules can be used to
systematically gain profits from trading has acquired momentum. An important con-
tribution in this sense has come from Brock et al. (1992) (BLL henceforth). Using a
set of simple technical rules, these authors first investigated sixty years of the Dow
Jones Index and achieved statistically significant profits. Since then, several authors
have tried to replicate BLL’s results on different data sets and periods. For instance,
Hudson, Dempsey and Keasey (1996) have used data from the United Kingdom.

∗ with Carlo Pozzi and Federico Roveda.
1 A list of references can be found in Lo, MacKinlay and Zhang (1997), pp. 43–44.

312 11 Automatic Trading: Winning or Losing in a kBit

Bessembinder and Chan (1995) have tested emerging markets in the Asian area.
More recently, Isakov and Hollistein (1999) have studied the Swiss market, while
Detry and Grégoire (2001) have concentrated on several European indexes.

In this chapter, we provide a review of a few well-known techniques. Our trea-
tise is organized as follows. Section 11.2 illustrates the chosen technical strategies
and the statistical tests conducted to assess the statistical significance of their actual
profits. In particular, we focus on the MACD-H indicator and a development of the
moving average crossover. According to the procedure suggested by BLL, we test
our results using a bootstrap methodology. Section 11.3 presents the VBA R© code
used to run our strategy. In Sect. 11.4, we discuss our results testing the proposed
technical rule on the five largest capitalized stocks in the US equity market.

11.1 Problem Statement

The technical strategy we analyze in this chapter is named moving average conver-

gence divergence (MACD). In our treatise, we depart from BLL, who consider two
of the most simple and known classes of technical rules based on the crossover of
two moving averages,2 and present the MACD technique which is a trend-following
momentum indicator originally developed by Appel and Hitschler (1980). Illustra-
tions of this indicator can also be found in Murphy (1999) and – in a more detailed
fashion – in Thorp (2000). Given its relatively old age, the MACD rule has long been
known to technical analysts. For this reason, we deem that it may be regarded as the
methodology free of data snooping biases.

The MACD indicator combines two exponential moving averages of past prices
into two lines: the MACD line and the signal line. The MACD line is constructed
as the difference between two exponential moving averages computed using last m

and n closing prices, where m and n are integers such that n > m.3 It follows that
the MACD line crosses the zero line each time there is a crossover between the two
moving averages. To see this, let Pt be the market closing price at day t , and let
us define a long-period and a short-period exponential moving average, EMALt and
EMASt respectively, as

EMALt = 1

n
Pt +

(
1 − 1

n

)
EMALt−1, EMAL0 = P0, t = 1, 2, . . . ,

EMASt = 1

m
Pt +

(
1 − 1

m

)
EMASt−1, EMAS0 = P0, t = 1, 2, . . . ,

and let the MACD line, MACDt , be defined as the difference between EMALt and
EMASt ,

2 The rule is: “initiates buy (sell) signals when the short run moving average is above (below)
the long run moving average”.

3 Exponential averages are a standard tool in technical analysis. They are preferable to arith-
metic averages because they respond more quickly to changes in price. Indeed more weight
is placed on the most recent prices, whilst arithmetic averages give the same weight to all
recorded prices.

11.1 Problem Statement 313

MACDt = EMASt − EMALt , MACD0 = 0, t = 1, 2,

It is easy to observe that, since the fast moving average (EMASt on m-periods) re-
flects the short-period trend in the market while the slow moving average (EMALt on
n-periods) reflects the long-period tendency, when the short-period moving average
is above the long-period moving average, MACDt is positive. This may be interpreted
as a bullish market phase. The opposite is true when the fast moving average is dom-
inated by the long one. The MACD is thus a trend-follower algorithm. It performs
at its best during strong trending periods, but tends to lose money during periods
of choppy trading (i.e., when prices move sideways for several weeks). A trigger or
signal line, named SLt , is also used. SLt is a k-period exponential moving average of
the MACD line

SLt = 1

k
MACDt +

(
1 − 1

k

)
SLt−1, SL0 = 0, t = 1, 2,

Taking the difference between the MACD and the signal line we obtain the MACD-
Histogram (MACDH) indicator, the importance of which consists in highlighting
variations in the spread between the fast and the slow lines,

MACDHt = MACDt − SLt .

When the histogram lies above (below) the zero line but starts to fall (increase) to-
wards the zero line, then the up trend (down trend) is losing momentum (the dis-
tance between fast and slow moving averages is decreasing. According to the MACD
rules, a buy (sell) signal is generated each time the MACD line moves above (below)
the signal line or alternatively when the MACDH crosses the zero line from below
(above). In this way, one is always active in the market, since on the closing of a
position, a new one can be opened with the opposite sign. For this reason this trading
system is classified into the category Stop and Reverse.

Histogram zero crossovers can also be used to detect early exit signals from ex-
isting positions. Indeed, MACD tracks whether the market is gaining or losing mo-
mentum, measuring the acceleration or deceleration between moving averages and
signaling if a stock or index has been overbought or oversold. Therefore, MACD is
not only a lagging indicator, but also a leading indicator which can be used to detect
excesses of demand or supply in the market. Prudence is however recommended,
since using MACD turns in order to initiate new positions can be quite dangerous as
it implies opening positions against prevailing market trends (Murphy (1999)).

Unlike other oscillators, like the relative strength index or the stochastic index,
MACD it is not constrained between upper and lower bounds, but it can hit new highs
or lows as long as price trends are gaining momentum. In the finance practice, the
most popular parameters in the MACD and MACDH computations are m = 12, n =
26 and k = 9 periods. They are also set as default values in many software packages.
In this chapter, the VBA R© code takes into account the possibility of having one set
of numbers for buy signals and another for sell signals. We follow here the original
suggestion of Appel and Hitschler (1980) who recommended using an asymmetric
combination of 8-17-9 for buy signals and 12-26-9 for sell signals.

314 11 Automatic Trading: Winning or Losing in a kBit

11.2 Model and Solution Methodology

11.2.1 Measuring Trading System Performance

The possibility of discerning between different trading strategies (TS) is provided by
the measurement of their performance. A detailed analysis of this topic is given by
Schwager (1996), Chapter 21. In these pages, as standard measure of performance,
we use the cumulative sum of all profits and losses generated by a TS. We define this
net measure as the difference between all the profits (total gross profit) and losses
(total gross loss) obtained over a given period of time. With these two quantities, we
also calculate a risk measure for our TS by dividing the total gross loss by the total
gross profit. This ratio is called profit factor – namely, the expected reward on one
unit of capital invested in the TS. Profit factors are then employed to rank alternative
TS. Once this is done, a common rule among practitioners is to discard strategies
with profit factors below two. The total number of trades has also a bearing on trading
performance. Another rule of thumb in this case is to consider ten to twenty trades
per year.

Other useful quantities may supplement comparisons between TS: (1) the aver-

age trade, (2) the average winning trade, (3) the average losing trade, (4) the average

winning/losing trade ratio, (5 and 6) the largest winning trade and the largest los-

ing trade. Let us examine them separately. (1) The average trade is the average net
profit across all trades. (2 and 3) The average winning (losing) trade is the average
profit (loss) across all winning (losing) trades. Low values for the average winning
trade imply high vulnerability to mistakes. (4) The average winning/losing trade ra-
tio is an additional measure of TS risk and so are the following two. (5 and 6) In
fact, the largest winning (losing) trade should be read in conjunction with the gross
profit (loss) of a TS: if a large part of it comes from a single trade, a strategy may be
considered as risky. Therefore, a single trade should not exceed 1/4 of gross profits
(losses). However, in the opposite case, tracking the largest loss is not recommended
as a unique measure of risk because it may bias performance judgements by magni-
fying the importance of a single negative event. This is particularly significant in the
evaluation of managers with long track records, since large losses occur with more
frequency over longer periods of time.

A significant historical performance measure is then maximum drawdown. This
quantity measures the largest decline (peak-to-valley) from the highest equity value,
tracked over s days prior to the sample period considered. In other words, it repre-
sents the top cumulative loss an investor would have incurred, had they invested at
the worst possible prior time (i.e., the prior equity peak) and stayed long through
the sample period considered. Maximum drawdown can thus be seen as the largest
margin necessary to cover the highest possible loss produced by a TS. This measure
is computed as

MDT = − max
0≤t≤T

{
max

0≤s≤t
πs − πt

}
,

where πt represents cumulative profits up to time t . As a descriptive statistic, maxi-
mum drawdown has one key positive aspect and some important limitations. Vis-à-
vis volatility, it is an observable quantity measuring a capital requirement. This can

11.2 Model and Solution Methodology 315

be expected to be smaller either when the upward price drift is steeper or when the
variability of the process is lower. But being derived from a single string of data,
maximum drawdown is exposed to large errors. For this reason, it may be biased
with respect to means determined across multiple periods. Moreover, the longer the
time series considered, the greater a drawdown is likely to be. A fact which suggests
that it would be wise to compare drawdowns only across TS with track records of
the same length.

The maximum number of losing trades is yet another measure of risk. This num-
ber counts how many consecutive losing trades an investor should accept before
abandoning a TS. The psychological importance of this number is evident. It is thus
preferable to establish it before beginning a trading scheme.

Finally, an important benchmark is the one way break-even trading (BET) mea-
sure. This quantity, suggested by Bessembinder and Chan (1998), represents the level
of transaction costs that eliminates all profits achieved through a TS in excess of a
simple buying and holding strategy. It is computed as

bet = 2π̄

N
, (11.1)

where π̄ is the average profit of the strategy and N is the total number of signals
(purchases and sales).

11.2.2 Statistical Testing

As suggested in BLL, it is possible to conduct statistical tests on TS at two levels of
depth. At a first stage, one can compare profits coming from buy and sell trades. If
technical analysis does not have any power in predicting market trends, then profits
on buy days should not differ from profits on sell days. Therefore we can use standard
statistical tests and compare means and variances on buy versus sell days. Similar
tests can be conducted to compare profits generated by the technical strategy and
by a passive one, for instance the buy-and-hold position. For example, by using the
t-statistic we can see if the mean buy and mean sell profits are significantly different.
The t-statistic is

t (b,s) = µb − µs

(σ 2
b /Nb + σ 2

s /Ns)1/2
,

where µb (µs), σ 2
b (σ 2

s) and Nb (Ns) are respectively the mean profit, the number
of signals and the variance of profits for buys (sells). The test which checks if the
global mean daily profit is significantly different from the daily unconditional profit
is given by the t-statistic

t(str,b&h) = µstr − µb&h

(σ 2
str/Nstr + σ 2

b&h/Nb&h)1/2
,

where “str” and “b&h” refer to the strategy and to the buy-and-hold position.
These tests assume normal, stationary and time-independent distributions. These

assumptions are however too strong compared to the stylized facts which affect stock

316 11 Automatic Trading: Winning or Losing in a kBit

return distributions and time series (such as their high kurtosis and their conditional
heteroskedasticity). Standard statistical tests can thus give misleading results. As
a result, at a second stage, a possible solution is to bootstrap data, following the
analyses of Efron (1979), Freedman and Peters (1984), and Efron and Tibshirani
(1986). A review of bootstrap applications in finance can be found in Maddala and
Li (1996). In the following pages we present an approach which proceeds as follows:

1. Assume a return generating model (e.g., random walk, AR(1), GARCH(1, 1),
etc.) and estimate it on a data set.

2. Standardize residuals from the estimated model. Under the null hypothesis that
the return model is the true generating process, standardized residuals should be
realizations of i.i.d. innovations.

3. Re-sample with replacement estimated standardized residuals and use them as
innovations to simulate a new price history of the same length as the original.

4. Apply the trading strategy to the bootstrapped series.
5. Repeat the procedure n times (BLL set n = 500) and obtain the empirical distri-

butions of the mean profit of the TS under the chosen return generating model.
6. Compute the fraction of simulated strategies which have greater mean or standard

deviation than the strategy applied to the original series. These fractions can be
interpreted as p-values. For example, if only 1% of the simulations generated by
the chosen model gives a mean return higher than the TS applied on the original
series, then the p-value is equal to 1%. In other words, the probability that the
chosen model generates the mean return obtained by the trading strategy on the
original series is only 1%. Therefore, the mean returns of the trading rule cannot
be explained by the assumed model.

By using the bootstrapping procedure, standardized residuals are not restricted to a
particular distribution and we can test the technical strategy against different models.
Moreover, when we reject the null hypothesis for a given model specification, we can
test another one with few assumptions. Here we start testing the random walk (RW)
model. RW simply assumes independence and identical distribution for returns, but
does not assume their normal distribution,

rt = εt , εt are i.i.d.

With the RW model, the bootstrapping procedure can be performed directly on the
original return series. If this model is rejected, in order to investigate if serial corre-
lation in returns can explain the profits from the trading rule, we can then consider
an AR(1) model,

rt = a + brt−1 + εt , t = 1, . . . , T ,

εt are i.i.d.: E(εt) = 0, Var(εt) = σ 2
ε .

This model can be estimated with OLS. If â, b̂ and σ̂ε are the estimated parameters,
we can then compute standardized residuals from

ε̂t = rt − â − b̂rt−1

σ̂ε

.

11.3 Code 317

Subsequently, we can re-sample from ε̂t , ηt = ε̂k(t), t = 1, . . . , T , where k(t) is a
uniform random number over the integers 1, . . . , T , and we construct new return and
price histories,

r̃t = â + b̂r̃t−1 + ηt ,

P̃t = P̃t−1 exp(r̃t).

We apply the TS on each simulation and we compute the fraction of simulated returns
which have higher mean or standard deviation than the ones obtained by applying
the same TS on the original series. These fractions can be interpreted as p-values. If
this model is also rejected, we can ask if conditional changes in variances can be a
possible explanation for trading rule profits. Therefore we can re-specify the return
model as a GARCH(1, 1):4

rt = µ + εt , εt are i.i.d. ∼ N(0, ht),

ht = ω + αε2
t−1 + βht−1.

Once the GARCH(1, 1) has been estimated, we standardize estimated residuals

ẑt =
rt − µ̂√

ĥt

,

and then re-sample them with replacement

ηt = ẑk(t)

to form a new simulated series

r̃t = µ̂ +

√
ĥtηt ,

ĥt = ω̂ + α̂ε2
t−1 + β̂ht−1,

P̃t+1 = P̃t exp(r̃t).

Each simulation is based on n replications of the chosen return model. For each
simulation, the same trading rule is applied. Then we compute the p-values and we
decide if any of the specified models can explain the trading rule profits.

11.3 Code

The trading system and the bootstrap methodology presented above have been imple-
mented in VBA R©. We first run a historical analysis of our strategy. This can be done
with the VBA R© macro StartTradingSystem(). Once this macro is called, the
user form “Trading System” is shown. See Fig. 11.1.

In the form, the user has to indicate:

4 Brooks et al. (1998) have considered a more general GARCH-M model, in order to take
into account changes in the conditional mean.

318 11 Automatic Trading: Winning or Losing in a kBit

Fig. 11.1. Excel user form for starting the Trading System.

1. The path name of the file containing the historical data (the Browse button helps
in finding the correct folder path). Data must be stored as comma separated
files (.csv) and with the same field structure as downloads from Yahoo! Finance.
Therefore, the .csv file must have seven columns that respectively refer to: date,
opening price, maximum price, minimum price, closing price, volume and ad-
justed closing price. The macro only imports dates and adjusted closing prices,
which will serve as a basis for the strategy to be implemented. The macro sorts
data in the time series starting from the oldest one.

2. The name of the worksheet where the results of the strategy will be printed out. If
no name is specified, the macro assigns by default the name “MACD”. This work-
sheet will be created anew by the VBA R© macro, so no other existing worksheet
should have the same name as the one assigned here.

3. Parameters m, n and k to be used for the computation of the MACD. By default,
the program assigns 12-26-9. However, the user can chose different periods and
even adopt an asymmetric strategy, specifying different parameters to be consid-
ered for sale and purchase signals, as suggested by Appel and Hitschler (1980).

4. By clicking on OK, the form runs the following macros:
a. UploadingData() to import data into a temporary worksheet.
b. TradingRules() to apply the strategy. The VBA R© code is very simple:

If MACDH(t) > 0 And MACDH(t-1) < 0 Then
Close short and Go long
ElseIf MACDH(t) < 0 And MACDH(t-1) > 0 Then
Close long and Go short
End If

11.3 Code 319

Fig. 11.2. Flow chart describing the macro StartTradingSystem().

c. PerformanceTable()to print the performance summary in the new work-
sheet.

In particular, MACDH(t) in the macro is computed by the VBA R© function MACD-
Histogram(vMACDHistogram() As Double, intSMA As Integer,
intLMA As Integer, intSignal As Integer, Price() As Dou-
ble). The entire procedure is described in the flowchart which appears in Fig. 11.2.
The worksheet containing the performance summary, described in Sect. 11.2.1, is
shown in Fig. 11.3. Finally, the value of the account, once the position has been
closed, is reported in columns I (entire strategy), J (long position) and K (short posi-
tions).

The VBA R© macro StartBootstrapSimulation() performs the boot-
strap testing. Once this macro is run, the user form “Bootstrap Simulation” is shown.
This user form appears in Fig. 11.4. In particular, in this one the user has to indicate:

1. The path name of the file containing historical data.
2. The name of the worksheet where the results of the bootstrap simulation will be

shown.
3. The parameters to be used for the computation of the MACD.

320
11

A
utom

atic
T

rading:W
inning

or
L

osing
in

a
kB

it

Fig. 11.3. Excel worksheet illustrating the performance measures of the trading rule.

11.3 Code 321

Fig. 11.4. Excel user form for starting the Boostrap Simulation.

4. The number of simulations.
5. The model assumed as return generator process. The user can choose between

RW, AR(1) and GARCH(1, 1).
6. By clicking the OK button, the user form runs the following macros:

a. UploadingData() to import data into a temporary worksheet;
b. It estimates the return model and runs the bootstrap simulation. In particular,

the function RandomWalk(vSimulated() As Double, Current-
Price As Double, vReturn() As Double) estimates the random
walk model; the AR(1) model is estimated using OLS by the function Au-
toRegressive(vSimulated() As Double, CurrentPrice As
Double, vReturn() As Double; the GARCH(1, 1) model is estima-
ted by the function GARCH(vSimulated() As Double, Current-
Price As Double, vReturn() As Double, dblMhu As Dou-
ble, dblVar0 As Double, dblOmega As Double, dblAlpha
As Double, dblBeta As Double). The estimation is performed by
maximizing the likelihood function using the Excel Solver. The above func-
tions return the vector vSimulated() containing a new bootstrapped series;

c. It prints the performance measures of the trading rule applied to the bootstrap
simulation in the new worksheet.

The entire procedure is described in the flowchart appearing in Fig. 11.5. The
worksheet with the results of bootstrap simulations is shown in Fig. 11.6. Results are

322 11 Automatic Trading: Winning or Losing in a kBit

Fig. 11.5. Flow chart describing the procedure of the macro StartBoostrapSimulation().

presented as follows: in the first column, the number of the simulation is reported.
Then we have the number of buy days, the number of short days, the conditional one
day return for the strategy, for purchases, for sales, the conditional daily standard
deviation for the strategy, for purchases, for sales, then the ratio between the condi-
tional return and standard deviation, for the strategy, for longs, for sales, and finally
the one-way break-even trading.

11.4 Results and Comments

In this section we report the results of the trading system previously described. In
particular, we consider either the symmetric case with default parameters 12-26-9, or
the asymmetric case with parameters 12-26-9 for opening long positions and 8-17-9
for opening short positions. Time series data have been downloaded from Yahoo!

11.4
R

esults
and

C
om

m
ents

323Fig. 11.6. Excel worksheet showing the results of the bootstrap simulation.

324 11 Automatic Trading: Winning or Losing in a kBit

Table 11.1. Summary description of the data set

Stock Ticker Period Number of obs.
Citigroup Inc. C 1/3/00–12/31/04 1256
Exxon Mobil Corp. XOM 1/3/00–12/31/04 1256
General Electric Co. GE 1/3/00–12/31/04 1256
Microsoft Corp. MSFT 1/3/00–12/31/04 1256
Pfizer Inc. PFE 1/3/00–12/31/04 1254
Wal-Mart Stores Inc. WMT 1/3/00–12/31/04 1256

Table 11.2. Descriptive statistics of daily logarithmic returns

Stock Mean Std. dev. Skew. Kurt. JB
C 0.00029 0.02228 −0.28379 8.01079 1330
XOM 0.00034 0.01586 0.02424 6.48061 634
GE −0.00016 0.02146 0.07536 6.06037 491
MSFT −0.00053 0.02541 −0.20537 9.21079 2026
PFE −0.00009 0.02003 −0.29621 5.57845 365
WMT −0.00016 0.02099 0.13127 5.51836 335

Finance (http://finance.yahoo.com). In particular, we have examined the six largest
cap stocks in the US market (Citigroup Inc. (Yahoo Ticker: C), Exxon Mobil Corp.
(XOM), General Electric Co. (GE), Microsoft Corp. (MSFT), Pfizer Inc. (PFE) and
Wal-Mart Stores Inc. (WMT)), over a period of five years from January 3, 2000
to December 31, 2004. Notice that the application of the trading strategy to single
stocks avoids measurement errors due to non-synchronous reporting of prices in the
index components and the problems related to trading the index.5 On the other hand,
we are exposed to data snooping bias related to the arbitrary choice of the stocks,
although their large market capitalization should reduce this problem. Tables 11.1
and 11.2 provide summary information on the data set and on the distribution of the
logarithm return series. In particular, the last column in Table 11.2 gives the Jarque–
Bera statistic that measures deviations from normality. This is the case for all stocks.6

Indeed, all of them have fat tails (a kurtosis higher than 3) and an asymmetric shape
(positive or negative skewness).

Tables 11.3, 11.4 and 11.5 report some performance measures for the buy and
hold position and for the TS. In particular Table 11.4 considers the symmetric case,
whilst in Table 11.5 we consider the asymmetric case. In both cases, the results are
very disappointing in respect to the buy-and-hold strategy. Figure 11.7 illustrates
the dynamic of the cumulative profits of the trading rule applied to the six different
listings. Only for Microsoft Corp. the strategy does generate an appreciable profit
factor of 1.7488 in the symmetric case and a remarkable 2.0017 in the asymmetric

5 This is issue is discussed in detail in Sweeney (1988).
6 In particular, under the null hypothesis of a normal distribution, the Jarque–Bera statistic is

distributed as a chi-square with 2 degrees of freedom. The critical value at 1% level for the
Jarque–Bera statistic is 9.2103. Therefore, we reject the hypothesis of normal distribution
at the 1% significance level.

11.4 Results and Comments 325

Table 11.3. Summary performance measures of the buy-and-hold position

YT TNP ($) MAD ($) PF AWT ($) AWL ($)
C 14.76 2.74 1.04 0.63 0.63
XOM −8.32 17.90 0.98 0.57 0.55
GE 17.60 0.71 1.07 0.43 0.44
MSFT −24.96 24.41 0.92 0.47 0.50
PFE −3.40 19.53 0.99 0.52 0.53
WMT −11.90 13.53 0.98 0.82 0.79

YT = Yahoo ticker; TNP = Total net profit; MAD = Maximum account drawdown;
PF = Profit factor; AWT = Average winning trade; AWL = Average losing trade.

Table 11.4. Summary performance measures of the symmetric trading rule 12-26-9

YT TNP ($) MAD ($) PF AWT ($) AWL ($)
C −7.81 16.64 0.88 2.85 1.90
XOM −13.17 13.34 0.72 1.52 1.04
GE −5.13 27.80 0.92 2.45 2.05
MSFT 23.79 8.13 1.75 2.42 1.22
PFE −22.18 25.91 0.61 2.08 1.55
WMT −49.78 63.74 0.50 2.53 2.57

YT = Yahoo ticker; TNP = Total net profit; MAD = Maximum account drawdown;
PF = Profit factor; AWT = Average winning trade; AWL = Average losing trade.

Table 11.5. Summary performance measures of the asymmetric trading rule 12-26-9; 8-17-9

YT TNP ($) MAD ($) PF AWT ($) AWL ($)
C −5.01 22.20 0.93 2.70 1.96
XOM −10.47 15.23 0.78 1.25 1.09
GE −28.25 29.49 0.64 2.34 1.84
MSFT 29.89 7.44 2.00 2.13 1.10
PFE −39.62 39.62 0.50 1.73 1.89
WMT −48.14 73.88 0.56 2.84 2.46

YT = Yahoo ticker; TNP = Total net profit; MAD = Maximum account drawdown;
PF = Profit factor; AWT = Average winning trade; AWL = Average losing trade.

case, whilst in the buy-and-hold case the profit factor is only 0.92. These results
seem to indicate that for Microsoft Corp. the proposed technical strategy can identify
profitable opportunities. In order to investigate their statistical significance, we shall
conduct some tests.

At first, we conduct a standard t-test to compare the daily mean profit of the
active (TS) and passive (buy-and-hold) strategies. In practice, the test is conducted
on the series obtained as difference between daily profits under the two alternatives.
Therefore, we test if the mean difference is equal to zero. The results of this test
are given in Table 11.6. No statistically significant difference is obtained. Similar
results are obtained in the asymmetric case and for the t-test that compares long

326 11 Automatic Trading: Winning or Losing in a kBit

Fig. 11.7. Equity lines of the trading rule for Exxon Mobil Corp. (XOM), Microsoft Corp.
(MSFT) and Wal Mart Stores Inc. (WMT).

Table 11.6. Summary performance measures of the asymmetric trading rule 12-26-9; 8-17-9

μts−bh σts−bh N t-test (µts−bh �= 0)
C −0.0054 1.1359 1254 −0.1690
XOM −0.0033 0.7991 1254 −0.1484
GE 0.0106 1.1228 1254 0.3358
MSFT 0.0009 1.0384 1254 0.0307
WMT 0.0504 1.5450 1254 1.1555

versus short positions (these results are not reported here). Our results collide with
the ones presented by BLL, who rejected the null hypothesis that technical rules do
not have significant positive performance. However (as discussed in Sect. 11.2.2),
since our results can be affected by the violation of the normal, stationary and time-
independent assumptions, we conduct a bootstrap simulation along the lines of the
previous section. Figure 11.8 illustrates the density function of simulated mean re-
turns (1,500 simulations) under the GARCH(1, 1) and of average profit obtained on
the original series (black triangle on the horizontal axis).

In Tables 11.7, 11.8, 11.9, we report the p-values of the bootstrap simulation for
the three models (RW, AR(1), GARCH(1, 1)), i.e. the fraction of simulations gener-
ating a mean daily return or standard deviation or Sharpe ratio higher than the same
statistics obtained from the actual series.7 In particular, we distinguish results for the
strategy and for the long and short only positions. For example, the number 15%
in Table 11.7 under the headings Strategy and Mean indicates that only 15% of the
simulated random walks generated a mean return as large as that from the original

7 We compute the Sharpe ratio as ratio between mean return and its standard deviation.
Therefore we assume a zero risk-free rate.

11.4 Results and Comments 327

Fig. 11.8. Distribution of simulated mean returns (1500 simulations) under the GARCH(1, 1)

and on the original series (black triangle on the horizontal axis).

Table 11.7. Summary performance measures of the asymmetric trading rule 12-26-9; 8-17-9

Strategy Buy Sell
Mean 18% 25% 30%
Std. dev. 47% 95% 12%
Sharpe ratio 17% 22% 34%

Bootstrap results for MSFT: Random walk model: rt= εt .

Table 11.8. Summary performance measures of the asymmetric trading rule 12-26-9; 8-17-9

Strategy Buy Sell
Mean 16% 20% 30%
Std. dev. 48% 97% 12%
Sharpe ratio 15% 15% 34%

Bootstrap results for MSFT: AR(1) model: rt = a + brt−1+ηt . AR(1) parameters: â =
−0.0005376, b̂ = −0.0257838.

series. Considering different return models, we remark that we never obtain a p-value
greater than 36% for the mean returns. BLL obtained instead much stronger results.
Indeed, their p-values, computed across a much wider set of trading rules applied to
the Dow Jones time series, were only occasionally greater than 11%. Instead, simi-
larly to their results, the three models are unable to explain the volatility during buy
and sell periods. This can be realized looking at the p-values for the TS and for the
buy and sell positions. For example, 98% (7%) under the headings Std. Dev. and Buy
(Sell) in Table 11.7 means that in 98% (7%) of the simulations, the buy (sell) volatil-
ity was higher (higher) than in the original series. If we consider the TS (buy + sell)
the return models generate a volatility comparable to the original series (p-values of
47%, 50% for RW and AR(1)) or much higher (p-value of 84% for GARCH(1, 1)).
These results are reflected in Sharpe ratios that are in general higher in the origi-

328 11 Automatic Trading: Winning or Losing in a kBit

Table 11.9. Summary performance measures of the asymmetric trading rule 12-26-9; 8-17-9
for MSFT

Strategy Buy Sell
Mean 20% 26% 36%
Std. Dev. 85% 98% 38%
Sharpe Ratio 17% 22% 37%
Bootstrap results for MSFT: GARCH(1, 1) model: rt = μ + εt , ht = ω + αε2

t−1 + βht−1.

GARCH(1, 1) parameters: µ̂ = 0.0002341, ĥ0 = 0.0009691, ω̂ = 0.0000014,
α̂ = 0.0863395, β̂ = 0.9186362.

Table 11.10. Convergence of simulated p-values for the GARCH model

Number of simulations Mean St. dev. Sharpe ratio
500 20% 84% 19%
750 20% 85% 18%

1000 21% 86% 19%
1250 19% 85% 18%
1500 20% 83% 19%

nal series vis-à-vis those generated by the return models (p-values of 15%, 13% and
19%). Therefore, the higher returns generated by the trading rule are not explained
by a higher risk (measured by the standard deviation). In conclusion, our results on
the performance of the TS are not so strong as in BLL, but they seem to suggest that
the three chosen models fail to replicate the returns generated by the trading rule.
In other words, the rule generates signals that are not likely to be explained by the
return models. Nonetheless, these results are not robust to the presence of transaction
costs. Indeed, if we compute the break-even transaction cost (Eq. (11.1)), only if we
trade with transaction costs lower than 0.00266%, we can obtain a positive profit.
Moreover, for the remaining stocks, whose results we do not report here, the return
models always generate Sharpe ratios higher than in the original series.

Finally, we investigate the sensitivity of the bootstrap results to the number of
simulations on our results. As remarked in BLL, this test is important since the as-
ymptotic properties of the bootstrap applied to GARCH models are not known. In
Table 11.10 we report the same figures as in Table 11.9 for the GARCH model, but
varying the number of simulations. We can observe that the p-values obtained with
500 simulations are reliable. Considering additional simulations produces little im-
provement in the estimation of the p-values. Similar conclusions were also presented
in BLL.

Vanilla Options

12

Estimating the Risk-Neutral Density*

Key words: log-normal mixture, implied volatility, calibration

Investors, risk-managers, monetary authorities and other financial operators are
confronted with the need to assess market expectations concerning a number of
fundamental macroeconomic variables, such as exchange and short-interest rates,
stocks, commodities, stock indices. In simple terms, they need to estimate the proba-
bility distributions of future events. Information embedded in market prices of deriv-
ative assets provides central banks and operators with timely forward-looking infor-
mation on market expectations regarding the underlying fundamental factors.

We tackle the issue of recovering the risk-neutral density function (henceforth
PDF) as implied by market quotations and employ the resulting assessment about
market expectations for trading purposes.

Section 1 describes the problem of recovering an implied risk-neutral density
from option market prices and briefly examines basic procedures for extracting the
PDF from option prices. In particular, we focus on a methodology based on a mix-
ture of log-normals, as developed in Bahra (1997). We highlight the flexibility of
this method to cope with the anomalies of the Black–Scholes theory, such as smile
and smirk effects in the implied volatility curve. Sections 12.2 and 12.3 detail the
solution methodology and provide two applications of the method. First, we recover
the risk-neutral density compatible to a set of option prices written on the Standard
& Poor’s index S&P 500. Second, we propose and test a trading strategy exploiting
differences between market and model prices as obtained from the estimated den-
sity function. We finally comment on the market’s ability to forecast movements and
disclose investor feeling as it can be inferred from our analysis.

∗ with Paolo Ghini.

332 12 Estimating the Risk-Neutral Density

12.1 Problem Statement

This section presents an overview of the most common methods used to extract risk-
neutral density functions from option prices and focuses on a technique developed in
Bahra (1997). Market participants’ expectations are too heterogeneous and complex
to be captured using simple descriptive statistics, such as means and other point
estimates. However, this information can be extracted from prices of traded options.
Indeed, due to a nonlinearity in their payoffs, option prices across different strikes for
a common maturity allow the assigning of probabilities to a wide range of possible
values taken by the underlying asset at that maturity. These probabilities represent
a synthesis of market expectations about future trends as perceived by operators at
a given point in time. Moreover, option prices can provide additional information
compared to the one stemming from a time series analysis of the underlying price
process.

Consider a European call option stricken at K and maturing in τ years. The fair
value of this option is given by the risk-neutral expected value of its discounted pay-
off. This value reads as an integral over the exercise region:

ct (K, τ) = e−rτ

∫ ∞

K

(x − K)qt+τ (x) dx. (12.1)

Here qt+τ denotes the risk-neutral density of the underlying asset price at the expi-
ration time t + τ . Similarly, the fair price of a put option with equal features is

pt (K, τ) = e−rτ

∫ K

0
(K − x)qt+τ (x) dx. (12.2)

The inverse problem consisting of the identification of a risk-neutral distribution
qt+τ implied by option prices was first addressed in a seminal paper by Breeden
and Litzenberger (1978). These authors show that the risk-neutral density qt+τ is
recovered from option prices as

qt+τ (x) = erτ ∂2ct (K, τ)

∂K2

∣

∣

∣

∣

K=x

. (12.3)

Implementing this formula requires the knowledge of option prices for a continuum
of strikes. Of course this is not possible in practice and infinitely many density func-
tions are compatible to any given set of option prices over a finite range of strikes.
However, some basic constraints have to be satisfied when constructing a risk-neutral
density. For example, a well-defined risk neutral density is nonnegative, integrates to
one, and prices exactly all calls and puts.

12.2 Solution Methodology

A possible way out is to derive a function c(·, τ) by interpolating observed option
prices. As observed by McCauley and Melick (1996a, 1996b) and Campa, Chang

12.2 Solution Methodology 333

and Reider (1997, 1998) the most binding limitations of this approach occur on the
over-the-counter (OTC) currency market where prices for very few strikes, say three
to five, are usually quoted.

Several approaches to extract an implied density from option prices have been
proposed in the literature. A comparison of different approaches can be found in
Aparicio and Hodges (1998). We briefly recall:

1. Local volatility or implied tree models (Derman and Kani (1994), Dupire (1994),
Rubinstein (1994), Jackwerth and Rubinstein (1996) and Jackwerth (1999)),
where the future local volatility function of the underlying asset return is con-
structed in order to precisely recover option prices.

2. Interpolation of the implied volatility smile curve (Shimko (1993) and Dumas,
Fleming and Whaley (1998)) where the volatility surface is assumed to be a para-
metric function. Parameters are fitted to calibrate option prices and the implied
risk neutral density is then obtained by applying (12.3). Unfortunately, although
very simple, this approach may deliver a density exhibiting kinks.

3. Stochastic volatility and jumps (Hull and White (1987), Melino and Turnbull
(1990), Bates (1991), Heston (1993)), where the standard GBM process is ex-
tended to include a stochastic volatility component and jumps. The main prob-
lem with this approach consists of a the lack of a closed form formula for option
prices, so that calibration of the model can be highly time consuming.

4. Non-parametric approach (Aït-Sahalia and Lo (1998)) where the density is esti-
mated by a kernel regression approach. However, this technique is based on time
series price data so it cannot recover a risk-neutral density. Moreover, it is very
demanding from a computational point of view.

5. Combination of parametric and non-parametric approach (Bedendo et al.
(2005)). In particular, they focus the attention on the problem of fitting the tails.

An interesting way to reduce the degree of freedom allowed by relation (12.3),
is to fit an implied density within a parametrized family of probability distribu-
tions. Bahra (1997), Melick and Thomas (1997) and Söderlind and Svensson (1997)
look for a density obtained as a mixture of log-normal distributions. More pre-
cisely, the unknown density function is assumed to be a weighted average of log-
normal densities with appropriate means and variances. The parameters are de-
termined by minimizing the sum of the squared deviations of theoretical prices,
computed by formulae (12.1) and (12.2), from market quotations. Bahra (1997)
and Söderlind and Svensson (1997) investigate the ability of calibrated mixtures
to provide useful indications about how monetary policies are conducted. Melick
and Thomas (1997) retrieve an implied density function from American-style op-
tion prices on crude oil futures. After calibrating the model to market prices,
these authors back out three curves describing possible future scenarios. For in-
stance, during the crises preceding the Gulf war, the resulting density displays
scenarios corresponding to alternative political evolutions of the situation: (a) a
return to a pre-crises situation with a peaceful withdraw of Iraq from Kuwait;
(b) a strong and relevant interruption of the Persian Gulf oil supplies due to the

334 12 Estimating the Risk-Neutral Density

war; (c) uncertainty, with a continuation of unsettled conditions over relevant hori-
zons.

Assuming a fixed structure for the terminal PDF, the question about the exis-
tence of a stochastic process for the underlying asset with the assigned marginal
distribution arises. This problem has been investigated by Dupire (1994). A review
of different approaches can be found in Rebonato (1999). Recently, Brigo, Mercurio
and Rapisarda (2004) have shown the existence of such a process. This identification
is relevant for pricing exotic and American options.

We now describe the method in greater detail. The mixture procedure consists of
assuming a density function qt+τ as a weighted sum of log-normal densities

qt+τ (x) =
k

∑

i=1

wiL(x; αi, βi), (12.4)

where the weights wi are normalized and positive

k
∑

i=1

wi = 1 and wi > 0, ∀i.

Here L(x; α, β) represents a log-normal density with parameters α and β

L(x; α, β) =
1

x
√

2πβ2
exp

(

−
1

2β2
(ln x − α)2

)

, x > 0.

Each density in the mixture may be interpreted as a possible regime prevailing in the
future. The most parsimonious parametrization is obtained for k = 2. In this case
only five parameters need to be estimated. It is possible to make explicit dependence
of density parameters αi and βi from the initial stock price, the drift coefficients μi

and the volatility functions σi

αi = ln St +

(

μi −
1

2
σ 2

i

)

τ,

βi = σi

√
τ .

The proposed parametric form turns out to be sufficiently flexible to capture the main
statistical features in the market, such as skewness and fat tails in the price return
distribution. The corresponding option pricing formulae read as

ct (K, τ) = e−rτ

∫ ∞

K

[wL(x; α1, β1) + (1 − w)L(x; α2, β2)](x − K) dx, (12.5)

pt (K, τ) = e−rτ

∫ K

0
[wL(x; α1, β1) + (1 − w)L(x; α2, β2)](K − x) dx. (12.6)

It is easy to show that these expressions can be represented as weighted averages of
Black–Scholes formulae

12.3 Implementation and Algorithm 335

ct (K, τ)

= e−rτ
{

w
[

eα1+β2
1 /2

N (d1) − KN (d2)
]

+ (1 − w)
[

eα2+β2
2 /2N (d3) − KN (d4)

]}

,

pt (K, τ)

= e−rτ
{

w
[

KN (−d2) − eα1+β2
1 /2N (−d1)

]

+ (1 − w)
[

KN (−d4) − eα2+β2/2N (−d3)
]}

,

where N denotes the cumulative normal distribution and

d1 =
− ln K + α1 + β2

1

β1
; d2 = d1 − β1;

d3 =
− ln K + α2 + β2

2

β2
; d4 = d3 − β2.

In the special case of a call option with a zero strike, we obtain the present value of
the forward price ft (τ):

ct (0, τ) = e−rτ
{

weα1+β2
1 /2 + (1 − w)eα2+β2

2 /2} = e−rτft (τ).

Absence of arbitrage opportunities requires that ft (τ) must equal the mean of the
PDF. These formulae provide model prices for any pair of density parameters. The
model is calibrated by choosing a parameter set θ = {α1, α2, β1, β2, w} which min-
imizes the sum of squared differences between model and market prices for a set
of calls c1, . . . , cn and puts p1, . . . , pm with a common maturity τ . The non-linear
least squares problem reads as:

min
θ

{

n
∑

i=1

[

ci − ct (Ki, τ)
]2

+
m

∑

i=1

[

pi − pt (Hi, τ)
]2

(12.7)

+
[

weα1+β2
1 /2 + (1 − w)eα2+β2

2 /2 − erτSt

]2

}

,

sub β1, β2 > 0 and 0 ≤ w ≤ 1,

where K1, . . . , Kn (resp. H1, . . . , Hm) are call (resp. put) strikes and St is the cur-
rent spot price. Note that the third line of the target function includes the squared
difference between theoretical forward price and expected price (erτSt).

12.3 Implementation and Algorithm

In this section, we detail our implementation of the calibration procedure. Table 12.1
reports module names containing VBA R© macros and functions.

The calibration has been conducted through the following steps.

336 12 Estimating the Risk-Neutral Density

Table 12.1. List of main VBA R© macros and functions

Module name Macro or function Formula
mDensity normalmixture (12.4)
mOptionPrices BlackScholes()
mOptionPrices Mixturecall() (12.5)
mOptionPrices Mixtureput() (12.6)
mCalibrationMixture Sub MixtureEstimation() (12.7)

1. Collection of implied volatility, LIBOR rates, dividends and S&P 500 Index
quotations. All of them are available in the spreadsheet Data of the Excel file
RiskNeutralDensity.xls.

2. Transformation of implied volatility quotations into option prices. This is done in
spreadsheet Mixture Calibration 3m and Mixture Calibration
6m. For each week, we obtain option prices using the Black–Scholes formula
coded in the VBA R© function BlackScholes(). Market option prices are
computed in columns D–H.

3. Given the parameter set, for each week we compute theoretical call and put
prices using the VBA R© functions Mixturecall() and Mixtureput().
Theoretical option prices are computed in columns J–N.

4. Parameter calibration is performed using the macro MixtureEstimation()
which can be run by pressing the button “Run Mixture Estimation” in the Ex-
cel spreadsheets Mixture Calibration 3m and Mixture Calibra-
tion 6m, see Fig. 12.1. The macro, for each week in the sample, runs the Ex-
cel Solver1 and minimizes the sum of squared differences between market and
model prices. These differences appear in column AF in the Excel spreadsheet.
The user can also restrict the calibration period by specifying in cells AF3 and
AF4 respectively the rows corresponding to the first and the last week. Remark
that in order to ensure the respect of constraints such as positive variances, we
have defined some dummy parameters, appearing in columns Y–AC, for which
no restrictions are required. Original parameters are then functions of these pa-
rameters, chosen in a way to ensure that the constraints are fulfilled. The Excel
Solver keeps on changing the content of cells Y–AC until the target function in
column AF is minimized.
In the calibration, for some weeks we have obtained unrealistic parameter values.
In such cases, we have performed the optimization under a different starting
value. Sometimes, a long time is required to obtain estimates comparable to the
ones obtained in the nearby weeks. This happens for example on June 25, 1999.

1 The Excel Solver is not always promptly available in the VBA R© code. Therefore, in the
VBA R© window you must choose Tools, Riferimenti and then activate Solver.xla. If this file
does not appear in the window, usually, it can be found in the directory where Microsoft
Excel has been installed, and then in the sub-directory Library. In any case, you can locate
the file by doing a file search.

12.3
Im

plem
entation

and
A

lgorithm
337Fig. 12.1. Screenplot of the spreadsheet for calibrating the risk-neutral density.

338 12 Estimating the Risk-Neutral Density

5. Spreadsheets IV Dynamic Chart and RND Dynamic Chart include a
dynamic chart of the implied volatility curve and the corresponding risk neu-
tral density for each week in the sample.

6. Spreadsheets Strategy 3 m and Strategy 6 m build a trading strategy
consisting of entering a long (resp. short) position in undervalued (resp. over-
valued) options. The construction of the strategy has been done directly in the
Excel spreadsheet without using VBA R© code.

12.4 Results and Comments

Our data set covers the period ranging from January 1, 1999 to December 7, 2001.
Data consist of 150 weekly observations on European-style options written on the
S&P 500 Index and quoted Over-The-Counter (OTC) by a market maker.2 We recall
that the S&P 500 Index represents about the 80 percent of the entire US economy
capitalization.

Option prices are determined each Friday morning depending on the closing val-
ues of the Index and interest rates of the previous day. For each week, quotations are
available for five strike prices corresponding to At-The-Money (ATM) options and
Out-of-The-Money (OTM) options with strikes 5 and 10 percent away from the cur-
rent level of the index. Options are traded with “fixed time to maturity”: each week,
new contracts with three or six months to maturity are issued and quoted. Therefore,
the data consists of the most liquid and deeply traded range of contracts and matu-
rities. However, contracts cover only five strike-prices and observations for far from
at-the-money options are not available. This problem implies that we cannot estimate
with accuracy the tails of the risk-neutral density.

Quotations are expressed as percentage points of implied volatility (i.e., the
volatility parameter entering the Black and Scholes formula), with respect to five
different moneyness, according to standard rules in the OTC market. Table 12.2 pro-
vides a numerical example of the quotation mechanism. Quotations refer to OTM
and ATM options.

The second line indicates the moneyness as defined as a percentage over the spot
value of the index. For example, on Friday January 22, 1999, the implied volatility

Table 12.2. Example of implied volatilities on SPX 3 months options on January 3, 1999

22 Jan. 1999 OTM put OTM put ATM OTM call OTM call
Moneyness 0.9 0.95 1 1.05 1.1
Strike 1111.64 1173.40 1235.16 1296.92 1358.68
Implied vol. 35.40% 31.96% 28.97% 26.41% 23.93%
BS prices 32.10 45.42 65.36 44.12 21.18
S&P 500 Index: 1235.16; 3-months dividend yield: 1.33%;
3-months LIBOR rate: 4.97%.

2 The dataset was kindly supplied by UBS-Warburg, London.

12.4 Results and Comments 339

Fig. 12.2. Time evolution of ATM and OTM implied volatilities.

of a put contract issued on the SPX with a maturity of three months and a strike price
equal to 0.90% of the S&P 500 index, is 35.40%.

Strike prices are computed in the third line by using the S&P 500 index value
(1235.16 closing value on Thursday January 21, 1999). Therefore, given the implied
volatility quotation, we can recover the corresponding option price in the fifth line,
by applying the Black and Scholes formula.3

For each day in our data set, we solve the optimization problem in (12.7). Then,
we test the quality of a trading strategy based on the calibrated density. Our analysis
delivers several interesting findings.

Figure 12.2 shows that, over the period under investigation, implied volatilities
from OTM options are higher than those corresponding to ATM options. Moreover,
the movements in the two implied volatilities appear highly correlated. Since deep
OTM put options provide valuation of the left-hand tail of the distribution, they quan-
tify the risk of large adverse movements. This effect proves that the option market
assigns to extreme events a higher probability of occurrence than the one predicted
by the log-normal assumption. Consequently, the implied probability density cannot
be log-normal. In this respect, Bates (1991) demonstrates that the 1987 crash mod-
ified the stock-index option pricing procedures employed by the operators. Indeed,
the crash had the effect of increasing prices of OTM put options well beyond the
value resulting from the Black–Scholes formula computed at a volatility level im-
plied by ATM quotations. This phenomenon reflects the practice of hedging stock
portfolios against the risk of a crash (static portfolio insurance), which leads to a
strong demand for OTM put options. The writer of these options, while performing
dynamic hedging, will soon find himself in a position to sell the underlying stock

3 In the Black–Scholes formula the LIBOR rate has been converted to a continuously com-
pounded interest rate and the SPX index has been adjusted by the continuous dividend
yield. The LIBOR rate is assumed to be a risk-free interest rate and, in the example, it has
been collected on Thursday January 21, 1999.

340 12 Estimating the Risk-Neutral Density

Table 12.3. Statistics of implied volatilities of 3-month options on SPX (from January 1, 1999,
to December 31, 2001)

Moneyness 0.9 0.95 1 1.05 1.1
Max 36.59% 34.30% 32.47% 30.83% 29.35%
Mean 26.90% 24.55% 22.39% 20.44% 18.83%
Min 19.88% 18.14% 16.60% 15.30% 14.42%
St. dev. 3.06% 2.81% 2.61% 2.48% 2.28%

Table 12.4. Statistics of implied volatilities of 6-month options on SPX (from January 1, 1999
to December 31, 2001)

Moneyness 0.9 0.95 1 1.05 1.1
Max 34.18% 32.14% 29.75% 28.21% 27.10%
Mean 26.27% 24.50% 22.88% 21.37% 20.03%
Min 20.63% 19.18% 17.85% 16.64% 15.67%
St. dev. 2.86% 2.63% 2.42% 2.26% 2.11%

index with supply higher than the demand when the market is falling. Moreover,
several stock exchanges provide a mechanism to limit running operations in case of
large drops in quoted prices, thus preventing operators from performing the required
hedging strategies whenever their need is particularly compelling. Hence, the rela-
tively strong demand for OTM put options to cover the risk related to this kind of
instances induces higher premia than the fair prices stemming from arbitrage pricing
models.

A second empirical evidence is the asymmetry of the option smile: implied
volatilities for ATM options are larger than implied volatilities for OTM call options.
This behavior is confirmed by the average values reported in Tables 12.3 and 12.4.
Figure 12.3 reproduces an implied PDF function as derived as above. The five pa-
rameters of the mixture density vary as option prices change to reflect changes in
market expectations about the future. Mixtures can embed a great variety of shapes
describing different scenarios, like the situation in which the market has a bimodal vi-
sion about the future value of an asset. This happens, for example, when market par-
ticipants foresee the possibility of a shock affecting the indices. Tables 12.5 and 12.6
report some basic descriptive statistics concerning the series of the calibrated para-
meters. From the estimation of the mixture we can separate the contributions of the
different densities to the mixture. Indeed the two components present very different
mean levels, as illustrated in Fig. 12.4 for a typical day in our sample (1st June 2001).
Moreover, the contribution to the mixture of the density with lower mean appears to
be much less important (the parameter w has an average value of 0.3), nevertheless,
it has a much larger standard deviation. This affects the kurtosis of the mixture, as
we can see in Fig. 12.4 comparing the calibrated implied density with a normal with
same mean and variance.

Figure 12.5 exhibits the time evolution of the expectations for a given maturity.
We compare the implied distribution recovered from six-month options with the ones
derived three months later from options maturing in three months. This comparison

12.4 Results and Comments 341

Fig. 12.3. Skew curve for 3-month and 6-month implied volatilities.

Table 12.5. Statistics of calibrated parameters of 3-month options on SPX (from January 1,
1999 to December 31, 2001)

Parameters α1 α2 β1 β2 w

Max 7.248 7.384 0.189 0.097 0.640
Mean 7.065 7.236 0.124 0.068 0.302
Min 6.795 6.978 0.013 0.000 0.125
St. dev. 0.102 0.088 0.018 0.009 0.069

Table 12.6. Statistics of calibrated parameters of 6-month options on SPX (from January 1,
1999 to December 31, 2001)

Parameters α1 α2 β1 β2 w

Max 7.416 7.280 0.202 0.296 0.857
Mean 7.265 7.064 0.089 0.195 0.602
Min 6.994 6.604 0.021 0.043 0.318
St. dev. 0.092 0.124 0.016 0.030 0.070

shows the way information improves over time.4 Therefore hypothetical scenarios
are clearer and the range of values that the index will be likely to assume at the
maturity of the option narrows.

Another remarkable result concerns the time variation of parameters defining the
mixture. This behavior might be due to the limited (five) number of traded options
for a fixed maturity. Therefore modest changes in market’s option prices cause large

4 However, one should remember that recovered implied densities are risk-neutral. Never-
theless, assuming that market’s risk-aversion is relatively stable over time, daily or weekly
changes in the PDF should reflect only the change in investor expectations and not in their
risk-adversion as well.

342 12 Estimating the Risk-Neutral Density

Fig. 12.4. Components of the 6 months risk-neutral density on the 1st of June 2001, and
normal density with same first two moments as the mixture.

Fig. 12.5. Six-month RND on 1/9/1999 and three-month RND on 4/9/1999.

oscillations in the parameters of the distributions. Campa, Chang and Reider (1997,
1998) are confronted with the same issue while studying the OTC currency market.
The time variation also seems to reflect the economic situation. Indeed in Figure 12.6
we see that the means of the two distributions move together over the entire sample.
They increase up to October 2000 reflecting strong belief in an up-trending market.
During the drop period affecting the New Economy in October 2000, market expec-
tations reversed and average values began to decrease.

In order to test the empirical performance of the mixture, we propose a trading
strategy that tries to exploit the differences between market and model prices. The
strategy consists of entering a long (short) position in undervalued (overvalued) op-

12.4 Results and Comments 343

Fig. 12.6. Time variations of the means of the two components the log-normal mixture.

Fig. 12.7. Cumulative profits for options maturing in three months.

tions. Mispricing is measured as the absolute difference of market option price and
model prices larger than a predetermined size. We test the strategy for different filter
sizes, ranging from 0.01 to 0.2.

Since the calibrated lognormal mixture density tends to undervalue OTM put
options,5 we are often in a position to sell deep OTM puts (moneyness = 0.9) and to
buy OTM options (moneyness = 0.95) at the same time. In other words, one becomes
an insurer against large price falls in the market. This fact has determined very large
losses for the options expiring in September 2001, the month of the terrorist attack
on the Twin Towers. However, as shown in the profit and loss diagram reported in
Fig. 12.7 for a filter size equal to 0.05, and in a greater detail in Tables 12.7 and 12.8,
the strategy appears profitable if we do not consider filter sizes that are too large
(i.e., approximately less than 0.15). However, higher average profits are associated
to higher variability, as measured by the standard deviation.

5 Bedendo et al. (2005) stress out that this problem occurs with parametric methods espe-
cially if the availability of observations is limited.

344 12 Estimating the Risk-Neutral Density

Table 12.7. Results of the trading strategy on SPX 3-month options

Filter size ($) Cumulative profit ($) Avg. weekly profit ($) Std. dev. weekly profit
0.01 1785 11.74 48.27
0.05 1666 10.96 47.50
0.1 231 1.52 46.01
0.15 −610 −4.02 39.04
0.2 −1639 −10.78 38.02

Table 12.8. Results of the trading strategy on SPX 6-month options

Filter size ($) Cumulative profit ($) Avg. weekly profit ($) Std. dev. weekly profit
0.01 2385 15.69 65.82
0.05 2265 14.90 56.44
0.1 494 3.25 49.30
0.15 −747 −4.91 48.92
0.2 −982 −6.46 49.86

13

An “American” Monte Carlo*

Key words: American options, Snell envelope, Monte Carlo simulation

We present a method to price American-style options using Monte Carlo simulation
as proposed by Rogers (2002). This method is an alternative method to the famous
simulation-based technique introduced by Longstaff and Schwartz (2001) (L&S).
Roger’s proposal shares the starting point of the analysis with L&S. They both start
with the traditional dynamic programming equation, which conveys the idea that
pricing an American-style option is a problem of knowing, at each point of time,
whether it is worth to exercise the option immediately or to continue holding the
option. As opposed to L&S who attempt to determine an optimal exercise policy,
the method we adopt here transforms the dynamic programming equation in a dual
problem, proposes a financial interpretation of this latter, and finally tries to solve it
numerically.

Several pricing methods for American-style options have been proposed in the
specialized literature (see, e.g., Lamberton and Lapeyre (1996) for a quick overview).
In the case of options written on a large basket of underlying assets, these techniques
tend to become quite inefficient and computationally slow. In order to overcome
these difficulties, Carrière (1996) proposed a simulation-based method, which suf-
fers, however, from numerical instability problems. Bouchard, Ekeland and Touzi
(2004) proposed an alternative based on the notion of Malliavin derivative. How-
ever, it suffers from a computational drawback in terms of speed for large baskets.
Broadie and Glasserman (1997) suggest a stochastic mesh method for overcoming
these issues and their proposal has gained popularity among practitioners.

The present chapter is organized as follows. Section 1 quickly summarizes the
American-style option pricing theory (see Carr, Jarrow and Myneni (1992), Jamshid-
ian (1992), and Lamberton and Lapeyre (1996), among others) and singles out a com-
putational issue involving conditional expectations. Section 13.2 introduces the dual

∗ with Igor Toder.

346 13 An “American” Monte Carlo

formulation of the result illustrated in the previous section. Section 13.3 details the
general algorithm to implement the proposed methodology. Section 13.4 illustrates
experimental results and concludes with a few comments.

13.1 Problem Statement

We assume a single-asset Black–Scholes framework where risk neutral price dynam-
ics are given by

dSt = rSt dt + σSt dWt ,

starting at S0 = x, and a deterministic money market account reads as Bt = exp(rt).
Here, r denotes the continuously compounded risk-free rate of interest, σ is the con-
stant volatility of instantaneous stock returns, and W indicates a standard Brownian
motion.

We consider an American put option exercisable on time horizon [0, T]. Its in-

trinsic value is defined as the process Z = (Zt)0≤t≤T describing the payoff over the
entire exercise period, that is Zt = max(K − St , 0). We denote by V = (Vt)0≤t≤T

the arbitrage-free price process for this option. Our goal is to compute this figure
under the assumption that the exercise time must belong to a finite set of dates
P = {t0, . . . , tN }, with ti = iΔ and iN = T . We assume that at time t0 = 0
all information is available to the option pricer. Though this particular contingent
claim is usually referred to as a Bermuda option, we continue using the broader term
“American option” in the sequel.

The time t value of the option under consideration can be expressed as a deter-
ministic function V (t,W) of time t and state W assumed by the Brownian noise Wt .
It is a standard result that corresponding to any noise path Wt0, . . . ,WtN , the function
V solves a dynamic programming recursive equation

{
V (T ,WT) = ZT ,

V (ti,Wti) = max
(
Zti , e−rΔ

E
(
V (ti+1,Wti+1)|Wti

))
, i = 0, . . . , N − 1.

The deterministic function V : [0, T] × R → R+ is called the “Snell envelope” of
the discrete-time process (Zti)ti∈P . The underlying idea justifying this algorithm is
simple: at any time ti , the option holder must decide whether he should exercise the
option right and then collect the reward Zti , or keep on holding the option. In this
case, the standing position is worth the expected present value of what it will be
worth one time period later, namely e−rΔ

E(V (ti+1,Wti+1)|Wti). Since the holder is
assumed to behave in a way which would maximize the value of his position, he will
choose the greatest between these two numbers. On the final day T , the option is
worth its payoff ZT . Once the recursion above is solved, the arbitrage-free price of
the option is given by V (t0,Wt0). The key issue in this procedure is the computation
of conditional expectation E(V (ti+1,Wti+1)|Wti = x), for all x ≥ 0.

The method proposed by L&S consists of building an expected optimal exercise
policy for the American-style option. They compute estimates for E(V (ti+1,Wti+1)|

Wti = x) and use them to find, for each given path of the underlying, whether the

13.2 Model and Solution Methodology 347

anticipated exercise of the option is more rewarding than waiting until the next time
step. This method comes up with a lower bound of the theoretical price.

In our setting we adopt the point of view of a trader on the selling side. It is
common knowledge that the price of an option equals the price of its hedge. When a
trader writes an option, his major concern consists of finding a hedging strategy for
the option. The option price corresponds to the initial cost of the hedging strategy. If
this cost is too high, then the trader will not make the deal since it is too expensive; if
the price is too low, then the trader might not be able to hedge his option and he will
not enter the deal. In contrast to L&S, we determine the option price by computing a
hedging strategy instead of calculating an optimal exercise policy. This formulation
enables us to get rid of the conditional expectation estimates mentioned above.

13.2 Model and Solution Methodology

We begin by introducing an alternative formulation to the Snell’s envelope problem
and interpret it in terms of a hedging strategy.

The discounted price process (e−rti V(ti,Wti))0≤i≤N solving the dynamic pro-
gramming equation above can be proved to be a supermartingale. By a famous theo-
rem due to Doob and Meyer, it can be then decomposed as follows:

(
e−rti V(ti,Wti)

)
= V(t0,Wt0) + M∗

ti
− A∗

ti
,

where (M∗
ti
)0≤i≤N is a martingale starting at zero (M∗

0 = 0) and (A∗
ti
)0≤i≤N is a

predictable increasing process vanishing at t = 0. Predictability means that the value
of the process A∗ at time ti+1 is perfectly known one time step before, i.e., at time ti .

The present case-study is grounded on a result stating that the price of an
American-style option is given by

V(t0,Wt0) = inf
M∈H 1

0

E

[
sup

0≤i≤N

(
e−rti Zti − Mti

)]
,

where H 1
0 denotes the set of martingales M = (Mti)0≤i≤N such that (1)

E[sup0≤i≤N |Mti |] < +∞ and (2) Mt0 = 0. We let M∗ be the arg inf in the previ-
ous optimization problem. It can be proved that a conditional version of the previous
result holds true:

V(ti,Wti) = inf
M∈H 1

0

E

[
sup

i≤j≤N

(
e−r(tj−ti)Ztj − Mtj

) ∣∣Wti

]

for all 0 ≤ i ≤ j ≤ N . Let us now explain how this formula can be used in practice
for pricing purposes. We select a suitable martingale and then evaluate the expected
value E[sup0≤i≤N (e−rti Zti − Mti)] through a Monte Carlo simulation.

To date, no theoretical rule exists to help the user in finding an acceptable mar-
tingale to begin with. In most cases, this selection is merely a “learning-by-doing”
process. However, we will show below that even simple martingales usually deliver

348 13 An “American” Monte Carlo

an algorithm producing accurate results. The problem of computing an optimal ex-
ercise strategy is now replaced by the problem of finding a good minimizing martin-
gale M . We therefore see that this formulation provides us with an upper bound of
the option price, whereas the method developed by L&S gives a lower bound.

We now interpret the preceding formula in terms of hedging; this interpretation in
turn gives a good hint for finding an acceptable minimizing martingale. Once a mar-
tingale M has been chosen, we have that V(t0,Wt0) ≤ E[sup0≤i≤N (e−rti Zti − Mti)].
This inequality implies that for any tk ∈ P , e−rtkZtk ≤ sup0≤i≤N (e−rti Zti − Mti) +
Mtk . If a trader sells the option for a price ηt0 = E[sup0≤i≤N (e−rti Zti − Mti)]
(which is greater than the theoretical price V(t0,Wt0)), then the intrinsic value of
the option is bounded from above as follows:

e−rtkZtk ≤ E(ηT − ηt0 |Wtk) + (Mtk + ηt0),

where ηT = sup0≤i≤N (e−rti Zti − Mti). We can interpret M as the discounted
profit/loss (P&L) of a hedging strategy investing an initial amount ηt0 . Thus, the
time tk value of the hedging portfolio is ηt0 + Mtk .

If E(ηT − η0|Wtk) is too high (in absolute deviation), then the (discounted) value
of the hedging portfolio is not large enough to cover the (discounted) value e−rtkZtk

claimed by the option buyer. The smaller the quantity E|ηT − η0|, the better the
strategy. Interpreting M as the discounted value of a hedging portfolio gives a clue
for guessing a suitable martingale.

13.3 Implementation and Algorithm

We now propose an algorithm to compute the price of an American-style option
through the method previously described. We assume we have already decided upon
the minimizing martingale M satisfying the equation given above. However, to date
there is no theoretical rule which helps us select an optimal minimizing martingale
of this kind and the final choice largely depends on the particular instance under con-
sideration. For the sake of clarity, we first summarize the major quantities involved
in the procedure:

• N = Number of possible exercise dates
• i = Date index
• n = Number of sample paths
• m = Sample index
• K = Strike price
• T = Time horizon
• r = One-period risk-free rate of interest

Algorithm 1. Fix a strike price K , the risk-less rate r and the set of dates t0 <

t1 ≤ t2 ≤ · · · ≤ tN = T at which the option may be exercised;
2. Simulate n sample paths for the intrinsic value process Z and the minimizing

martingale M . Here, (Zm
ti

)0≤i≤N and (Mm
ti

)0≤i≤N denote the mth path for the
process Z and M , respectively.

13.4 Results and Comments 349

3. Let X be the n-dimensional vector recording the maximum value attained by the
process (e−rti (Zti) − Mti)0≤i≤N on each sample path:

X(m) = max
0≤i≤N

[
e−rti

(
Zm

ti

)
− Mm

ti

]
.

4. At time ti , for each simulated path m, compare the quantities (e−rti (Zm
ti

)−Mm
ti

)

and X(m). If the former is greater than the latter, store the value (e−rti (Zm
ti

) −
Mm

ti
) into the entry X(m).

5. If ti+1 < T , increase i by one unit and go to Step 4. Otherwise, return
V(t0,Wt0) := 1

n

∑n
m=1 X(m) as an empirical estimate of the expected value

E[sup0≤i≤N (e−rti Zti − Mti)].

13.4 Results and Comments

We consider an American put option written on a single asset paying no dividend.
The option is struck at an exercise price K over the entire time horizon [0, T]. To
find a minimizing martingale M , we proceed heuristically. Let (BSti)0≤i≤N be the
price process of a European put with the same features as the American put under
analysis. Each price BSti is given by the celebrated Black–Scholes formula. Also
let (B̃Sti)i∈[0,N] denote the corresponding discounted price. One can prove that this
process is a martingale under the risk neutral probability. However, we do not com-
pute the price of the American put by using B̃Sti as a minimizing martingale M .
Indeed, this choice turns out to be excessively crude for hedging purposes.

Notice that a trader may envisage a strategy hedging the American put since it
becomes in-the-money. This could be performed by buying an equivalent European
put as soon as the American put becomes in-the-money. Consequently the martingale
M hedging the American put could be

Mti = [B̃Sti − B̃Sτm]1ti≥τm ,

where

τm = min {tk ∈ [0, T]: Zτm ≥ 0}

indicates the first time the intrinsic value becomes positive and 1ti≥τm is the indicator
function of the set {ti : ti ≥ τm}.

Results reported in Table 13.1 can be obtained by setting the following parame-
ters in the routine Rogers_full.m:

• Strike price K = 100.
• Interest rate r = 0.06.
• Maturity (expressed in fraction of the year) T = 0.5.
• Volatility of the underlying process σ = 0.4.
• b = 20 exercise dates.
• n = 500 simulated paths.

350 13 An “American” Monte Carlo

Table 13.1. Binomial vs. simulated prices of standard American puts. K = 100, r = 0.06,
T = 0.5, σ = 0.4, b = 20 , n = 500

S0 Bin. price Mean price Std. error 95% conf. interval
80 21.6059 21.7503 0.0263 [21.7340; 21.7666]
85 18.0374 18.1381 0.0263 [18.1218; 18.1544]
90 14.9187 14.9814 0.0267 [14.9649; 14.9979]
95 12.2314 12.2655 0.0220 [12.2519; 12.2791]

100 9.9458 9.9580 0.0200 [9.9457; 9.9704]
105 8.0281 8.0314 0.2027 [7.9057; 8.1570]
110 6.4352 6.4476 0.2302 [6.3049; 6.5902]
115 5.1283 5.1048 0.2447 [4.9531; 5.2565]
120 4.0611 4.0650 0.2547 [3.9072; 4.2228]

Table 13.2. Simulated prices of standard American puts. S0 = 120, K = 100, r = 0.06,
T = 0.5, σ = 0.4, b = 40

Number of simulated paths Mean price Standard error
100 3.9001 0.3062
500 4.0429 0.2417

1000 4.0954 0.1336
5000 4.0912 0.0534

True price 4.0611 N/A

“Bin Prices” quoted on the first column correspond to numbers obtained by imple-
menting a binomial-tree technique with a 1000-point time grid. These figures have
been taken from Rogers (2002). We choose to simulate a relatively small number
of trajectories to demonstrate the power of the algorithm in terms of accuracy under
short computational time. Confidence intervals have been determined by launching
the procedure 10 times.

Table 13.1 can be obtained by opening the file Rogers_full.m, inserting the
parameters above, saving the file and launching the function Rogers_full.m with
input variable nb_simulations = 10. As expected, the routine returns a mean
price which is higher than the true price (except for S0 = 115). We see that the value
of the variance (and hence the accuracy of the confidence interval) deteriorates with
the option getting more and more out-of-the-money. Part of this phenomenon can be
explained by the fact that the number of simulations is very low and that the hedging
strategy is far from being efficient in this case. This is particularly clear as the option
becomes out-of-the-money.

A last experiment indicates that the convergence speed is low for options starting
out-of-the-money. Figures reported in Table 13.2 can be obtained with the follow-
ing parameters: S0 = 120 K = 100, r = 0.06, T = 0.5, σ = 0.4 and b = 40.
Again, standard errors have been determined by launching the routine 10 times and
computing these descriptive statistics over the resulting sample of simulated prices.
In summary, the pricing method presented here is innovative in that it avoids con-
sidering the issue of finding an optimal exercise policy for the option. However, it

13.4 Results and Comments 351

suffers from the complete lack of methodology in selecting a suitable minimizing
martingale, whose choice might eventually require even more time than needed to
compute the optimal exercise policy. The computer implementation is easy and the
method delivers an upper bound for the option price. This feature may be coupled
with the method developed by Longstaff and Schwartz for the purpose of determin-
ing a reasonable interval for the exact unknown price of American-style options.

14

Fixing Volatile Volatility*

Key words: stochastic volatility, fast Fourier transform, model calibration

Despite its simplicity and popularity among practitioners, it is commonly recognized
that the Black–Scholes (BS) model only partly captures the complexity of financial
markets and produces a persistent bias in pricing derivatives. A clear misspecifica-
tion of this model is the assumption that stock returns are normally distributed. In-
deed, nowadays there is abundant empirical evidence that return distributions exhibit
sizable negative skewness and large kurtosis. Moreover, the assumption of constant
volatility is particularly limiting and contrasts with volatility smiles and smirks im-
plicit in market option prices.

In the last two decades, much effort has been put into the research on more real-
istic approaches that relax the most restrictive assumptions of the BS model. A large
variety of sophisticated models have been proposed by assuming different processes
for stock prices, interest rates and market prices of risks. For a review see Gatheral
(2006). The drawback of these models is that closed-form formulae are rarely avail-
able and the advantage of a more realistic description can be offset by the costs of
implementation and calibration. Among such alternative models, stochastic volatility
(SV) models have attracted a great deal of interest. In an SV framework, volatility
changes over time according to a random process usually assigned through a suitable
stochastic differential equation (s.d.e.). In this manner, SV models manage to repro-
duce empirical regularities displayed by the risk-neutral density implied in option
quotations.

In this case, we focus on the Heston (1993) model and an extension allowing for
the inclusion of jumps in the stock return dynamics as proposed by Bates (1996) and
by Bakshi, Cao and Chen (1997). We aim at testing the ability of the aforementioned
models to fit market prices in comparison to the standard BS model. Our analysis fo-
cuses on option prices on the FTSE 100 index. However, model calibration requires

∗ with Matteo Bissiri, Andrea Bosio and Giacomo Le Pera.

354 14 Fixing Volatile Volatility

analytical pricing formulas that are not explicitly available in the considered models.
Fortunately, a closed-form formula for the characteristic function of the stock return
distribution has been obtained by Heston (1993). Given this function, an expression
for the Fourier transform of the option price with respect to the logarithm of the strike
can be easily computed as in Carr and Madan (1999) and as illustrated in Chapter 6
“Quadrature Methods”. Finally, option prices can be obtained by numerical inversion
of the Fourier transform. This can be performed by the Fast Fourier Transform (FFT)
technique, which reduces the computational burden quite significantly in comparison
with standard algorithms for numerical integration (see Sect. 6.8 in Chapter 6). Fol-
lowing suggestions coming from several practitioners, particular attention has been
placed on the choice of the loss function in the calibration stage. The performance
of models under investigation has been also examined. We assessed the level of pa-
rameter consistency, measuring the extent to which they vary upon repeating the
calibration process on a daily basis. We interpret large variations in the parameter
figures as a clear indicator of model misspecification.

The chapter is organized in four sections. In Sect. 14.1, we briefly introduce SV
models and their properties. Section 14.2.2 is dedicated to the description and cali-
bration of the Heston model (HES) and its version with jumps (HESJ). Section 14.3
discusses the use of the FFT to compute option prices and briefly describes the
Matlab R© code. Finally, Sect. 14.4 exhibits the empirical performance of HES and
HESJ models compared to the standard BS model.

14.1 Problem Statement

In the stochastic volatility model proposed by Heston (1993), stock price dynamics
under real world measure are described by

dS(t) = μS(t) dt + σ(t)S(t) dWs(t), (14.1)

where the instantaneous variance V (t) = σ 2(t) follows an s.d.e.

dV (t) = α
(�V − V (t)

)
dt + β

√
V (t) dWv(t). (14.2)

Here the two Wiener innovations dWs and dWv are assumed to be correlated with

corr(dWS(t), dWV (t)) = ρ dt. (14.3)

Equation (14.2) states that the instantaneous variance is described by a square-root
diffusion with mean-reversion force α, dispersion coefficient β (the so-called vol–vol

parameter), and long-run variance �V . In this square-root model, V (t) is never neg-
ative provided that V (0), α, and �V are all positive. It can also be demonstrated that
V (t) remains strictly positive if 2α�V /β2 ≥ 1: in this case, the zero level represents
a reflecting barrier.

As largely discussed in the specialized literature, e.g., Das and Sundaram (1999),
the effect of stochastic volatility (as measured by the parameter β) is to increase the

14.1 Problem Statement 355

kurtosis of the stock return distribution, whereas a negative correlation parameter ρ

generates negative skewness. However, it has not yet been established whether kur-
tosis and skewness introduced by stochastic volatility are suitable for the purpose of
matching market prices or instead additional refinements of the model are required
to achieve this goal. For instance, one can add flexibility to the model by assum-
ing time-varying parameters. In this way, at-the-money implied volatilities are fitted
exactly and a wider range of volatility surface shapes can be reproduced. As an alter-
native, the incorporation of a jump process into the stock dynamics has been invoked
to account for the discrepancies between market prices/volatilities and those returned
by stochastic volatility models. In particular, a purely diffusive process seems not ad-
equate to explain the market quotes of deeply out-the-money options with a few days
to expiry. The market fears large movements of the underlying and requires compen-
sation for taking that risk. In this study we therefore consider a combination of the
Heston model and a pure jump process (HESJ) as introduced by Bates (1996) and
by Bakshi, Cao and Chen (1997). These authors assume normally distributed jumps
occurring with a constant frequency λ. The resulting model is described by a pair of
stochastic differential equations

dS(t) = µS(t) dt + σS(t) dWs(t) + J (t) dq(t), (14.4)

dV (t) = α
(�V − V (t)

)
dt + β

√
V (t) dWv(t),

where dq(t) represents a Poisson random variable equal to zero (i.e., no jump) with
probability 1−λ dt or one (i.e., jump) with probability λ dt . The process J (t) denotes
a jump size which we suppose to be drawn from a given probability distribution. In
particular, we assume that

ln
(
1 + J (t)

)
∼ N

(
ln(1 + µλ) − 1

2
σ 2

λ , σ 2
λ

)
. (14.5)

This model can also be seen as a stochastic volatility extension of the jump diffusion
model introduced by Merton (1976). For the sake of simplicity, the jump component
in the HESJ model is uncorrelated with the underlying and volatility processes even
if this assumption is questionable. A further generalization may incorporate stochas-
tic interest rates. However, these latter typically do not vary much over the lifetime
of an option (say, 3–6 months). We use a term structure of discount factors P(t, T)

as built by linearly interpolating LIBOR rates. Note that the use of a term structure
of discounting factors is consistent with the assumption of time-varying but deter-
ministic interest rates. The stock price process can be simulated by means of Monte
Carlo simulation in order to price exotic derivatives. However, the discretization of
the square-root process for the variance is not straightforward and the Euler scheme
converges to the true process only in the limit of very small time steps. A bias-free
algorithm has been devised by Broadie and Kaya (2006) for the Heston model. Un-
fortunately, due to its complexity and lack of computational speed, it can be rarely
used in practice. A less time consuming approach has been proposed by Kahl and
Jäckel (2006) who adopt an implicit Milstein scheme for the variance. Finally, ad-
hoc adjustments of the Euler scheme have been claimed to improve accuracy, while

356 14 Fixing Volatile Volatility

preserving computational efficiency, see Lord et al. (2006) and Andersen (2007).
Moreover, for the purpose of model calibration, Monte Carlo simulation is quite
cumbersome. For this reason we will use analytical (or semi-analytical) formulas for
the vanilla instruments, as explained in the next section.

14.2 Model and Solution Methodology

14.2.1 Analytical Transforms

In the SV framework, the investor has to be rewarded not only for market risk but for
volatility risk as well. In particular, Heston assumes that the dynamics of volatility
under the risk-neutral measure can be obtained by taking a risk premium propor-
tional to the instantaneous variance λ(S, V, t) = λ0

√
V (t), so that the risk-adjusted

processes in (14.2) become

dS(t) = r(t)S(t) dt + σ(t)S(t) dW̃s(t),

dV (t) =
(
α�V − (α + λ0)V (t)

)
dt + β

√
V (t) dW̃v(t), (14.6)

where r(t) is the instantaneous risk-free rate of interest. A similar risk-adjustment
can be done for the jump-diffusion model (14.4), once we assume, as in Merton
(1976), that further randomness due to jumps represents nonsystematic risk and can
be diversified away or, equivalently, that the corresponding market price of risk van-
ishes. Note that in equations (14.6), the identifiable parameters are α�V and α + λ0;
therefore, it is not possible to univocally identify the parameter λ0. To circumvent
this issue, we assume λ0 = 0 during the calibration process.

The time t price cT (k) of a call option expiring in T − t years and stricken at
a log-price k = ln K can be expressed as the discounted expected payoff under the
risk-neutral measure

cT (k) = P(t, T)

∫ +∞

k

(
esT − ek

)
p(sT) dsT . (14.7)

Here, p(sT) denotes the risk-neutral probability density of the log-price sT = ln ST

at maturity. In the Heston model, the analytical representation for the characteristic
function of p(sT), i.e., its Fourier transform, f HES

T (u) is known in closed form as

f HES
T (u) =

∫ +∞

−∞
eiusT p(sT) dsT (14.8)

= e(S+R+C+D+E), (14.9)

where:

S = iu ln(S(t)),

R = −iu
(
ln P(t, T) + δ(T − t)

)
,

14.2 Model and Solution Methodology 357

C = α�V
β2

(
(α − k + d)(T − t) − 2 ln

(
1 − ged(T −t)

1 − g

))
,

D = V (t)

β2
(α − k + d)

(
1 − ed(T −t)

1 − ged(T −t)

)
,

k = iuβρ,

d =
√

(k − α)2 + β2
(
iu + u2

)
,

g = (α − k + d)

(α − k − d)
.

Particular care must be taken when evaluating the multivalued logarithm with a
complex argument. Typically, one can keep track of the branch switching in order
to avoid discontinuities, which occur for sufficiently large maturities. A detailed dis-
cussion of this issue, as well as an improved algorithm for calculating the Heston
characteristic function, can be found in Kahl and Jäckel (2006).1 As an alternative,
one can make the following replacements: d → −d and g → 1/g. The resulting ex-
pression is exactly equivalent to the original Heston formula, but it has been claimed
stable under a wider range of parameters, see Albrecher et al. (2007). When jumps
are included into the stock return dynamics, the characteristic function becomes

f HESJ
T (u) = f HES

T (u)eF = e(S+R+C+D+E+F), (14.10)

where
F = λ(T − t)

(
(i + µλ)

iue
iu
2 (iu−1)σλ − 1

)
− λiuµλ(T − t).

Carr and Madan (1999) show that, if the characteristic function fT (u) is known,
a simple expression for the Fourier transform with respect to the logarithm of the
strike of a modified call price function is promptly available.

Since cT (k) converges to ln St for k → −∞, then it can be shown that it does not
admit a Fourier transform. To solve this problem, Carr and Madan (1999) introduce
a dumping parameter Z > 0 to obtain a modified square integrable function

ĉT (k) = eZkcT (k), Z > 0, (14.11)

that therefore admits the Fourier transform. In particular, the Fourier transform of
ĉT (k) with respect to k can be expressed in terms of the characteristic function fT (u)

ψT (v) =
∫ +∞

−∞
eivk ĉT (k) dk

= e−rT fT (v − (Z + 1)i)

Z2 + Z − v2 + i(2Z + 1)v
. (14.12)

The call option price can be obtained by the Fourier inversion integral

cT (k) = e−Zk

π

∫ +∞

0
e−ivkψT (v) dv. (14.13)

1 In the Matlab R© implementation of the Heston model, we have taken into account this issue.

358 14 Fixing Volatile Volatility

Carr and Madan (1999) have also pointed out that for short maturities the integrand
becomes highly oscillatory because the option price approaches its nonanalytic in-
trinsic value. They suggest an alternative normalization procedure, which focuses on
the option time value. By differentiating the above expression with respect to the
current spot price St , we can obtain an expression for the option delta ∆:

∆T (k) = ∂cT (k)

∂S(t)
= e−Zk

π

∫ +∞

0
e−ivkψ̂T (v) dv, (14.14)

where

ψ̂T (v) =
1

S(t)
(1 + Z + iv)ψT (v). (14.15)

Similar computations can be performed to obtain other Greeks, such as gamma, theta,
kappa, and rho. The volatility sensitivity of the option (vega) can also be computed
by taking the derivative of the characteristic function with respect to

√
V (t) and then

inverting it.

14.2.2 Model Calibration

Model calibration consists of finding a parameter vector (which we generally denote
by θ) specifying unique dynamics for the BS, HES, and HESJ models. Ideally, we
search for the best choice of model parameters which reproduce the market prices
of the vanilla instruments used for hedging more exotic products. At the same time,
we want to guarantee a realistic future dynamics of financial variables. In practice,
we set up an optimization algorithm to select those numbers which minimize a given
loss function (LF) measuring the distance between market and model figures (prices
or implied volatilities).

We must stress that the price to pay for a more complex and realistic model is a
nontrivial calibration. Moreover, the selection of relevant market data, the choice of
a suitable loss function, and the optimization algorithm can be considered as part of
the model specification, see the discussion in Christoffersen and Jacobs (2004).

Different metrics are used in the specialized literature, each one exhibiting its
own pros and cons. For instance, the mean squared error (MSE) assigns much weight
to high-valued options, namely those referring to in-the-money and long-maturity
contracts; consequently, a limited subset of option prices effectively contributes to
the LF.2 More often, a proportional weight is assigned by using the percentage mean
squared error (PMSE) metric. However, if the price of an option becomes close to
zero (as is the case of out-of-the-money and short-term contracts), the associated
weight can be extremely large and this may lead to numerical instability.

We recall that it is customary for traders to think in terms of implied volatili-
ties rather than option prices. Compared to absolute prices, implied volatilities have
the advantage of representing a homogeneous set of data across the entire range

2 Price differences can be partly reduced by exclusively considering out-of-the-money calls
and puts.

14.2 Model and Solution Methodology 359

of moneyness. A metric based on market/model implied volatilities may then lead
to a calibration procedure which is more stable in that it is less sensitive to small
perturbations affecting market data and to varying initial guesses for the unknown
parameters. Most common used loss functions belong to the family

LF (θ,X) = 1

n

n∑

i=1

wi

(
X̂i(θ) − Xi

)p + Ω(θ, θ0),

where θ is the vector of model parameters, Xi (i = 1, . . . , n) are the market quan-
tities to be fitted (prices or volatilities) as collected in a single vector X, and X̂i(θ)

(i = 1, . . . , n) denote their model counterparts. The weights, wi , are usually choosen
in order to assign more relevance to at-the-money options, whose bid-ask spreads
are typically smaller.3 Finally, some authors suggest that a more stable calibration
(although potentially inaccurate) is achieved by adding a function Ω(θ, θ0) which
penalizes large deviations of θ from the initial guess θ0.

These considerations lead one to define the following three LFs:

MSE(θ; X) ≡
1

n

n∑

i=1

(
X̂i(θ) − Xi

)2
, (14.16)

PMSE(θ; X) ≡
1

n

n∑

i=1

(
X̂i(θ) − Xi

X̂i

)2

, (14.17)

MAE(θ; X) ≡
1

n

n∑

i=1

|X̂i(θ) − Xi |. (14.18)

If we fit volatilities, we may proceed as follows:

(1) From option market prices, using the Black–Scholes formula, we compute the
corresponding market implied volatilities;

(2) From model option prices, as obtained by the HES or HESJ models, we compute
model implied volatilities by numerically inverting the Black–Scholes formula
with respect to the unknown volatility parameter.

Model calibration consists of finding a parameter set that minimizes a distance
between market and model implied volatilities. A set of model parameters should be
accepted only if price discrepancies do not exceed bid-ask spreads in order to avoid
possible arbitrages when pricing exotic products.

The role of the optimization algorithm is also crucial. Finding a global mini-
mum is rather difficult. Gradient-based optimizers are likely to return local minima
depending on the initial guess. On the other hand, the better performance of global

3 Possible choices consist in choosing as weigths the reciprocal of the bid-ask spread or even
the Black–Scholes vega.

360 14 Fixing Volatile Volatility

algorithms, such as simulated annealing, is counterbalanced by much longer calibra-
tion times. In this study, calibration has been carried out by minimizing the loss func-
tion through the nonlinear least squares algorithm lsqnonlin provided in the Matlab R©

Optimization Toolbox, which belongs to the class of local optimizers.

14.3 Implementation and Algorithm

Model calibration requires the numerical computation of theoretical option prices.
A powerful technique, which lately has gained considerable attention in finance, is
the Fast Fourier Transform (FFT) algorithm. This method allows for an accurate
and efficient computation of the inversion integral (14.13). The procedure works as
follows:

• Approximate the integral in (14.13) using the trapezoidal rule, with discretization
step η and upper integration limit given by a = Nη:

cT (k) ≈
e−zk

π

N∑

j=1

e−iη(j−1)kψT

(
η(j − 1)

)
η; (14.19)

• Divide the log-strike range [−b, b] using a regular grid spacing centered at ku =

0 (corresponding to an ATM option):

ku = −b +
2b

N
(u − 1), (14.20)

where u = 1, . . . , N ;
• Replace k in (14.19) with ku defined in (14.20):

c(ku) =
e−zku

π

N∑

j=1

e−i 2b
N

η(j−1)(u−1)eibη(j−1)ψT

(
η(j − 1)

)
η; (14.21)

• In order to improve the accuracy for large values of the step size η, we can incor-
porate Simpson’s weights in (14.21):

c(ku) =
e−zku

π

N∑

j=1

e−i 2π

N
(j−1)(u−1)eibη(j−1)ψ[η(j − 1)]

η

3

[
3 + (−1)j − δj,1

]
,

(14.22)
where δj,1 is the Kronecker delta function;

• The sum (14.22) is efficiently obtained by the FFT algorithm, which reduces
the number of operations from N2 to N ln2 N ; in particular the FFT algorithm
returns option prices on the assigned log-strike grid, k1, . . . , kn;

• The call option price for a given strike can be obtained by linear interpolation of
grid option prices computed in the previous step.

14.3 Implementation and Algorithm 361

14.3.1 Code Description

Functions and market data are stored in the folder HestonModels. Before running the
code, you must include this folder and its subfolders in the Matlab R© directory list.
To do so, select Set Path from the File Menu and follow the instructions.

The HestonModel folder contains the following subfolders:

1. Common: It contains the main routines for calibration and all functions which
are common to the different models;

2. BlackScholes: All BS-related functions;
3. Heston: All HES-related functions;
4. HestonJumps: All HESJ-related functions;
5. OptionData: Files with option quotes;
6. RatesData: Files with LIBOR rates and dividend;
7. Analysis: Results of the analysis.

Function day.m and function historical.m

These are the main routines for model calibration given the market data included in
“.txt” files. day.m calibrates the model on a single day.

1. It reads two “.txt” files containing option quotes and LIBOR rates respec-
tively. (The file names can be changed in the code.)

2. It calls the function calibrate.m which returns the estimated parameters, the
value of the loss function, model prices and deltas, model volatilities, CPU time.

3. (Optional) It plots prices and volatilities as a function of strike and maturity.

historical.m performs the same task as day.m, but it scans all “.txt”
file in a given folder and collects the results of calibration. The directory name can
be modified in the code.

Function compute.m

It computes prices, deltas, and BS implied volatilities for a given model over a set
of different strikes and maturities. Parameters of the model are passed as an input
argument.

1. It organizes data by grouping options with the same maturity;
2. It interpolates the LIBOR curve to calculate the spot rate for a given maturity;
3. It computes prices, deltas and BS implied volatility by calling the corresponding

function for each model.

362 14 Fixing Volatile Volatility

Function calibrate.m

It calibrates model parameters on a set of market data, corresponding to options
quotes with different strikes and maturities.

1. It organizes market prices by grouping options with similar maturity;
2. It interpolates the LIBOR curve to calculate the rate for each maturity;
3. It calculates market BS implied volatilities;
4. It minimizes a given loss function through the lsqnonlin.m built-in algo-

rithm provided by the Matlab R© Optimization toolbox and returns calibrated pa-
rameters;

5. (Optional) It plots the results.

Function implvol.m

It computes BS implied volatilities for a set of different strikes and maturities by
numerically inverting the Black–Scholes formula. Input prices can be either those
quoted in the market and passed as input arguments or computed within a specific
model.

1. It organizes data by grouping options according to the maturity;
2. It interpolates the LIBOR curve to calculate the rate for each maturity;
3. It selects the prices, for which the corresponding BS implied volatilities must

be computed. These can be market prices (input arguments) or those calculated
with a given model (the model and its parameters are optional arguments);

4. It computes BS implied volatilities by using the fzero.m built-in algorithm
provided by the Matlab R© Optimization toolbox;

5. It returns NaN or zero when no solutions are found.

Function lossfunction.m

It computes a given loss function given a vector of market data and their model
counterparts.

14.4 Results and Comments

We have calibrated and tested models BS, HES, and HESJ using a large set of Euro-
pean options written on the FTSE 100 stock index. This index is based on the share
prices of the 100 largest UK quoted companies. FTSE 100 Index Options are quoted
on the Euronext LIFFE market as index points and have an assigned value of £10
for each index point variation. They are among the most actively traded European-
style contracts in Europe. The analyzed sample period ranges from January 1, 2004
to April 23, 2004. The daily closing quotes for FTSE 100 options and FTSE index
come from end-of-day quotations provided by LIFFE. We have also recorded an-
nual continuous dividend yields on a daily basis. The interest rate curve refers to the

14.4 Results and Comments 363

LIBOR market. Each day, interest rate for 1, 2, 3, 4, 6, and 12 months time horizons
have been downloaded from the web site of the British Bankers’ Association BBA
(www.bba.org.uk). For intermediate maturities, rates have been obtained by linear
interpolation.

In order to rule out possible biases in the estimates, we apply the following filters:

1. We exclude all options with less than six days to maturity, in order to avoid
effects due to poor liquidity from the sample.

2. We drop all options that do not satisfy the no-arbitrage condition

cT (ln K) ≥ max
(
S(t)e−δ(T −t) − KP(t, T), 0

)
.

3. We consider the moneyness range [0.9, 1.1] in order to exclude not liquid secu-
rities such as deeply out-of-the money or in-the-money options.

4. We dropped options whose price is less than £2.5 (£0.5 is the price unit) to reduce
the impact of price discretization.

However, only a small percentage of the options have been excluded in this man-
ner.4 For each day in the sample period, we have calibrated the models BS, HES,
and HESJ by minimizing six different loss functions, namely those corresponding to
MAE, MSE, and PMSE on both option prices and implied volatilities. As an exam-
ple, we report the calibration output on April 14, 2004. Option quotes and LIBOR
rates are reported in Table 14.1 and Table 14.2, respectively. On this day, the closing
FTSE 100 index was 4485.4 and the simply-compounded dividend yield 3.592%. Be-
cause dividend payments are usually concentrated in particular periods of the year,
a more precise calibration requires an estimate of the term structure of dividend
yields rather than their annual average.

Estimated parameters are shown in Table 14.3 for each model and loss function.
The value of the different loss functions is listed in Table 14.4.

The BS model assumes a volatility parameter constant across all strikes and ma-
turities. Therefore, the optimal value returned by the calibration of the BS model
is a rough average of the market implied volatilities obtained inverting the Black–
Scholes formula. A plot of implied volatilities obtained by interpolating market data
is shown in Fig. 14.1. The implied-volatility surface exhibits a typical asymmetric
pattern with a slope declining for longer maturities. Note that slightly higher values
for the volatility parameter are obtained as we minimize the MAE/MSE functions
using market and model prices. In this case, the main contribution to the loss func-
tion is due to in-the-money options, which usually exhibit higher implied volatilities.
In contrast, using PMSE as a loss function or calibrating the model using implied
volatilities, weights assigned to different options are more homogeneously spread
over the entire moneyness range.

Calibration results for the HES model clearly indicate that volatility is not con-
stant. The instantaneous volatility and the long run volatility are respectively lower

4 For a more accurate study, one should disregard options whose last prices are quoted one
hour before the closing time. In this case, both the underlying asset and the option prices
are no more synchronous in that they are quoted at different times.

364 14 Fixing Volatile Volatility

Table 14.1. Option quotes on April 14, 2004

Strike Moneyness Maturity (days)

37 64 92 153 243
4125 0.9197 370.5 388.5 415.5 – 511.5
4175 0.9308 – 343.0 370.0 – –
4225 0.9419 322.5 299.5 326.5 444.5 434.5
4275 0.9531 276.0 256.5 285.0 – –
4325 0.9642 230.5 215.0 245.0 286.5 360.5
4375 0.9754 146.0 176.5 207.0 – –
4425 0.9865 107.5 140.5 170.0 214.5 290.0
4475 0.9977 74.5 108.5 138.5 – –
4525 1.0088 49.0 81.5 109.5 153.0 226.0
4575 1.0200 29.0 58.5 83.5 – –
4625 1.0311 16.5 40.0 61.5 104.5 172.5
4675 1.0423 8.5 27.0 44.5 – –
4725 1.0534 4.5 16.5 32.0 67.0 127.5
4775 1.0646 (2.5) 9.5 22.0 – –
4825 1.0757 (1.5) 5.0 15.0 21.5 89.5
4875 1.0869 (1.5) (2.5) 10.0 – –
4925 1.0980 (0.5) (1.5) 6.5 – 62.5
4975 1.1092 – (0.5) 4.0 – –

Table 14.2. LIBOR rates on April 14, 2004

Maturity (months) O/N 1 m 2 m 3 m 4 m 6 m 9 m 12 m
LIBOR % 4.161 4.161 4.270 4.376 4.428 4.486 4.552 4.821

Table 14.3. Model parameters calibrated on April 14, 2004

Prices Implied volatilities

Model θ MAE MSE PMSE MAE MSE PMSE
BS σ 0.1424 0.1503 0.1145 0.1405 0.1448 0.1351
HES σ 0.1257 0.1208 0.1221 0.1255 0.1223 0.1181

σ̄ 0.2086 0.2086 0.1988 0.2086 0.2086 0.2086
α 3.2181 4.1118 3.6046 3.2074 3.2877 3.7844
β 0.6638 0.8299 0.6879 0.6910 0.6482 0.7919
ρ −0.7456 −0.7473 −0.6562 −0.6864 −0.7213 −0.6628

HESJ σ 0.1062 0.1047 0.0947 0.1086 0.1039 0.1064
σ̄ 0.1591 0.1789 0.1098 0.1780 0.1851 0.1819
α 1.3158 1.0437 3.0093 1.7365 2.4495 2.1548
β 0.1699 0.2542 0.1713 0.2276 0.2893 0.3460
ρ −0.8426 −0.7273 −0.3108 −0.6498 −0.7210 −0.6352
λ 0.0976 0.0910 0.2223 0.0933 0.1676 0.0719
mλ −0.3000 −0.3000 −0.2605 −0.2583 −0.1212 −0.3000
σλ 0.4755 0.5522 0.2254 0.3583 0.2219 0.4080

14.4 Results and Comments 365

Table 14.4. Loss functions for different targets and models on April 14, 2004

Loss Target BS HES HES/BS HESJ HESJ/BS
MAE Prices 1000.2706 224.5487 0.2245 162.6654 0.1626
MSE Prices 25080.5662 1385.3014 0.0552 624.4359 0.0249
PMSE Prices 1.9055 0.1333 0.0700 0.0894 0.0469
MAE Vol 1.5132 0.3194 0.2111 0.2786 0.1841
MSE Vol 0.0500 0.0032 0.0631 0.0022 0.0433
PMSE Vol 2.1222 0.0790 0.0372 0.0790 0.0372

Fig. 14.1. Black–Scholes implied volatilities.

and higher than the corresponding BS parameter. This is consistent with a positively
sloped term structure of volatilities, with the long run parameter approaching the
implied volatility of long-term options. The vol–vol coefficient (β) assumes positive
values in the interval [0.66, 0.83], depending on the chosen loss function. The mean
reversion coefficient (α) varies in the range [3.2, 4.1]. Such values correspond to an
average decay time toward the long run volatility of the order of 3 months. Finally,
the correlation coefficient is remarkable negative as expected for an equity index and
spans the range [−0.66,−0.75].

A sizeable value of (β) is needed to account for fatter tails in the underlying
distribution, as implied by the curvature of the volatility surface. On the other hand,
a too strong mean reversion parameter diminishes the impact of stochastic volatility
and flattens the smile. As a consequence, the condition which guarantees strictly
positive volatility, i.e. 2α�V /β2 ≥ 1, is not often satisfied by calibrated parameters.
One can impose an additional constraint in the calibration but this generally worsens

366 14 Fixing Volatile Volatility

the quality of fit.5 Therefore, HES model appears more compatible with the existence
of scenarios where the volatility vanishes and stays low for long periods.

By allowing for stochastic volatility, smile patterns are nicely mimicked. The
quality of fit is improved by almost one order of magnitude, as demonstrated by
the decrease in the loss function. However, a closer inspection reveals that the HES
model underestimates the slope and bowing across different moneyness, especially
for short maturities. This behavior has been generally observed over the whole range
of dates considered in this study.

By including jumps in the model, market prices/volatilities are more accurately
reproduced as a result of the larger number of parameters. The volatility surface
obtained by inverting the BS formula in order to match HESJ prices is shown in
Fig. 14.2. The contribution of jumps seems justified by the value of the jump fre-
quency (λ) and average size (mλ). Estimated parameters indicate that there is a
[10%, 18%] per year probability that a jump occurs, with an average amplitude of
about −25%. The negative sign of (mλ) indicates that the market considers extreme
downward movements of the underlying more probable that upward ones. The dis-
persion of the jump size (σλ) is of the order 25–45%, depending on the choice of the
loss function.

The HESJ model fits better also the implied volatility surface because the jump
component increases the kurtosis of the distribution and enhances the volatility smile.
Such effect is particularly evident for very short maturities where the curvature of

Fig. 14.2. Calibrated prices in the Heston model with jumps.

5 In this setting, α is close to 3.5 and β to 0.55.

14.4 Results and Comments 367

the volatility surface is very close to (or slightly overestimate) that implied by mar-
ket data. Furthermore, the impact of jumps is to compensate for part of the diffusive
volatility, whose dispersion parameter (β) assumes significantly lower values. We
also note that the condition of strictly positive volatility is almost always met after
unconstrained calibration. Finally, the correlation coefficient is unaffected or slightly
higher.

If we look at the loss function returned by calibration, we confirm the impres-
sion that HESJ outperform HES, at least for in-sample data problem). Results are
consistent with those found by Bates (1996) and Bakshi, Cao and Chen (1997), who
examined other equity indexes. The drawback is that the estimation of parameters
becomes more difficult and sensitive to the initial guess. In particular, the jump com-
ponent plays a relevant role when calibrating short-maturity options.

We have also examined the stability over time of the estimated parameters. De-
scriptive statistics are reported in Table 14.5, and Fig. 14.3 illustrates their time be-
havior for the HES and HESJ models. Results vary for different choice of loss func-
tions. In the figure, we plot results obtained by minimizing absolute errors on implied
volatilities. Long run volatility, which mainly depends on the long-term options, does
not change significantly in our range of dates and it is quite similar for the two mod-
els and different loss functions. On the contrary, the spot volatility is very “volatile”,
consistently with the hypothesis of the model, see panel (a). By direct comparison
with the rescaled FTSE 100 return, we deduce that volatility is negatively correlated
to underlying process, in agreement to correlation estimates. The mean reversion and
vol–vol parameters are shown in panels (b) and (c). Their absolute values are usu-
ally lower in the HES model, because part of the volatility is explained by the jump

Table 14.5. Parameter statistics over the 3-month period considered in this study

Model Par % MSE prices % MSE prices

Mean Std Max Min Mean Std Max Min
BS σ 0.144 0.017 0.123 0.186 0.134 0.019 0.110 0.179

TLF 1.795 1.443
HES σ 0.126 0.025 0.090 0.197 0.119 0.027 0.078 0.192

σ 0.177 0.028 0.134 0.245 0.188 0.029 0.152 0.261
α 2.930 1.049 1.000 5.000 3.341 0.289 2.700 4.625
β 0.444 0.238 0.079 0.989 0.580 0.193 0.204 0.998
ρ −0.629 0.077 −0.778 −0.431 −0.564 0.110 −0.745 −0.346
TLF 0.351 0.499

HESJ σ 0.114 0.022 0.085 0.180 0.107 0.024 0.072 0.181
σ 0.162 0.024 0.110 0.221 0.166 0.027 0.106 0.222
α 2.187 0.809 1.013 4.000 2.338 0.682 1.000 4.000
β 0.232 0.146 0.048 0.633 0.305 0.188 0.056 1.000
ρ −0.816 0.200 −1.000 −0.216 −0.738 0.154 −1.000 −0.396
λ 0.192 0.090 0.007 0.423 0.180 0.066 0.049 0.324
mλ −0.059 0.158 −0.300 0.125 −0.076 0.128 −0.299 0.112
σλ 0.109 0.123 0.001 0.396 0.151 0.118 0.001 0.399
TLF 0.250 0.417

368 14 Fixing Volatile Volatility

Fig. 14.3. Daily variation in the calibrated parameters of the Heston model.

component. However, the time series exhibits quite large variations, especially in the
HESJ case. This can be due to the fact that calibration is not straightforward (at least
for some dates) and global optimization should be preferred. Estimates also indicate
that the jump component is not negligible. The frequency of jumps is rather stable
and oscillating in the range [10–20%]. The average jump size is generally sizably
negative [−25%] but it sometimes turns to small values around [0–5%] when the
spot volatility is low.

Finally, we examine the effect of stochastic volatility on the option delta. In par-
ticular, sensitivities with respect to the spot price (such as delta, gamma) are easily
computed by formula (14.14). In Fig. 14.4, we plot the delta function for a short
and long maturity option, respectively. The delta computed in the HESJ model is
significantly higher than the one stemming from the standard BS model. This would
suggest that a higher amount of the underlying must be hold in order to hedge a short
position in the call. However, we recall that this hedging strategy can only neutralize
the uncertainty resulting from the stock randomness (at least, in a continuous trad-
ing framework). A comprehensive out-of-sample study of the hedging performance
of various SV models has been performed by Bakshi, Cao and Chen (1997) on the
S&P 500 index. These authors find that the Heston model outperforms the BS model
and that inclusion of a jump component deteriorates the hedging performance, de-
spite the good results obtained on the in-sample calibration. We conclude our treat-

14.4 Results and Comments 369

Fig. 14.4. Option delta for calibrated models.

ment by noticing that managing market risk affecting OTC derivatives requires for
the adopted model to be consistent with quoted market information. Specifically, a
model ought to fit liquid vanilla options to prevent the trader from arbitrage oppor-
tunities through vanilla option trading. In the general context of jump processes with
stochastic volatility, implied calibration techniques achieving this goal have been
studied by Galluccio and Le Cam (2006a, 2006b).

Exotic Derivatives

15

An Average Problem

Key words: Edgeworth expansions, Fourier and Laplace transforms, PDE, exotic
options

In this chapter, we describe and compare alternative procedures for pricing Asian
options. Asian options are written on an average. More precisely, prices of an un-
derlying security (or index) are recorded on a set of dates during the lifetime of the
contract. At the option’s maturity, a pay-off is computed as a deterministic function
of an average of these prices (see Carr and Schröder (2004)). As reported by Falloon
and Turner (1999), the first contract linked to an average price was traded in 1987 by
Bankers & Trust in Tokyo, hence the attribute “Asian”.

Asian options are quite popular among derivative traders and risk managers. This
is due to several reasons. Primarily, Asian options smooth possible market manipu-
lations occurring near the expiry date. They also provide a suitable hedge for firms
facing a stream of cashflows. This is the case, for instance, with commodity end-
users that are financially exposed to average prices.

The standard Asian contract is written on the arithmetic average of an asset price
or any financial index computed across weekly (or monthly) observations. It is a
common practice to price this contract computing this average on a set of values
recorded continuously over the option lifetime. In the standard Black–Scholes frame-
work, the average depends on a sum of correlated lognormal variates. Unfortunately,
the distribution of this sum does not admit a simple analytical expression. Conse-
quently, numerical approximations need to be developed for the purpose of pricing
arithmetic Asian options (Kat (2001)).

This case illustrates and compares the following methods:

(a) Approximation of the average distribution by fitting integer moments (Turnbull
and Wakeman (1991), Levy (1992), Milevsky and Posner (1998) and Ju (2002)).

(b) Computation of lower and upper bounds for the price (Rogers and Shi (1992)
and Thompson (1998)).

374 15 An Average Problem

(c) A numerical solution of a rescaled version of the pricing partial differential equa-
tion (PDE) (Rogers and Shi (1992) and Vecer (2001)).

(d) Numerical inversion of the Laplace transform (Geman and Yor (1993)).
(e) Numerical inversion of the double transform (Fusai (2004) and Cai and Kou

(2007)).

Other procedures presented in the literature, such as the eigenfunction method
in Linetsky (2004) or the perturbation approach in Zhang (2001), are not considered
here.

Our presentation is organized as follows: Sect. 15.1 introduces the Asian option
pricing problem; Sect. 15.2 describes the five methods mentioned above. Sect. 15.3
details our implementation; Sect. 15.4 illustrates numerical results and provides a
comparison among the examined methods.

15.1 Problem Statement

In the Black–Scholes framework, the risk-neutral process for the underlying asset is
a geometric Brownian motion satisfying

{
dSt = rS dt + σS dWt ,

S0 = s0,
(15.1)

where Wt is a standard Brownian motion, r is the continuously compounding rate of
interest, and σ is the instantaneous percentage price volatility. The arithmetic average
is computed over all prices spanning the period [0, T]. The pay-off of a continuously
monitored Asian option is given by

(s0AT /T − K)+,

where K is a strike price and
{

AT =
∫ T

0 exp
((

r − σ 2/2
)
t + σWt

)
dt,

A0 ≡ 1.

The Asian option fair price is given by

e−rT Ẽ0

(
s0AT

T
− K

)

+
= e−rT s0

T
Ẽ0(AT − �K)+,

where Ẽ0 denotes expectation under the risk-neutral probability measure and �K :=
(K/s0)T . The pricing problem consists in finding the distribution function of AT . In
the next section we discuss several approaches.

15.2 Model and Solution Methodology

We present five methods for pricing Asian options. A first method derives a prob-
ability distribution sharing a number of moments with the distribution of the price

15.2 Model and Solution Methodology 375

average. A second approach aims at calculating tight upper and lower bounds for the
exact option price. A third technique performs a numerical solution of the PDE sat-
isfied by the Asian option price. The last two methods use integral transforms (i.e.,
Laplace and Fourier, respectively) to simplify the pricing problem.

15.2.1 Moment Matching

This is the most popular approach for pricing Asian options. The average price is
assigned an arbitrary probability density function constrained to match a number of
moments of AT . Unfortunately, this method does not provide any assessment about
the approximation error.

The first step is to derive a closed-form expression for the moments of AT , as in
Geman and Yor (1993):

μn := Ẽ0
[
An

T

]
= n!

λ2n

{
n∑

j=0

d
(γ /λ)

j exp

[(
λ2j2

2
+ λjγ

)
T

]}
, (15.2)

where

d
(β)
j = 2n

∏

0≤i≤n

i �=j

[
(β + j)2 − (β + i)2]−1

,

(15.3)
λ = σ, γ =

r − σ 2/2

σ
.

The next step is to choose and fit an arbitrary density function to a number of selected
moments. Specifically, we considered lognormal, reciprocal gamma, and Edgeworth
series approximations.

Lognormal Approximation

Turnbull and Wakeman (1991) and Levy (1992) assigned a lognormal distribution to
the random variable AT , i.e., ln AT is normal with a mean m and variance v2. Due to
its simplicity, this approximation has gained popularity. Parameters m and v2 match
the mean and variance of AT . The Asian call option price is given by the modified
Black–Scholes formula

clog = s0em+v2/2−rT N (d1) − e−rT N (d2), (15.4)

where

m = 2 log μ1 −
1

2
log μ2 − log T ; v2 = log μ2 − 2 log μ1,

(15.5)
d1 =

ln s0/K + m + v2

v
, d2 = d1 − v.

376 15 An Average Problem

Edgeworth Series Approximation

The lognormal approximation only allows for fitting the mean and the variance of the
average. In order to fit the third and fourth moment as well, i.e., skewness and kur-
tosis of the average, Turnbull and Wakeman (1991) proposed to adopt a fourth-order
Edgeworth series expansion. The lognormal density flog(y; m, v2) with parameters
m and v2 is

flog
(
y; m, v2) = 1

√
2πv2y

exp

(
−

(ln y − m)2

2v2

)
, y > 0,

and then the fourth-order Edgeworth approximation fedg(y; m, v2) is given by

fedg
(
y; m, v2) = flog

(
y; m, v2) +

4∑

i=1

ki

i!
∂ iflog(y; m, v2)

∂yi
+ e(y), (15.6)

where ki is the difference in the ith cumulant between the exact distribution and the
approximate distribution, namely ki = χi(f) − χi(l), with

χ1(f) = μ1, χ2(f) = Ẽ0(AT − μ1)
2,

χ3(f) = Ẽ0(AT − μ1)
3, χ4(f) = Ẽ0(AT − μ1)

4 − 3χ2(f).

Once parameters m and v2 have been set according to expression (15.5), then k1 =
k2 = 0 in equation (15.6), and the approximate Asian option price is given by

cedg = clog+e−rT s0

T

[
−

k3

6

∂flog(y; m, v2)

∂y
+

k4

24

∂2flog(y; m, v2)

∂y2

]

y=T K/s0

, (15.7)

where clog is defined in formula (15.4).
The main problem of the Edgeworth series is that increasing the number of

matched moments does not guarantee an improvement in the resulting approxima-
tion. Since the distribution of AT is not univocally determined by its moments, the
approximation (15.6) may even lead to a negative-valued density.1 To solve this
problem, Ju (2002) considers the Edgeworth series for approximating the distrib-
ution of ln AT and he obtains a simple approximate price formula:

cju = clog + e−rT K

[
z1n(y) + z2

∂n(y)

∂y
+ z3

∂2n(y)

∂y2

]

y=ln(K/s0)

, (15.8)

where clog is given in (15.4), n(y) = n(y; m, v2) is the density of the Gaussian
distribution with mean m and variance v2 (given in (15.5))

1 Conditions under which the Edgeworth expansion is positive and unimodal are given in
Barton and Dennis (1952). A discussion in the context of Asian option is provided in Ju
(2002).

15.2 Model and Solution Methodology 377

n
(
y; m, v2) = 1

√
2πv2

exp

(
−

(y − m)2

2v2

)
,

and derivatives are computed as

∂n(y; m, v2)

∂y
= −

(y − m)

v2
n
(
y; m, v2),

∂2n(y; m, v2)

∂y2
=

(m2 − v2 − 2my + y2)

v4
n
(
y; m, v2).

The remaining coefficients are as follows:

z1 = −σ 4T 2
(

1

45
+

x

180
−

11x2

15120
−

x3

2520
+

x4

113400

)

− σ 6T 3
(

1

11340
−

13x

30240
−

17x2

226800
+

23x3

453600
+

59x4

5987520

)
,

z2 = −σ 4T 2
(

1

90
+

x

360
−

11x2

30240
−

x3

5040
+

x4

226800

)

+ σ 6T 3
(

31

22680
+

11x

60480
−

37x2

151200
−

19x3

302400
+

953x4

59875200

)
,

z3 = σ 6T 3
(

2

2835
−

x

60480
−

2x2

14175
−

17x3

907200
+

13x4

124700

)
,

x = rT .

Reciprocal Gamma Approximation

Milevsky and Posner (1998) proved that the stationary density for the arithmetic
average of a geometric Brownian motion is given by a reciprocal gamma density.
That is to say the reciprocal of the average AT /T is gamma distributed. Indeed,
these authors showed that

1

limT →∞ AT /T

has a gamma distribution, provided that condition r − σ 2/2 < 0 is satisfied. Conse-
quently, they suggest to approximate the distribution of AT /T by a gamma density
with parameters α and β. These parameters are chosen so as to match the first two
moments of s0AT /T

α =
s0

T

2μ2 − μ2
1

μ2 − μ2
1

, β =
(

s0

T

)2 μ2 − μ2
1

μ2μ1
.

The approximate Asian option price is given by

crg =
1 − e−rT

rT
s0G

(
1

K
; α − 1, β

)
− e−rT KG

(
1

K
; α, β

)
, (15.9)

378 15 An Average Problem

where G(x; α, β) is the gamma cumulative distribution

G(x; α, β) = 1

βŴ(α)

∫ x

0

(
u

β

)α−1

e−u/β du,

and Ŵ(z, a) =
∫ +∞
a

tz−1e−t dt is the incomplete gamma function.

15.2.2 Upper and Lower Price Bounds

Rogers and Shi (1992) and Thompson (1998) derived lower and upper bounds for
the Asian option price. For a lower bound, the idea is simple and powerful. Consider
the random variable

X =
s0

T

∫ T

0
e(r−σ 2/2)s+σWs ds − K.

The Asian option price is given by Ẽ0(X+). Using the iterated rule for conditional
expectations, the fact that X+ ≥ X, and the positiveness of X+, we have

Ẽ0(X+) = Ẽ0[Ẽ0(X+|Z)] ≥ Ẽ0[Ẽ0(X|Z)+],

for any conditioning variable Z. The accuracy of the lower bound Ẽ0[Ẽ0(X|Z)+]
can be estimated using

0 ≤ Ẽ0(X+) − Ẽ0[Ẽ0(X|Z)+] ≤
1

2
Ẽ0

[√
Var(X|Z)

]
.

The idea is to select Z making the variance on the right-hand side in the expression
above as small as possible. Rogers and Shi (1992) propose to set Z =

∫ T

0 Ws ds,
and provide an analytical expression to the lower bound clow = Ẽ0[Ẽ0(X|Z)+].
Thompson (1998) obtained the same lower bound with the simpler expression

c ≥ clow = e−r

∫ 1

0
s0eαt+σ 2t/2

N

(
−γ ∗ + σ t (1 − t/2)

1/
√

3

)
dt − KN

(
−γ ∗

1/
√

3

)
,

(15.10)
where the option maturity T has been standardized2 to 1. Here N (x) denotes the
standard normal cumulative function, and γ ∗ is the unique solution to the equation

∫ 1

0
s0 exp

(
3γ ∗σ t (1 − t/2) + αt +

1

2
σ 2(t − 3t2(1 − t/2)2)

)
dt = K. (15.11)

Computation of the value γ ∗ can be done rather quickly with standard root finder
routines (e.g., the bisection method).

The upper bound cup provided by Thompson (1998) is tighter than the one de-
rived by Rogers and Shi (1992). It reads as

2 For a general T , r and σ must be replaced by rT and σ
√

T , respectively.

15.2 Model and Solution Methodology 379

c ≤ cup

≡ e−r

∫ 1

0

∫ +∞

−∞
2vϕ(w)

×
[
a(T , x)N

(
a(T , x)

b(T , x)

)
+ b(T , x)ϕ

(
a(T , x)

b(T , x)

)]
dw dv, (15.12)

where ϕ(x) denotes the standard normal density function and the other parameters
are given as follows:

a(T , x) = s0 exp(σx + αT) − K(μT + σx) + Kσ(1 − T/2)x,

b(T , x) = Kσ

√
1

3
− T (1 − T/2)2,

μT =
1

K

(
s0 exp(αT) + γ

√
vT

)
,

vT = c2
T T + 2(Kσ)cT T (1 − T/2) + (Kσ)2/3,

cT = s0 exp(αT)σ − Kσ,

γ =
(
K − s0

(
eα − 1

)
/α

)/ ∫ 1

0

√
vT dT ,

v =
√

T ,

w = x/
√

T .

15.2.3 Numerical Solution of the Pricing PDE

The pricing problem for an Asian option can be formulated in terms of a two-
state-variable PDE (Wilmott, Dewynne and Howison (1993)). Using an appropriate
change of numéraire, Rogers and Shi (1992) and Vecer (2001) reduced the pricing
problem to a single-state-variable PDE. If ES

0 denotes the expected value under the
martingale measure PS defined by

dPS =
ST

s0erT
dP̃,

the Girsanov theorem ensures that

W S
t = Wt − σ t

is a Brownian motion under PS . The new measure corresponds to considering the
stock price as the numéraire of reference. Therefore, we can write

380 15 An Average Problem

e−rT Ẽ0

[(
s0AT

T
− K

)

+

]
= s0ES

0

[
(s0AT /T − K)+

ST

]

= s0

T
ES

0

[(
s0AT − KT

ST

)

+

]

= s0

T
ES

0 (YT)+,

where

Yt = s0At − KT

St

, y ≡ Y0 = −
KT

s0
.

The expected value ES
0 (YT)+ can be derived through the following steps:

1. Write the stock price dynamics under the martingale measure PS :

dS =
(
r + σ 2)S dt + σSt dW S

t . (15.13)

2. Compute the differential of the process s0At as

d(s0At) = St dt.

3. Applying Itô’s lemma to Y as a function of S and s0A delivers

dY = (1 − rY) dt − Yσ dW S
t .

4. As g(t, y) = ES
0 (Yt)+ is a price relative to the numéraire S, it is a PS-martingale,

therefore
ES

0 [dg] = 0. (15.14)

5. Combining this equation with the drift of g, as computed by Itô’s lemma, leads
to (

∂g(t, y)

∂t
+ (1 − ry)

∂g(t, y)

∂y
+

1

2
σ 2y2 ∂2g(t, y)

∂y2

)
dt = 0,

which simplifies to

−
∂g(τ, y)

∂τ
+ (1 − ry)

∂g(τ, y)

∂y
+

1

2
σ 2y2 ∂2g(τ, y)

∂y2
= 0 (15.15)

using the time change τ = T − t and with an abuse of notation g(τ, y) =
g(t + τ, y).

Equation (15.15) has initial condition g(0, y) = y+. Moreover, we can observe
that if s0 is relatively large compared to KT, the option will surely be exercised.
This observation helps us to set the upper boundary condition. Indeed, we have

g(τ, 0) = lim
y→0

1

r
+ e−rT

(
y − 1 −

1

r

)
=

1

r
− e−rT

(
1 +

1

r

)
.

For y → −∞ (i.e., when s0 → 0), we have the lower boundary condition

15.2 Model and Solution Methodology 381

g(T , y → −∞) = 0.

Consequently, the PDE must be solved for y < 0. When y ≥ 0, the Asian option will
be surely exercised at maturity, so that g(τ, y) = e−rT (y − 1 − 1/r). Unfortunately
the resulting PDE problem does not admit an analytical solution. It can be solved
using numerical techniques, such as finite differences or transform methods (e.g.,
Fourier and Laplace).

We implemented a finite difference Crank–Nicolson scheme on a finite domain
[0, τ]× [Ymin, 0]. A first step consists of designing a grid with J time steps of length
δτ and I space steps of length δY = −Ymin/I . The generic grid point (τj , Yi) is
defined by τj = jδτ for j = 1, . . . , J and Yi = Ymin + iδY for i = 1, . . . , I .
The next step is to compute approximate values for the function g and its partial
derivatives on the grid:

∂g

∂τ
(Yi,τj) ≃

gi,j+1 − gi,j

δτ
,

(1 − rY)
∂g

∂Y
(Yi,τj) ≃

(1 − rYi)

2

(
gi+1,j+1 − gi−1,j+1

2δY
+

gi+1,j − gi−1,j

2δY

)
,

1

2
σ 2Y 2

i

∂2g

∂Y 2
(Yi,τj)

≃
σ 2Y 2

i

4

(
gi+1,j+1 − 2gi,j+1 + gi−1,j+1

(δY)2
+

gi+1,j − 2gi,j + gi−1,j

(δY)2

)
,

where gij := g(Yi,τj). Substituting these expressions into equation (15.15) and de-
noting with hij the exact solution of the resulting finite difference scheme, we arrive
at

0 = −
hi,j+1 − hi,j

δτ
+

(1 − rYi)

2

(
hi+1,j+1 − hi−1,j+1

2δY
+

hi+1,j − hi−1,j

2δY

)

+
σ 2Y 2

i

4

(
hi+1,j+1 − 2hi,j+1 + hi−1,j+1

(δY)2
+

hi+1,j − 2hi,j + hi−1,j

(δY)2

)
.

Collecting similar terms together and defining

Ai = −
(1 − rYi)

4δY
+

σ 2Y 2
i

4(δY)2
, Bi = −

1

δτ
−

2σ 2Y 2
i

4(δY)2
, (15.16)

Ci =
(1 − rYi)

4δY
+

σ 2Y 2
i

4(δY)2
, Ei = +

1

δτ
−

2σ 2Y 2
i

4(δY)2
,

for i = 1, . . . , I − 1, we obtain

Aihi−1,j+1 + Bihi,j+1 + Cihi+1,j+1 = −Aihi−1,j − Eihi,j − Cihi+1,j .

This can be written in matrix notation as

Mhj+1 = Nhj + bj , (15.17)

382 15 An Average Problem

where h⊤
j = (h1,j , . . . , hI−1,j). Here matrices M and N are square tridiagonals of

order (I − 1) × (I − 1), namely:

M =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

B1 C1 0 · ·

A2 B2 C2
. . . ·

0 A3
. . . 0

·
. . .

. . .
. . . CI−2

· · 0 AI−1 BI−1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

N =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−E1 −C1 0 · ·

−A2 −E2 −C2
. . . ·

0 −A3
. . . 0

·
. . .

. . .
. . . −CI−2

· · 0 −AI−1 −EI−1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

Vectors bj take into account the boundary conditions at y = Ymin and y = Ymax = 0:

b⊤
j =

(
−A1 × (h0,j + h0,j+1), 0, . . . , 0,−CI−1 × (hI,j + hI,j+1)

)

=
(
0, . . . , 0,−CI−1 ×

[
2r−1 +

(
e−rjδτ + e−r(j+1)δτ

)(
Ymax − 1 − r−1)]).

The initial condition for the recursion (15.17) is hi0 = Y+
i . At each time step the

updated solution hj+1 is obtained through an LU decomposition implemented using
a tridiagonal solver, as we explained in the chapter on Basic Numerical Methods for
Partial Differential Equations.

15.2.4 Transform Approach

Geman and Yor (1993) and Fusai (2004) showed that it is possible to provide a simple
expression for a suitable transformation of the option price. In particular, Geman and
Yor obtained an analytical expression for the Laplace transform with respect to time-
to-maturity of the option. Fusai (2004) in turn obtained a simple expression for a
double transform (a Fourier transform with respect to the logarithmic strike, and a
Laplace transform with respect to the option maturity) of the Asian option price.

Laplace Transform

Geman and Yor (1993) noticed that a geometric Brownian motion is a time-changed
squared Bessel process. By using this property, these authors computed the Laplace
transform of the Asian option price with respect to the time variable.3 The Asian
option price can be expressed as

3 Lipton (1999) and Lewis (2002) obtain the same result by solving the PDE (15.15) using
the Laplace transform with respect to τ .

15.2 Model and Solution Methodology 383

cgy = e−rT

T

4S

σ 2
c(h, q). (15.18)

The Laplace transform C(λ, q) of c(h, q) with respect to variable h = σ 2T/4 can
be computed as

C(λ, q) =
∫ +∞

0
e−λhc(h, q) dh

=
∫ 1/(2q)

0 e−xx(μ−v)/2−2(1 − 2qx)(μ+v)/2+1 dx

λ(λ − 2 − 2v)Ŵ(1(μ − v)/2 − 1)
, (15.19)

with λ ∈ C and

v =
2r

σ 2
− 1, q =

σ 2

4S
KT, μ =

√
2λ + v2.

As discussed in Chapter 7: “The Laplace Transform”, the original function c(h, q) is
related to its Laplace transform through the Bromwich inversion integral

c(h, q) =
1

2πi

∫ a+i∞

a−i∞
eλhC(λ, q) dλ, (15.20)

with a greater than the right-most singularity of the Laplace transform.4 This integral
can be numerically evaluated by the Abate and Whitt (1992b) algorithm. First, the
inversion formula is approximated by the trapezoidal rule

c(h, q) ≈
eA/2

2h
Re

(
C

(
A

2h
, q

))
+

eA/2

h

∞∑

s=1

(−1)s Re

(
C

(
A + 2sπi

2h
, q

))
,

(15.21)
where Re(C(λ, q)) denotes the real part of function C(λ, q), and A = 2ah. Next,
the alternating series

∑∞
s=1(−1)sas appearing in the inversion formula (15.21) can

be efficiently approximated by the Euler sum

E(m, n) =
m−1∑

s=0

(
m

s

)
2−msn+s,

with

sn =
n∑

s=0

(−1)sas .

The resulting (Euler) algorithm follows. First, we compute the first n terms in the
series, i.e., sn. The algorithm then extrapolates a highly accurate estimate of the series

4 Given that the denominator of the Laplace transform in equation (15.19) is zero when
λ = 0, or when λ = 2 + 2v, being 2 + 2v > 0, a must be greater than 2 + 2v. This figure
is the right-most singularity of the Laplace transform.

384 15 An Average Problem

by means of additional m − 1 terms (namely, sn+1, . . . , sn+m−1). Consequently, the
numerical inversion requires n + m evaluations of the function as . It turns out that
accurate results are obtained by using quite rather few terms. For example, in the
numerical experiments we used m = 35, n = 15. On the contrary, a direct calculation
of the sum of the series would require more than 100,000 evaluations of function as .

Our VBA R© implementation of the numerical inversion algorithm provides accu-
rate results provided that the volatility term σ

√
T is relatively large, e.g. greater than

0.08, otherwise numerical problems arise during the computation of the integral term
in expression (15.19).

Double Transform

Fusai (2004) provided an alternative solution based on integral transforms. The Asian
option price can be written as

e−rT Ẽ0

(
s0AT

T
− K

)+
=

4s0e−rT +af k

σ 2T
c(k, h; af)

∣∣∣∣
k=ln(K

s0
σ2T

4)

h=σ 2T/4

. (15.22)

The double transform of c(k, h; af) is available in closed-form. This is computed as
the Fourier transform with respect to k, and the Laplace transform with respect to h,

L
(
F(c(k, h; af))

)
≡

∫ +∞

0
e−λh

∫ +∞

−∞
eiγ kc(k, h; af) dk dh

= C(γ + iaf , λ), (15.23)

where

C(γ, λ) =
4

σ 2λ21+iγ

Ŵ(iγ)Ŵ(
μ+v

2 + 1)Ŵ(
μ−v

2 − 1 − iγ)

Ŵ(
μ+v

2 + 2 + iγ)Ŵ(
μ−v

2)
, (15.24)

and μ =
√

2λ + v2. The complex gamma function can be computed by

Ŵ(z + 1) =
(

z + γ +
1

2

)z+1/2

e−(z+γ+1/2) (15.25)

×
√

2π

[
c0 +

c1

z + 1
+

c2

z + 2
+ · · · +

cN

z + N
+ ǫ

]

(see Press et al. (1992)). For γ = 5, N = 6, and suitable coefficients ci’s,5 the error
term is smaller than 2 × 10−10.

Expression (15.24) is obtained exploiting the expressions for the real moments
of AT given in Yor (2001). See also Cai and Kou (2007).

5 In particular, we have: c0 = 1.00000000019001, c1 = 76.1800917294715, c2 =
−86.5053203294168, c3 = 24.0140982408309, c4 = −1.23173957245015, c5 =
0.120865097386618 × 10−2, c6 = −0.5395239384953 × 10−5.

15.2 Model and Solution Methodology 385

The original function c(k, h; af) can be recovered using Laplace and Fourier
inversion integrals. If we denote by L−1 and F−1, the formal Laplace and Fourier
inverses respectively, we have

c(k, h; af) = L
−1(

F
−1(C(γ + iaf , λ); γ → k

)
; λ → h

)

= 1

2πi

∫ al+i∞

al−i∞

eλh

2π

∫ +∞

−∞
e−iγ kC(γ + iaf , λ) dγ dλ, (15.26)

where al is at the right of the largest singularity of the function C(γ, λ). Therefore
the function c(k, h) is given by

c(k, h) = eaf kc(k, h; af).

The numerical computation of the double inversion integral in equation (15.26) can
be performed by resorting to the multivariate version of the Fourier–Euler algo-
rithm presented in Choudhury, Lucantoni and Whitt (1994). This is the iterated one-
dimensional numerical inversion formula used to invert the Geman–Yor transform
mentioned above. Given the double transform C(γ, λ), we first numerically evalu-
ate the Fourier inverse with respect to γ , and then invert the Laplace transform with
respect to λ by using the numerical univariate inversion formula.

The Fourier inversion integral in (15.26) can be approximated by the trapezoidal
rule, with a step size Δf

c(k, h) = eaf kL−1

(
1

2π

Δf

+∞∑

s=−∞
e−iΔf skC(Δf s + iaf , λ)

)
. (15.27)

Setting Δf = π/k and af = Af /(2k), we have

c(k, h) = eAf /2
L

−1

(
1

2k

+∞∑

s=−∞
(−1)sC

(
π

k
s + i

Af

2k
, λ

))
.

Applying the inversion integral for the Laplace transform leads to

c(k, h) =
eAf /2

4kπi

∫ al+i∞

al−i∞
dλ eλh

+∞∑

s=−∞
(−1)sC

(
π

k
s + i

Af

2k
, λ

)
,

where al is at the right of the largest singularity of the function C(γ, λ). By substi-
tuting λ = al + iω in the last expression, we have

c(k, h) =
eAf /2+alh

4hk

∫ +∞

−∞
dω eiωh

+∞∑

s=−∞
(−1)sC

(
π

k
s + i

Af

2k
, al + iω

)
.

The integral in this expression can be approximated using the trapezoidal rule with
step size Δl = π/h and setting al = Al/(2h), with Al such that al is greater than the
right-most singularities. Finally, we obtain the desired expression

386 15 An Average Problem

c(k, h) ≈
e(Af +Al)/2

4hk

+∞∑

m=−∞
(−1)m

+∞∑

s=−∞
(−1)sC

(
π

k
s+i

Af

2k
,
Al

2h
+im

π

h

)
. (15.28)

Choudhury, Lucantoni and Whitt (1994) discuss the sources of error in the multidi-
mensional inversion algorithm described above, and propose methods of controlling
the resulting bias. In particular, parameters Af and Al turn out to be important for
controlling the discretization error. Numerical experiments not reported here suggest
the following choice for these two parameters: Af = Al = 22.4. By splitting each
of the above sums into a pair of sums with index ranging over the set of nonnega-
tive integers, the inversion formula displays sums in the form

∑∞
s=1(−1)sas , with

complex-valued coefficients as . The numerical inversion requires the application of
the Euler algorithm previously described twice, one for the Fourier inversion, the
other for the Laplace inversion. This results in (nf +mf)(nl +ml) evaluations of the
double transform. Consequently, the computational cost of the inversion is directly
related to this product. In our numerical experiments, we set mf = nf + 15 and
ml = nl + 15, and the choice of nf and nl has been set according to the volatil-
ity level. If σ

√
T is low (e.g., smaller than 0.1), we need to set high values for mf

and ml , for example no smaller than 300. As σ
√

T increases, we can reduce the
value of mf and ml with no loss of accuracy.

15.3 Implementation and Algorithm

We now detail our VBA R© implementation for all methods described in the previous
section. Table 15.1 reports the module names containing all functions.

Algorithm (Moment Matching)

1. Compute the nth moments of the average by function moment_n (see equation
(15.3)).

2. Compute the density approximation.
2a. Lognormal approximation (15.4) → function AsianCallLOG.
2b. Edgeworth approximation (15.6) → function AsianCallEdge. In partic-

ular, derivatives appearing in formula (15.6) can be computed using func-
tions Der1Logdens and Der2Logdens.

2c. Ju approximation (15.8) → function AsianCallJu.
2d. Reciprocal gamma approximation in (15.9) → function AsianCallRG.
Notice that the cumulative gamma function appearing in formula (15.9) is avail-
able in Excel, and could, in principle, be called for in a VBA R© code. However,
this function performs quite poorly. The user defined VBA R© function Dis-
tributionGamma constitutes an efficient alternative. This function requires
arguments A and B, both shape and scale parameters of the gamma distribution,
and the number, n, of Gaussian points used to integrate the gamma density. We
set n = 100.

15.3 Implementation and Algorithm 387

Table 15.1. List of main VBA R© functions

Module name Function Formula Sub-routines
mComplexFunctions Operations between complex numbers
mMomentsAverage moment_n (15.2) djbeta
mLog_RGamma AsianCallLOG (15.4) moment_n

moment_n
mLog_RGamma AsianCallRG (15.9) DensityRG

DistributionRG logdens,
mEdgeworth AsianCallEdge (15.7) Der1Logdens

Der2Logdens
momlog

mJu AsianCallJu (15.8) moment_n
GetGamma
IntegrateGamma

mLowerBound AsianLowerBound (15.10) FindGamma
IntLowerBound
phi, sqrtvarnt

mUpperBound AsianUpperBound (15.12) IntegrateSqrtvarnt
f_upper
f_uppervw
ltprice

mGemanYor AsianCallGY (15.21) lt_gemanyor
ltftasia

mDoubleTransform AsianCallDFLT (15.26) transformasia
infasia

Algorithm (Lower and Upper Price Bounds) The function AsianLowerBound
(Spot As Double, Strike As Double, rfT As Double, sigmaT
As Double, n As Integer, gmin As Double, gmax As Double,
gacc As Double) computes clow in equation (15.10). Note that the time to ma-
turity T does not appear as explicit argument of this function. Indeed, the argument
rfT is r × T , and the argument sigmaT is σ ×

√
T .

1. Compute the integral in expression (15.10) by using Gaussian quadrature
(Legendre). Therefore the integral is approximated by

∫ 1

0
f (x) dx =

n∑

i=1

wif (xi),

where the weights, wi , and the abscissa, xi , are computed by the function gau-
leg(x1 as Double, x2 as Double, n as Integer). The argu-
ments x1 and x2 are respectively the lower and upper limits of integration, and
n (n As Integer), is the number of points used in the discretization of the
integral. In the numerical experiments, we set n = 50.

2. In order to compute the integral (15.10) we need to find γ ∗, the solution of
equation (15.11). Again, the integral in expression (15.11) is computed using

388 15 An Average Problem

Gaussian quadrature and γ ∗ has been found by a bisection algorithm with the
function FindGamma(..., gmin As Double, gmax As Double,
gacc As Double). gmin and gmax are the values that bracket γ ∗ (in the
numerical experiments, we set them equal to −7 and 7). gacc fixes the stopping
criterion in the bisection algorithm (we set it equal to 0.0000001).

Computing the upper bound cup in formula (15.12) is done using the function
AsianUpperBound(..., n As Integer, m As Integer). Note that
time to maturity, T , does not appear as an argument of this function. Indeed the
argument rfT is r × T , and the argument sigmaT is σ ×

√
T . The double inte-

gral in expression (15.12) is approximated, first reducing the infinite domain to the
interval (L,U) (in the numerical experiments we set L = −5 and U = 5), and
using Gaussian quadrature. Computing weights and abscissas again by the function
gauleg, we get:

∫ 1

0

∫ +∞

−∞
f (x, y) dx dy ≃

∫ 1

0

∫ U

L

f (x, y) dx dy ≃
m∑

j=1

uj

n∑

i=1

wif (xj , yi).

In our numerical experiments we set n = m = 75.

Algorithm (Numerical Solution of the Pricing PDE) The numerical solution of
the PDE (15.15) is implemented by the function AsiaPDECN(...,
numspacestep As Integer, numtimestep As Integer), where
numspacestep and numtimestep are the discretization points in space and
time. (In the VBA R©, Ymin is set equal to −6.)

1. Using expression (15.16) fill in the diagonals of the iteration matrices M and N,
and set the initial condition.

2. Iterate for j = 1, . . . , J over time, and solve at each time step the linear
system, (15.17), exploiting the tridiagonal structure of the matrix. The solu-
tion of the linear system is computed by the function tridag(LowDiag,
diag, UpDiag, vecr, n As Integer), that takes the three diago-
nals (LowDiag, diag, UpDiag) as inputs, the vector (vecr) given by
Nhj + bj , and n, the number of elements in diag.

3. The VBA R© function returns a column vector with I elements, containing the
solution at points yi , corresponding to spot prices Si = −K/yi .6

In the numerical examples, we solved the PDE in the interval [Ymin = −6, 0],
and set I = J = 3000. Notice that the solution scales always with the square root
of time. Therefore, in the numerical experiments it is convenient to set the time to
maturity equal to 1, to replace the risk-free rate with rT , and the volatility coefficient
with σ

√
T .

6 Note that if we fix K we obtain solutions for different spot prices. Conversely, we can fix
S and find the solution for different strike prices, Ki = −Syi .

15.3 Implementation and Algorithm 389

Algorithm (Transform Functions) The numerical inversion of the transforms in
expressions (15.20) and (15.24) requires the use of complex calculus. For this pur-
pose, we have constructed the basic complex functions (available in the module
mComplexFunctions in the Excel file). In particular, we defined a complex num-
ber as a Variant array, with the first component being the real part, and the second
the imaginary part. As an example, the code for computing the difference of two
complex numbers is given here:

Function Csub(A As Variant, B As Variant) As Variant
Dim c As Variant
ReDim c(2)
c(1) = A(1) - B(1)’Compute the real part of the difference
c(2) = A(2) - B(2)’Compute the imaginary part of the difference
Csub = c’Returns an array containing the real and imaginary parts

End Function

The arguments A and B are complex numbers represented by vectors with two ele-
ments, containing respectively the real and the imaginary part. Csub returns a vec-
tor with two elements, containing the real and the imaginary part of the difference.
In a similar manner, we have defined the main operations among complex numbers,
adapting the C routines available in Press et al. (1992), pp. 948–950.

Inverting the Laplace Transform

The numerical inversion of the Geman and Yor formula (15.19) is performed by the
VBA R© function AsianCallGY(..., aa As Double, terms As
Integer, totterms As Integer, n As Integer). In particular:

1. In order to consider a constant integration domain in the integral (15.19), it is
convenient to set z = 2qx and to reduce the integral to the interval (0, 1). The
integrand appearing in formula is computed by the function ltprice.

2. The expression for the Laplace transform, formula (15.19), is given by the func-
tion lt_gemanyor. The integral has been computed using Gaussian quadra-
ture (Legendre) with n points (argument n in AsianCallGY).

3. The numerical inversion, including the Euler algorithm, is done within the func-
tion AsianCallGY. The numerical inversion requires the specification of the
free parameter A (aa as an argument of the VBA R© function). The Euler algo-
rithm requires assigning the parameters n (argument term), and n + m (argu-
ment totterms).

In the numerical experiments we have used n = 25, n + m = 36, and A = 18.4.

Inverting the Fourier–Laplace Transform

The numerical inversion of the double transform is computed by the VBA R© function
AsianCallDFLT(..., aaf As Double, termsf As Integer,
tottermsf As Integer, aa As Double, terms As Integer,
totterms As Integer) As Double. In particular:

390 15 An Average Problem

1. Complex function ltftasia computes the double transform (15.24) using the
function cgammln (that returns the log-gamma complex function according to
the Lanczos formula (15.25)).

2. Complex function transformasia returns formula (15.24).
3. Complex function infasia computes the inverse Fourier transform, i.e. ex-

pression (15.27).

In the numerical experiments we have used aaf = 22.4, termsf = 315,
tottermsf = 330, and aa = 22.4, terms = 55, totterms = 70.

15.4 Results and Comments

We compared the effectiveness of the alternative procedures described so far. The
first experiment was conducted under different sets of input parameters, as reported
in Table 15.2. The results are displayed in Table 15.3, where we use prices obtained
by the Monte Carlo simulation by Fu, Madan and Wang (1998) as our benchmark.
The product σ

√
T determines the accuracy of the method. For instance, Table 15.3

shows that moment matching methods deliver prices outside the band delimited by
the upper and lower bounds, a bias that is particularly clear in the case of the recip-
rocal gamma approximation. Interestingly, the lower bound provides an exact ap-
proximation up to the third digit to the figures delivered by PDE, Laplace transform,
and double transform methods. Case 4 is worth mentioning for the very narrow band
selected by lower bound (0.0559859 versus an upper bound 0.055989). The PDE
method delivers 0.055955, the Ju method provides 0.055984, the Laplace transform
results in 0.055984, and the double transform yields 0.055986. We remark that the
latter is the only value within the range of upper and lower bounds. Unfortunately,
this attractive feature of the double transform method fades away as the number
σ
√

T increases beyond the threshold 0.7. This has been confirmed by experiment
number 7.

Tables 15.4 and 15.5 provide a more precise comparison between alternative
methods.7 Specifically, we fix some parameters (e.g., option maturity = 1 year, spot

Table 15.2. Parameter set

Example s0 K r σ T σ
√

T

1 1.9 2 0.05 0.5 1 0.5
2 2 2 0.05 0.5 1 0.5
3 2.1 2 0.05 0.5 1 0.5
4 2 2 0.02 0.1 1 0.1
5 2 2 0.18 0.3 1 0.3
6 2 2 0.0125 0.25 2 0.3535
7 2 2 0.05 0.5 2 0.7071

7 These tables can be generated using the VBA R© macro Comparison() included in the
VBA R© module mComparison. An example is given in the sheet Comparison of the
Excel file PricingAsianOptions.xls.

15.4 Results and Comments 391

Table 15.3. Approximate prices for an Asian option under alternative numerical methods

Example MC LW LG RG ED PDE JU LT LFT UP
1 0.196 0.193 0.195 0.191 0.195 0.193 0.193 0.193 0.193 0.194
2 0.249 0.246 0.250 0.243 0.245 0.246 0.246 0.246 0.246 0.247
3 0.309 0.306 0.311 0.303 0.301 0.306 0.306 0.306 0.306 0.307
4 0.0565 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056
5 0.22 0.218 0.220 0.217 0.217 0.218 0.218 0.218 0.218 0.218
6 0.172 0.172 0.173 0.171 0.174 0.172 0.172 0.172 0.172 0.172
7 0.348 0.350 0.359 0.342 0.364 0.350 0.350 0.350 0.370 0.353

MC = Monte Carlo, LW = Lower Bound, LG = Moment Matching (Lognormal Approxima-
tion), RG = Moment Matching (Reciprocal Gamma), ED = Moment Matching (Edgeworth
Series Expansion), JU = Moment Matching (Normal Series Expansion), PDE = Numerical
Solution of the Pricing Partial Differential Equation, LT = Laplace Transform Method, LFT =
Laplace and Fourier Transform Method, UP = Upper Bound.

Table 15.4. Comparison of alternative Asian option pricing models (panel A)

K σ LW LG RG ED JU
90 0.05 13.72721 13.72721 13.72721 13.72721 13.72721
95 0.05 9.20317 9.20319 9.20303 9.20317 9.20317

100 0.05 4.72430 4.72553 4.72344 4.72430 4.72430
105 0.05 1.18748 1.18786 0.31599 1.18752 1.18762
110 0.05 0.07824 0.07680 0.00001 0.07829 0.07834
90 0.1 13.73246 13.73335 13.72723 13.73246 13.73244
95 0.1 9.28603 9.29086 9.22590 9.28603 9.28605

100 0.1 5.25444 5.26260 5.24864 5.25444 5.25451
105 0.1 2.29464 2.29627 1.64023 2.29464 2.29485
110 0.1 0.73012 0.72385 0.10461 0.73012 0.73060
90 0.3 15.23946 15.32305 14.67344 15.23946 15.24192
95 0.3 11.90191 11.98084 11.63274 11.90191 11.90290

100 0.3 9.05349 9.11390 9.00641 9.05349 9.05295
105 0.3 6.71327 6.74629 6.43541 6.71327 6.71197
110 0.3 4.85928 4.86279 4.06340 4.85928 4.85834
90 0.5 18.37067 18.62493 17.64425 18.37067 18.37986
95 0.5 15.62210 15.85178 15.28760 15.62210 15.62485

100 0.5 13.20052 13.39332 13.04198 13.20052 13.19738
105 0.5 11.09151 11.23974 10.80970 11.09151 11.08393
110 0.5 9.27337 9.37383 8.64116 9.27337 9.26323

MSE 0.00067 0.02200 0.10061 0.03173 0.00119
CPU time (s) 1 0 0 0 0
% Inside 100% 15% 0% 50% 55%

price s0 = 100, interest rate r = 10%), and vary both strike price K and percent-
age volatility σ (i.e., K = 90, 95, 100, 105, 110 and σ = 5, 10, 30, 50 percentage
points). Visual inspection of the output values suggests a number of considerations.

392 15 An Average Problem

Table 15.5. Comparison of alternative Asian option pricing models (panel B)

K σ PDE LT LFT UP
90 0.05 13.72721 n.a. 13.72721 13.72721
95 0.05 9.20303 n.a. 9.20317 9.20319

100 0.05 4.71147 n.a. 4.72430 4.72445
105 0.05 1.18679 n.a. 1.18754 1.18765
110 0.05 0.09275 n.a. 0.07828 0.07851
90 0.1 13.73193 13.74067 13.73246 13.73321
95 0.1 9.28309 9.28468 9.28604 9.28719

100 0.1 5.24968 5.25514 5.25448 5.25483
105 0.1 2.29442 2.29452 2.29478 2.29511
110 0.1 0.73483 0.73040 0.73035 0.73106
90 0.3 15.24001 15.24058 15.24058 15.24972
95 0.3 11.90252 11.90301 11.90301 11.90843

100 0.3 9.05437 9.05468 9.05468 9.05914
105 0.3 6.71464 6.71471 6.71471 6.71942
110 0.3 4.86128 4.86111 4.86111 4.86690
90 0.5 18.37623 18.37642 18.37642 18.40774
95 0.5 15.62749 15.62764 15.62764 15.65638

100 0.5 13.20598 13.20608 13.20608 13.23400
105 0.5 11.09731 11.09735 11.09735 11.12574
110 0.5 9.27975 9.27973 9.27973 9.31044

MSE 0.00103 0.00042 0 0.00103
CPU time (s) 4 95 58
% Inside 55% 55% 100% 100%

First, the Laplace transform method is unable to provide accurate results for small
values of σ

√
T due to instability occurring on the numerical inversion of the trans-

form. For instance, no value had been obtained with σ = 5%. The double transform
method allowed us to overcome this difficulty, and also delivers prices within the
two bounds. However, to obtain this level of accuracy, we need to compute the Euler
sum in the Fourier inversion with at least nf = nl = 300, for small values of σ

√
T .

This requires a high computational cost. If σ
√

T = 0.5, we may set nf = nl = 30
and obtain the figures reported in Table 15.5. A similar problem arises while solving
the pricing PDE numerically. For relatively small values of σ compared to the drift
term, the PDE loses its parabolic characteristics, and a much finer discretization (e.g.,
3000 × 3000) needs to be adopted to obtain a reliable value for the option price. Fur-
thermore, the two transform methods and the PDE method deliver prices accurate
up to the fourth digit. Finally, the reciprocal gamma approximation, for all values
of price volatility, is unable to provide estimates inside the bounds. The MSE row
reported in Tables 15.4 and 15.5 indicates the square root of the mean square error
between the standing column and the column corresponding to the double transform
method. The last row reports the CPU time8 (as expressed in seconds), and the per-

8 Numerical experiments were conducted on a PC equipped with a 1.70 GHz Pentium 4 R©

CPU and 256 MB of RAM.

15.4 Results and Comments 393

centage of times each model provides prices within the bounds. The MSE statistics
confirm the excellent accuracy of the lower bound approximation together with the
good quality of the PDE method and the upper bound. Edgeworth approximation per-
formed quite poorly compared to the lognormal approximation, showing that raising
the number of fitted moments does not necessarily provide a better approximation.
Much better results (lower MSE, comparable to the PDE method) are obtained with
the Ju approximation. However, it should be noted that the moment approximations
require very simple implementation and can be run in the shortest amount of time.

16

Quasi-Monte Carlo: An Asian Bet*

Key words: Monte Carlo, quasi-Monte Carlo, Asian options, basket options

We consider the problem of pricing Asian options on a basket of underlying assets.
Asian options are derivative contracts in which the underlying variable is the aver-
age price of given assets sampled over a period of time. Due to this structure, Asian
options display a lower volatility and therefore are cheaper than their standard Euro-
pean counterparts. They are very useful in the financial industry and are one of the
most popular path-dependent options today. The pricing of Asian options is compu-
tationally intensive and a great deal of literature explores this problem using various
combinations of analytical methods and simulation techniques.

This paper is a survey of some recent enhancements to improve efficiency when
pricing Asian options by Monte Carlo simulation. We present a comparison between
the precision of the standard Monte Carlo method (MC) and the stratified Latin
Hypercube Sampling (LHS). In particular, we discuss the use of low discrepancy
sequences, also known as Quasi-Monte Carlo method (QMC),1 and a randomized
version of these sequences, known as Randomized Quasi-Monte Carlo (RQMC).
The latter has proven a useful variance reduction technique for problems of up to
10 dimensions. We follow the pricing estimation procedures described by Imai and
Tan (2002) and Dahl and Benth (2002) exploiting a numerical procedure introduced
by Owen (2002). (See Benth et al. (2003) as well.)

Section 16.1 introduces the pricing problem in a Black–Scholes framework. Sec-
tion 16.2 exposes the methodology. Pricing Asian options has a nominal dimension
d = M × N , where M is the number of underlying assets and N is the number of
times price is recorded for the purpose of computing the price average. Both MC and
LHS approaches provide root mean squared errors of order O(n−1/2), where n is the
number of performed simulations, independently on the dimension d of the problem.

∗ by Piergiacomo Sabino.
1 See, for instance, Niederreiter (1992) for a detailed account on this subject.

396 16 Quasi-Monte Carlo: An Asian Bet

The RQMC method can produce errors with rates of order O(lnd−1(n)/n),
which, for a low dimension d , is a smaller figure than the one obtained with stan-
dard MC. Section 16.3 explains the algorithm in great detail. We generate the tra-
jectories of the underlying assets using the standard MC, the LHS and the RQMC
approaches. For each technique, simulation is carried out by exploiting the Princi-
pal Component Analysis (PCA) and the Cholesky decomposition of the covariance
matrix of the driving factors. These two approaches can be easily implemented with
a low computational effort relying on the properties of the Kronecker product. Sec-
tion 16.4 performs an experiment computing Asian option prices and reports the
corresponding root mean squared errors obtained by the three simulation techniques,
with each one implemented using either a PCA or a Cholesky decomposition. All
computations are performed in MATLAB R©.

16.1 Problem Statement

We introduce the problem of pricing Asian options in a Black–Scholes framework.
Risky assets dynamics are assumed to be driven by a multivariate geometric Brown-
ian motion under the risk-neutral probability, i.e.,

dSi(t) = rSi(t) dt + σi dWi(t), i = 1, . . . ,M. (16.1)

Here Si(t) denotes the ith asset price at time t , σi represents the corresponding
instantaneous return volatility, r is the risk-free continuously compounded interest
rate, and W(t) = (W1(t), . . . ,WM(t)) is an M-dimensional Brownian motion. The
Wi(t)’s satisfy the following properties:

E[Wi(t)] = 0,

Var[Wi(t)] = t,

Cov[Wi(t),Wk(t)] = ρikt,

where ρik represents the constant instantaneous correlation between Brownian mo-
tions Wi and Wk .

Recall that the covariance matrix R = (E[W(tl)W(tm)], l, m = 1, . . . , N) of
each Brownian motion in equation (16.1) is:

R =

⎛
⎜⎜⎝

t1 t1 . . . t1
t1 t2 . . . t2
...

...
. . .

...

t1 t2 . . . tN

⎞
⎟⎟⎠ .

We let Σ denote the covariance matrix depending on the correlation among the
Brownian motion whose elements are: (Σ)i,k = ρikσiσk, i, k = 1, . . . ,M , and de-
fine the global covariance matrix for the N -dim process ΣMN as:

ΣMN =

⎛
⎜⎜⎝

t1Σ t1Σ . . . t1Σ

t1Σ t2Σ . . . t2Σ
...

...
. . .

...

t1Σ t2Σ . . . tNΣ

⎞
⎟⎟⎠ .

16.1 Problem Statement 397

ΣMN is a block matrix obtained repeating Σ at each point of observation. This kind
of mathematical operation is known as Kronecker product, denoted as ⊗. As such,
ΣMN can be identified as the Kronecker product between R and Σ , R ⊗ Σ . The
Kronecker product reduces the computational complexity of the problem by enabling
operations on a (N×M,N×M) matrix using two smaller matrices which are N×N,

and M×M respectively (see Pitsianis and Van Loan (1993)). The Kronecker product
offers many other properties, some of which are listed below:

(a) Trace factorization. Tr(A ⊗ B) = Tr(A) Tr(B), where Tr(A) is the trace of the
squared matrix A, i.e. the sum of its diagonal elements.

(b) Compatibility with Cholesky factorization. If we let A, B and D be semi-definite
positive matrices, then D = (CAC⊤

A) ⊗ (CBC⊤
B) = (CA ⊗ CB)(CA ⊗ CB)⊤.

It follows that (CA ⊗ CB) is the Cholesky decomposition of D.
(c) Eigenvalues and eigenvectors. For A and B square, let λi be a member of

the spectrum of A, σ(A). Let xi
A be a correspondent eigenvector of λi and let

μj ∈ σ(B) such that x
j

B is a correspondent eigenvector. Then λiμj ∈ σ(A ⊗ B)

and xi
A ⊗ x

j
B is the correspondent eigenvector of A ⊗ B. To summarize, every

eigenvalue of A ⊗ B arises as a product of eigenvalues of A and B.

Solving equation (16.1), asset prices at observation times are given by

Si(tj) = Si(0) exp

[(
r −

σ 2
i

2

)
tj + Zi(tj)

]
, i = 1, . . . ,M, (16.2)

where ⎛
⎜⎜⎜⎜⎜⎜⎜⎝

Z1(t1)
...

ZM(t1)

Z1(t2)
...

ZM(tN)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

= C

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

ǫ1
...

ǫM

ǫM+1
...

ǫM×N

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

C is a decomposed matrix of ΣMN satisfying:

CC⊤ = ΣMN

and ǫ1, . . . , ǫMN are independent standard normal variates.
Possible choices for C include the Cholesky decomposition of ΣMN or a more

versatile and efficient approach based on the Principal Component Analysis, PCA.
An Asian option is a European derivative contract written on a basket of assets.

Its pay-off is given by the excess of a weighted average of historical prices of all
assets comprised in the basket over a strike price K . This average covers values
monitored on the time grid t1 < · · · < tN = T between the settlement day and the
contract maturity. The pay-off reads as

a(T) = max

{
M∑

i=1

N∑

j=1

wijSi(tj) − K, 0

}
, (16.3)

398 16 Quasi-Monte Carlo: An Asian Bet

where coefficients wij satisfy
∑

i,j wij = 1. European options with a pay-off func-
tion (16.3) are called Arithmetic Average options or Arithmetic Asian options. No
closed-form solution exists for their arbitrage-free price.

To price the Asian options using simulation, it is necessary to simulate the multi-
asset trajectories at each sampling time point as shown above. According to the
formulas introduced, the pay-off at maturity of an Arithmetic Asian option can be
written as:

a(T) = max{g(ǫ) − K, 0},
where

g(ǫ) =
M×N∑

i=1

exp

(
μi +

M×N∑

k=1

Cikǫk

)
(16.4)

and

μi = ln(wi1i2Si(0)) +
(

r −
σ 2

i1

2

)
ti2, (16.5)

with i2 = [(i − 1)/M] + 1, i1 = i − (i2 − 1)M , and [x] denotes the greatest integer
less than or equal to x.

The pricing of Asian options is thus, computationally cumbersome since the di-
mension of the problem is highly dependent on the number of underlying assets and
the times of observation.

The general Monte Carlo method, as in the case for Asian options, is known
to be useful when the dimensionality is large. In this case it is necessary to com-
pute N ×M realizations of the multidimensional process. However, the Monte Carlo
method requires a very high computational effort, which must be controlled by suit-
able computations to reduce the number of simulations as well as variance reduction
techniques to enhance its performance. In the following section we will illustrate
some of most recent approaches to improve its precision such as the use of the Latin
Hypercube Sampling and the low discrepancy sequences also known as Quasi-Monte
Carlo method.

16.2 Solution Metodology

We aim to provide a fast and efficient technique which improves the precision of the
general Monte Carlo method to price Asian option contracts. We recall that the crude
Monte Carlo approach can be be seen as a method to compute the following integral:

I =
∫

[0,1)d
f ∗(x) dx. (16.6)

According to the law of large numbers, the integral I , can be approximated by the
following quantity:

Î ≃ În =
1

n

n∑

i=1

f ∗(Ui), (16.7)

16.2 Solution Metodology 399

where (U1, . . . , Un) is a sample of independent uniformly distributed random vari-
ables in the hypercube [0, 1)d .

The actual problem consists of generating a sample of such random draws to
uniformly cover the whole hyper cube [0, 1)d . It is well known that the root mean
squared error (RMSE) of the standard Monte Carlo method is O(1/

√
n) and is in-

dependent on the dimension of the problem d. The cases of high values for d are
especially interesting in finance because of their various applications, including the
pricing of high-dimensional multi-factor path-dependent derivatives securities.

16.2.1 Stratification and Latin Hypercube Sampling

Stratified sampling is a variance reduction method for Monte Carlo estimates. It
amounts to partitioning the hypercube D = [0, 1)d into H disjoint strata Dh,
(h = 1, . . . , H), i.e., D =

⋃H
i=1 Dh where Dk ∩ Dj = ∅ for all j �= k, then

estimating the integral over each set, and finally summing up these numbers (see
Boyle, Broadie and Glasserman (1997) for more on this issue). Specifically, mutu-
ally independent uniform samples xh

1 , . . . , xh
nh

are simulated within a stratum Dh

and the resulting integrals are combined. The resulting stratified sampling estimator
is unbiased. Indeed

E[Îstrat] =

H∑

h=1

|Dh|

nh

nh∑

i=1

E
[
f

(
xh
i

)]

=

H∑

h=1

|Dh|μh

=

H∑

h=1

∫

Dh

f (x) dx = I,

where |Dh| denotes the volume of stratum Dh. Moreover, this estimator displays a
lower variance compared to a crude Monte Carlo estimation, i.e.,

Var[Îstrat] ≤
σ 2

n
.

Stratified sampling transforms each uniformly distributed sequence Uj = (U1j ,

. . . , Udj) in D into a new sequence Vj = (V1j , . . . , Vdj) according to the rule

Vj =
Uj + (i1, . . . , id)

n
, j = 1, . . . , n, ik = 0, . . . , n − 1, k = 1, . . . , d,

where (i1, . . . , id) is a deterministic permutation of the integers 1 through d . This
procedure ensures that one Vj lies in each of the nd hypercubes defined by the strat-
ification.

Latin Hypercube Sampling (LHS) can be seen as a way of randomly sampling
n points of a stratified sampling while preserving the regularity from stratification

400 16 Quasi-Monte Carlo: An Asian Bet

(see, for instance, Boyle, Broadie and Glasserman (1997)). Let π1, . . . , πd be inde-
pendent random permutations of the first n positive integers, each of them uniformly
distributed over the n! possible permutations. Set

Tjk = Ujk + πk(j) − 1

n
, j = 1, . . . , n, k = 1, . . . , d,

where πk(j) represents the j th component of the permutation for the kth coordi-
nate. Randomization ensures that each vector Tj is uniformly distributed over the
d-dimensional hypercube. Moreover, all coordinates are perfectly stratified since
there is exactly one sample point in each hypercube of volume 1/n. For d = 2, there
is only one point in the horizontal or vertical stripes of surface 1/n (see Fig. 16.1).
The base and the height are 1/n and 1, respectively. For d > 2 it works in the same
way. It can be proven that for all n ≥ 2, d ≥ 1 and squared integrable functions f ,
the error for the estimation with the Latin Hypercube Sampling is smaller than or
equal to the error for the crude Monte Carlo (see Koehler and Owen (1996)):

Var[ÎLHS] ≤
σ 2

n − 1
.

Figure 16.1 shows the difference between the distribution of 32 points generated with
the MATLAB R© functions lhsdesign and rand. For the LHS method we notice
that there is only 1 point (dotted points in Fig. 16.1) in each vertical or horizontal
stripe whose base is 1 and height is 1/32: it means that there is only vertical and
horizontal stratification.

Fig. 16.1. Comparison between 32 points drawn with LHS and standard Monte Carlo ap-
proaches.

16.2 Solution Metodology 401

16.2.2 Low Discrepancy Sequences

As previously mentioned, the crude MC method is based on a completely random
sampling of the hypercube [0, 1)d and its precision can be improved using stratifi-
cation or Latin Hypercube sampling. These two methods ensure that there is only
one point in each smaller hypercube fixed by the stratification as illustrated in Fig-
ure 16.1. At the same time, these techniques provide nothing more than the genera-
tion of uniform random variables in smaller sets.

A completely different way to approach the sampling problem is to obtain a de-
terministic sequence of points that uniformly covers the hypercube [0, 1)d and to
run the estimation using this sequence. Obviously, there is no statistical quantity that
may represent the uncertainty since the estimation always gives the same results.
The Monte Carlo method implemented with the use of low-discrepancy sequences is
called Quasi-Monte Carlo (QMC).

The mathematics involved in generating a low-discrepancy sequence is complex
and requires the knowledge of number theory. In the following, only an overview of
the fundamental results and properties is presented (for details see Owen (2002)).

We define the quantity D∗
n = D∗

n(P1, . . . , Pn) as the star discrepancy. It is a
measure of the uniformity of the sequence {Pn}n∈N∗ ∈ [0, 1)d and it must be stressed
that it is an analytical quantity and not a statistical one. For example, if we consider
the uniform distribution in the hypercube [0, 1)d , the probability of being in a subset
of the hypercube is given by the volume of the subset. The discrepancy measures
how the pseudo-random sequence is far from the idealized uniform case, i.e. it is a
measure, with respect to the L2 norm, of the inhomogeneity of the pseudo-random
sequence.

A sequence {Pn}n∈N∗ is called low-discrepancy sequence if:

D∗
n(P1, . . . , Pn) = O

(
(ln n)d

n

)
, (16.8)

i.e. if its star discrepancy decreases as (ln n)d/n.
The following inequality, attributed to Koksma and Hlawka, provides an upper

bound to estimation error of the unknown integral with the QMC method in terms of
the star discrepancy:

|I − Î | ≤ D∗
nVHK(f). (16.9)

VHK(f) is the variation in the sense of Hardy and Krause. Consequently, if f has
finite variation and n is large enough, the QMC approach gives an error smaller
than the error obtained by the crude MC method for low dimensions d . However,
the problem is difficult because of the complexity in estimating the Hardy–Krause
variation, which depends on the particular integrand function.

In the following sections we briefly present digital nets and the well-known
Sobol’ sequence which is the most frequently used low-discrepancy sequence to run
Quasi-Monte Carlo simulations in finance.

402 16 Quasi-Monte Carlo: An Asian Bet

16.2.3 Digital Nets

Digital nets or sequences are obtained by number theory and owe their name to
the fact that their properties can be recognized by their “digital representation” in
base b. Many digital nets exist; the most often used and efficient are the Sobol’ and
the Niederreiter–Xing sequences.

The first and simplest digital sequence with d = 1 is due to Van der Corput
and is called the radical inverse sequence. Given an integer b ≥ 2, any non-negative
number n can be written in base b as:

n =

∞∑

k=1

nkb
k−1.

The base b radical inverse function φb(n) is defined as:

φb(n) =

∞∑

k=1

nkb
−k ∈ [0, 1),

where nk ∈ {0, 1, . . . , b − 1} (Galois set).
By varying n, the Van der Corput sequences are constructed. Table 16.1 illus-

trates the first seven Van der Corput points for b = 2. Consecutive integers alter-
nate between odd and even; these points alternate between values in [0, 1/2) and
[1/2, 1). The peculiarity of this net is that any consecutive bm points from the rad-
ical inverse sequence in base b are stratified with respect to bm congruent intervals
of length b−m. This means that in each interval of length b−m there is only one
point.

Table 16.1 shows an important property which is exploited in order to gener-
ate digital nets since a computing machine can represent each number with a given
precision, referred to as “machine epsilon”. Let z = 0.z1z2 . . . (base b) ∈ [0, 1),
define Ψ (z) = (z1, z2, . . .) the vector of the its digits, and truncate its digital expan-
sion at the at the maximum allowed digit w: z =

∑w
k=1 zkb

−k . Let n = [bwz] =∑w
h=1 nhb

h−1 ∈ N∗, where [x] denotes the greatest integer less than or equal to x.
It can be easily proven that:

Table 16.1. Van der Corput sequence

N n base 2 φ2(n base 2) φ2(n)

0 000. 0.000 0.000
1 001. 0.100 0.500
2 010. 0.010 0.250
3 011. 0.110 0.750
4 100. 0.001 0.125
5 101. 0.101 0.625
6 110. 0.011 0.375
7 111. 0.111 0.875

16.2 Solution Metodology 403

nh = zw−h+1(z) ∀h = 1, . . . , w.

This means that the finite sequences {nh}h∈{1,...,w} and {zk}k∈{1,...,w} have the same
elements in opposite order. For example, in Table 16.1 we allow only 3 digits; in
order to find the digits of φ2(1) = 0, 5 we consider φ2(1)23 = 4 = 0n1 +n20 +n31.
The digits of φ2(1) are then (1, 0, 0) as shown in Table 16.1.

The peculiarity of the Van der Corput sequence is largely required in high dimen-
sions where the contiguous intervals are replaced by multidimensional sets called the
b-adic boxes.

Let b ≥ 2, kj , lj with 0 ≤ lj ≤ bkj be all integer numbers. The following set is
called b-iadic box:

d∏

j=1

[
lj

bkj
,
lj + 1

bkj

)
,

where the product represents the Cartesian product.
Let t ≤ m be a non-negative integer. A finite set of points from [0, 1)d is a

(t,m, d)-net if every b-adic box of volume b−m+t (bigger than b−m) contains ex-
actly bt points. This means that cells that “should have” bt points do have bt points.
However, considering the smaller portion of volume b−m, it is not guaranteed that
there is just one point.

A famous result of the theory of digital nets is that the integration over a (t,m, d)

net can attain an accuracy of the order of O(lnd−1(n)/n) while, restricting to (t, d)

sequences, it raises slightly to O(lnd(n)/n). The above results are true only for func-
tions with bounded variation in the sense of Hardy–Krause.

16.2.4 The Sobol’ Sequence

The Sobol’ sequence is the first d-dimensional digital sequence (b = 2) ever realized.
Its definition is complex and is covered only briefly in the following. Let {nk}k∈N∗

be the digital representation in base b = 2 of any integer n; the nth element Sn of the
Sobol’ sequence is defined as:

Sn =

(
+∞∑

k=1

nkVk2−k

)
mod 1,

where Vk ∈ [0, 1)d are called directional numbers. In practice, the maximum number
of digits, w, must be given. In Sobol’s original method the ith number of the sequence
Sij , i ∈ N, j ∈ {1, . . . , d}, is generated by XORing (bitwise exclusive OR) together
the set of Vkj satisfying the criterion on k: the kth bit of i is nonzero. Antonov
and Saleev (1980) derived a faster algorithm by using the Grey code. Dropping the
index j for simplicity, the new method allows us to compute the (i + 1)th Sobol’
number from the ith by XORing it with a single Vk , namely with k, the position of
the rightmost zero bit in i (see, for instance, Press et al. (1992)). Each different Sobol’
sequence is based on a different primitive polynomial over the integers modulo 2, or

404 16 Quasi-Monte Carlo: An Asian Bet

Table 16.2. Directional numbers

d P m Principal polynomial q

1 [1 1 1] [1 3] x2 + x + 1 2
2 [1 0 1 1] [1 1 5] x3 + x + 1 3
3 [1 1 0 1] [1 3 7] x3 + x2 + 1 3
4 [1 0 0 1 1] [1 1 3 13] x4 + x + 1 4
5 [1 1 0 0 1] [1 1 5 9] x4 + x3 + 1 4
6 [1 0 0 1 0 1] [1 1 5 13 17] x5 + x2 + 1 5
7 [1 0 1 0 0 1] [1 3 7 15 21] x5 + x3 + 1 5
8 [1 0 1 1 1 1] [1 3 3 11 25] x5 + x3 + x2 + x + 1 5
9 [1 1 0 1 1 1] [1 3 5 15 27] x5 + x4 + x2 + x + 1 5

10 [1 1 1 0 1 1] [1 3 5 15 31] x5 + x4 + x3 + x + 1 5

in other words, a polynomial whose coefficients are either 0 or 1. Suppose P is such
a polynomial of degree q:

P = xq + a1x
q−1 + a2x

q−2 + · · · + aq−1x + 1.

Define a sequence of integers Mk , by the qth term recurrence relation:

Mk = 2a1Mk−1 ⊕ 22a2Mk−2 ⊕ · · · ⊕ 2q−1Mk−q+1aq−1 ⊕
(
2qMk−q ⊕ Mk−q

)
.

Here ⊕ denotes the XOR operation. The starting values for the recurrence are
M1, . . . , Mq that are odd integers chosen arbitrarily and less than 2, . . . , 2q , respec-
tively. The directional numbers Vk are given by:

Vk =
Mk

2k
, k = 1, . . . , w.

Table 16.2 shows the first ten primitive polynomials and the starting values used to
generate the directional numbers for the 10-dimensional Sobol’ sequence.

16.2.5 Scrambling Techniques

Digital nets are deterministic sequences. Their properties ensure good distribution
in the hyper cube [0, 1)d , enabling precise sampling of all random variables, even if
they are very skewed. The main problem is the computation of the error in the esti-
mation, since it is difficult to compute and depends on the chosen integrand function.
To review, the crude MC provides an estimation with low convergence independent
on d and the possibility to statistically evaluate the RMSE. On the other hand, the
QMC method gives higher convergence, but there is no way to statistically calculate
the error.

In order to estimate a statical measure of the error of the Quasi-Monte Carlo
method we need to randomize a (t,m, d)-net and to try to obtain a new version of
points such that it still is a (t,m, d)-net and has uniform distribution in [0, 1)d .

16.2 Solution Metodology 405

This randomizing procedure is called scrambling. The scrambling technique per-
mutes the digits of the digital sequence and returns a new sequence which has both
the properties described above.

The scrambling technique we use is called Faure–Tezuka Scrambling (for a pre-
cise description see Owen (2002), Hong and Hickernell (2000)).

For any z ∈ [0, 1) we define Ψ (z) as the ∞ × 1 vector of the digits of z.
Now let L1, . . . , Ld be nonsingular lower triangular ∞ × ∞ matrices and let

e1, . . . , ed be ∞ × 1 vectors. Only the diagonal elements of L1, . . . , Ld are chosen
randomly and uniformly in Z∗

b = {1, . . . , b}, while the other elements are chosen in
Zb = {0, 1, . . . , b}. Y, the Faure–Tezuka scrambling version of X, is defined as:

Ψ (yij) =
(
LjΨ (xij) + ej

)
mod b.

All operations take place in the finite field Zb. Owen proved that, with his scrambling,
it is possible to obtain (see Owen (2003)):

Var[Î] ≤
bt

n

[
b + 1

b − 1

)d

σ 2,

for any twice summable function in [0, 1)d . These results state that for low dimension
d , the randomized QMC (RQMC) provides better estimation with respect to Monte
Carlo, at least for large n.

Figure 16.2 shows 32 points of the two-dimensional Sobol’ sequence (between
the first and the second coordinate) and its Faure–Tezuka scrambled version. It must

Fig. 16.2. Comparison between 32 Sobol’ points and their Faure–Tezuka scrambled version.

406 16 Quasi-Monte Carlo: An Asian Bet

Fig. 16.3. Comparison between 32 points drawn with the LHS and 32 scrambled Sobol’ points.

be noted that for both sequences there is only one point in each of all the subsets of
measure 1/n, and not only in the horizontal and vertical stripes as with the LHS. The
most important observation is that the scrambled version is still a low discrepancy
sequence. Figure 16.3 shows the difference between the former net and 32 points
generated with the MATLAB R© internal function lhsdesign.

16.3 Implementation and Algorithm

We illustrate the simulation procedure to compute the arithmetic Asian option price.
It must be stressed that Quasi-Monte Carlo estimations are dramatically influenced
by the problem’s dimension, since the rate of convergence depends on the parame-
ter d , as it can be seen in equations (16.8) and (16.9). Many studies and experiments
suggest that Quasi-Monte Carlo methods only be used for problem dimensions up
to 10 (see Boyle, Broadie and Glasserman (1997) for more on this issue). This con-
dition translates into a relationship between the number M of underlying assets and
the number N of monitoring times: M × N ≤ 10.

The pricing procedure consists of three main steps:

1. Random number generation by MC, LHS or RQMC.
2. Path generation.

Monte Carlo estimation.

The first step can be performed as follows:

1.1. (MC) Run MATLAB R© internal routine randn.m to sample independent stan-
dard normals.

16.4 Results and Comments 407

1.2. (LHS) Run MATLAB R© internal routine lhsdesign.m and sample indepen-
dent uniforms and use the inverse transform method to generate normal extrac-
tions.

1.3. (RQMC) Run function Sobol_Sequence.m and obtain 10-dimensional
Sobol’ sequences; then, perform Faure–Tezuka scrambling by running func-
tion scramble.m. The file Sobol_Sequence.m relies on two MATLAB R©

functions: GetDirNum.m and GetSob.m. The former returns directional
numbers as shown in Table 16.2; the latter delivers a Sobol’ sequence. We sug-
gest storing all generated points in order to reduce the computational effort.

The second step can be implemented by the following algorithm:

2.1. Define the parameters of the simulation.
2.2. Define the drift as in Eq. (16.5).
2.3. Create the N × N correlation matrix (R)l,k = (min(tl, tk); l, k = 1, . . . , N).
2.4. Define the correlation matrix Σ of M Brownian motions.
2.5. Perform either a PCA or the Cholesky decomposition on the global correlation

matrix ΣMN . This matrix is built up by repeating the constant block of correla-
tion Σ at all the times of observation.

The Cholesky decomposition of the global correlation matrix ΣMN can be calcu-
lated by launching the MATLAB R© code chol_decom.m. This function exploits
property b of the Kronecker product and uses the MATLAB R© internal routine
kron.m. PCA decomposition can be achieved by running the MATLAB R© routine
pca_decom.m which evaluates the eigenvalues and eigenvectors of R and Σ and
exploits property c of the Kronecker product.

The third step consists of running MATLAB R© functions asian_crude.m,
asian_lhs.m and asian_rqmc.m. This delivers two figures: (1) the expected
value stating the Asian option price; (2) the RMSE of the estimated price.

As stratification introduces correlation among random drawings, the last two
functions are based on the following “batch” method. The method consists of repeat-
ing NB simulations for B times (batches) and computing the average Asian price for
each batch, so the RMSE becomes:

RMSE =

√∑B
b=1(ā(0)b − ā(0))2

B(B − 1)
,

where (ā(0)1, . . . , ā(0)B) is a sample of the average present values of the Asian
option generated in each batch.

16.4 Results and Comments

We perform a test of all the valuation procedures described in the previous sec-
tion. Specifically, our experiments involve standard Monte Carlo, the Latin Hyper-
cube Sampling and Randomized Quasi-Monte Carlo by the Faure–Tezuka scrambled
version of the Sobol’ sequences. Paths are simulated by using both PCA and the
Cholesky decomposition as in Dahl and Benth (2002).

408 16 Quasi-Monte Carlo: An Asian Bet

Table 16.3. Input parameters used in the simulation

Si(0) = 100
K = 100
r = 2%
T = 1
σ1 = 30%
σ2 = 40%
ρij = 0 and 40% for i, j = 1, 2

Table 16.4. Correlation case. Estimated prices and standard errors

Standard MC LHS RQMC
PCA 8.291 (0.053) 8.2868 (0.0073) 8.2831 (0.0016)
Cholesky 8.374 (0.055) 8.293 (0.026) 8.2807 (0.0064)

Table 16.5. Uncorrelation case. Estimated prices and standard errors

Standard MC LHS RQMC
PCA 7.195 (0.016) 7.157 (0.013) 7.1696 (0.0017)
Cholesky 7.242 (0.047) 7.179 (0.022) 7.1689 (0.0071)

We consider an at-the-money arithmetic Asian option with strike K = 100, writ-
ten on a basket of M = 2 underlying assets, expiring in T = 1 year and sampled
N = 5 times during its lifetime. All results are obtained by using S = 81920 draw-
ings. Table 16.3 reports input parameters for our test. The nominal dimension of the
problem is M × N = 10 which is equal to the number of rows and columns of the
global correlation matrix ΣMN . All the experiments can be performed by launch-
ing the MATLAB R© file Pricing.m. Table 16.4 and Table 16.5 show results for
the positive correlation and uncorrelated cases respectively. Simulated prices of the
Asian basket options are in statistical accordance, while the estimated RMSE’s de-
pend on the sampling strategy adopted. Furthermore, from a financial perspective, it
is normal to find a higher price in the positive correlation case than in the uncorre-
lated one.

Based on these results, we can make the following conclusions:

1. RQMC method and the use of the Faure–Tezuka scrambling technique provide the
best estimation among all the implemented procedures for both the “Correlation”
and “Zero Correlation” cases. The correspondent RMSE’s are the smallest ones
with a higher order of convergence with the same number of simulations.

2. The Kronecker product is a fast and efficient tool for generating multidimensional
Brownian paths with low computational effort.

3. Relative to the standard Monte Carlo and LHS approaches, the use of scram-
bled low-discrepancy sequences provides more accurate results, particularly with
PCA-based method.

4. The accuracy of the estimates is strongly dependent on the choice between the
Cholesky or the PCA approach. In particular, independent of the simulation pro-

16.4 Results and Comments 409

cedure (MC, LHS or RQMC), when using PCA decomposition the estimates are
affected by a smaller sampling error (smaller standard error).

The methods presented can be viewed as a part of hierarchy of methods introducing
an additional level of regularity in inputs at the expense of complicating the estima-
tion errors. Some methods like stratified sampling fix the size of the sample, while
others leave flexibility. The levels of this hierarchy are crude MC (completely ran-
dom), LHS, QMC methods (completely deterministic). Based on the results reported
we can conclude that the use of randomized low discrepancy sequences leads to dra-
matic improvements and enhances the precision of the numerical computation of the
Asian option price. Furthermore the numerical results show that the performance of
the RQMC depends on the choice of the matrix C. In particular the Asian option
prices obtained with PCA-based path generations have smaller RMSE; however, its
precision critically depends on the structure of the covariance matrix. From a com-
putational point of view, the use of the Kronecker product provides a fast generation
of the multidimensional path considering both the PCA and the Cholesky decompo-
sition.

The order of convergence in the RQMC depends on the dimension d , and it gives
the best results up to d = 10. Unfortunately, as d increases, it becomes necessary
to consider a larger sample, limiting the benefit of the RQMC (see Boyle, Broadie
and Glasserman (1997), p. 1298). To face high-dimensional simulations, a different
approach, which goes beyond the purposes of this case, has been proposed by Owen
(1998) based on the Latin Supercube Sampling method.

17

Lookback Options: A Discrete Problem*

Key words: PDE, Monte Carlo simulation, transform method, discrete monitoring,
exotic option

The number of exotic options traded on the market has dramatically increased in the
last decade. Correspondingly, a large demand has come about for the development
of new, efficient, and fast methods for pricing these securities.

This case presents numerical and analytical methods for pricing discretely moni-
tored lookback options in the Black–Scholes framework. Lookback options are path-
dependent options. Their settlement is based on the minimum or the maximum value
of an underlying index as registered during the lifetime of the option. At maturity,
the holder can “lookback” and select the most favorable figure of the underlying as
occurred during this period. Since this scheme guarantees the best possible result for
the option holder, he will never regret the option payoff. As a consequence, a look-
back option is more expensive than a vanilla option with similar payoff function.
An important feature of this contract is the frequency of observation of the underly-
ing assets for the purpose of identifying the best possible value for the holder. Dis-
crete monitoring refers to updating the maximum/minimum price at fixed times (e.g.,
weekly or monthly). In general, a higher maximum/lower minimum occurs as long
as the number n of monitoring dates increases. As noted by Heynen and Kat (1995),
the discrepancy between option prices under continuous and discrete monitoring can
largely be due to the slow convergence of the discrete scheme to the continuous one
as the number n of monitoring dates increases. This figure is quantified in an order
of proportionality of 1/

√
n.

Closed-form solutions for continuous sampled lookback option prices have been
obtained by Conze and Viswanathan (1991) and Goldman, Sosin and Gatto (1979).
However, few papers have investigated the analytical pricing of discretely monitored
lookback options, see for example Nahum (1998). In this case, we present three alter-

∗ with Matteo Bissiri.

412 17 Lookback Options: A Discrete Problem

native approaches to the pricing problem under discrete monitoring of the underlying
index. The first method is analytical. It has been recently proposed by Atkinson and
Fusai (2004), who cast the pricing problem in terms of an integral equation. This
equation can be solved in closed-form. The second approach is numerical. It consists
of using finite difference methods for solving the pricing partial differential equation
(PDE). Solutions proposed in the literature (e.g., Wilmott, Dewynne and Howison
(1993)) obtain a PDE with two state variables (the asset price and its standing maxi-
mum/minimum value) whose solution is the option price. We instead show how the
pricing problem can be reduced to the computation of the distribution of the mini-
mum (maximum) by numerically solving the Black–Scholes PDE. This distribution
is then integrated, using for instance a quadrature rule, to obtain the lookback op-
tion price. As a third method, we consider the number computed by a Monte Carlo
simulation and compare it to the results obtained using the other two methods.

In Sect. 17.1, we describe lookback options and the way the pricing problem can
be formulated under discrete monitoring. In Sect. 17.2, we illustrate the first two
solution methodologies. Section 17.3 details the algorithms and the MATLAB R© im-
plementation. In Sect. 17.4, we finally provide some numerical results and compare
analytical to numerical approaches. We also empirically examine the convergence
rate to the continuous monitoring case.

17.1 Problem Statement

A lookback option can be structured as a put or call. The strike can be either fixed
or floating. We now consider two lookback options written on the minimum value
achieved by the underlying index during a fixed time window:

• A fixed strike lookback put: The payoff is given by the difference, if positive,
between the strike price and the minimum price over the monitoring period.

• A floating strike lookback put: The payoff is given by the difference between the
asset price at the option maturity, which represents the floating strike, and the
minimum price over the monitoring period.

Therefore floating strike options will always be exercised. We may formalize
the problem and assume that the underlying asset return evolves according to an
arithmetic Brownian motion

dXt = μ dt + σ dWt ,

starting at X0 = x. Then, the stock price at time t is given by St = S0 exp(Xt).
We assume that the minimum is monitored at equally spaced dates tj = jΔ,
(j = 0, . . . , n), with Δ denoting a fixed time period between consecutive monitoring
dates. We define mn as the minimum asset price return registered until time tn:

mn = min
s=Δ,2Δ,...,nΔ

Xs .

The payoff of a fixed strike lookback option is given by:

17.1 Problem Statement 413

(
ek − emn

)
+, (17.1)

where k is the logarithm of the strike price. It is natural to assume that the initial spot
price x is greater than k. The payoff for a floating strike lookback call option is

exn − emn . (17.2)

In order to price lookback options, we need to compute the distribution law of
mn. This task requires computing the conditional expectation

P0,x(mn > l) = E0,x(1(X0>l,X1>l,...,Xn>l)), (17.3)

where

1(x>l) =
{

1, x ≥ l,
0, x < l.

The price of the lookback put with fixed strike can be then computed by noting that,
for x > k, we have

E0,x

(

ek − emn
)

+ =
(

ek − ex
)

+P0,x(mn = x) +
∫ k

−∞
euP0,x(mn ≤ u) du

=
∫ k

−∞
euP0,x(mn ≤ u) du. (17.4)

Similarly the price of the floating strike call option requires the computation of the
expected value E0,x(extn − emn). For a just issued lookback option we have m0 = x,
so that we can write

E0,x

(

extn − emn
)

= E0,x

(

extn
)

− E0,x

(

emn
)

= ertnex − E0,x

(

emn
)

= ertnex −
(

ex − E0,x

(

ex − emn
)

+
)

.

Consequently, a formula for pricing a floating strike call option is given once the
price of a fixed strike lookback call is available. Lookback options on the maximum
can be priced by exploiting the relation between maximum and minimum operators.

In order to evaluate the quantity P0,x (mn > l) in (17.3), it is convenient to
rewrite it in terms of iterated (conditional) expectations

P0,x(mn > l)

= E0,x(1X0>l,...,Xn>l)

= E0,x(1(X0>l,X1>l,...,Xn>l))

= 1(x>l)E0,x

(

1(X1>l) · · · E(n−2)�,Xn−2

(

1(Xn−1>l)E(n−1)�,Xn−1(1(Xn>l))
))

.

(17.5)

In next section we illustrate how to compute P0,x (mn > l) by using two ap-
proaches.

414 17 Lookback Options: A Discrete Problem

17.2 Model and Solution Methodology

17.2.1 Analytical Approach

The main result in Atkinson and Fusai (2004) consists of an analytical representa-
tion for the distribution function of the discrete minimum of the arithmetic Brown-
ian motion. These authors show that this quantity can be expressed as the inverse
z-transform of the solution to an integral equation. The numerical valuation of this
function is easy to perform. We now sketch the main steps involved in this computa-
tion.

Let us recursively define a function h(x, t, j −1) according to the backward rule:

h(x, t, j − 1) = Et,x

[

h
(

x + μΔ + σ(WiΔ − W(j−1)Δ), tj , j
)]

1(x>l), (17.6)

for all j = n, n−1, . . . , 1. Here j refers to the number of monitoring dates that have
already passed by. A terminal condition h(x, tn, n) = 1(x>l) is also imposed. Then,
P0,x(mn > l) is given by h(x, 0, 0). In particular, if we assume t is a monitoring date
and we define h(x, j) = h(x, tj , j), then we can look at h(x, 0). If, instead, t is not
a monitoring date, we can still use expression (17.7) as much as n − 1 times. Notice
that in the last step of the recursion we must replace Δ by τ = t1 − t .

By using the fact that the transition density of σ(WiΔ − W(i−1)Δ) is Gaussian
with zero mean and variance σ 2Δ and that h(x) is zero for x < l, we can write

h(x, j − 1) = E(j−1)Δ,x

[

h
(

x + μΔ + σ(WjΔ − W(j−1)Δ), j
)]

1(x>l)

= 1(x>l)

∫ +∞

−∞
h(x + μΔ + σξ, j)

e−ξ2/(2Δ)

√
2πΔ

dξ

=
∫ +∞

l−x−μΔ
σ

h(x + μΔ + σξ, j)
e−ξ2/(2Δ)

√
2πΔ

dξ, (17.7)

for x > l. We can further simplify this relation by defining f (z, j) = h(z, n − j)

and verify that this function satisfies a forward recursion

f (x, j + 1) =
∫ +∞

l−x−μΔ
σ

f (x + μΔ + σξ, j)
e−ξ2/(2Δ)

√
2πΔ

dξ, (17.8)

with a starting value f (x, 0) = 1(x>l). After changing variables according to the rule
x + μΔ + σξ = y, we obtain:

f (x, j + 1) =
∫ +∞

l

f (y, j)
e−(y−μΔ−x)2/(2σ 2Δ)

√
2πσ 2Δ

dy, (17.9)

i.e., f (x, j) solves an integral-difference equation. We can eliminate the dependence
on the index j by considering the z-transform of expression (17.9). This quantity is
obtained by multiplying both sides of (17.9) by qj , where q ∈ C, and then summing
over the index j = 1, Assuming that we are allowed to swap integral with
infinite summation, we obtain

17.2 Model and Solution Methodology 415

∞∑

j=1

qjf (x, j) = q

∫ +∞

l

K(x − μΔ − y)

∞
∑

j=1

qj−1f (y, j − 1) dy (17.10)

= q

∫ +∞

l

K(x − μΔ − y)

∞
∑

j=0

qjf (y, j) dy, (17.11)

where K(x) = exp(−x2/(2σ 2Δ))/
√

2πσ 2Δ. By defining

F(x, q) =
+∞
∑

j=0

qjf (x, j), (17.12)

and adding f (x, 0) to both sides of (17.11), we arrive at an integral equation for
F(x, q):

F(x, q) = q

∫ +∞

l

K(x − μΔ − y,Δ)F(y, q) dy + 1(x>0). (17.13)

This equation is to be solved on the interval l < x < ∞.
From a probabilistic viewpoint, considering the z-transform in (17.12) amounts

to playing coin tossing, where q is the probability of getting tails. If the first
heads comes out at the (j + 1)th tossing, the player wins the amount f (x, j).
F(x, q)/(1−q) therefore represents the expected payoff of the game. In other words,
this consists of randomizing the option maturity j according to the geometric distri-
bution (1 − q)qj . Compared to the case of fixed maturity, the randomized setting
allows us to simplify the pricing problem. From a recursive integral equation satis-
fied by function f (x, j), the problem is reduced to a more tractable integral equation
satisfied by function F(x, q): the dependence on parameter j has been eliminated.
Once F(x, q) has been computed, one can proceed backward to f (x, j) by using the
inversion formula for the z-transform:

f (x, n) = Z
−1(F (x, q)) = 1

2πρn

∫ 2π

0
F

(

x, ρeiu)e−inu du, (17.14)

defined for integer n ≥ 0 and where i is the imaginary number
√

−1.
Atkinson and Fusai (2004) provide an analytical solution to the integral equa-

tion (17.13). The distribution of the minimum can be expressed in terms of the
z-transform inverse of F(x, q) as:

P0,x(mn ≤ l) = 1 − eα(x−l)+βtnZ
−1

(

F

(

x − l
√

σ 2Δ/2
, q

))

, (17.15)

for l ≤ x, where

F(y1, q) =
{

Ae−α1y1 + g(α1)
∑∞

n=−∞ Ane+iμny1 , y1 > 0,
g(α1, q), y1 = 0,

(17.16)

416 17 Lookback Options: A Discrete Problem

and

A = 1

1 − qeα2
1

, (17.17)

An = L+(μn, q)

2μn(q)(μn(q) − iα1)
, (17.18)

g(α1, q) = 1

L+(iα1, q)
1(α1≥0) + L+(−iα1, q)

L(−ia1, q)
1(α1<0), (17.19)

μn(q) =
{ √

ln q + 2nπi if ℑ
(√

ln q + 2nπi
)

> 0,
−

√
ln q + 2nπi if ℑ

(√
ln q + 2nπi

)

< 0,
(17.20)

L+(u, q) = exp

{

u

πi

∫ +∞

0

ln(1 − qe−z2
)

z2 − u2
dz

}

, ℑ(u) > 0, (17.21)

L(u, q) = 1 − qe−u2
, (17.22)

α = − μ

σ 2
, β = αμ + α2σ 2

2
,

(17.23)

α1 = αδ, δ =

√

σ 2

2
Δ.

Here ρ = |q| < 1 and ℑ(q) denotes the imaginary part of q.
A numerical approximation to the z-transform inverse (17.14) can be found in

Abate and Whitt (1992a). These authors approximate the inversion integral using a
trapezoidal rule with a step size of π/n. The resulting figure is:

Z−1(F (x, q))

≈ f̃ (x, n)

= 1

2nρn

2n
∑

j=1

(−1)jℜ
(

F
(

x, ρej iπ/n
))

= 1

2nρn

{

F(x, ρ) + (−1)nF(x,−ρ) + 2
n−1
∑

j=1

(−1)jℜ
(

F
(

x, ρej iπ/n
))

}

,

where ℜ(q) is the real part of q and the sum term vanishes for n = 1. Abate and
Whitt (1992b) provide an upper bound to the discretization error

|f (z, n) − f̃ (z, n)| ≤ ρ2n

1 − ρ2n
.

For practical purposes, one can assume this bound to be approximately equal to ρ2n,
at least for small values of ρ2n. Hence, a computational accuracy of 10−γ would
require ρ = 10−γ /(2n).

The price of a floating strike put option (payoff (17.2)) requires evaluating the
integral in (17.4). This task can be pursued by replacing the solution (17.15) into
(17.4) and computing the integral. We obtain

17.2 Model and Solution Methodology 417

e−rtnE0,x

(
ek − emn

)+ = e−rtn
(
ek − eαx+βtnZ

−1(p(x, k, q, α))
)
, (17.24)

where

p(x, k, q, α)

=

⎧
⎪⎨
⎪⎩

A exp(k − αx) + g(α1, q)

×
∑∞

n=−∞ An
exp((1−α−iμn(q)/δ)k+(iµn(q)/δ)x)

1−α−iμn(q)/δ
, x > k,

g(α1, q)g((1 − α)δ, q)e(1−α)x, x ≤ k.

(17.25)

Finally, the pricing formula for a floating strike call option with payoff (17.1) is
given by

e−rtnE0,x

(
extn − emn

)
= ex

(
1 − e−rtn

)
+ e−rtnZ

−1(p(x, x, q, α)), (17.26)

and the expression (17.25) can be used to price floating strike options.

17.2.2 Finite Difference Method

The second method we consider is a numerical solution of the PDE satisfied by the
function h. According to the Feynman–Kac theorem, we can represent the iterated
expectations in (17.5) as the solutions of a sequence of PDEs. In particular, if t ∈
[tj−1, tj], then h(x, t, j − 1) defined in (17.6) solves the backward PDE

∂h(x, t, j − 1)

∂t
+

(
r − σ 2

2

)
∂h(x, t, j − 1)

∂x
+ 1

2
σ 2 ∂2h(x, t, j − 1)

∂x2

= 0, (17.27)

with updating conditions at the monitoring dates

h(x, t = tj , j − 1) = h(x, tj , j)1(x>0), j = n, n − 1, . . . ,

h(x, tn, n) = 1(x>0).

Given the solution of the PDE, we have h(x, 0, 0) = P0,x−l(mn > 0) and then the
distribution P0,x(mn > l) = h(x − l, 0, 0).

Between consecutive monitoring dates, we solve equation (17.27) using the
Crank–Nicolson scheme. This transforms problem (17.27) into a sequence of sys-
tems of linear equations, each one solved through a tridiagonal method using the
LU-decomposition. Details on this method are provided in Part I of this book. We
hereby summarize the main steps of the procedure:

1. We restrict the domain of the PDE to the interval [xmin, xmax] × [0, nΔ] and
construct a grid with space step δx and time step δτ ; the generic grid points are
xi = xmin + iδx, τl = lδτ , and the solution to the PDE at these points is denoted
by hil = h(xi, τl), i = 1, . . . , 2I + 1, l = 1, . . . , L.

418 17 Lookback Options: A Discrete Problem

2. The partial derivatives are approximated by finite differences at the grid points

∂h

∂t
(xi, τl) ≃ hi,l+1 − hi,l

δτ
,

(
r − σ 2

2

)
∂h

∂x
(xi, τl) ≃

(
r − σ 2

2

)(

hi+1,l+1 − hi−1,l+1

2δx
+ hi+1,l − hi−1,l

2δx

)

,

1

2
σ 2 ∂2h

∂x2
(xi, τl) ≃ σ 2

4

(

hi+1,l+1 − hi,l+1 + hi−1,l+1

(δx)2

+ hi+1,l − hi,l + hi−1,l

(δx)2

)

.

3. By inserting these expressions into equation (17.27) and denoting the exact so-
lution of the finite difference scheme by v(xi, τl), we have

−vi,l+1 − vi,l

δτ
+

(

r − σ 2

2

)(

vi+1,l+1 − vi−1,l+1

2δx
+ vi+1,l − vi−1,l

2δx

)

+ σ 2

4

(

vi+1,l+1 − 2vi,l+1 + vi−1,l+1

(δx)2
+ vi+1,l − 2vi,l + vi−1,l

(δx)2

)

= 0.

4. After collecting terms appropriately, we get to:

+avi−1,l+1 + bvi,l+1 + cvi+1,l+1 = −avi−1,l − (b − 2)vi,l − cvi+1,l,

where

a = − r − σ 2/2

4δx
+ σ 2

4(δx)2
,

b = − 1

δτ
− 2σ 2

4(δx)2
,

c = r − σ 2/2

4δx
+ σ 2

4(δx)2
,

and i = 2, . . . , 2I .
a. If i = 1, or i = 2I , we apply boundary conditions v1,l = 1 and v2I,l = 0.
b. If l corresponds to a monitoring date, we impose the updating condition

vi,l = vi,l1(iδx>0). (17.28)

Once the PDE is solved, the prices of lookback options are obtained through the
integral representation (17.4). This figure can be computed by using for example a
simple quadrature rule, such as the rectangular one

E0,x

(

ek − emn
)

+ = e−rtn

∫ k

−∞
euV (u, 0, n) du

≃
2I+1
∑

i=1

exmin+iδxv(xmin + iδx, 0, 0)δx, (17.29)

where spacing δx corresponds to the spatial step used in the solution of the PDE.

17.2 Model and Solution Methodology 419

17.2.3 Monte Carlo Simulation

Lookback options can be easily priced by standard Monte Carlo (MC) simula-
tion. The underlying price is simulated at all monitoring dates using the discretized
process

Si+1 = Sie
(r−0.5σ 2)Δ+σ

√
Δǫ

(j)
i ,

where ǫ
(j)

i is a standard normal random variate. We denote by S
(j)

i the spot price at
time ti = iΔ as sampled in the j th simulation. The corresponding minimum price
mp

(j)
i over the interval until time ti is updated at each monitoring date according to

the rule
mp

(j)

i = min
[

S
(j)

i ,mpi−1
]

,

with a starting condition m0 = x. The MC price for a lookback is given by the
average of the discounted payoff computed over J simulated sample paths. For a
lookback option with fixed strike K , the MC price is

e−rtn
1

J

J
∑

j=1

(

K − mp
(j)
n

)

+.

Similarly, for a floating strike lookback option, the MC price is

e−rtn
1

J

J
∑

j=1

(

S
(j)
n − mp

(j)
n

)

.

We have improved the accuracy of the computation by using standard antithetic vari-
ables.1

17.2.4 Continuous Monitoring Formula

When the minimum price is monitored continuously over time, i.e., the underlying
variable is m̃t = min0≤s≤t Xs , Conze and Viswanathan (1991) and Goldman, Sosin
and Gatto (1979) obtain the following pricing formulae for the floating strike option:

E0,x

(

exn − em̃n
)

= S0N (d2) − e−rtnmp0N
(

d2 − σ
√

tn
)

+ e−rtn

(

σ 2

2r

)

S0

[(

S0

mp0

)−2r/σ 2

N

(

−d2 + 2r

√

tn

σ 2

)

− ertnN (−d2)

]

,

and for the fixed strike option:

1 MC prices and standard errors have been obtained by repeating J simulations M times.
Thus, the effective number of simulations is J × M , with J = 100000 and M = 100.
This choice is due to the possibility of exploiting the vector structure in MATLAB R© and
reducing the computational time.

420 17 Lookback Options: A Discrete Problem

E0,x

(
ek − em̃n

)
+

= 1(K<mp0)

{

−S0N (−d) + e−rtnKN
(

−d + σ
√

tn
)

+ e−rtn

(

σ 2

2r

)

S0

[(

S0

K

)−2r/σ 2

N

(

−d + 2r

√

tn

σ 2

)

− ertnN (−d)

]}

+ 1(K≥mp0)

{

e−rtn(K − mp0) − S0N (−d2) + e−rtn
0 mp0N

(

−d2 + σ
√

tn
)

+ e−rtn

(

σ 2

2r

)

S0

[(

S0

mp0

)−2r/σ 2

N

(

−d2 + 2r

√

tn

σ 2

)

− ertnN (−d2)

]}

,

with

d2 = 1
√

σ 2tn

(

ln

(

S0

mp0

)

+ rtn + 1

2
σ 2tn

)

,

d2 = 1
√

σ 2tn

(

ln

(

S0

mp0

)

+ rtn + 1

2
σ 2tn

)

,

S0 = ex, K = ek, mp0 = em0 .

17.3 Implementation and Algorithm

MATLAB R© codes for this study are stored in the folder PDElookback.
The folder contains the following subfolders:

(1) af: contains analytical pricing functions and functions associated with the
z-transform;

(2) pde: contains PDE pricing function and the tridiagonal system solver;
(3) mc: contains MC tools for simulating the underlying process and pricing look-

back options;
(4) analysis: generates plots and tables.

We now detail the content of all functions included in the project.

Function af_lookbackcall_floatingstrike.m and function

af_lookbackput_fixedstrike.m

These functions compute the price of a lookback option by using formulas (17.24)
and (17.26), respectively. The inverse z-transform is inverted by numerical inte-
gration using the trapezoid rule, as described in the previous section. The function
Ztlookback.m computes the z-transform expression given in (17.16). It calls the
following auxiliary functions: An.m, Bn.m, mun.m, g.m, L.m and Lplus.m, de-
fined in (17.17)–(17.23). In particular the Lplus.m function computes the integral
in (17.21) by adaptive Lobatto quadrature (see MATLAB R© help).

17.4 Results and Comments 421

Function af_Fmin.m and function af_Fplus.m

These functions compute the analytical expression of the cumulative distribution of
the minimum, formula (17.15).

Function pde_lookbackcall_floatingstrike.m and function

pde_lookbackput_fixedstrike.m

These functions solve the PDE with a Crank–Nicholson scheme. The function
pde_tridiagonal_solver.m solves the tridiagonal linear system using LU
decomposition. The cumulative distribution as function of the initial spot price is
returned by the function pde_lookbackput_minimum.m. The price of a look-
back option is obtained by numerically integrating the cumulative distribution for the
minimum, as in (17.29).

Function mc_lookbackcall_floatingstrike.m and function

mc_lookbackput_fixedstrike.m

These two functions compute the price and standard error of a lookback option using
Monte Carlo simulation. The function mcsimulator.m simulates the underlying
spot and minimum price at a given set of dates. It repetitively calls the function
mcevolversolver.m which evolves the state of the underlying between two
dates.

The flowchart exhibited in Fig. 17.1 summarizes the structure of the project.

17.4 Results and Comments

In this section we discuss numerical results obtained by running the codes described
above. First, we investigate the bias of discrete monitoring vs. continuous monitor-
ing. Then, we compare the accuracy of the proposed numerical procedures. Finally,
we study the effect of changing parameter values on the option price. Numerical ex-
periments have been conducted under the following assumptions: (1) the infinite
series in formula (17.24) has been computed using 51 terms, i.e., for n running
from −25 to 25; (2) the PDE has been solved using a spatial discretization with
6000 points and a time discretization with 10,000 steps; (3) Monte Carlo simulation
has been performed over 107 simulations with antithetic variates.

In Fig. 17.2 we represent the distribution of the minimum (Eq. (17.15)) for a
varying number of monitoring dates. This illustrates how discrete monitoring can
have an important effect on the distribution of the minimum. This is confirmed in
Fig. 17.3, where we represent the price of a floating strike lookback option and vary
the number of monitoring dates under the hypothesis that the remaining parame-
ters have been set as follows: r = 0.1, σ = 0.2, t = 1, S0 = 100. In this case,
the continuous formula returns 19.6456. Assuming a year consists of 250 days and
that 10 monitoring dates are available (i.e., monitoring occurs approximately once a

422 17 Lookback Options: A Discrete Problem

Fig. 17.1. Flow-chart of the MATLAB R© functions.

month), the discrete formula gives 17.0007: a percentage difference about 15% with
respect to the continuous case. Using 10,000 monitoring dates (i.e., monitoring oc-
curs once every 36 minutes), the discrete formula returns 19.5523, a small but still
appreciable difference in respect to the continuous case. Theoretical results discussed
in Broadie, Glasserman and Kou (1999) show that the convergence to the continuous
case is very slow, that is in the order of C/

√
n, for a suitable constant C.

In Table 17.1, we report values for fixed strike put options. Both analytical so-
lution and MC simulation provide price estimates that agree up to the second-order
decimal. The PDE solution is reliable, but it does not appear as accurate as the others

17.4 Results and Comments 423

Fig. 17.2. Distribution function of the minimum for different monitoring dates.

Fig. 17.3. Price of the floating strike discrete lookback option varying the number of monitor-
ing dates. Parameters: r = 0.1, σ = 0.2, t = 1, S0 = 100.

424 17 Lookback Options: A Discrete Problem

Table 17.1. Fixed strike put option: comparison of analytical, PDE and MC solutions. Payoff:
(ek − emn)+

k An. sol. (17.24) PDE MC (s.e.)
Fixed strike lookback call
n = 5

ln(90) 1.76898 1.76538 1.76780 (0.01027)
ln(92.5) 2.60123 2.59985 2.59989 (0.01175)
ln(95) 3.69009 3.68045 3.68881 (0.01296)
ln(97.5) 5.05627 5.04561 5.05497 (0.01339)
ln(100) 6.69778 6.69775 6.69641 (0.01313)
ln(102.5) 9.13606 9.11677 9.13469 (0.01313)
ln(105) 11.57433 11.59579 11.57296 (0.01313)
ln(107.5) 14.01261 14.03138 14.01124 (0.01313)
ln(110) 16.45088 16.47121 16.44951 (0.01313)

n = 25
ln(90) 2.20212 2.19773 2.20282 (0.01026)
ln(92.5) 3.20671 3.20503 3.20793 (0.01104)
ln(95) 4.51040 4.49884 4.51154 (0.01117)
ln(97.5) 6.14766 6.13472 6.14826 (0.01078)
ln(100) 8.12410 8.12401 8.12437 (0.01043)
ln(102.5) 10.56238 10.54304 10.56264 (0.01043)
ln(105) 13.00065 13.02205 13.00091 (0.01043)
ln(107.5) 15.43893 15.45764 15.43919 (0.01043)
ln(110) 17.87720 17.89748 17.87746 (0.01043)

n = 100
ln(90) 2.43091 2.42611 2.42997 (0.01116)
ln(92.5) 3.51807 3.51621 3.51718 (0.01179)
ln(95) 4.91891 4.90647 4.91807 (0.01185)
ln(97.5) 6.66689 6.65302 6.66617 (0.01157)
ln(100) 8.78048 8.78030 8.77984 (0.01129)
ln(102.5) 11.21876 11.19932 11.21812 (0.01129)
ln(105) 13.65703 13.67834 13.65639 (0.01129)
ln(107.5) 16.09531 16.11392 16.09467 (0.01129)
ln(110) 18.53358 18.55376 18.53294 (0.01129)

Parameters: S0 = 100, σ = 20%, r = 5%, tn = 0.5, m0 = ln(S0).

do. This is due to the time discretization, a problem that does not present itself for
the other two methods, and to the presence of a discontinuity in the updating con-
dition (17.28) of the PDE. As discussed in the chapter on Basic PDEs, the presence
of discontinuities and the use of a Crank–Nicolson scheme can deteriorate the nu-
merical solution in a neighborhood of the discontinuity point. The problem is clearly
exacerbated as long as we increase the number of monitoring dates and therefore the
frequency at which discontinuities are introduced in the PDE.

In Table 17.2 we price floating strike call options. Numerical results confirm the
quality of the approximation, showing a perfect match up to the third digit, placing

17.4 Results and Comments 425

Table 17.2. Floating strike put option: comparison of analytical, PDE and MC solutions. Pay-
off: (extn − emn)

n An. sol. (17.26) PDE MC
Floating strike lookback call
σ = 0.05

5 3.49103 3.49093 3.49071 (0.00353)
25 3.85405 3.85367 3.85435 (0.00324)
50 3.95357 3.95300 3.95349 (0.00334)

100 4.02721 4.02638 4.02703 (0.00329)
150 4.06071 4.05557 4.06097 (0.00331)
250 4.09485 4.09350 4.09452 (0.00318)
500 4.12976 4.12783 4.12970 (0.00382)
∞ 4.21636

σ = 0.2
5 9.16679 9.16676 9.16522 (0.01875)

25 10.59311 10.59302 10.59317 (0.01535)
50 10.97201 10.97188 10.97095 (0.01721)

100 11.24949 11.24930 11.24846 (0.01676)
150 11.37495 11.33658 11.37632 (0.01624)
250 11.50235 11.50205 11.50181 (0.01630)
500 11.63214 11.63171 11.63338 (0.01834)
∞ 11.95198

σ = 0.5
5 20.21359 20.21352 20.21004 (0.06078)

25 23.29912 23.29902 23.29767 (0.05099)
50 24.10732 24.10719 24.10148 (0.05641)

100 24.69628 24.69608 24.69325 (0.05603)
150 24.96177 24.86390 24.96601 (0.05214)
250 25.23083 25.22973 25.22985 (0.05285)
500 25.50445 25.50104 25.50941 (0.06009)
∞ 26.17645

Parameters: S0 = 100, r = 0.05, tn = 0.5 years, m0 = ln(S0).

this method between the analytical and the MC algorithms. Table 17.2 illustrates, for
a fixed number of monitoring dates, the way rising volatility determines an increase
in the lookback option price. While the expected value of the terminal spot price is
unaffected by volatility, a higher volatility implies a higher probability of reaching a
smaller minimum and thus a greater value of the floating strike lookback call option.
In this table, we can also appreciate the importance of the discrete formula compared
to the continuous time monitoring result case.

In Fig. 17.4, we show the impact of interest rate over the arbitrage price of a
call option with floating strike and a put option with fixed strike (K = 100). The
remaining parameters are set at S0 = 100, σ = 20%, T = 1, N = 5. A higher
interest rate determines a larger positive drift and an increase in the probability that
the minimum coincides with the starting value x of the process. At the same time,
a higher interest rate determines a fall in the option price due to a discounting-related

426 17 Lookback Options: A Discrete Problem

Fig. 17.4. Lookback option price vs. interest rate level.

Table 17.3. CPU times: WH and MC solutions. Put payoff: (ek − emn)+, m0 = ln S0

Mon dates Analytical solution PDE Monte Carlo

Time (s) Price Time (s) Price Time (s) Price (s.e.)
10 1.14 7.41906 59.3 7.41901 25.8 7.41961 (0.01288)
50 1.76 8.50299 86.4 8.50287 119.3 8.50296 (0.01214)

100 3.71 8.78048 91.3 8.78030 235.7 8.77984 (0.01129)

Parameters: S0 = 100, σ = 0.2, r = 0.05, tn = 0.5.

effect. Given the structure of payoffs in (17.26) and (17.24), we see that the net result
is a higher price for the floating option and a lower price for the fixed strike option,
as is illustrated in Fig. 17.4.

Finally, Table 17.3 compares the CPU time for pricing fixed strike lookback op-
tions using the analytical solution, Monte Carlo simulation and numerical solution
of the PDE.

18

Electrifying the Price of Power*

Key words: electricity prices, simulation, equilibrium models, AR(1) model

In this chapter we explore modeling forward prices for electricity. Power exchanges
provide us with the one-day forward price for one megawatt-hour (MWh) of elec-
tricity for delivery at a specified location. The resulting figure is referred to as the
electricity “day-ahead price”.

Empirical evidence from most power markets across the globe show stylized
patterns of day-ahead price dynamics. Incidentally, these features appear to have no
direct counterpart in other financial security markets. Day-ahead price trajectories
usually display periodical trends, recurrent spikes, sharp mean reversions, and time
dependent volatility. It turns out that all these properties are a direct consequence of
peculiar phenomena featuring the supply and demand sides in the energy commodity
markets. In particular:
1. Almost all existing electricity markets reflect a chronic shortage of power for a

spot delivery due to the limited number of power plants compared to the standing
demand in the economies they serve.

2. The time requirement for increasing production capacity through new power
plants, coupled with scarce incentives to bear the risks of the long term invest-
ments, make the supply curve approximately time invariant.

3. The demand is quite stiff to price variations, yet its dynamics are quite sensitive
to weather conditions.

A typical market instance is depicted in Fig. 18.1.
From the graph, we can see that the equilibrium price can be extremely sensitive

to the variations affecting the demand for immediate use of power. What makes this
issue even more unique is that electricity cannot be stored, or it can be, but to a
very limited extent and at a high cost. This prevents markets from clearing expected

∗ with Paolo Carta.

428 18 Electrifying the Price of Power

Fig. 18.1. Demand and supply stack function in the ECAR power market.

shocks through cash-and-carry strategies, a fact that explains the recurrence of the
spiky behavior in the price dynamics.

Several papers have investigated power prices. Bhanot (2000), Knittel and
Roberts (2001), Botterud, Bhattacharyya and Ilic (2002), among others, examine the
empirical features of electricity price dynamics. Beamon (1998), Joskow and Kahn
(2001), Stevenson (2001) investigate the formation process of equilibrium prices,
while Manoliu and Tompaidis (2002) adopt a purely econometric approach based
on the Kalman filter. Deng (1999), Barlow (2002), De Jong and Huisman (2002),
Escribano, Peña and Villaplana (2002), Fiorenzani (2005), Huisman and Mahieu

(2003), and Lucia and Schwartz (2002) propose reduced-form models for the risk

neutral dynamics. In this respect, Roncoroni (2002) proposes a model reproducing

both trajectorial and statistical properties of electricity prices in major US power

markets.

In the present case, we examine the equilibrium model for the day-ahead price

introduced by Hinz (2003), and provide an explicit numerical implementation. In

our model, agents implement trading strategies involving a forward position to meet

supply requirements. The goal is to determine a forward price compatible with the

optimal trading behavior in the market.

Our development of the case is organized as follows: Sect.18.1 introduces the

model for both one-period and multi-period settings. Section 18.2 describes a partic-

ular instance of the multi-period model. Finally, Sect. 18.3 details the corresponding

implementation and reports results of a few numerical experiments to evaluate the

18.1 Problem Statement 429

effect of demand predictability over the regime-switching behavior of price dynam-

ics.

18.1 Problem Statement

18.1.1 The Demand Side

We consider a market where N agents act simultaneously as retailers as well as

producers of electricity. In a one-period setting, we focus on two dates: T0, which

represents current time, and T1, which indicates the delivery date. In this model,

T1 is set to the day following T0. As seen from time T0, the amount of energy Q̃i ,

that will be asked for from agent i at time T1, is described by a random variable,

whose distribution is assumed to be given exogenously. At time T1, agent i sells

each unit of energy at a fixed retail price pr
i . As a result, the sale provides a random

gross revenue

R(Q̃i) = pr
i Q̃i . (18.1)

18.1.2 The Bid Side

Agents can meet their demand in three ways. They may

(1) produce energy at time T1;

(2) buy forward contracts at time T0 for delivery one day later; or

(3) buy energy in the spot market at time T1.

Let us examine each of these opportunities in detail.

Internal Production

Agent i owns power plants delivering an overall generation capacity of ci MWh. The

variable cost per MWh is pv
i , whereas the general cost for operating the process is a

constant P
f

i :

Variable Unit Cost = pv
i ,

General Fixed Cost = P
f

i .

Forward Trading

There is a forward market that quotes prices for one-day delivery of one MWh. Our

goal is to provide a model for the equilibrium determination of the quoted day-ahead

price p in a competitive power market. The model assumes that an equilibrium price

p results from the sole interaction of the N market agents described. Moreover, spec-

ulators are not allowed to enter the day-ahead market. At time T0, agent i takes a

position in the day-ahead market. He can either buy or sell at the currently quoted

forward price p. A positive (resp. negative) traded quantity qi is interpreted as a net

430 18 Electrifying the Price of Power

purchase (resp. sale). Naturally, this quantity cannot exceed the maximal production

level in the rest of the economy Ci :=
∑

j �=i cj , nor can it be lower than the opposite

of his own production capacity ci in the period (that is the maximum the agent can

sell):

−ci ≤ qi ≤ Ci :=
∑

j �=i

cj ,

Forward Unit Cost = p.

Spot Trading

At time T1, agent i can either produce or buy in the spot market any demanded power

units exceeding the forward purchase qi . Production is preferred to buying in the mar-

ket only if the spot price p̃s exceeds the overall production costs per MWh, namely

pv
i + P

f

i /ci . Once production capacity is exhausted, accessing the spot market rep-

resents the only possibility to procure the residual capacity required by customers.

Spot Unit Cost = p̃s .

However, sometimes the forward purchased capacity qi exceeds the actual demand

Q̃i at time T1. In this case, the excess can be sold in the market at a “back-supply

price” pb, which is supposed have an upper bound defined as the smallest variable

unit cost across all production units:

Back-Supply Price = pb ≤ pv
i , for all i = 1, . . . , N.

18.1.3 The Bid Cost Function

The overall cost Pi borne by agent i for meeting a demand level Q̃i is given by the

sum of production, forward and spot purchase costs. Here we have developed three

cases:

Case (a). If demand Q̃i is met by the forward provision qi , i.e., Q̃i ≤ qi , agent

i bears the fixed production cost P
f

i , plus the forward purchase cost pqi paid out

at time T0, minus the revenue from reselling the residual capacity qi − Q̃i at the

back-supply price pb:

Pi

(
p, qi, Q̃i, p̃

s
)

= P
f
i + pqi − pb(qi − Q̃i), if Q̃i ≤ qi .

Despite the dependence on p̃s being fictitious, it is convenient to include it for con-

sistency with the two cases below.

Case (b). If demand Q̃i exceeds the forward provision qi , but can be met by capacity

from internal production (qi < Q̃i ≤ qi +ci), the agent then incurs the fixed produc-

tion cost P
f

i , plus the forward purchase cost pqi , plus the cost of the least expensive

choice of either producing the remaining electricity internally or buying it on the

18.1 Problem Statement 431

market.1 The final figure represents the minimum of either the variable production

cost pv
i or the spot price p̃s , which is multiplied by the quota of the demand that has

not been met by the forward purchase, i.e., Q̃i −qi . The resulting cost function reads

as follows:

P
(
p, qi, Q̃i, p̃

s
)

= P
f
i + pqi + min

{
pv

i , p̃
s
}
(Q̃i − qi), if qi < Q̃i ≤ qi + ci .

Case (c). If demand Q̃i exceeds the forward provision qi plus the maximal capacity

ci from internal production (qi + ci < Q̃i), the agent bears the fixed production

cost P
f

i , plus the cost of forward purchase done at time T0, plus the minimum value

between the variable production cost pv and the spot purchase cost p̃s over the entire

generating capacity ci , plus the spot purchase cost p̃s over the residual requested

capacity Q̃i − (qi + ci):

P
(
p, qi, Q̃i, p̃

s
)

= P
f
i +pqi +min

{
pv

i , p̃s
}
ci +p̃s(Q̃i −qi −ci), if qi +ci < Q̃i .

The resulting overall cost function reads as

P
(
p, qi, Q̃i, p̃

s
)

= P
f

i + pqi − pb(qi − Q̃i)+ + min
{
pv

i , p̃
s
}

min{(Q̃i − qi)+, ci}
+ p̃s(Q̃i − qi − ci)+ (18.2)

for all Q̃i ≥ 0. Here (x)+ denotes the maximum between x and 0. Combining formu-

lae (18.1) and (18.2), we obtain an expression for the Profit and Loss (P&L) function

for agent i:

Gi

(
p, qi, Q̃i, p̃

s
)

:= R(Q̃i) − Pi

(
p, qi, Q̃i, p̃

s
)

= pR
i Q̃i + pb(qi − Q̃i)+ − P

f

i − pqi

− min
{
pv

i , p̃s
}

min{(Q̃i − qi)+, ci} − p̃s(Q̃i − qi − ci)+.

Notice that this quantity depends on four key variables:

(1) the day-ahead price p prevailing in the market today;

(2) the position qi taken by agent i in the day-ahead market today;

(3) the demand of electricity Q̃i tomorrow; and

(4) the spot price p̃s of electricity tomorrow.

The first of these quantities is determined at time T0 by the joint interaction of the

market participants. The second term is a control variable for agent i, while the third

and the fourth variables are random as seen from current time T0. Notice that the

gain function G is a concave function with respect to the control variable qi , a key

property for the agent’s optimization program. Table 18.1 reports the set of model

variables and parameters.

1 If pv < p̃s , the internal production is preferred to a spot market purchase; if p̃s < pv ,

a procurement cost in the open market is lower than internal production and the residual

capacity is procured in the spot market. Notice that general costs are borne by the agent in

any case.

432 18 Electrifying the Price of Power

Table 18.1. Model variables and parameters

Symbol Quantity Nature

qi Forward purchase by agent i Control

ci Production capacity of agent i Fixed

Q̃i Demand for agent i Random

pr
i

Retail unit price Fixed

p Day-ahead forward price Random

p̃s Spot market price Random

pb Back-supply price Fixed

pv
i

Variable unit cost of production Fixed

P
f
i

General cost of production Fixed

18.1.4 The Bid Strategy

We summarize the model as follows. The market behavior results from the interac-

tion of N retailer-producers. Each agent is characterized by a production capacity

ci , a fixed operational cost P
f

i , a variable unit cost of production pv
i , and a retail

price pr
i . The next day, each agent faces a random demand Q̃i to be met by filling

any gap with respect to the energy capacity procured in the day-ahead market one

day before. The agent then makes a decision about the proper mix of internal power

generation, forward market intervention, and trading in the spot market based on the

random behavior of demand Q̃i , the spot price p̃s , the currently quoted day-ahead

price p, and the other parameters fixed by the market. The agent’s goal is to select

qi in such a way that the expected utility from the resulting net gain is maximized

under market clearing conditions. Let us put this informal reasoning into a precise

statement.

A market equilibrium is defined as a selection of day-ahead market purchases

(q∗
i)1≤i≤N for all agents, and a unique forward price p∗ such that each agent i max-

imizes his expected utility

Ui(p, qi) = E[Ui(Gi(p, qi, ·, ·))]

under market clearing conditions

q∗
i ∈ [−ci, Ci],

0 =

N∑

i=1

q∗
i .

Hinz (2003) shows that an equilibrium day-ahead price exists in the interval between

the back-supply price pb and the highest possible spot price defined as the supremum

sup p̃s < ∞, provided that

P
(
Q̃i ∈ [q, q̂], p̃s > pv

i

)
> 0, for all q ∈ (0, q̂) and all i = 1, . . . , N.

The uniqueness of this equilibrium point is an open question to date.

18.2 Solution Methodology 433

18.1.5 A Multi-Period Extension

A multi-period model is a sequence of single period models. The random input is a

(1 + N)-valued stochastic process, π̃ (n) = (p̃s(n), Q̃1(n), . . . , Q̃N (n))n≥1, where

p̃s(n) is the spot price of energy at time n, and Q̃i(n) is the capacity demanded to

agent i at the same time. Let F π̃ := (F π̃
n)n≥1 be the informational flow generated

by observing the process π̃ . An equilibrium is defined as an F π̃ -adapted process

(p∗(n), q∗
1 (n), . . . , q∗

N (n))n≥1 of a day-ahead price and individual net purchases in

zero net supply (i.e., 0 =
∑N

i=1 q∗
i (n) for n ≥ 1), such that each pair (p∗, q∗

i (n))

maximizes the ith agent expected utility at all times n ≥ 1 given all market informa-

tion available one time step before:

(
p∗, q∗

i (n)
)

= arg max
p≥0,qi∈[−ci ,Ci]

E[Ui(Gi(p, qi, ·, ·))|π̃ (n − 1)],

for i = 1, . . . , N , n ≥ 1. Maximization is intended path by path, i.e., for each

sample ω.

Finally, we wish to underline the most restrictive feature of this multiperiod ex-

tension. The above model assumes that agents take a one-day horizon in their deci-

sion making process. In particular, market prices are irrespective of expectations by

market participants that go beyond the delivery day of the traded security. A truly

multiperiod extension ought to take a comprehensive view about the impact of daily

decisions over the entire performance in the examined period. This would eventually

lead to a much more complex stochastic optimal control problem. The present setting

can be seen as an approximate solution of this issue.

18.2 Solution Methodology

We consider a multiperiod model where all agents are essentially the same and both

the spot price and demand are statistically independent. For the sake of clarity, we

shall proceed through steps.

• Model setting All agents share common variable cost pv , fixed cost P f , pro-

duction capacity c, utility function U , and conditional distribution of electricity

demand. These assumptions translate into the following set of conditions:

pv
i = pv

j = pv,

P
f

i = P
f

j = P f ,

ci = cj = c,

Ui(x) = Uj (x) = U(x),

Q̃i(n)|π̃ (n − 1) = Q̃j (n)|π̃ (n − 1) = Q̃(n)|π̃ (n − 1),

for all i, j = 1, . . . , N . Notice that demands Q̃i(n) and Q̃j (n) may assume

different values although their conditional distributions Q̃i(n)|π̃ (n − 1) and

434 18 Electrifying the Price of Power

Q̃j (n)|π̃ (n − 1) match. As long as the symbol Q̃(n)|π̃ (n − 1) denotes the com-

mon distribution, computations involving this latter are written with respect to

a fictitious random variable Q̃(n) which may be identified with any of the two

demand variables Q̃i(n) and Q̃j (n). The spot price p̃s is statistically indepen-

dent of the power demand Q̃i , it exceeds the variable unit cost pv with positive

probability, and it is also bounded from above by a constant with unit probability.

Finally, the conditional distribution P(Q̃(n) ≥ c|π̃ (n − 1)) is normal.

• Equilibrium price dynamics It can be proved that the equilibrium price reads

as

p∗(n) = pv − E
[(

pv − p̃s(n + 1)
)
+

]

+ E
[(

p̃s(n + 1) − pv
)
+

]
P
(
Q̃(n + 1) ≥ c|π̃ (n)

)
, (18.3)

where (y)+ := max{0, y}. These dynamics write as

p∗(n) − ãn

b̃n − ãn

= P
(
Q̃(n + 1) ≥ c|π̃ (n)

)
, (18.4)

where the random sequences ãn and b̃n are defined by

ãn = pv − E
[(

pv − p̃s(n + 1)
)
+

]
, (18.5)

b̃n = pv − E
[(

pv − p̃s(n + 1)
)
+

]
+ E

[(
p̃s(n + 1) − pv

)
+

]
. (18.6)

Since P is a probability, it takes value between 0 and 1, and expression (18.4)

shows that the day-ahead price p∗(n) ranges in the interval [ãn, b̃n].

• Price distribution It is supposed that we can monotonically transform the un-

conditional and conditional demand distributions in a way that the resulting pair

is jointly Gaussian. Specifically, we assume there is a strictly increasing function

f defined on the positive real axis such that the pair

(
f

(
Q̃(n + 1)

)
, E

[
f

(
Q̃(n + 1)

)
|π̃(n)

])

is normally distributed. It can be shown that the relative equilibrium day-ahead

price p̄∗(n) in equation (18.4) reads as

p̄∗(n) :=
p∗(n) − ãn

b̃n − ãn

= Φ0,1(M(n)), (18.7)

where Φμ,σ 2 is the cumulative normal distribution with a mean μ and variance

σ 2, and M(n) is a Gaussian variable defined by

M(n) =
E[f (Q̃(n + 1))|π̃ (n)] − f (c)√

Var(E[f (Q̃(n + 1))|π̃ (n)] − f (Q̃(n + 1)))
. (18.8)

This quantity describes the power demand dynamics as rescaled according to the

function f . Simple computations lead to the relative price distribution

18.3 Implementation and Experimental Results 435

fp̄∗(n)(x) =
φµn,σ 2

n
(Φ−1

0,1(x))

φ0,1(Φ
−1
0,1(x))

1(0,1)(x), (18.9)

where φµ,σ 2 is the normal probability density function with a mean μ and vari-

ance σ 2, μn = E(M(n)), and σ 2
n =Var(M(n)).

Combining expressions (18.7) and (18.9), we see that the probability density

function of the equilibrium day-ahead price p∗ is

fp∗(n)(x) =
fp̄∗(n)((x − ãn)/(b̃n − ãn))

b̃n − ãn

, for all x ∈ [ãn, b̃n].

The limit distribution as the equilibrium price approaches the boundary of the domain

[ãn, b̃n], reads as

lim
x→ã+

n

fp∗(n)(x) = lim
x→b̃−

n

fp∗(n)(x) =

{
∞ if σ 2

n > 1,

0 if σ 2
n < 1.

This shows that the asymptotic regime switching is driven by the demand predictabil-

ity.

The last ingredient for obtaining an explicit price distribution is a probability

distribution for the electricity spot price p̃s(n + 1).

18.3 Implementation and Experimental Results

To implement the price model (18.3), we need explicit dynamics for the spot price

p̃s and the demand processes Q̃i .

In order to have realistic spot price dynamics, we consider a simple mean revert-

ing model

dp̃s =
dμ(t)

dt
+ θ

(
μ(t) − p̃s

)
dt + σp dW(t), (18.10)

where W is a standard Brownian motion, and the trend function is given by

μ(t) = q − cos(ωt).

Here q = 2.3 is a constant value and ω = 2π/250 is the trend frequency. In our

experiment, the initial spot price was set to p̃s(0) = 0.8, and the instantaneous

volatility is σp = 0.5. The spot price dynamics (18.10) can be solved in closed form,

and boundaries ãn and b̃n can be computed through formulae (18.5) and (18.6). We

consider a demand process Q̃i to be driven by the joint effect of a common state

variable x, following a simple AR(1) process

x(n + 1) = Ax(n) + Bν(n + 1),

and a random walk w̃i which is idiosyncratic to the ith agent:

436 18 Electrifying the Price of Power

Q̃i(n + 1) = E exp
(
Cx(n) + Dw̃i(n + 1)

)
.

In these formulae, both ν and the wi’s are independent standard Gaussian variables,

constants A,B,C,D, and E are positive, and |A| < 1. The latter condition ensures

that the variance of the process is well defined as a positive real number. Letting

f = ln, we have that f (Q̃i(n+ 1)) = ln E +Cx(n)+Dwi(n+ 1) and E[f (Q̃i(n+
1))|π̃ (n)] = ln E + Cx(n).

Consequently, vector (f (Q̃(n + 1)), E[f (Q̃(n + 1))|π(n)]) is Gaussian for any

Q̃ = Q̃i . Plugging these expressions into formula (18.8), we get to

M(n) = ln E + Cx(n) − ln c√
Var(−Dwi(n + 1))

= Cx(n) + ln(E/c)

D
.

Process M(n) can be interpreted as power demand in log scale. This process is sta-

tionary, with moments

µ = E[M(n)] = log(E/c)

D
,

σ 2 = Var(M(n)) = C2B2

D2(1 − A2)
.

Constants C and D drive the demand predictability: the greater (resp. lower) the

value of D (resp. E), the more precise the demand forecast.

We performed numerical experiments under low demand predictability (i.e.,

σ 2 > 1) and high demand predictability (i.e., σ 2 < 1). Let constants C = B =
E = 1 be fixed throughout, and set c = 1.5 > E, meaning that a large part of

demand is met with in-house production.

In the low predictability case, we fixed D = 2.5, and obtained σ 2 ≃ 1.64.

Figure 18.2 exhibits a sample log-scaled demand path (M(n), n = 1, . . . , 500), and

the corresponding relative price path (Φ0,1(M(n)), n = 1, . . . , 500).

We see that prices vary rather wildly, and sometimes agents accept to pay prices

near to the upper bound b̃n. Indeed, low predictability can be interpreted as an ex-

pectation of power shortage. Notice that the relative price path displays the same

properties as those exhibited by the log-scaled demand path. Figure 18.3 plots the

(stationary) density function gn(x) in equation (18.9). In the high predictability

case, we set D = 5 and got σ 2 ≃ 0.41. Figure 18.4 reports a sample log-scaled

demand path (M(n), n = 1, . . . , 500), and the corresponding relative price path

(Φ0,1(M(n)), n = 1, . . . , 500).

In contrast with the previous case, here there is an increased tendency for prices

to jump upward. Again, both demand and price fluctuations are rather similar in

their behavior. Figure 18.5 shows the density function gn(x) in this case. Finally,

we sampled the spot price process according to equation (18.10). Combining paths

p̃s(n), ã(n), b̃(n), Φ0,1(M(n)) in formula (18.3) we derive a forward price trajectory

(p̃∗(n), n = 1, . . . , 500). Figure 18.6 exhibits these samples for the high and low

predictable cases.

18.3 Implementation and Experimental Results 437

Fig. 18.2. Logarithmic demand path (red line) and the corresponding relative price path (blue

line) under low predictability.

Fig. 18.3. Stationary density function.

438 18 Electrifying the Price of Power

Fig. 18.4. Logarithmic demand path (red line) and the corresponding relative price path (blue

line) under high predictability.

Fig. 18.5. Density function of gn.

18.3 Implementation and Experimental Results 439

Fig. 18.6. Sample spot price dynamics under high (solid line) and low (dotted line) predictabil-

ity. Upper and lower boundaries are depicted as smoothed solid lines.

19

A Sparkling Option*

Key words: energy prices, simulation, jump-diffusions, real options

19.1 Problem Statement

As a consequence of deregulation in the electricity market, a large number of utilities

and producers in many European countries have become increasingly exposed to the

risks of volatile energy prices. In this context, we consider the problem of dispatching

a power generation unit on the basis of prevailing electricity and gas spot prices.

When quoted in open markets, electricity prices are often set hourly with price

differences that can reach up to 40 times the opening level. These extreme fluctu-

ations reflect the increasing marginal costs of production following demand peaks

concentrated at some point in the day. Power markets are, in fact, day-ahead markets

where producers and consumers place, respectively, their bids and orders. Equilib-

rium comes from the intersection between the electricity supply and demand. How-

ever, for different reasons such as seasonality, unexpected outages, problems in trans-

mission and non-storability, there is a large probability of a short term disequilibrium

between demand and supply sides. The demand curve is quite inelastic in the short-

term, and shocks on the demand side (e.g., California during summer 2000, NordPool

during the Lillehammer Winter Olympics, and Italy during summer 2003) or in the

supply side can lead to huge upward price movements.

Nonstorability of electricity units does not allow a straightforward application of

arbitrage pricing theory commonly used in stock and bond markets. Moreover, the

characteristics of mean reversion, seasonality, and presence of spikes that commonly

affect electricity and gas prices have forced researchers in the field to consider new

∗ with Mariano Biondelli, Enrico Michelotti and Marco Tarenghi.

442 19 A Sparkling Option

stochastic processes for the purpose of describing the random dynamics of energy

prices and evaluating energy derivatives.

This case-study describes and implements a method to value a power generation

unit using a real options approach and the notion of a spark spread. This methodol-

ogy has been adopted by Gardner and Zhuang (2000), Hsu (1998) and Deng, John-

son and Sogomonian (1999), among others. Benth and Saltyte-Benth (2006) study

the approximation of spark spread option prices. The spark spread has developed in

energy markets as an intermarket spread between electricity and natural gas. This

spread is of interest because it determines the economic value of generation assets

that are used to transform gas into electricity. The spark spread measures the dif-

ference between the costs of operating a gas-powered generation unit, given by the

natural gas price, and the revenues from selling power at the market price. In day-to-

day running, the plant operator generally consumes a particular gas unit only if the

electricity spot price is greater than the cost of generating that unit. If the generation

profit is negative, it would be unreasonable to burn a valuable commodity such as

gas to obtain a low-valued product such as electricity. One would instead sell gas

in the market, buy power, and stop running the plant. As it is clearly explained in

Fiorenzani (2006c), the flexibility of turning the plant on and off, based on market

prices, represents a real option for the asset owner.

The amount of natural gas that a gas-powered plant requires to generate a given

amount of electricity depends on the asset’s efficiency. This figure is represented

by a heat rate Hr which is defined as the number of British Thermal Units (Btu)

according to the Anglo-Saxon measurement standard (or cubic meters m3 according

to the decimal metric measurement system) required to produce one megawatthour

MWh of electricity. If the heat rate is measured in Btu/kWh then a normal heat rate

ranges between 8,000 and 12,000. The lower the heat rate, the more efficient the

power plant.

Nowadays, the best heat rates are around 6,000. This performance can be

achieved by means of Combined Cycle Gas Turbine (CCGT) plants or with cogener-

ation plants. CCGTs represent a relatively new standard for power plants. Turbines

exhibit a series of major advantages with respect to previous plants, and are grad-

ually replacing oil-based plants. Their primary feature is a high return per fuel unit

(about 35%), although it can vary depending on the size of the generating unit. For

instance, a unit dispatching 120 MWh has an efficiency rate around 32%, whereas a

250 MWh unit delivers a 38% return. Second, compared to the traditional oil burn-

ing plants, these new plants reduce the environmental pollution quite significantly.

Finally, CCGT units are more effective in terms of ramp-up times (about 3 hours),

and consequently can better manage peaks and congestion problems. Indeed, CCGT

plants are rather insensitive to unexpected changes in the demand side and can be

used with no interruption.

From the heat rate, we can infer whether a power plant is a baseload or a peakload

unit, namely one that is exclusively employed to manage periods of high demand.

A plant with a heat rate greater than 10 MMBtu/MWh is commonly considered a

peakload unit. Moreover, a plant operator that uses natural gas should run the gener-

ation unit if it is worthwhile to do so, meaning that:

19.1 Problem Statement 443

Power Spot Price > Operating Hr × Natural Gas Spot Price.

The spark spread is then given by:

Spark Spread = Power Spot Price − Operating Hr × Natural Gas Spot Price.

When the spark spread is positive, the plant is run, and an operating profit is earned.

When the spark spread is negative, the plant is shut down. The plant owner then

makes a profit by selling natural gas and buying power in the market (instead of

burning valuable gas to produce low priced electricity). We model the profit of a

CCGT as an option with a payoff

π = max{E − Hr × G, 0}, (19.1)

where π denotes the profit per MWh, G is the spot price of gas, E represents the

spot price of electricity, and Hr is the heat rate expressed in gas units per MWh.

We now introduce the concept of Market Heat Rate (MHr). This quantity is given

by the ratio between the quoted prices of electricity and gas, namely:

MHr = E

G
.

Equation (19.1) can be recast as follows:

π = max

{(

E

G
− Hr

)

× G, 0

}

= max{(MHr − Hr) × G, 0}. (19.2)

This expression sheds light on the financial interpretation of a plant as an option:

the market heat rate represents the underlying asset and the operating heat rate is the

strike price. When the power plant is in-the-money, the market heat rate is above the

heat rate of the plant. An operator can take advantage of this situation and exercise

the option by selling power and buying gas at the market spot price. Conversely, if

the market heat rate goes below the operating heat rate, the operator shuts the plant

down without incurring into any loss.

The analogy between a power plant and a financial option turns the problem

of evaluating a power plant into the one of pricing a strip of spark spread options

(Fiorenzani (2006a)). In other words, the gas power plant is seen as a portfolio of

call options written on gas and electricity spot prices. Consequently, the power plant

value can be computed as the expected discounted payoff of spark spread options.

This approach ought to be preferred to the standard Net Present Value NPV, which

systematically underestimates the value of the plant by skipping the underlying op-

tion.1

The remainder of the chapter is structured as follows. Section 19.2 presents the

structure of the pricing procedure. In particular, we specify stochastic processes de-

scribing the random evolution of natural gas and electricity spot prices. Section 19.3

details the calibration procedure to fit models to market data. Section 19.4 evaluates

a plant using Monte Carlo simulation over a ten-year horizon.

1 We assume that the market is complete and refer to Fiorenzani (2006b) for a relaxation of

this hypothesis in the present valuation context.

444 19 A Sparkling Option

19.2 Model and Solution Methodology

The arbitrage valuation of spread options requires one to specify models for the

random behavior of the underlying assets. In the case of a spark spread, these are

the price processes for natural gas and electricity, i.e., the input and, respectively, the

output of the plant.

Figure 19.1 offers a seven-year gas price path in the natural logarithmic scale

as quoted in the New York Gate market at Nymex (source: Bloomberg). The period

ranges from January 1996 to December 2002. Following Schwartz (1997), we model

the logarithmic price dynamics using a mean reverting process with linear trend and

constant volatility:

d(ln G(t)) = θ
[

μg(t) − ln G(t)
]

dt + σ dW g(t). (19.3)

Here G(t) is the time t gas price, parameter θ measures the speed of reversion per

unit of deviation from the linear trend μg(t) = α+βt , and σ represents the volatility

of the instantaneous log-price variation. As it is customary with this kind of model,

W g is a standard Brownian motion driving unexpected price shocks.

The model can be estimated by maximum likelihood as in Greene (2002). The

log-likelihood function can be computed by discretizing the process (19.3) through

the Euler method and solving for the log-price:

ln G(t + �t) = ln G(t) + θ
(

μg(t) − ln G(t)
)

�t + σ
√

�tε(t).

Here ε(t) is a random draw from a standard normal distribution N (0, 1). The result-

ing variable has a normal conditional distribution given by

ln G(t + �t)|G(t) ∽ N (m(t), v(t)),

where

m(t) = ln G(t) + θ
(

μg(t) − ln G(t)
)

�t,

v(t) = σ 2�t.

By setting �t = 1/250, we obtain the following expression for the log-likelihood

function with daily observations

lnL = −1

2

n
∑

i=1

[

(ln G(ti) − m(ti))
2

v(ti)

]

− 1

2
ln(v(ti)) − 1

2
ln 2π. (19.4)

Maximizing this quantity with respect to parameters α, β, θ and σ , we get to a

statistically estimated model for the gas price dynamics.

Turning to electricity prices, any good model should reproduce three empirical

features displayed by power price dynamics, namely:

• A mean reversion towards a seasonal trend;

• Unexpected price oscillations;

• Recurrent spikes.

19.2 Model and Solution Methodology 445

Fig. 19.1. The log-price of natural gas quoted at the NY Gate market during the period

1996–2002.

Fig. 19.2. Logarithmic spot prices of electricity recorded at the PJM power market during the

period 1996–2002.

These latter are defined as large upward moves followed by a sudden recovery back

to a normal price level. Figure 19.2 shows the historical path followed by electricity

spot prices (in a natural logarithmic scale) between 1996 and 2002 in the PJM power

market. All spikes cluster around the warm season. We remark that seasonality has

been unaffected by the turbulent behavior displayed by the PJM market in more

recent years. The price path for the PJM is quite similar to those observable at other

US power markets.

The above mentioned features can be accommodated by using the spot price

model introduced in Roncoroni (2002) and furtherly developed by Geman and Ron-

446 19 A Sparkling Option

coroni (2006).2 This is a Markov jump-diffusion process that has been proven to

properly fit several US market data sets in terms of path properties and descriptive

statistics. The model assumes that the natural logarithm of power price dynamics are

described by a stochastic differential equation

dE(t) =
[

μe(t)′ + ϑ1

(

μe(t) − E(t−)
)]

dt + σ e dW e(t) + h(E(t−)) dJ (t), (19.5)

where μe denotes the price trend function, ϑ1is the mean reversion speed, and σ e

is a constant instantaneous volatility. Brownian motion W e is assumed to be corre-

lated to the Brownian motion W g driving gas price dynamics according to a constant

coefficient ρ, i.e., E(dW e dW g) = ρ dt .

The price trend is represented by a mixed linear–sinusoidal function

μe(t) = μ(t; α, β, γ, ε, δ, ζ) = α + βt + γ cos(ε + 2πt) + δ cos(ζ + 4πt),

where α represents a fixed cost linked to the production of electricity, β takes into

account a linear trend in time, and the other two terms indicate respectively an annual

and a semi-annual seasonality component.

The last term in equation (19.5) represents the discontinuous part of the model

featuring price spikes. This effect is characterized by three quantities defining oc-

currence, direction, and size of jumps. The function h defines a switch for the jump

direction:

h(E(t−)) =

{

+1 if E(t) ≤ μe(t) + Δ,

−1 if E(t) > μe(t) + Δ,

according to whether the electricity price lies below or above a threshold defined as

a constant spread Δ over the mean trend μe. In other words, if the price is below the

threshold μe(t) + Δ, any upcoming jump is upward directed. If the price is above

the threshold, jumps can only move downward. Moreover, we assume that when

the price is above the threshold, then a downward directed jump immediately occurs.

This way of modelling jumps is due to the fact that extremely high prices are singular

and the market immediately reverts back to reasonable values. A process exibiting a

strong mean reversion is not appropriate for explaining the fast negative movements

from spiky to normal regime. The process J is a compound Poisson, defined as

J (t) =
N(t)
∑

i=1

Ji .

The counting process N enumerates jumps occurring over any time interval [0, T].
An intensity function

ι(t) = ϑ2 ×
[

2

1 + | sin[π(t − τ)/k]|
− 1

]

steers the jump occurrence once a year (k = 1) with a peak during the summertime

(τ = 1/2). The expected maximum number of jumps per year is represented by the

2 See also Benth et al. (2007).

19.2 Model and Solution Methodology 447

Fig. 19.3. The jump intensity function used to generate the spikes.

constant parameter ϑ2, which is to be estimated. Figure 19.3 reports the graph of the

selected intensity function. Jump sizes are modelled by a sequence of independent

and identically distributed truncated exponential variables with density

p(Ji ∈ dx; ϑ3, ψ) =
ϑ3e−ϑ3x

1 − e−ϑ3ψ

for 0 ≤ x ≤ ψ . Here ϑ3 is a constant parameter to be calibrated and ψ represents

the maximum size of absolute price changes in the natural logarithmic scale.

In order to reflect the seasonal pattern followed by unexpected small market

shocks, we introduce a slight modification to the model described above, and replace

the constant volatility with the time dependent function.3

σ 2(t) = σ 2
0 + a cos2(πt + b). (19.6)

Futhermore, a realistic evaluation of the plant should take into account the fact that in

general the gas and electricity processes are correlated. We estimate the correlation

between the standardized residuals in the two processes as obtained by filtering the

trend out of the series of the log-prices (series without jumps). To separate the jump

component from the diffusion part of the process, we introduce a threshold parame-

ter Γ : a price variation larger than Γ is due to a jump, whereas a smaller variation

is explained by the diffusion part of the electricity price process. From this analy-

sis, we obtain a correlation estimate of ρ = 0.1912. Then, the two processes are

3 Cartea and Figueroa (2005) provide an alternative method to estimate a time-varying

volatility.

448 19 A Sparkling Option

generated in the following way. Let ε1 and ε2 be two independent standard normal

random variables. The Brownian innovations dW e and dW g in the electricity and gas

processes are then obtained as:
{

σ1 dW e = σ1ε1

√
dt,

σ2 dW g = σ2

(

ρε1 +
√

1 − ρ2ε2

)√
dt,

(19.7)

so that σ1 dW e
∼ N (0, σ 2

1 dt), σ2 dW g
∼ N (0, σ 2

2 dt) and Cor(σ1 dW e, σ2 dW g) =
ρσ1σ2 dt , as is required. Equations (19.7) are the Cholesky decomposition generating

correlated normal variates using two independent standard normal variables.

In summary, we can generate simulated paths for gas and electricity prices and

then evaluate a power plant by formula:

Power Unit Value =
n

∑

i=1

E0

(

e−ri ti πi

)

, (19.8)

where ti runs over all days the plant is on and πi is the profit (that is positive or

zero according to the value of the spark spread) generated by a running plant at time

ti . In the equation above, ri denotes the continuously compounded risk-free rate of

interest for maturity ti . For the sake of simplicity, we assume that interest rates are

statistically independent from the process driving energy prices and write:

Power Unit Value =
n

∑

i=1

E0

(

e−ri ti
)

E0(πi) =
n

∑

i=1

P(0, ti)E0(πi), (19.9)

where P(0, ti) denotes the current discount factor for a maturity ti as can be obtained

from the US interest rate curve. Quotations for certain maturities up to 10 years are

recorded on the Bloomberg system, while the others can be inferred by interpolation

between the observed numbers. Following a suggestion provided to us by a prac-

titioner working in the energy sector, we adopt a conservative view and add a 4%

premium to this structure.

In order to produce an even more realistic valuation of the plant, in a second

simulation exercise we have taken into account the hourly profile in electricity spot

price dynamics and the costs for turning the plant on and off. We now discuss about

these aspects and the way we have included them in a simulation exercise.

The day-ahead market provides a schedule for electricity prices for each hour of

the following day. We have built a hypothetical schedule curve as follows. First, we

consider hourly prices over one year. Next, for each hour in the day, we compute the

average price over the whole data set. Finally, we normalize these average prices by

dividing each average value by the maximum price. The resulting number that cor-

responds to an hour i is denoted by pi . Figure 19.4 displays the normalized averages

for all 24 hours. We then simulate prices on a hourly basis as

p̃i = pi + σiǫi,

where σi is the standard deviation corresponding to the ith hour and ǫi denotes a

standard normal sample. The hourly price schedule is obtained as

19.2 Model and Solution Methodology 449

Fig. 19.4. Average normalized daily prices.

p̂i=
p̃i

maxi=1,...,24(p̃i)
ppeak,

for each hour i, where ppeak is a simulated peak price.

A further aspect in the evaluation process is related to the activation costs of the

plant. The ramp-up time defines the required period for a power plant to producing

electricity at its maximum level of efficiency. We assume that during the ramp-up

time, which takes approximately one to two hours on average, the plant consumes a

half of the gas required under normal conditions. We also include a fixed cost that

does not affect the dispatch schedule, but enters into the valuation process of the

plant.

The joint consideration of a spark spread and the activation/disconnection costs

defines the opportunity to turn a plant on. Consider the following two cases:

(a) Turning the plant on is not a viable option in presence of an excessively low

spark spread;

(b) A loss resulting from a negative spread can be smaller than the costs due to

turning the plant off.

In the first case, the power plant should be left off even if the spark spread is posi-

tive. In the second case, the plant should be run even if the spread is negative. The

problem of activating/disconnecting a plant should be tackled using a stochastic op-

timization model. To facilitate the implementation, we decided to simplify the prob-

lem by dividing the time period in alternating subperiods of positive and negative

spark-spreads. For each subperiod, we compare the loss due to a negative spread to

450 19 A Sparkling Option

the resuming costs and select the lowest between the two. This number is further

compared to the revenues that would be obtained by turning the turbine on whenever

the spread is positive during the following period: if revenues are smaller, the plant

is switched off; if the revenues are greater, the plant is turned on. Furthermore, if the

activating costs are greater than the loss due to a negative spread, then the plant is

kept running since one would prefer losing money by producing and selling electric-

ity rather than stopping the production and restarting it later. This algorithm needs

not be optimal, yet it provides a better solution than the straightforward strategy con-

sisting of considering a spark spread option for each period separately.

19.3 Implementation and Algorithm

We calibrated the model on a data set including 1,750 daily observations obtained

from the Bloomberg system. The period spans seven years, from January 1996 to

December 2002. Data refer to electricity prices quoted at the PJM (Pennsylvania–

New Jersey–Maryland) market and natural gas prices exhibited at the New York

Gate, which is the largest natural gas utility for the area of New York City.

Calibration involves the:

1. Estimation of parameters in the gas price process by maximum likelihood (eq.

(19.4));

2. Estimation of the electricity price process using a method proposed in Roncoroni

(2002) and consisting of:

(a) estimating the trend by Ordinary Least Squares (OLS);

(b) disentangling normal and jump regimes in order to estimate Γ , ψ and ϑ3;

(c) estimating the mean reversion force ϑ1 and volatility related parameters σ 2
0 ,

a, b by maximum likelihood.

Estimates of the gas price process are reported in Table 19.1. The maximization of

the likehood function has been performed using the Excel solver. As for the elec-

tricity price process, we first estimated the linear trend by OLS using EViews. This

estimation is relative to the original data bounded from above by the 90-percentile

of the sample price distribution. We filtered out of the series all the data exceeding

this threshold, then pooled the residual data into a single 1-year period and averaged

the seven numbers corresponding to each day. Finally, we estimated the periodic part

of the trend using a Nonlinear Least Square procedure on this filtered data set. The

trend component is shown in Fig. 19.5, together with the observed price path and

Table 19.1. Parameters for the natural gas price process

α Average level 0.939152

β Linear growth 0.063992

θ Mean reversion force 4.4524

σ 2 Instantaneous variance 1.3150

19.3 Implementation and Algorithm 451

Fig. 19.5. Estimated electricity price trend.

the corresponding residuals. This graph clearly shows a small positive trend and a

double periodic component. Moreover, there are two maxima during the year, one in

summertime and a smaller one occurring in wintertime.

To disentangle normal and jump regimes, we separated each price variation into

a continuous and a jump component as follows: all price variations greater than a

threshold Γ are considered jumps; the residual variations are intended as stemming

from the continuous part of the process. To select a proper Γ , we calibrated the model

assuming different values for Γ (chosen as a percentile of the sample distribution of

the daily price variations) and take the value that provides the best result in terms

of moment matching and price properties of the resulting dynamics. In the present

context, the 97-percentile is the optimal choice. This number corresponds to 7.57

jumps per year on average, which is a realistic figure in our view. We thus filtered

the whole data set according to this choice and estimated the parameters related to

the jump component. We detected the maximum jump size ψ and the average jump

size and then used these two values to estimate the value of the parameter ϑ3. Since

the jump sizes are assumed to be i.i.d. random variates with a common distribution

given by a truncated exponential, the expected value of such a distribution is

E(Ji) = 1

1 − e−ϑ3ψ

[
1

ϑ3
−

(

ψ + 1

ϑ3

)

e−ϑ3ψ

]

. (19.10)

This formula defines ϑ3 implicitly. We used the Excel Solver to estimate ϑ3 using the

sample mean, which, for this distribution, coincides with the Maximum Likelihood

estimate.

To find ϑ2, we first computed the interarrival times between two jumps, then

we found a mean interarrival time weighed according to the normalized intensity

function 2(1 + | sin[π(t − τ)/k]|)−1 − 1, and finally estimated ϑ2 as the inverse of

the resulting average interarrival time. The mean reversion force ϑ1 and parameters

452 19 A Sparkling Option

Table 19.2. Estimated parameters for the electricity price process

Γ Jump size threshold 0.563521

α Average level 3.167108

β Linear growth 0.053377

γ Yearly trend −0.084373

ε Yearly shift −0.374401

δ 6-months trend 0.055531

ς 6-months shift −0.390401

Δ Jump-regime level 1.65

ψ Maximum jump size 1.739186

K Jump periodicity 1

τ Jump time shift 0.5

σ 2
0 Constant variance 9.369858

a Size of variance oscillations −7.069798

b Yearly variance shift −0.278851

ϑ1 Mean reversion force 32.04205

ϑ2 Mean expected number of jumps 8.450

ϑ3 1/average observed jump size 0.094438

σ 2
0 , a, and b can be estimated using maximum likelihood on the data filtered by

the 97-percentile. The conditional transition density function of the electricity price

increment is normal, with mean and variance given by equation (19.6). We noticed

that the phase in the cosine for the variance is fairly similar to the phase for the annual

seasonality in the trend. This fact indicates that in periods of high electricity demand,

daily price variations are larger than in quiet periods. Finally, in order to estimate Δ,

we observe that higher values correspond to higher electricity price levels during high

demand periods. Conversely, the smaller the value of Δ, the sooner a downward jump

makes the price revert back to normal level. In order to reproduce these effects, we

set Δ equal to one half of the range spanned by the log-prices data set. The estimates

of the electricity process are reported in Table 19.2. Once the parameter set has been

estimated, it is possible to perform the numerical simulation evaluating the power

plant. We wrote a MATLAB R© code which simulates a random path of the processes

described in (19.3) and (19.5).

The simulation consists of the following steps:

1. Simulate a random path for electricity and gas prices and then, for a given

heat rate, compute the spark spread for each day in the simulation period (the

MATLAB R© codes involved are el_path.m and gas_path.m).

2. Discount the daily power plant pay-off using an appropriate discount factor,

eventually corrected by a market risk premium (MATLAB R© function simul_
spark.m).

3. Repeat steps 1 and 2 about 10,000 times and compute mean value and the stan-

dard error of the simulated figures (MATLAB R© code is plant_eval.m).

19.4 Results and Comments 453

If instead we are interested in a valuation on a hourly basis, we may proceed as

follows:

1. Steps 1 and 2 as above.

2. Determine the random hourly curve for electricity price by making a pertur-

bation of the average hourly curve derived from market data (using the script

shock.m).

3. Compute the hourly spark spread using the script simul_spark_hour.m (for

the sake of simplicity, we assumed that the gas price remains constant during the

day).

4. Detect the hours the plant must be turned on (or kept active) and those it must

be switched off (or kept inactive) in order to maximize revenues (or minimize

costs); to this aim, we have taken into account the cost structure of the plant

(using the code activation.m).

5. Discount the positive (and sometimes negative) values of the spark spread using

a discount factor corrected for the risk premium in the energy sector (running

the script plant_eval_hour.m).

The remaining codes are called by the main codes cited above and need to be in-

cluded for correct initialization and evaluation processes.

To simulate the jump component in (19.5), we sampled jump times from an ex-

ponential distribution with parameter ϑ2; for each jump time candidate τk , we then

applied an acceptance–rejection scheme consisting of drawing a uniformly distrib-

uted sample Uk and accepting τk provided that Uk ≤ ι(τk).

Figure 19.6 displays a sample trajectory for the gas price over a 7-year period in

the natural log-scale. Figure 19.7 shows a sample path for the electricity price over

the same period. Notice that both price paths present qualitative features similar to

those exhibited by the empirical processes in the market.

19.4 Results and Comments

The expected value in (19.9) has been estimated by Monte Carlo over 10,000 sim-

ulations. Table 19.3 reports the value of the plant using different heat rates, namely

6, 8, 10, and 12. As one would expect, a soaring heat rate is followed by a falling

proportion of the time spent under activity. The plant thus becomes peakload. The

results we obtained are consistent with our expectations. In particular, by reducing

plant efficiency, the value of the plant decreases. With a heat rate equal to 12, the

unit becomes active only for one third of the time. However, in reality even a turbine

with a heat rate equal to 6 is not activated for 82% of the time.

In order to produce an even more realistic valuation of the plant, a second simu-

lation exercise takes into account the hourly profile in electricity spot prices and the

costs of activating and disconnecting the power plant.

Table 19.4 reports the values of two plants with different heat rates and ramp-

up times corresponding to one and two hours, respectively. For instance, if the heat

rate equals 8, the plant value goes from $759,768 in the case of no ramp-up time

454 19 A Sparkling Option

Fig. 19.6. Simulated path for the gas price.

Fig. 19.7. Simulated path for the electricity price.

to $454,490 under the assumption of a 2-hour ramp-up time, that is to say, an ad-

justment of 40% of the initial value. Moreover, considering these costs results in an

activation frequency more in line with actual percentages. Standard errors for the

estimated plant values are indicated within round brackets.

The valuation procedure discussed above is computationally intensive. After de-

voting a particular attention to the matrix-based programming framework in

19.4 Results and Comments 455

Table 19.3. Value of a power plant under varying heat rates

Heat rate Plant value Standard Frequency of

(MWh/MMBtu) ($/MWh) error activation (%)

6 1,064,232 11.06% 81.98

8 759,768 14.33% 63.39

10 545,664 16.84% 46.32

12 399,024 19.88% 33.19

Table 19.4. Values of a power plant under varying heat rates and ramp-up times

Heat rate Ramp-up time Plant value Frequency of

(MWh/MMBtu) (h) ($) activation (%)

8 0 759,768 (14.33%) 63.39

8 1 479,680 (21.25%) 54.46

8 2 454,490 (23.67%) 54.59

10 0 545,664 (16.84%) 46.32

10 1 295,330 (29.83%) 37.88

10 2 260,520 (30.04%) 37.88

MATLAB R© (i.e., avoiding loops “for”), a PC equipped with a 1.6 GHz proces-

sor takes approximately one hour to run 10,000 simulations in the simplest case

of a peak power unit. A large part of the computational time spent by the running

process involves the generation of random numbers. In the simplest simulation, at

least 125 million independent shocks are required to get to the final distribution of

the plant price, whereas in the hourly-based case, at least 725 million shocks need

to be generated. In this case, the computational time increases by up to 3 hours. The

accuracy of our estimates can be easily improved through the adoption of suitable

variance reduction techniques.

20

Swinging on a Tree*

Key words: interruptible contracts, energy prices, dynamic programming

A swing contract grants the holder a number of transaction rights on a given asset

for a fixed strike price. Each right consists of the double option to select timing

and quantity to be delivered under certain limitations. Transactions are specified by

the contract structure and usually involve a supplementary right to choose between

purchase and selling. Swing contracts are very popular in markets where delivery

is linked to consumption or usage over time. This is the case of energy commodity

markets such as oil, gas and electricity. There, swing features are usually embodied

in a base-load contract providing a constant flow of the commodity for a fixed tariff.

A typical scheme involves a retailer selling gas to a final consumer. The contract

contains an option to interrupt delivery for a predetermined number of times. From

a financial viewpoint, the retailer is short one strip of forward contracts, one con-

tract per delivery day, and long one swing option allowing for adjustments in the gas

delivery according to contingent market conditions. The joint position is often re-

ferred to as a callable forward contract. Beyond side commitments existing between

the two counterparts, the swing option exercise policy depends on standing market

conditions such as the commodity spot price and availability. The net cash flow for

the retailer is given by the forward price received upon delivery minus the option

premium paid to the consumer and usually settled as a discount premium over the

forward price; plus any cash flow stemming from exercising the option.

The purpose of this chapter is to evaluate a swing option with non-trivial con-

straints by means of dynamic programming. General treatments on swing contracts

are discussed by Clewlow and Strickland (2000) and Eydeland and Wolyniec (2002).

The seminal paper by Thompson (1995) tackles the issue of multiple exercise deriv-

atives. Keppo (2004) proves that the optimal exercise policy in the case of no load

penalty is “bang-bang” (i.e., an all-or-nothing clause) and derives explicit hedging

∗ with Michele Lanza and Valerio Zuccolo.

458 20 Swinging on a Tree

strategies involving standard derivatives such as forwards and vanilla options. Other

papers devoted to the analysis of swing options include Baldick, Kolos and Tom-

paidis (2003), Barbieri and Garman (1996, 1997), Pilipovich and Wengler (1998),

Clewlow and Strickland (2000), Clewlow, Strickland and Kaminski (2001), Carmona

and Dayanik (2003), and Lund and Ollmar (2003). Cartea and Williams (2007) ana-

lyze the interplay between interruptible clauses and the price of risk in the gas mar-

ket. Our development moves the main problem through a simplified argument and

defer a rigorous treatment of the model and its solution methodology to the next

section.

20.1 Problem Statement

The simplest swing option is defined by two input parameters: (1) a number n of

transaction rights and (2) an exercise price K . The option holder, e.g., a gas retailer,

manages the option exercise policy through control variables τ1, . . . , τn signalling

the exercise times and q1, . . . , qn indicating the transacted quantities (qi > 0 for

purchase and qi < 0 for selling). The control signal is defined by

i(t) =
{

1 if t is an exercise time,

0 otherwise.

The pair (i(t), q(t)) defines the control chosen by the option holder at time t .

The option fair price is computed as the maximal expected pay-off obtainable by

the holder over the contract lifetime [0, T] through an admissible control policy

{(i(t), q(t)), t ∈ [0, T]}.
Since markets randomly evolve, the optimal control cannot be fully determined

at the contract inception. However, it is possible to specify a rule selecting the op-

timal control corresponding to any market instance. More precisely, we look for a

number of variables whose knowledge at any time t uniquely determines the optimal

control at that time. To detect the state variable underlying a swing option, we ex-

amine the spectrum of choices available at any time t . Suppose that no swing right

is available anymore. Then, the only possible action is to continue the contract. The

corresponding pay-off is given by the expected present value of the option price dis-

played one period later (i.e., at time t + 1). If instead a “swinging” gas load is still

possible, then the holder decides to exercise the option whenever the resulting rev-

enue is greater than the expected present value of the option price shown one period

later. The revenue from exercising the option is given by three terms. First, the option

pay-off (G − K) × q, where G is the gas spot price and q is the stricken load. Sec-

ond, a penalty P(q) on the exercised quantity must be computed and subtracted to

the previous term. Third, the present value V (t + 1) of the residual contract, namely

a swing option with the same features and a number of swing rights reduced by one.

At first glance, this term may resemble the cash flow stemming from q forward posi-

tions on gas. In reality, this is not the case as long as both delivery time and load are

optional. In standard financial jargon, one may call this term of the swing pay-off a

“callable forward with flexible load”. Figure 20.1 illustrates the described procedure.

20.1 Problem Statement 459

Gas spot price
G(t)

Residual rights

N(t)

→

Exercise signal
i(t)

Exercise load
q(t)

→

Option pay-off
+(G − K) × q(t)

Penalty

−P(q)

Future present value

e−r × E(V (t + 1))

State Control Pay-off

Fig. 20.1. Exercise decision scheme.

Notice that the time t optimal choice depends on two state variables, the gas price G

and the number N of standing swing rights. Correspondingly, the swing option value

is a function V = V (t,G(t), N(t)) of time, gas price and the number of residual

swing rights.

Swing option valuation can be carried out through Dynamic Programming. The

idea is to write a recursive algorithm for computing the swing option value as a

function of its possible value one period later. For the sake of clarity, we consider a

contract with swing rights to call for any quantity q under a penalty P(q) affecting

the option pay-off. The backward procedure starts at the contract maturity T . For all

possible values of G and N , the value V (T ,G,N) is computed as the corresponding

option pay-off:

V (T ,G, n) =

{

0 if n = 0,

maxq{(G − K)+q − P(q)} if n > 0,

where (x)+ := max{0, x}. The general term in the backward recursion reads as

V (t − 1,G, n) =

pay-off from continuation
︷ ︸︸ ︷

e−r × Et−1

(

V (t, ·, n)
)

if n = 0,

V (t − 1,G, n) = max
q

{

(G − K)+q − P(q) + e−r × Et−1

(

V (t, ·, n − 1)
)

︸ ︷︷ ︸

pay-off from exercise

,

e−rEt−1

(

V (t, ·, n)
)

︸ ︷︷ ︸

pay-off from continuation

}

if n > 0,

where r denotes the continuously compounded one-period risk-free rate of interest

and Et−1 indicates the conditional expectation given the information available at

time t − 1. The swing option value V (0,G0, n) depends on the number n of swing

rights and the standing market situation as represented by the current gas price G0.

In actuality, swing contracts include additional constraints beyond the simplified

setting illustrated above. Exercise dates may be required to differ by more than a

fixed refraction period ρ, i.e., τi+1 − τi ≥ ρ; delivery may be delayed; constraints

may be strictly binding (e.g., qi(t) = q) or floating (a(t) ≤ qi(t) ≤ b(t)); the strike

price may differ according to whether the holder decides to buy or sell gas upon

exercise; its value can also be contingent upon other specified market variables.

460 20 Swinging on a Tree

An important feature of real-world swing contracts is the penalty function P(q),

which may be either local or global. A local penalty affects the revenue from exer-

cising the option depending on the exercised quantity q, whereas a global penalty

applies to the overall exercised quantity Q =
∑

i qi at the end of the contract.

We provide a framework for evaluating swing options to call or put gas under

global penalties. Roncoroni and Zuccolo (2004) offer a deeper analysis of the optimal

exercise policies for swing options under both local and global penalties.

20.2 Model and Solution Methodology

We consider a swing option with lifetime [0, T] providing the holder with a number

u0 of upswing rights (i.e., call options) and a number d0 of downswing rights (i.e.,

put options) on a gas load. The gas spot price is described by a stochastic process

evolving over a discrete set of evenly spaced times. We assume these times constitute

a refinement of the option lifetime, namely T/∆ is an integer for a time lag ∆. We

allow for cash rolling-over at a rate r . Table 20.1 reports basic notation for the pro-

posed model. The time t spot price of gas is denoted by G(t). This variable evolves

over time according to a stochastic process (G(t), t ∈ T). The process is assumed to

follow a trinomial discretization of a geometric Brownian motion. The exact speci-

fication is detailed in the implementation section below. We use symbols u and d to

denote the standing number of upswing and downswing rights, respectively. Table

20.2 indicates the state variables of the swing valuation problem. At the outset, u0

(resp. d0) upswing (resp. downswing) rights are made available to the option holder.

Each exercise consists of the delivery of a constant load q for a fixed price K . A final

penalty P is applied to the gas load accrued over the lifetime of the contract, that is:

Table 20.1. Input parameters and basic definitions

Symbol Quantity

[0, T] Time horizon

∆ Time period length

n = [T/∆] Periods

T = {k∆, k = 0, . . . , n} Horizon refinement

G(t), t ∈ T Spot price process of gas

G0 Initial spot price of gas

Gt Image space of G(t), t ∈ T

r One-year risk-free rate of interest

Table 20.2. State variables

Symbol Quantity

t Time point

G Spot gas price

u Standing number of upswing options

d Standing number of downswing options

20.3 Implementation and Algorithm 461

Table 20.3. Contract features

Symbol Quantity

TO ⊆ T Set of optional dates

nO = #TO Number of optional dates

u0 ∈ N Initial number of upswing options

d0 ∈ N Initial number of downswing options

q Fixed callable/puttable load

K Strike price

Q(u, d) Overall load

P(Q) Global penalty function

Q(u, d) = |q(u0 − u) − q(d0 − d)|.

We allow for the exercise times to be constrained within a subset TO of the time

horizon T and denote by nO the number of times available at the outset. Table 20.3

shows the contractual features defining the swing option under investigation. The

problem can be cast as a maximization of the present value of the option future cash

flow over a set of admissible exercise policies. The value function for this problem

is denoted by VG. Notice that if the swing load q is fixed, then each upswing right

corresponds to an American call option and is therefore exercised at the last available

time.

20.3 Implementation and Algorithm

20.3.1 Gas Price Tree

The benchmark model for spot price dynamics in continuous time is the geometric

Brownian motion (GBM)

G(t) = exp

((

r −
σ 2

2

)

t + σW(t)

)

, (20.1)

where constants r and σ represent the instantaneous annualized risk-free rate of in-

terest and price volatility, respectively. In energy markets, the use of this model is

rather questionable. The main reason is that energy demand is driven by periodical

trends and prices tend to revert back to a periodical mean level. Moreover, some mar-

kets display peculiar features such as stochastic volatility and spikes (see, e.g., Ron-

coroni (2002)). However, the popularity gained in the last thirty years by the GBM,

mainly due to the Black and Scholes model for option pricing, suggests consider-

ing this specification as a theoretical reference. Also, this model is widely employed

by energy traders for the purpose of obtaining benchmark values for exotic deriva-

tives. Accordingly, we develop our implementation under this specification for the

gas price process and leave the final user the option of selecting alternative dynamics.

For simplicity, we set an initial price G0 = 1. The time horizon is refined into

a set of 2n periods {kδ, k = 1, . . . , 2n}, where δ = ∆/2 (i.e., half the time period

462 20 Swinging on a Tree

selected for the option lifetime discretization). On this “doubly refined” time horizon,

we establish a binomial random walk

GB((k + 1)δ) =
{

G(kδ) × I with probability p,

G(kδ) × D with probability 1 − p.

Constants I and D represent the one-period percentage increase and decrease in the

standing price and must satisfy the inequality 0 < D < 1 < I . These figures are

selected so that the two processes G and GB match in their conditional mean and

variance over each time step. To this aim, we set

exp(rδ)G(t) = E(G(t + δ)|G(t))

= E
(

GB(t + δ)|GB(t)
)

= p × I × G(t) + (1 − p) × D × G(t)

and

e(2t+σ 2)δtX2
i exp

(

2t + σ 2
)

δ × G(t) = Var(G(t + δ)|G(t))

= Var
(

GB(t + δ)|GB(t)
)

=
(

pI 2 + (1 − p)D2
)

× G(t)2

−
(

pI × G(t) + (1 − p)D × G(t)
)2

,

plus the symmetry condition

D = 1

I

ensuring that the resulting tree does recombine (i.e., an upward move followed by

a downward move has the same effect on the price quotation as a downward move

followed by an upward move). Solving for I,D and p gives

I = B +
√

B2 − 1,

D = B +
√

B2 + 1,

p = exp(rδ) − D

I − D
,

where 2B = exp(−rδ) + exp[(r + σ 2)δ].
From this binomial tree we build a trinomial tree with the desired time step �t

by merging all consecutive pairs of time periods into a single period ∆ = 2δ: the

resulting random walk reads as

GT((k + 1)∆) =

⎧

⎨

⎩

GT(k∆) × I 2 with probability p2,

GT(k∆) with probability 2p(1 − p),

GT(k∆) × D2 with probability (1 − p)2,

where I,D and p are defined as above. Notice that the intermediate point is constant

since I × D = 1.

20.3 Implementation and Algorithm 463

20.3.2 Backward Recursion

We now provide an algorithm for computing the option value at contract inception.

In a general swing contract, the option holder has the right to choose delivery time

and quantity. To avoid cumbersome algorithms, we simplify the context and suppose

that upon exercise a fixed load q is delivered. Consequently, the option price is a

function VG(0,G0, u0, d0), where G0 is the gas price prevailing in the market at

time 0 and u0 (resp. d0) is the number of upswing (resp. downswing) rights specified

as contractual clauses. This method considerably simplifies the valuation procedure

in the case examined herein. Notice that under different contract specifications, e.g.,

a penalty function affecting each single exercise, the load constraint can be relaxed

without incurring into the above mentioned complications.

The solution algorithm is a Dynamic Programming backward recursion.

Time T Value Function

The holder has the choice to maximize the profit from exercising either upswing or

downswing rights provided that both of them are still available. An indicator function

signals the availability of the corresponding right. In particular, if all option rights

have been already exercised, the contract is worthless. The final value reads as

VG(T ,G, u, d) = max{q(G − K)+1u �=0, q(K − G)+1d �=0} − P(Q(u, d)),

for all G ∈ GT , u ≤ u0, d ≤ d0. Here GT denotes the set of all possible values taken

by the gas price at time T (see Table 20.1) and 1u �=0 denotes the indicator function

of the set {u �= 0}, i.e., 1u �=0 = 1 if u �= 0 and 0 otherwise.

Time t Value Function

If t ∈ T is not an optional time, i.e., t /∈ TO, or neither upswing nor downswing

rights are available anymore, i.e., u = d = 0, then the swing is worth the conditional

expected value of its discounted price one time step forward:

πN(t,G, u, d) = e−r∆Et

[

VG

(

t + ∆,G(t + ∆), u, d
)]

.

Notice that expectation has been taken conditional to the information available at

time t . If any swing right is available at time t (i.e., t ∈ TO and u �= 0 or d �= 0), the

option holder compares the value πN from continuing the contract (i.e., no exercise)

to the pay-off from exercising a swing right. An upswing right exercise leads to an

immediate cash flow q(G − K)+ plus the expected value of its discounted price one

time step later, namely the time t + ∆ value of a swing contract with one upswing

right less:

πU(t,G, u, d) = q(G − K)+ + e−r∆Et

[

VG

(

t + ∆,G(t + ∆), u − 1, d
)]

.

A similar argument leads to the following value of a downswing exercise:

464 20 Swinging on a Tree

πD(t,G, u, d) = q(K − G)+ + e−r∆Et

[

VG

(

t + ∆,G(t + ∆), u, d − 1
)]

.

Combining these expressions, we obtain the following recursive relation for the time

t value function:

VG(t,G, u, d)

= max
{

πU(t,G, u, d)1u �=0,t∈TO , πD(t,G, u, d)1d �=0,t∈TO , πN(t,G, u, d)
}

,

where t ∈ T \ {T }, G ∈ Gt , u ≤ u0, d ≤ d0, and the indicator functions signal the

availability of the corresponding swing rights. Notice that no penalty directly applies

to any swing right exercise.

20.3.3 Code

Our code splits into three main parts. A first part computes the tree knots. A sec-

ond part evaluates penalty. A final part calculates the option value. The penalty is

computed as a fixed fare π for each unit of the net recourse to swing load (i.e.,

modulus of the number of exercised upswing minus the number of exercised down-

swing) over a threshold τ representing the minimal number of net exercises. For

instance, if this level equals 10 and the number of stricken upswing (resp., down-

swing) rights is 20 (resp. 5), then the penalty paid-off at the contract expiration is

P = 3 max{|20 − 5| − 10, 0} = 15.

Function Swing(n, T ,G0,K, r, σ, nO, ρ, q, τ, π) implements the valuation

procedure. Here, n is the number of dates in the time horizon, T is the contract

maturity, G0 is the spot price of gas at the outset, K is the option strike price, r is the

one-period interest rate (i.e., it equals r∆ in the previous section), σ is the annual-

ized instantaneous volatility of gas price, nO is the number of optional dates (which

we assume to be uniformly spread over the contract lifetime), ρ = u0 = d0 is the

number of upswing and downswing rights (which, for simplicity, are assumed to be

equal), q is the deliverable quantity upon each exercise, τ is the penalty threshold, π

is the unit penalty.

20.4 Results and Comments

We evaluate the swing option price across alternative parameter scenarios. In all

cases, the option maturity is set to 1 year, the time step is approximately equal to one

week, i.e., 1/49, the exercise quantity is 5 MMBtu (Million British termal units),

current spot price of gas is $3/MMBtu, strike is set to $2.90/MMBtu, and interest

rate is 4% per annum. The spot price volatility is estimated at 60%. At contract

maturity, a penalty π is charged for each delivered gas unit Q(u, d) exceeding a

threshold τ .

We perform a comparative study of swing option prices across different values

for the number nO of available exercise times, the number ρ of swing rights, the unit

penalty π , and the penalty threshold τ .

20.4 Results and Comments 465

Table 20.4. Option prices at varying unit penalties

Dates nO Rights ρ Threshold τ Penalty π Value

25 4 10 0 26.9024

25 4 10 1 23.4513

25 4 10 3 21.3629

25 4 10 5 20.9558

25 4 10 7 20.8667

Table 20.5. Option prices at varying penalty thresholds (high unit penalty)

Dates nO Rights ρ Threshold τ Penalty π Value

25 4 5 3 15.7126

25 4 10 3 21.3629

25 4 15 3 26.8605

25 4 20 3 26.9024

The first experiment considers 25 exercise dates, namely one exercise opportu-

nity each two consecutive working days, a penalty threshold τ = 10, four swing

rights, each one for delivering 5 MMBtu. We examine the way the swing option fair

price changes across varying overload penalties. The case π = 0 corresponds to

an absence of penalty. Table 20.4 reports option values for the examined instances.

Notice that swing prices sharply decrease for low level unit penalties, whereas they

show steady behavior for high-level unit penalties. In particular, the price drop is

rather significant moving from no penalty to a unit penalty.

Another way to affect the option price through penalties is to modify the penalty

threshold as defined in Sec. 20.3.3. The lower this figure, the stronger the effect of

a penalty on the option value. As Table 20.5 illustrates, if the threshold is set to 5, any

exercise beyond the first one is subject to a penalty, whereas the level 20 makes the

penalty totally ineffective for the examined case (i.e., 4 rights, each one delivering

5 MMBtu). Naturally, the impact of moving the penalty threshold depends on the

unit penalty level. Table 20.6 shows that a sufficiently low unit penalty makes the

option value quite insensitive to threshold resetting.

The next experiment shows the price sensitivity to a varying number of optional

dates. Recall that an optional date is a point in time where a swing option can be

exercised. We assume that these dates are evenly spread over the contract lifetime.

Table 20.7 shows option prices corresponding to 7, 13, 25, and 49 optional dates. In

general, the swing value is slightly sensitive to these dates as long as an exercise is

allowed (i.e., nO ≥ ρ).

Our last experiment involves price sensitivity to a varying number of swing

rights. Each right affects the option value by modifying the quantity of gas that can

be delivered and the effectiveness of a penalty constraint. Table 20.8 reports figures

for all cases.

We observe an interesting behavior whenever the number of rights deviates from

a relatively low figure. For instance, if rights go from 2 to 4, the price increases

466 20 Swinging on a Tree

Table 20.6. Option prices at varying penalty thresholds (low unit penalty)

Dates nO Rights ρ Threshold τ Penalty π Value

25 4 5 0.05 26.4352

25 4 10 0.05 26.6501

25 4 15 0.05 26.8618

25 4 20 0.05 26.9024

Table 20.7. Option prices at a varying number of optional dates

Dates nO Rights ρ Threshold τ Penalty π Value

7 4 10 3 19.5901

13 4 10 3 20.8096

25 4 10 3 21.3629

49 4 10 3 21.6317

Table 20.8. Option prices at a varying swing rights

Dates nO Rights ρ Threshold τ Penalty π Value

25 2 10 3 13.7417

25 4 10 3 21.3629

25 6 10 3 23.2434

25 10 10 3 26.3706

25 12 10 3 27.6269

by about 55%, whereas moving swing rights from 6 to 12, the option value only

increases by about 19%. This is a typical scarcity item due to the relatively higher

value of the former available swing rights compared to the latter ones.

It is interesting to explore the optimal exercise strategy by showing the distrib-

ution of the first few exercise times. These distributions are not available in closed-

form. However, we may provide approximate versions by computing the exercise

times over a large number of simulated paths of the underlying process. The proce-

dure works as follows. First, the optimal exercise policy is computed: this is a rule

applying to any point in the state variable domain. Next, several trajectories are sam-

pled by simulation. For each simulation, the corresponding upswing and downswing

times are calculated and stored. Finally, relative frequency functions are computed

for each of the exercise times, starting with the first one, moving to the second one,

and so on.

We consider a swing option with 2 downswing rights and 2 upswing rights. The

resulting histograms are displayed in Fig. 20.2

These graphs display a clear picture of the time distribution of optimal exercises

provided that the random evolution of the market is correctly described by the given

random walk. As noted in Section 20.2, each upswing right corresponds to an Amer-

ican call option and is therefore exercised at the last available time.

20.4 Results and Comments 467

Fig. 20.2. Sample jump times distributions.

Interest-Rate and Credit Derivatives

21

Floating Mortgages*

Key words: mortgage prepayment policy, interest rates, dynamic programming,

simulation

A mortgage is a loan secured on real estate. The borrowed amount, named princi-

pal, is repaid along a time horizon through installments. These payments are usually

computed pro-rata temporis, meaning that each cash flow splits in two components:

a first component represents a portion of the outstanding balance; a second compo-

nent is the interest accrued since the last payment. This scheme guarantees that the

loan is totally repaid by the end of the contract. Most of the residential mortgage

loans offered to retail investors are expected to amortize through a “French” amor-

tization scheme consisting of constant installments, usually paid off on monthly or

quarterly bases.

In the US market, the vast majority of mortgages are collected into pools man-

aged by government sponsored agencies. These institutions issue securitized notes

backed by the cash flows generated by a specific pool of mortgages and sell these

assets, known as mortgage-backed securities (MBS), to private investors, generally

large investment funds, either directly of through dealers.

In principle, the value of an MBS is the value of a long-term annuity with fixed

maturity. However, the borrower is allowed to pre-pay his debt back any time before

the legal maturity of the loan. Prepayment may occur due to either exogenous reasons

such as moving or any other personal issue, or endogenous reasons typically linked

to the mortgagor’s ability to enter a new mortgage at more favorable rate conditions.

This usually occurs as market lending rates decrease and the borrower has the oppor-

tunity to get profit from such circumstances. In practice, market rates may fall and

the standing mortgage is still continued. This is the case of a mortgagor whose credit

status has deteriorated and who is thus required to have a greater spread over the

market lending rate. Transaction fees applying to a mortgage prepayment constitute

∗ with Alessandro Moro.

472 21 Floating Mortgages

a further incentive to continuing the standing contract while market rates decrease.

In actuality, an MBS can be seen as a long position in a fixed-maturity annuity and a

short position in a compound American-style call option.

The literature on the valuation of MBSs splits into two distinct frameworks. Early

works by Dunn and McConnell (1981a, 1981b) and Brennan and Schwartz (1985)

propose a rational model explaining how a mortgage borrower chooses to refinance

his loan. They determine the fair value of an MBS by applying contingent claim val-

uation to the portfolio consisting of a long annuity and a short American-style option

under the hypothesis that the option value is maximized. Notice that this is equiv-

alent to assuming that the mortgagor minimizes the value of his standing mortgage

position.

A second framework for valuing MBSs builds on the econometric identification

of the prepayment behavior from historical data. Models within this setting have been

proposed by Schwartz and Torous (1989, 1992) and Boudoukh et al. (1997) and now

constitute the standard market practice for valuing MBSs. This setting suffers from

a major drawback: they perform quite badly in out-of-sample predictions. This is

mainly due to a strong dependence on market conditions producing the historical

data on which econometric analysis is conducted.

The present case-study considers the mortgage refinancing problem as seen from

the mortgagors’ viewpoint, much in the spirit of the first line of research mentioned

above. We show the way to determine the optimal prepayment rule for a borrower

minimizing the value of his mortgage position by choosing the time the mortgage

is to be refinanced. Following the theoretical framework introduced in Roncoroni

(2000), Roncoroni and Moro (2006) add a constraint on the number of refinancing

options. This feature accommodates the possibility that the lender gives the bor-

rower the option to refinance his mortgage internally at smaller additional costs than

the ones presented upon repaying the principal and entering into a new mortgage

with another lender (e.g., transaction costs and credit spread variations). This option

represents a way to attract the customer’s fidelity to the lending institution and let

it save all costs required to search for alternative investment opportunities. The op-

timal recursive determination of prepayment policies has recently been investigated

by Longstaff (2002) and Gocharov and Pliska (2003) under unconstrained refinanc-

ing opportunities. Stanton (1995) develops an alternative model combining elements

from the econometric and the rational prepayment approaches.

Roncoroni and Moro (2006) assume that refinancing is subject to small fees or

transaction costs. They focus on refinancing decisions exclusively steered by better

market conditions for the borrower. The inclusion of exogenous elements driving the

refinancing policy does not pose any particular problem to the proposed setting. It

suffices to allow the time horizon be dependent on the occurrence of the random

events triggering the contract expiration. The number N of refinancing opportunities

over the time horizon is fixed at the outset. At each point in time the mortgagor sets

the debt rate to either the current rate or to newly available floating lending rate. Over

the contract lifetime, this option can be exercised N times at most.

From a financial viewpoint, the mortgagor’s decision problem takes the form of a

multiple compound American-style option. This allowed for the use of stochastic dy-

21.1 Problem Statement and Solution Method 473

namic programming methods to tackle the determination of the optimal prepayment

policy defined as the one minimizing the value of the contract.

This case-study is organized as follows. Section 21.1 describes the contract fea-

ture of fixed-rate and floating rate mortgages under limited refinancing options. Sec-

tion 21.2 details the solution methodology and extends the analysis to the case in-

cluding transaction costs. Section 21.3 illustrates empirical results obtained by per-

forming experiments under alternative scenarios. A final section presents a few con-

cluding remarks.

21.1 Problem Statement and Solution Method

21.1.1 Fixed-Rate Mortgage

We consider a finite time horizon T0,T := (0, 1, . . . , T). At time 0, an individual

borrows 1 Euro. This generates a balance due B(0) = 1. The borrower is required to

pay back this amount together with interest over the horizon according to a constant

installment scheme. For each period [t −1, t] an interest I (t −1) is calculated on the

outstanding balance B(t − 1) at a rate equal to r(t − 1). The outstanding exposure

B ′(t −1) of the debtor over the period [t −1, t] is defined by the due interest I (t −1)

plus the standing balance B(t −1). At the end of the period, i.e., time t , the borrower

pays a fraction f (t) which is written down depending on the exposure B ′(t − 1).

This number is computed as a proportion of the residual contract lifetime, namely

f (t) = 1/(T − (t − 1)). Let us denote this payment by P(t − 1). The explicit

dependence on the starting day t − 1 of the period underlines that this amount is set

at this time, though paid off at the end of the period. After performing this payment,

the new outstanding balance for the debtor becomes B(t) = B ′(t − 1) − P(t − 1).

Table 21.1 summarizes the steps involved in this payment scheme. It is clear that

the new balance due depends on the initial balance and on the debt rate process r =
(r(t), t = 0, . . . , T − 1). Since by hypothesis the initial debt position is B(0) = 1,

the only exogenous ingredient is the the debt rate process r .

Notice that the borrowed capital is totally repaid by the end of the time horizon,

i.e., B(T) = 0. This can be proved by showing that the last payment P(T − 1)

matches the standing balance at time T − 1:

Table 21.1. The amortization scheme

Quantity Symbol Formula

Standing debt balance at t − 1 B(t − 1) Given by induction

Debt rate for period [t − 1, t] r(t − 1) Random

Interest accrued on [t − 1, t] I (t − 1) r(t − 1) × B(t − 1)

Standing exposure on [t − 1, t] B ′(t − 1) I (t − 1) + B(t − 1)

Constant installment coefficient f (t) 1/(T − (t − 1))

Payment to lender at time t P (t − 1) f (t) × B ′(t − 1)

Standing debt balance at time t B(t) B ′(t − 1) − P(t − 1)

474 21 Floating Mortgages

P(T − 1) = B ′(T − 1)/
(
T − (T − 1)

)

= B ′(T − 1).

The cost to go associated to a given debt rate process r is defined as the sum of all

cash flows stemming from the payment scheme just described, i.e.,
∑T −1

t=0 P(t). We

now move to the description of the debt rate process r .

21.1.2 Flexible-Rate Mortgage

Let us assume that the market quotes an interest rate R and suppose this number

follows a time-homogeneous Markov chain R = (R(t), t = 0, . . . , T) with finite

state space S = {smin + k�s, k = 0, 1, . . . , K}. Here the minimum rate smin, the

interest lag �s and the cardinality K + 1 are all fixed. Let S ′ = {smin + k�s, k =
1, . . . , K − 1}. The transition probabilities of the process R are assigned as follows:

p(x, y) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1
3 if (x, y) ∈ S ′ × {x, x ± �s},
1
2 if (x, y) ∈ {smin} × {smin, smin + �s}

∪ {smax} × {smax, smax − �s},
0 otherwise.

(21.1)

This function, coupled with an initial market rate R(0), induces a probability measure

PR(0) on the path space ST +1.

Turning to the debt rate process r , we suppose its initial value r(0) matches the

market rate R(0) at the same time. At any date t , the debtor is faced with the choice

of continuing the mortgage at the standing debt rate r(t − 1) or to repay the entire

capital due by using the proceeds from entering a new mortgage at the currently

available conditions expressed by the prevailing market rate R(t). In this case we

say that the mortgage has been refinanced.

We study the case where this option can be exercised a maximum number N of

times over the horizon (0, . . . , T − 1). If N is equal to the number T − 1 of setting

times, the optimal strategy for the borrower is trivial: he exercises the option each

time the market rate R goes down. Consequently, we suppose that the number N of

refinancing opportunities is strictly smaller than the number of dates. Table 21.2 in-

dicates the input parameters and dynamic processes defining the contract provisions.

Turning to the mortgage refinancing decision, this can be described by a process α

specifying at each time t = 0, . . . , T − 1 whether the mortgagor continues his posi-

tion at the standing conditions (α = 0) or, if possible, refinances his debt (α = 1).

The control process is described in Table 21.3.

Of course, the chosen control policy affects the state variables dynamics featuring

the borrower’s position over time. These variables are as follows: (1) the number

nα(t) of available refinancing opportunities left for future exercise; (2) the current

interest rate rα(t); (3) the installment cash flow P α(t) for the current period; (4) the

resulting outstanding balance Bα(t). Table 21.4 reports all processes subject to a

control. It is clear that choosing to refinance or not at a give time t has has effect on

nα(t +1) and rα(t +1). The link to the other two quantities is clarified in Table 21.5.

21.1 Problem Statement and Solution Method 475

Table 21.2. Input variables and parameters

Quantity Symbol Formula

Time horizon T0,T {0, 1, . . . , T }
Market rate range S {smin + k�s, k = 0, 1, . . . , K}
Initial market rate R(0) Given

Market rate dynamics R (R(t), t = 0, . . . , T) ∼ (21.1)

Number of options n(0) N < T

Initial debt rate r(0) R(0)

Balance due B(0) 1

Table 21.3. Control variables

Quantity Symbol Formula

Control policy process α (α(t), t = 0, . . . , T − 1)

Control policy domain D(α(t))

{

{0, 1} if
∑t

i=1 α(i) < n(0)

{0} otherwise

Control policy at time t α(t)

{

0 continuation

1 refinancing

Table 21.4. Controlled system

Quantity Symbol Formula

Refinancing options process nα (nα(t), t = 0, . . . , T − 1)

Refinancing opportunities at t nα(t)

Controlled debt rate process rα (rα, t = 0, . . . , T − 1)

Debt rate at time t rα(t)

{

R(t) if α(t) = 1

rα(t−1)(t − 1) if α(t) = 0

Pro-rata payment process P α (P α(t), t = 0, . . . , T − 1)

Standing debt balance process Bα (Bα(t), t = 0, . . . , T − 1)

Table 21.5. Debt process

Bα(t) Outstanding debt balance at time t

B ′(t) := Bα(t)(1 + rα(t)/52) Capital plus interest on [t, t + 1]
P α(t) := B ′(t)/(T − t) Pro-rata payment for [t, t + 1]
Bα(t + 1) := B ′(t)−P α(t) Outstanding debt balance at time t + 1

The borrower wishes to select a control policy that minimizes the cost associated

with the entire repayment stream (P α(t), t = 0, . . . , T − 1). For the purpose of

illustrating this issue, we consider the sum of all these payments as a raw measure

of this cost. Notice that we do not consider discounting for evaluation purposes. The

problem is qualified as follows:

min
α∈A

E

(

T −1
∑

j=0

P α(j)

)

, (21.2)

476 21 Floating Mortgages

where A denotes the class of admissible control policies α ={α0, . . . , αT −1} deter-

mining the controlled payment process (P α(t), 0 ≤ t < T).1

We note that any control policy α defines a multivariate stopping rule (τ1, . . . ,

τn), n ≤ N , which is recursively defined by

τ1 = inf{t ≥ 0: α(t) = 1},
τk+1 = inf{t > τk: α(t) = 1}.

Our task is to build a model for describing the financial structure illustrated above,

then provide an algorithm delivering the minimum value in (21.2) , and finally deter-

mine the corresponding optimal control policy

α∗ =
(
α∗(0), . . . , α∗(T − 1)

)
.

This latter is equivalent to the multivariate optimal stopping rule (τ ∗
1 , . . . , τ ∗

N). We

end this section by deriving an expression for the time t + 1 outstanding balance in

terms of the adopted control policy and the debt level recorded one time-step before:

B(t + 1) = B ′(t) − P(t) = B ′(t) − B ′(t)

T − t
= c

(
rα(t)(t)

)
B(t)T (t),

where c(x) = 1 + x/52 denotes the accrual factor corresponding to rate x and T (t)

is the pro-rata coefficient defined by 1 − 1/(T − t).

21.2 Implementation and Algorithm

21.2.1 Markov Control Policies

Recall that the state variable of a Markov control problem is defined as the informa-

tion upon which the control policy is chosen at any time. More precisely, this is the

set of observable variables upon which α(t) can be determined at a given point in

time.

We observe that the time t standing balance B(t) and debt rate r(t) fully deter-

mine both the updated capital-plus-interest B ′(t) and the constant installment pay-

ment scheme P(t), which in turn goes into the objective functional (21.2). Since the

target is affected by both B(t) and r(t), the time t control α(t) should depend on

these variables. The dependence on B(t) is straightforward. If any refinancing op-

portunity is still available, i.e., 0 < n(t) ≤ N , then the debt rate is set to the best

performing one between its previous value r(t − 1) and the current market rate R(t)

observed in the market place at the same time. If instead all refinancing opportunities

have already been exhausted, i.e., n(t) = 0, then the new current debt rate r(t) must

1 Specifically, the repayment process (P α(t), 0 ≤ t < T) is defined on the probability space

(ST ,B(ST), PR(0)) and the expectation is performed under the probability measure PR(0)

induced on the space of paths by the transition probabilities (21.1) and the initial condition

R(0).

21.2 Implementation and Algorithm 477

agree with its previous value r(t − 1). In general, r(t), and thus a Markov control

policy α(t), depends on the triplet (R(t), r(t − 1), n(t)).

These considerations lead to consider control policies whose time t value de-

pends on the outstanding balance B(t), the market rate R(t), the one-period-ahead

debt rate r(t − 1) and number n(t) of available refinancing options:

α(t) = F
(
t,
(
B(t), R(t), r(t − 1), n(t)

))
. (21.3)

If B,R, r−, n represent possible values taken by B(t), R(t), r(t), and n(t), respec-

tively, the 4-uple (B,R, r−, n) is a candidate state variable.

We adopt the dynamic programming principle for the purpose of computing the

value function and the optimal exercise policy over the contract lifetime. Since the

state variable B(t) is continuous, a direct application of this principle is prevented.

However, the value function is homogeneous of degree one in this variable and the

value function can be written as

V (t, (y, x, r, n)) := y × V ∗(t, (x, r, n)). (21.4)

We refer to V ∗ as the “Unitary Value Function” because it represents the value func-

tion per unit of outstanding balance. Since y is non-negative, the optimal policy for

V coincides with the optimal policy for V ∗. As a consequence, admissible stopping

rules are independent of y. We therefore consider control variables of the form

α(t) = F
(
t,

(
R(t), r(t − 1), n(t)

))
. (21.5)

The control variable so defined is Ft -measurable, implying that the control pol-

icy (21.5) is admissible. The state variable of our problem is the triple (R, r−, n)

defined on a subset of X = S × S × {0, . . . , N}. For instance, if t = 1, r ∈
{r0, r0 + �s, r0 − �s} ⊂ S . It turns out that the loss in terms of computational

complexity for restricting numerical calculations to the exact domain of the state

variable highly overcomes the gain resulting from reducing the number of compu-

tations. Consequently, we decide to skip considering the domain constraints while

performing the optimization algorithm and compute the value function over the en-

tire domain X .

21.2.2 Dynamic Programming Algorithm

Having identified the state variable, we now turn to the recursive computation of the

value function V ∗ and the determination of the optimal refinancing strategy consist-

ing of an N -uple of T -valued strictly increasing stopping times.

Time T Value Function

At time T the debtor pays off the time T −1 standing capital plus the interest accrued

between T − 1 and T . Then the contract extinguishes and becomes worthless:

V (T , (y, x, r, n)) = 0,

for all admissible y, x, r, and n.

478 21 Floating Mortgages

Time T − 1 Value Function

If no refinancing option is available anymore, i.e. n = 0, the debtor incurs a payment

equal to time T − 1 outstanding debt y plus the interest accrued between T − 1 and

T according to the rate r , that is

CNR0(T − 1, y, x, r) = y × c(r) × T ∗(T − 1),

where c(r) := (1 + r/52), T ∗(t) := 1/(T − t) is the complement of the coefficient

T (t) to the unit. If any refinancing option is still available, i.e., n > 0, we compare

the cost CR resulting from refinancing, i.e., α = 1, to the one CNR from continuing

under the standing conditions, i.e., α = 0. The former is the sum of the interest

CP[T −1,T](y, x) accrued on the outstanding debt y over the period between T − 1

and T according to the new market rate x and the discounted expected value function

DEC(T , y, x, r, n − 1) calculated one time step later, i.e., at time (T − 1) + 1 = T ,

corresponding to one refinancing opportunity less, that is

CR(T − 1, y, x, r, n) = CP[T −1,T](y, x) + DEC(T , y, x, r, n − 1)

= y × c(x) × T ∗(T − 1) + 0.

The latter is defined similarly, except for the new debt rate which now equals the

current debt rate r:

CNR(T − 1, y, x, r, n) = CP[T −1,T](y, r) + DEC(T , y, x, r, n)

= y × c(r) × T
∗(T − 1) + 0.

The time T − 1 value function is thus:

V
(
T − 1, (y, x, r, n)

)
(21.6)

=

{

min{CR(T − 1, y, x, r, n), CNR(T − 1, y, x, r, n)}, n ≥ 1,

CNR0(T − 1, y, x, r), n = 0

=
{

min{y × c(x)T ∗(T − 1), y × c(r)T ∗(T − 1)}, n ≥ 1

yc(r)T ∗(T − 1), n = 0.

Since c(·) is an increasing function and both y and T ∗(T − 1) are positive, if n > 0,

the optimal decision is to refinance the mortgage provided that the new market rate x

is lower than the standing debt rate r . The time T − 1 optimal control policy reads as

α(T − 1)(y, x, r, n) = α(T − 1)(x, r, n) (21.7)

=
{

1 if n > 0 and x < r ,

0 if n = 0 or r ≤ x.

Time t Value Function

The value function at time t is to be computed as in formula (21.6) by replacing

T − 1 is replaced with t :

21.2 Implementation and Algorithm 479

V (t, (y, x, r, n))

=
{

min{CR(t, y, x, r, n), CNR(t, y, x, r, n)} if n = 1, . . . , N ,

CNR0(t, y, x, r) if n = 0.
(21.8)

The main difference here is that more intensive computations are needed.

CR(t, y, x, r, n) = CP[t,t+1](y, x) + DEC(t + 1, y, x, r, n − 1)

= yc(x)T ∗(t) + EPx
(

V
(

t,
(

B(t + 1), ·, x, n − 1
)))

, (21.9)

where T ∗(t) := 1/(T − t) is the complement to one of the coefficient T (t) and

the symbol “·” indicates the argument with respect to which expectation is to be

computed. Noting that (1) the time t + 1 standing balance is equal to B(t + 1) =

c(r(t))B(t)T (t), (2) the expected value is computed over the possible values taken

by the market rate R(t + 1), and (3) V factors in the product y × V ∗, the cost for

refinancing becomes

CR = yc(x)T ∗(t) + EPx
(

V
(

t + 1,
(

c(x)yT (t), R(t + 1)(·), x, n − 1
)))

= yc(x)T ∗(t) + c(x)T (t)yEPx
(

V ∗
(

t + 1,
(

R(t + 1)(·), x, n − 1
)))

.

Analogous computations for the cost of continuation lead to

CNR = CP[t,t+1](y, r) + DEC(t + 1, y, x, r, n − 1)

= yc(r)T ∗(t) + EPx
(

V
(

t + 1,
(

B(t + 1), ·, r, n
)))

= yc(r)T ∗(t) + c(r)T (t)yEPx
(

V ∗
(

t + 1,
(

R(t + 1)(·), r, n
)))

.

The same cost of continuation when all options have been exercised, i.e., n = 0,

reads as

CNR0(t, y, x, r) = CNR(t, y, x, r, 0).

By gathering these expression altogether and dividing by the outstanding balance y

we come up to a formula for the time t unitary value function:

V ∗ =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

min
{

c(x)T ∗(t)

+ c(x)T (t)EPx
(

V ∗
(

t + 1,
(

R(t + 1)(·), x, n − 1
)))

,

c(r)T ∗(t) + c(r)T (t)EPx
(

V ∗
(

t + 1,
(

R(t + 1)(·), r, n
)))}

, n ≥ 1,

c(r)T ∗(t)
+ c(r)T (t)EPx

(

V ∗(t + 1,
(

R(t + 1)(·), r, 0
)))

, n = 0.

The optimal stopping rule at time t is not as simple as in formula (21.7) because

explicit minimization is required to decide whether to refinance or not. We finally re-

mark that the probability under which expectations are taken is determined by (21.1)

through the rule Px({y}) := P(x, y) in all cases.

Time 0 Value Function

At time t = 1 the unitary value function V ∗ becomes independent of variables

r and n. Indeed, this is the first time the debtor is allowed to refinance and all

480 21 Floating Mortgages

the N options are available. Note that the debt rate on [0, 1] is r0 and R(1) ∈
{r0, r0 + �s, r0 − �s}. The value function is given by

V = V ∗(0, (r0, r0, N)) = c(r0)T
∗(0) + c(r0)T (0) × E

Pr0
(
V ∗(1, (·, r0, N))

)
.

This is the fair price of the mortgage contract at time 0.

21.2.3 Transaction Costs

To provide an effective disincentive many mortgages prescribe a fee to apply upon

prepayment: the mortgagor wishing to extinguish the contract is required to pay an

additional fee usually ranging from 0.5 to 2 percentage points over the outstand-

ing balance. A slight modification is required to accommodate this feature with our

framework. Again, the value function factorizes as

V (t, (y, x, r, n)) := y · V ∗(t, (x, r, n)). (21.10)

Since transaction costs are proportional to the outstanding balance, they can be in-

cluded into the value function as a constant adding to the function CR. Let φ represent

the outstanding balance quota that is singled out as a prepayment fee. In general, the

time t value function V ∗ = V ∗(t, (x, r, n)) per unit balance is computed as

V ∗ =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

min
{

c(x)T ∗(t)

+ c(x)T (t)EPx
(

V ∗
(

t + 1,
(

R(t + 1)(·), x, n − 1
)))

+ φ,

c(r)T ∗(t) + c(r)T (t)EPx
(

V ∗
(

t + 1,
(

R(t + 1)(·), r, n
)))}

, n ≥ 1,

c(r)T ∗(t) + c(r)T (t)EPx
(

V ∗(t + 1,
(

R(t + 1)(·), r, 0
)))

, n = 0.

21.2.4 Code

The program described above has been implemented in three Matlab R© codes. These

modules perform the following operations:

1. Path simulation of the Markov chain driving market rate dynamics.

2. Backward induction determining optimal control policy.

3. Scenario generation and graphics plotting.

Code I

1. The first code is called by the main program contained in the third code. We

define some global variables.

T = time horizon = 249 (weeks);

R0 = initial interest rate = R(0) = 0.05;

Ds = weekly absolute variation of market rates = �s = 0.002 (K = 41);

ALPHA = initial number of allotted refinancing opportunities = n(0) = 4.

21.2 Implementation and Algorithm 481

2. Each knot in the tree accounts for the following information: time t , cur-

rent market rate x, outstanding debt rate one r , and remaining number of

refinancing opportunities.

3. The output of gen_traj is the T -sized vector y representing the weekly

movement of market interest rate according to the following rule:

• y(t) = +1 = Soaring by 20 b.p. (basis points) in the market rate be-

tween week t − 1 and week t .

• y(t) = −1 = Falling by 20 b.p. in the market rate between week t − 1

and week t .

• y(t) = 0 = Standing steady between week t − 1 and week t .

Code II

The main aim of Code II is to evaluate the Value Function as a value of the different

input-parameters.

4. We first evaluate the value function at time t = T −1 = 249. Since Matlab R© re-

quires positive integer-valued indexes, some quantity needs to be rescaled and/or

translated. For instance the Value Function V depends on t, ri, xj, n, all positive,

where:

t is time in weeks;

ri denotes standing debt rate;

xi represents current market rate;

n is the number of standing refinancing opportunities (plus one).

5. The state-space has been rescaled and translated so that ri and xj take values

between 1 and 41, where

+1 stands for xi = 0.01, the lower limit;

+41 stands for xi = 0.09, the upper limit;

+21 stands for xi = 0.05, the starting reference rate.

6. Index n is between 1 and 5. Value 1 means that no refinancing opportunity is

available anymore, while value 5 means that all refinancing opportunities are

still available. If refinancing is still possible (i.e. n > 1), the (T − 1)-Value

Function results from comparing the current market rate to the standing debt

rate. Finally, the Value Function can be computed as

V(t,ri,xj,n)= min(Vrif,VNrif).

Code III

This code is divided into three parts: the first part contains all global variables; the

second part evaluates probability distribution and control on the last trajectory; the

third part plots results as well as the control corresponding to a sample trajectory

(see Chapter 6 for the distinction between “control policy” and “control”).

7. We set a seed for the uniform random generator to its initial default value.

rand(’seed’,0);
rand(’state’,0);

482 21 Floating Mortgages

8. Stat is a (4 × 179)-matrix whose (i.j) entry contains the probability of the ith

refinancing at time j . Last is a vector to be used for plotting sample paths.

9. A sample scenario is generated by calling function gen_traj, with a starting

rate r = 0.05.

for k = 1 : N
y = gen_traj;
n = ALPHA+1;
ri = 21; \%-Kmin+1
xj = 21; \%-Kmin+1

10. At each knot in a given scenario, we check for the value taken by C. If C = 1,

the debt rate is set to the current market rate and n decreases by 1. For each of the

N sample paths (N = 10E4), function Stat stores the exact point where the

nth refinancing opportunity has been used. Each time an opportunity is accepted,

Stat increases by 1 in the appropriate cell.

if C(t,ri,xj,n)==1
if (k==N)
graphx(ALPHA+2-n) = t;
graphy(ALPHA+2-n) = 0.05+(xj-21)*0.002;
end
ri = xj;
n = n - 1;
Stat(ALPHA+1-n,t) = Stat(ALPHA+1-n,t)+1;

11. Functions last, graphx andgraphy display the last sample trajectory and

the corresponding stochastic control.

21.3 Results and Comments

Roncoroni and Moro (2006) computed the fair value of the contract V (0, (1, r0, N))

corresponding to a standing rate r0 = 5% an a number N = 4 of refinancing oppor-

tunities. This is the minimal cost for the mortgagor, namely the one resulting from

the optimal control policy. They obtain an optimal cost equal to 1.4404.

The optimal refinancing policy is expressed as a rule transforming any possible

configuration of the state variable into an action consisting of either continuing or

refinancing the mortgage. To have a concrete idea about the optimal policy, we plot

one sample path of the market rate process and indicate the four optimal refinancing

times (see Fig. 21.1).

Notice that the first refinancing option is exercised after a few weeks compared

to the repayment horizon. While market rates increase for about 75 weeks, no re-

financing takes place. In the following weeks, market rates steadily decrease and a

new refinancing option is exercised as soon as they go below the standing debt rate.

The remaining two options are exercised in a relatively narrow time window, always

21.3 Results and Comments 483

Fig. 21.1. Sample trajectory of the market rate of interest. Expression “→ ref” indicates the

four optimal refinancing times.

at points of minimum along the rate path. Naturally, this behavior is specific to the

examined path and other samples may give rise to different control actions.

A clearer picture of the optimal control policy is obtained by computing the dis-

tributions of the four optimal refinancing times. Analytical expressions for these dis-

tributions are not available. However, we may compute a sample estimate of their

shape by simulating a large number of trajectories, then storing the correspond-

ing optimal stopping times, and finally computing the relative frequency histogram

of the four refinancing times. Figure 21.2 shows a sample probability distribution for

the first two optimal refinancing times as obtained through 10,000 sample paths of

the market rate process.

The first option tends to be exercised within the first two weeks, whereas the

second stopping time seems to span a wide time period. It is interesting to note that a

refinancing option is never exercised during the first period. The first refinancing time

displays a spiky distribution with a maximum attained at time t = 2. It seems that

if the market rate decreases during the first period, the high proximity to the initial

period tends to offset the advantage stemming from refinancing. On the contrary, if

the market rate decreases in the second period, this effect reverses and the mortgage

is refinanced.

Figure 21.3 shows the last two refinancing times.

These times cluster on the farthest end of the horizon spectrum. However, they

also display a marked spiky behavior. We also computed the empirical relative fre-

484 21 Floating Mortgages

Fig. 21.2. Sample probability distribution of the first two refinancing times over n = 10,000

sample paths.

Fig. 21.3. Sample probability distribution of the last two refinancing times over n = 10,000

sample paths.

21.3 Results and Comments 485

Fig. 21.4. First optimal refinancing time sample distributions computed over alternative sam-

ple sizes. Case 1: (plain line) sample size = 10,000. Case 2: (dotted line) sample size =
100,000.

quency of the first refinancing time over 10,000 and 100,000 sample paths. Fig-

ure 21.4 displays the two distributions obtained by independent path generations.

The two graphs exhibit similar properties, showing that convergence to the exact

distribution of the first refinancing time is fairly quick. In particular, the large spike

occurring in about 50 weeks seems to be an intrinsic feature of the control policy.

Our final experiment checks for the behavior of the mortgage value as a function of

the entry level mortgage rate r0 and an additional fee is applied to any refinancing

decision. Interest rates vary from 1 to 9 percentage points. Prepayment fees range

from 0 to 2 percentage points over the standing capital. The contract is supposed

to expire in 180 months and 4 refinancing opportunities are allotted at the outset.

Figure 21.5 reports a plot of the corresponding two-dimensional surface.

It is clear that higher entry rates or larger fees have a negative effect on the min-

imal cost attainable by the mortgage holder. This is reflected by an increase in the

time 0 value function as shown by the graph.

486 21 Floating Mortgages

Fig. 21.5. Mortgage value under optimal refinancing policy across varying entry level mort-

gage rates and prepayment fees.

22

Basket Default Swaps*

Key words: credit derivatives, defaultable bonds, simulation

22.1 Problem Statement

Credit derivatives are financial contracts allowing the transfer of credit risk from one

market participant to another. This feature improves the efficient allocation of credit

risk amongst market participants. For this reason, in recent years credit derivatives

have become the main tool for transferring and hedging risk.

Credit derivative markets have rapidly grown in volume and variety of traded

products. Credit-linked securities have experienced various applications, ranging

from hedging default risk, to freeing up credit lines, to reducing regulator capital

requirements, to hedging dynamic credit exposure driven by market variables and to

diversifying financial portfolios by gaining access to otherwise unavailable credits.

The outstanding balance of credit derivatives contracts has increased from an esti-

mated USD 50 billion in 1996 to almost USD 500 billion at the end of the year 2000.

According to the 2003 ISDA survey the volume of the credit derivatives market has

reached an outstanding notional of more than USD 2 trillion in February 2003. The

exact size of the global credit derivatives markets, however, is difficult to estimate,

given the potential for overcounting when contracts involve more than one coun-

terpart. Moreover, the notional amounts outstanding considerably overstate the net

exposure associated with those contracts.

Credit default swaps (CDS) constitute the fundamental class of credit derivatives

(Schonbucher (2003)). These instruments allow banks to hedge credit risk underly-

ing loans and other interest rate positions. A more complicated credit-linked product

is the basket default swap (BDS), whose pay-off is contingent on the default occur-

ring within a basket of bonds. More precisely, a basket default swap is a bilateral

contract whereby one counterpart, named the “protection seller”, agrees to make

∗ with Giacomo Le Pera and Davide Meneguzzo.

488 22 Basket Default Swaps

a specific compensation payment to the other counterpart, named the “protection

buyer”, whenever a specific credit event occurs. This event is defined with respect to

a basket of obligors. A 1st-to-default basket provides for a payment upon default of

any of the obligors within the basket. Settlement may involve cash only, e.g., a (sin-

gle name) credit default swap, or it may require a physical delivery of the defaulted

asset in return for a cash payment of the par amount. In return for protection against

the 1st-to-default, the protection buyer pays a basket spread to the protection seller

defined as a sequence of cash flows. These payments terminate upon the first credit

event. Similarly, other credit products may depend on one or several default events.

An nth-to-default basket triggers a credit event after n (or more) obligors have de-

faulted. A last-to-default basket refers to the case where all assets in the basket are

required to default.

Modeling the joint default dependency is the main issue one has to investigate

for the purpose of pricing these securities and monitoring their risk level. Since the

Merton (1974) model, several approaches have been suggested for modeling the de-

pendence structure among different assets. Existing approaches can be grouped into

two classes of models, known as structural models and reduced-form models.

Structural models detect a default event whenever the firm’s value (as modelled

using a suitable stochastic process) breaks a certain lower bound meant to signal

company liquidation or restructuring. Assuming that the firm’s value can be de-

scribed through a geometric Brownian motion, the default event probability distri-

bution can be determined in analogy to the pricing of barrier options. The underlying

is the firm value and the strike is given by the firm’s debt.

Reduced-form models are based on the concept of default time. This approach

treats default as a jump process described through a corresponding intensity process

specifying the time evolution of the expected number of default per unit time. De-

pending on the complexity of the model, the intensity process is assumed to be either

deterministic or random. The resulting framework provides tractable models which

can be easily calibrated to market data.

We hereby aim at illustrating three alternative methods for pricing multi-name

credit derivatives. In particular, we compare the Monte Carlo approach with two

semi-analytical techniques, each one providing an appreciable improvement in terms

of computational efficiency. In particular, we show that the Monte Carlo setting suf-

fers from the fact that an extremely significant number of simulations are required in

order to achieve an acceptable convergence. Moreover, a large number of obligors,

usually more than 100, are involved in the basket and the resulting procedure be-

comes computationally inefficient, if not totally unfeasible. Finally, the pairwise cor-

relation matrix for N obligors has dimension N ·(N −1)/2. For instance, 150 credits

require specifying 11,175 parameters! This problem urges the final user to develop

alternative valuation methods such as the ones we present below.

22.2 Models and Solution Methodologies 489

22.2 Models and Solution Methodologies

22.2.1 Pricing nth-to-default Homogeneous Basket Swaps

In this section we present a methodology for pricing basket default swaps. We con-

sider a basket that pays a spread s at dates {t1, t2, . . . , ti−1, . . . , TM}. The periodic

payments of the protection buyer to the protection seller are denoted as the premium

leg (PL); the payment of the protection seller to the protection buyer in case of de-

fault of the underlying credit is called default leg (DL). ∆ denotes the year fraction

representing the period between payments (i.e., 1/4 for quarterly payments, 1 for an-

nual frequency) and with B(0, ti) the nonstochastic discount factor for the maturity

ti . For simplicity, we do not take into account the accrued premium until the default

date.

Given the definition of counting process N(t) :=
∑N

i=1 1τi≤t , where 1τn>t is the

survival indicator of the nth default time (see Chapter “Dynamic Monte Carlo”), the

nth-to-default basket premium leg is:

PL = s∆

M
∑

i=1

[

B(0, ti)P
(

N(ti) < n
)]

(22.1)

= s∆

M
∑

i=1

[

e−rti

n−1
∑

j=0

P
(

N(ti) = j
)

]

,

where P(N(ti) < n) is the probability to have less than n defaults no later than time

ti . The above expression means that the protection buyer pays the spread s until n

names have defaulted, where s is quoted per annum.

If the nth default occurs before the maturity T , the protection seller has to pay

the difference between the par value and the recovery rate (R) of the reference entity.

Considering the same recovery rate for each obligor in the basket,1 the default leg

(DL) is given by

DL = (1 − R)E[B(0, τn) · 1τn≤T].

If we assume that default can occur continuously over time, we may define Fn(t) =
P(N(t) ≥ n) and we rewrite the above expression as:

DL = (1 − R)

∫ T

0

B(0, t) dFn(t).

Under the hypothesis of constant interest rate and integrating by parts, we arrive at:

DL = (1 − R)

{

e−rT Fn(T) + r

∫ T

0

Fn(t)e
−rt dt

}

. (22.2)

1 This assumption greatly simplifies the analysis that follows. A more realistic viewpoint

ought to consider the special features exhibited by empirical recovery rates as it has been

illustrated, e.g., in Altman, Resti and Sironi (2004, 2005) and Titman, Tompaidis and Tsy-

plakov (2004).

490 22 Basket Default Swaps

Imposing that PL = DL, we obtain the equilibrium spread

s∗ =
(1 − R){e−rT Fn(T) + r

∫ T

0 Fn(t)e
−rt dt}

∆
∑T

i=1[e
−rti

∑n−1
j=0 P(N(ti) = j)]

. (22.3)

Pricing a basket default swap requires estimating the probability distribution of de-

fault times. This can be modeled in the following two ways:

1. Sampling a large number of random scenarios from the joint distribution;

2. Using a factor model to deliver tractable semi-analytic computations.

We provide an implementation of the first solution using copula functions and Monte

Carlo simulations. We describe the second methodology adopting two different fac-

tor models: one based on the use of the Fast Fourier Transform, the other on a recur-

sive algorithm.

22.2.2 Modelling Default Times

Default probabilities pi can be obtained either directly or implicitly. In the first case,

information stems either from the market via the observation of credit default swaps

spreads, or from rating agencies via advertised default rating matrices. In the second

case, they are derived from an assessment of the so-called hazard rate hi as implied

from market prices of credit derivatives. We now shortly illustrate a hybrid version

of this approach and refer to Chapter “Dynamic Monte Carlo” for a self-contained

introduction to jump processes and their simulation algorithms.

Consider an increasing sequence of stopping times τ1 < · · · < τn < · · · , and

define a counting process as

N(t) :=

N
∑

i=1

1τi≤t . (22.4)

A (homogeneous) Poisson process with intensity λ > 0 is a counting process whose

increments are independent and the probability that n jumps occur in any interval

[s, t] is given by

P[N(t) − N(s) = n] =
1

n!
(t − s)nλne−(t−s)λ.

In other words, N(t) has independent increments and N(t) − N(s) is a Poisson

variable with parameter λ(t − s). The time of default τ is defined as the first jump

time of the process N , that is

τ = inf{t > 0: N(t) > 0}.

Intensity based models assume that an intensity function is given, then build a count-

ing process with that intensity, and finally derive the corresponding default time dis-

tribution. In real applications, the intensity function is bootstrapped from bond prices

and credit default swap spreads.

22.2 Models and Solution Methodologies 491

22.2.3 Monte Carlo Method

The Gaussian Copula model introduced by Lì (2000) is one of the most popu-

lar methods for pricing financial products whose payout depends on default times

τ1, . . . , τN . From here on, we assume the recovery rate Ri paid off in case of default

of the ith underlying asset is a fraction of the nominal.

The basic assumptions of this framework are as follows:

1. The default time τi is modeled as the first jump time of an inhomogeneous Pois-

son process.

2. The dependence structure of default times is assigned through a Gaussian copula

(see (22.5)).

3. Under the risk-neutral probability P∗, the default-free interest rate dynamics are

independent of default times.

4. The fraction of the nominal which is paid in case of default is given by the

recovery rate, which we assume to be the same for all obligors.

Under these assumptions, the default time for the ith defaultable product in the

basket has a cumulative distribution function given by

Fi(t) = 1 − exp

(

−

∫ T

t

λi(s) ds

)

.

Moreover, using a Gaussian copula leads to the joint distribution of default times as

Fτ1,...,τn(t1, t2, . . . , tn) = Φn

(

Φ−1(F1(t1)),Φ
−1(F2(t2)), . . . , Φ

−1(Fn(tn))
)

,

(22.5)

where Φn denotes the n-dimensional normal cumulative function with correlation

matrix Σ . This matrix is just the correlation matrix among asset price returns and

may be estimated from the observation of equity indices.

Correlated default times can be simulated by the following algorithm.

Algorithm (Simulating Correlated Events via Gaussian Copula)

1. Sample Y1, . . . , Yn from a multivariate normal N (0,Σ).

2. Return τi = F−1
i (Φ(Yi)), i = 1, . . . , n.

This method can be easily proved by noting that

Yi = Φ−1(Fi(t)), for all i = 1, . . . , n.

22.2.4 A One-Factor Gaussian Model

According to the classical structural framework proposed by Merton (1974), the one-

factor model postulates that a company defaults when the firm value falls below a cer-

tain threshold. Let the firm value be driven by two components, namely a common

factor Y representing a source of systematic risk and a noise term εi that is idiosyn-

cratic to the firm. The systematic risk component can be viewed as an indicator of

492 22 Basket Default Swaps

the state of the business cycle (e.g., stock index, GDP, interest rates). The idiosyn-

cratic part is a firm-specified indicator and depends on events strictly linked to the

firm (e.g., the quality of the management, the market share, the position with respect

to competitors). We assume that Y and εi are independent and normally distributed

variables with zero mean and unit variance.

The dynamics of firm value i is given by

Vi(t) = ρiY +
√

1 − ρ2
i εi, (22.6)

where factor ρi ∈ [0, 1]. If ρi = 0 then the firm value does not depend on the general

state of the economy; if ρi = 1, the randomness affecting the firm value is exclusively

due to macroeconomic events. Furthermore, we assume that the correlation between

two firm values is cov(εi, εj) = ρiρj .

The default time distribution can be determined by defining a default event time

for a firm i as the first date for which Vi(t) ≤ Φ−1(Fi(t)), i.e.,

εi ≤
Φ−1(Fi(t)) − ρi · Y

√

1 − ρ2
i

. (22.7)

Knowing Φ−1(Fi(t)) and ρi , the conditional default probability pi|y that credit i will

default at time t , conditional on Y is given by:

pi|y(t) = P
[

Vi(t) ≤ Φ−1(Fi(t))|Y = y
]

= P
[

ρi · Y +
√

1 − ρ2
i · εi ≤ Φ−1(Fi(t))|Y = y

]

= P

[

εi ≤
Φ−1(Fi(t)) − ρi · Y

√

1 − ρ2
i

∣

∣

∣
Y = y

]

= Φ

(

Φ−1(Fi(t)) − ρiy
√

1 − ρ2
i

)

, (22.8)

for all i = 1, . . . , n. The independence property leads to the joint default probability

distribution for the N obligors as:

F(t) = P(τ1 ≤ t, τ2 ≤ t, . . . , τN ≤ t) =
∫ +∞

−∞

N
∏

i=1

pi|y(t)φ(y) dy, (22.9)

where φY is the factor density function. The corresponding joint survival distribution

reads as:

S(t) = P(τ1 > t, τ2 > t, . . . , τN > t) =
∫ +∞

−∞

N
∏

i=1

qi|y(t)φ(y) dy,

where qi|y(t) = 1 − pi|y(t).

22.2 Models and Solution Methodologies 493

22.2.5 Convolutions, Characteristic Functions and Fourier Transforms

In some cases, it is possible to derive analytical formulas for the value of the default

distribution or to compute the value of the default distribution with Fourier methods.

These results can be used to check the outcome of Monte Carlo simulations.

We now show how to use the Fast Fourier Transform to get to the distribution

function of a counting process N(t). We start with a few definitions.

Definition (Convolution Product) If f and g are measurable functions, we define

their convolution as:

(f ⊗ g)(u) =
∫ ∞

−∞
f (x)g(u − x) dx.

If X and Y are independent random variables with probability density fX and

fY , the distribution function of the sum X + Y is given by fX ⊗ fY .

Definition (Characteristic Function) The characteristic function (CF) of a contin-

uous r.v. X with d.f. fX is defined as Γ (t) = E(eitX), i.e.,

Γ (t) =
∫ +∞

−∞
fX(x)eitx dx, (22.10)

where i =
√

−1 denotes the imaginary unit.

Definition (Fourier Transform) The Fourier Transform (FT) of a function f is

defined by:

F(t) =
∫ ∞

−∞
f (x)eitx dx

if this integral exists. The function

f (x) =
1

√
2π

∫ ∞

−∞
F(w)eiwx dw (22.11)

is called the Inverse Fourier Transform (IFT), if it exists.

In what follows, we use the Fast Fourier Tranform (FFT) algorithm to implement

discrete Fourier transforms and the Inverse Fast Fourier Transform (IFFT) to imple-

ment discrete IFT. Given a finite set of data, e.g., a periodic sample taken from a

real-world signal, the FFT expresses these data in terms of their component frequen-

cies. It also solves the essentially identical inverse problem of reconstructing a signal

from the frequency data.

The moment generating function of a counting process N(t) is given by

ΨN(t)(u) = E
(

uN(t)
)

=
N

∑

k=0

P(N(t) = k)uk. (22.12)

Given the observation of factor Y , we can write

494 22 Basket Default Swaps

ΨNi(t)|Y (u) = E
[

uNi (t)|Y
]

= u1pi|y(t) + u0
(

1 − pi|y(t)
)

= upi|y(t) +
(

1 − pi|y(t)
)

,

where pi|y(t) is the marginal default probability as defined in (22.8). By using the

iterated expectation theorem and the independence of Ni(t), we get to the uncondi-

tional moment generating function:

ΨN(t)(u) = E

(

n
∏

i=1

ΨNi(t)|Y (u)

)

=
∫ n

∏

i=1

[

upi|y(t)+
(

1−pi|y(t)
)]

φ(y) dy, (22.13)

where φ(y) denotes the factor’s density function. The probability P(N(t) = k) can

be determined by calculating the coefficient of the term uk from expression (22.12)

and (22.13).

This formal expansion approach is well-suited for small values of N , whereas

for large values we can use the FFT approach. The idea is to compute the character-

istic function of N(t) by replacing variable u in (22.12) with eiu. The characteristic

function has the following property: if N and K are independent, the characteristic

function of the sum N +K is the product of the characteristic functions of N and K .

With this in mind, we obtain:

ΓN(t)(u) = E

(

n
∏

i=1

ΓNi (t)|Y (u)

)

=
∫ n

∏

i=1

[

eiupi|y(t) +
(

1 − pi|y(t)
)]

φ(y) dy,

where ΓNi (t)(u) is the characteristic function of Ni(t). Under certain technical condi-

tions, the FFT of the probability density function is exactly its characteristic function.

Therefore, we can write:

ΓN(t)|Y (u) = E
[

eiuN(t)|Y
]

=
n

∏

i=1

FFT(fi|y(t)),

where fi|y(t) is the distribution of Ni(t) that is a Bernoulli distributed random vari-

able with probability pi|y(t). By inverting the expression above through the Inverse

Fast Fourier Transform (IFFT) defined as

fy(t) = IFFT

{

n
∏

i=1

FFT(fi|y(t))

}

, (22.14)

we can obtain the distribution of N(t) given factor Y . Finally, the unconditional

distribution is given by integration over the range spanned by variable y, namely:

f (t) =
∫

fy(t)φ(y) dy.

One of the greatest advantages of this approach is that the CF uniquely characterizes

the distribution of a random variable.

22.3 Implementation and Algorithm 495

22.2.6 The Hull and White Recursion

Recall that qi|y(t) denotes the survival probability P(τi > t); then, the conditional

probability of no-default is

P0|y(t) =
N
∏

i=1

qi|y(t), (22.15)

while the probability of one default

P1|y(t) =
N

∑

i=1

{

[1 − qi|y(t)]
N
∏

j=1,j 	=i

qj |y(t)

}

=
N

∑

i=1

{

[1 − qi|y(t)]
N
∏

j=1

qj |y(t)

qi|y(t)

}

. (22.16)

By using expression (22.15) in formula (22.16), we obtain

P1|y(t) = P0|y(t)
N

∑

i=1

wi(t |Y),

where wi(t |Y) = (1 − qi|y(t))/qi|y(t). Hull and White (2003) prove that the condi-

tional probability of n names being in default by time t is:

Sn|y(t) = S0|y(t)
∑

wz(1)wz(2) · · · wz(n). (22.17)

If z(1), z(2), . . . , z(n) denote n distinct positive integers lower than N +1, the above

sum is computed over
(

N
n

)

= N !/(n!(N −n)!) possible selections. The unconditional

probability that there will be exactly n defaults by time t can be determined using

numerical integration over the distributions of factor Y , i.e.,

Pn(t) =
∫ +∞

−∞
P0|y(t)

∑

wz(1)wz(2) · · · wz(n)φ(y) dy. (22.18)

22.3 Implementation and Algorithm

We have developed MatLab R© routines for pricing the nth to default basket swap

using Monte Carlo simulation, the FFT approach and the Hull and White algorithm

for the purpose of computing the probability of having n defaults by time t , Fn(t).

Let us consider a basket consisting of n assets; the algorithm requires a preliminary

identification of the following variables:

(1) Contract maturity T ;

496 22 Basket Default Swaps

(2) Correlation ρ among the underlying assets;

(3) Hazard rate hi for each obligor;

(4) Common recovery rate R;

(5) Instantaneous interest rate r;

(6) Number of payments per annum f .

Then a contract type is selected (e.g., 1st-to-default, . . . , nth-to-default) and a method

for computing the joint probability distribution of default times is adopted (e.g., MC,

FFT, or HW). All hazard rates are supposed to be constant; consequently, we are

implicitly assuming that the jump dynamic of the defaults is driven by a Poisson

process and the distribution of default times is exponential.

22.3.1 Monte Carlo Method

The Monte Carlo approach is based on the generation of random numbers from a

Gaussian Copula. Given a basket with N references with default time correlation

matrix Σ , the steps are as follows:

1. Find the Cholesky decomposition A of Σ ;

2. Simulate n independent random variates z = (z1, z2, . . . , zn)
⊤ from N (0, 1).

3. Compute x = Az;

4. Put ui = Φ(xi) with i = 1, 2, . . . , n and where Φ denotes the univariate stan-

dard normal cumulative distribution function.

5. Return (τ1, . . . , τN) = (F−1
1 (u1), . . . , F

−1
N (uN)), where Fi denotes the ith mar-

ginal.

With the present value of the default and premium leg for all scenarios the spread

of the basket default swap is determined as quotient of the sum of the present values

of the default legs divided by the sum of the present value of the premium legs (22.3).

22.3.2 Fast Fourier Transform

The FFT method is implemented by the routine convolution.m. This function

delivers a vector containing the probabilities of having 0, 1, 2, . . . , N defaults con-

ditional on the factor Y . Starting with (22.8), the steps are as follows:

1. Define N vectors of size (N + 1) as

p̃i|y(t) := [1 − pi|y(t), 0, . . . 0, pi|y(t)],

for i = 1, . . . , N .

2. Apply the FFT to each vector p̃i|y(t);

3. Set ˜̃py(t) =
∏N

i=1 FFT[p̃i|y(t)];

4. Apply the IFFT to vector ˜̃py(t).

This procedure delivers a vector of conditional probabilities as a convolution of

N input vectors.

22.4 Results and Comments 497

22.3.3 Hull–White Recursion

Hull and White (2003) describe a method for calculating the expression (22.17).

Calling Ak =
∑

[wz(1)wz(2) · · ·wz(k)] with k < N and Bj =
∑N

j=1 w
j
i , they prove

the following recurrence relation:

A1 = B1,

2A1 = B1A1 − B2,

3A3 = B1A2 − B2A1 + B3,

...
...

kAk = B1Ak−1 + B2Ak−2 − · · · + (−1)kBk−1A1 + (−1)k+1Bk.

The function hw.m provides the related conditional probability vector. We have im-

proved the code efficiency by writing all routines in vector notation. This means that

all for and while loops have been replaced by vector or matrix operations. For

the purpose of showing the computational burden stemming for non-vectorial cod-

ing, we provide routine hw_uv.m which performs the same algorithm as hw.m in

a traditional loop-like programming style.

22.3.4 Code

For all the types of models the code is composed of a first common part that computes

the present value of the default leg and the premium leg. While in the Monte Carlo

algorithm we only have to generate the default times using the function GCdef.m,

in the FFT procedure or the Hull and White method the code splits into three main

parts. The first one evaluates the unconditional default probabilities with the chosen

model. The second part calculates the unconditional probability by integrating over

the factor’s distribution. The third function gives the probability of having at least n

defaults (i.e., the second summation in Eq. (22.1)).

The main function is ntd(model,T,rho,h,r,R,k,f), where model can

assume values MC, FFT, or HW; T is the contract maturity; rho is the N -dimensional

correlation vector as defined in (22.6); h is the N -dimensional hazard rate vector;

r is the instantaneous rate of interest; R is the common recovery rate; k is the speci-

fication of the type of contract (i.e., for a 1st-to-default basket this value is set to 1);

and f is the number of annual payments.

22.4 Results and Comments

We evaluate the fair spread of an nth-to-default basket swap under different scenar-

ios. We run the function ntd(model,T,rho,h,r,R,k,f), with T = 5, rho
ranging over [0, 1] with step 0.1, h = 0.01, r = 0.05, R = 0.5, k = {1, 2, 5}, and

f = 1. The Monte Carlo algorithm has been run over 100,000 simulations.

498 22 Basket Default Swaps

Table 22.1. Fair spread (bps) for 5 names using FFT

ρ 1st t.d. CPU time 2nd t.d. CPU time 5th t.d. CPU time

0 262.917 0.281 21.442 0.234 ≃0 0.234

0.1 261.775 0.281 22.209 0.281 ≃0 0.281

0.2 259.201 0.281 24.529 0.281 0.001 0.281

0.3 251.882 0.281 28.439 0.281 0.005 0.281

0.4 242.354 0.281 33.875 0.293 0.024 0.281

0.5 229.104 0.344 40.579 0.343 0.108 0.281

0.6 211.612 0.328 48.036 0.328 0.412 0.281

0.7 189.287 0.328 55.462 0.328 1.351 0.281

0.8 161.162 0.328 61.740 0.328 3.955 0.281

0.9 124.693 0.328 64.919 0.36 11.067 0.269

1 50 ≃0 50 ≃0 50 ≃0

Table 22.2. Fair spread (bps) for 5 names using HW recursion

ρ 1st t.d. CPU time 2nd t.d. CPU time 5th t.d. CPU time

0 262.917 0.422 21.442 0.421 ≃0 0.422

0.1 261.775 0.5 22.209 0.0516 ≃0 0.5

0.2 259.201 0.5 24.529 0.5 0.001 0.5

0.3 251.882 0.516 28.439 0.531 0.005 0.516

0.4 242.354 0.593 33.875 0.531 0.024 0.515

0.5 229.104 0.593 40.579 0.625 0.108 0.516

0.6 211.612 0.594 48.036 0.601 0.412 0.516

0.7 189.287 0.594 55.462 0.594 1.351 0.5

0.8 161.162 0.656 61.740 0.594 3.955 0.5

0.9 124.693 0.656 64.919 0.687 11.067 0.547

1 50 ≃0 50 ≃0 50 ≃0

Tables 22.1, 22.2 and 22.3 report results showing the computational speed im-

provement over the standard Monte Carlo method. Indeed, it took 0.9320 seconds

for the 1st-to-default under the assumption of ρ = 0. There are no remarkable

differences between the Fast Fourier Transform method and the Hull–White recur-

sion in terms of fair spread, while the former requires a shorter computational time.

Figure 22.1 shows the proportion (in percentage points) of Monte Carlo paths that

result in a default payoff for a test basket with correlation 0.5. We see that the es-

timated probability that the nth-default occurs before maturity is not stable. Fig-

ure 22.2 shows that the Monte Carlo estimator is unstable and converges at a slow

speed. This experiment can be performed by running the script graph.m with cor-

relation 0.5 and the same parameters as those reported above. Even if basket credit

default swaps typically involve a limited number of reference entities (n < 20),

we test whether the FFT and HW approach can be used for pricing Collateralized

Debt Obligations (CDOs) where the number of obligors is typically greater than one

22.4 Results and Comments 499

Table 22.3. Fair spread (bps) for 5 names using 100,000 Monte Carlo simulations

ρ 1st t.d. CPU time 2nd t.d. CPU time 5th t.d. CPU time

0 264.439 0.923 21.566 1.011 ≃0 1.016

0.1 263.107 0.937 22.437 0.937 ≃0 0.984

0.2 259.953 0.953 24.657 0.937 0.009 0.921

0.3 253.329 0.968 28.279 0.968 0.018 0.953

0.4 244.084 0.937 33.587 0.953 0.038 0.968

0.5 230.825 0.953 40.001 0.953 0.086 0.968

0.6 212.805 0.968 47.987 0.968 0.339 0.953

0.7 190.428 0.953 56.082 0.968 1.126 0.968

0.8 162.561 0.984 62.741 0.968 3.650 0.953

0.9 126.004 0.953 66.072 0.953 10.591 0.953

1 50 ≃0 50 ≃0 50 ≃0

Fig. 22.1. Percentage of paths in default for a first, second and last to default basket. The

results have been obtained running 10,000 Monte Carlo simulations.

hundred.2 Due to the extremely burdensome computational time requirements, we

decided not to run Monte Carlo. For a 2nd-to-default basket swap with correlation

0.5, we need about 9.5 seconds. We price a 2nd-to-default basket swap with 50 names

2 A CDO comprises a pool of underlying instruments (called “collateral”) against which

notes of debt are issued with varying cashflow priority. These notes vary in credit quality

depending on the subordination level. The collateral of a CDO is typically a portfolio of

corporate bonds or bank loans or other type of financial facilities (residential or commercial

mortgages, leasing, lending, revolving facilities, even other credit derivatives, to name few).

500 22 Basket Default Swaps

Fig. 22.2. Fair spread vs. number of Monte Carlo simulations.

and the usual parameter set. Table 22.3 shows that the FFT method works quite well

and performs significantly faster than the Hull–White recursion (see Table 22.4).

Moreover the HW algorithm does not converge for rho greater than 0.8 (see Ta-

ble 22.5), due to the instability of the quadrature method adopted by the MatLab R©

function quadv.m. Indeed this function makes use of the recursive adaptive Simp-

son quadrature, whereas implementing a Gauss–Legendre quadrature would lead to

convergence of the required integral (22.11). Hull and White (2003) use the recursion

just to price nth-to-default basket swaps that involve a smaller number of obligors;

for pricing correlation products that have a large number of underlings, they suggest

a different algorithm. We propose a different implementation of the Hull–White re-

cursion, using cycles instead of matrix syntax. Editing file prob.m with “@hw_un”

substituting “@hw”, we notice that the CPU time grows quite remarkably. For in-

stance, in the case of a basket with 50 names and ρ = 0.5 the 1st-to-default premium

is 1397.8 bps. However, the FFT method takes 1.95 seconds to run, whereas the Hull–

White recursion requires 21.15 seconds in the vectorial code and 195.23 seconds in

the loop-based routine.

Hence, a CDO consists of a set of assets (its collateral portfolio) and a set of liabilities (the

issued notes).

22.4 Results and Comments 501

Table 22.4. Fair spread (bps) for 50 names using FFT

ρ 2nd t.d. CPU time

0 1205.799 1.25

0.1 1168.722 1.62

0.2 1071.935 1.71

0.3 944.151 1.76

0.4 807.688 1.78

0.5 674.218 1.76

0.6 548.140 1.95

0.7 429.898 2.03

0.8 317.615 1.67

0.9 206.42033 2.12

1 50 ≃0

Table 22.5. Fair spread (bps) for 50 names using HW

ρ 2nd t.d. CPU time

0 1205.799 13.062

0.1 1168.722 17.328

0.2 1071.935 18.265

0.3 944.1515 18.422

0.4 807.688 19.047

0.5 674.218 19.329

0.6 548.140 20.672

0.7 429.901 22.327

0.8 – –

0.9 – –

1 50 ≃0

All the results highlight that the 1st-to-default premium decreases for higher val-

ues of correlation. The higher the correlation, the greater the advantage the contract

offers to the protection buyer. The paid basket spread is smaller if compared to buy-

ing n single name credit default swaps. Since this contract only offers partial protec-

tion, we would expect that the upper bound (ρ = 0) for the premium is the sum of

the individual default swap premiums,
∑N

i=1 si .

Similarly, the lower bound for the premium is the maximum of the individ-

ual default swap premiums, max(s1, s2, . . . , sN), which corresponds to the case

in which ρ = 1 (since here the riskiest credit will always be the 1st-to-default):

max(s1, s2, . . . , sN) ≤ s ≤
∑N

i=1 si (see Fig. 22.3). Up to a certain correlation value,

the premium for a 2nd-to-default increases as n does so. Over a certain level ρ, the

propensity to jointly default implies that the protection offered to the contract holder

decreases. For this reason the 2nd-to-default basket behaves like a first-to-default

basket: the premium starts to decrease. The premium also depends on the value of

the recovery rate R. We fix the value of the hazard rates and evaluate different con-

tracts under varying correlation and recovery rate. As the recovery rate increases, the

contract value becomes smaller and smaller since the protection it offers is less valu-

502 22 Basket Default Swaps

Fig. 22.3. Premium vs. correlation.

Fig. 22.4. First-to-default premium.

able. The resulting charts are displayed in Figs. 22.4 and 22.5. We finally analyze the

relation between the hazard rate h and the contract premium. As shown in Fig. 22.6,

22.4 Results and Comments 503

Fig. 22.5. Second-to-default premium.

Fig. 22.6. Premium vs. hazard rate.

as h increases, the probability of default increases and the contract becomes more

and more expensive.

23

Scenario Simulation Using Principal Components*

Key words: principal components analysis, Monte Carlo simulation, risk analysis,

term structure of interest rates, forward curve

Portfolio managers, hedge funds, and derivative traders, among others, are con-

fronted with the valuation and risk management of financial portfolios involving an

increasingly large number of securities. The heterogeneity of asset pools makes these

tasks very challenging and arduous to deal with using standard valuation tools, such

as naive Monte Carlo methods.

Principal Components Analysis (PCA) and scenario simulation are complexity

reduction techniques that can be applied to portfolios involving correlated assets.

The PCA method, as introduced in Steeley (1990) for the purpose of financial

applications, consists of identifying statistically independent factors affecting the

random evolution of a given pool of assets, sorting them by order of relative impor-

tance, and selecting the most significant ones. This task can be undertaken through

the computation of a historical cross-asset covariance matrix and the identification

of principal components representing independent factors underlying the market risk

borne by the portfolio.

Jolliffe (1986) is the standard reference for PCA. Avellaneda and Scherer (2002)

and D’Ecclesia and Zenios (1994) apply this technique to interest rate markets and

portfolio selection. Gabbi and Sironi (2005) provide as extensive factor analysis in

the Eurobond market. PCA has been applied to measure Value-at-Risk figures in

Roncoroni (2004).1 Based on early results by Roncoroni (1997, 1999), a functional

version of PCA has been proposed by Guiotto and Roncoroni (2001), Roncoroni,

Galluccio and Guiotto (2003), and Galluccio and Roncoroni (2006). These authors

develop a method allowing to detect “Shape Factors” affecting cross-sectional de-

∗ with Alessandro Moro.
1 Gatti et al. (2006) and Maspero and Saita (2005) provide key applications of Value-at-Risk

to asset management and project finance transactions.

506 23 Scenario Simulation Using Principal Components

formations and perform a study on the empirical performance of hedging strategies

based on these factors compared to the traditional PCA components.

The scenario simulation method, as introduced in Jamshidian and Zhu (1997),

consists of replacing the joint probability distributions of the significant factors se-

lected using PCA by appropriate discrete-valued approximations and then evaluating

the distribution of the market value of an asset portfolio as a function of these ap-

proximated distributions.

The main hypothesis underlying these methods is that factors are jointly normally

distributed. Correspondingly, the performance of the resulting reduced-form model

depends on four elements, namely

(1) the similarity of actual asset price distributions to normal variates,

(2) the correlation level among assets in the portfolio,

(3) the number of retained factors,

(4) the number of points in the approximating discrete distribution.

As these values become larger, the quality of the resulting model improves.

This case-study is organized as follows. Here the factor detection problem and the

complexity reduction issue are introduced. Section 23.1 details the solution method-

ology from a theoretical viewpoint, and provides an application to interest rate mar-

kets. Section 23.2 describes an implementation algorithm and the corresponding

code. Section 23.3 concludes with some numerical experiments aimed at testing the

quality of the method.

23.1 Problem Statement and Solution Methodology

Simulating cross-sectional data, such a term structure of interest rates, a commod-

ity forward price curve, or a volatility smile, is a challenging task due to the high

number of variables involved in the process. PCA aims at identifying and reducing

the number of mutually independent factors driving the random evolution of a given

cross-section. Scenario simulation improves PCA results by reducing the number of

possible outcomes that need to be simulated for each selected factor.

We introduce the main issue through a simple example. Consider a portfolio π

involving interest-rate dependent securities only. The portfolio value Vπ depends of

the term structure of interest rate expressed as a continuously compounded yield

curve yx , where x ≥ 0 denotes a time-to-maturity. This can be seen as a proto-

typical instance of a cross-section. We assume that π contains positions depending

on a number n of yields and that each yield may take one among a set of k values

within the portfolio time horizon. Evaluating the risk underlying the portfolio value

by Monte Carlo requires several simulations of possible scenarios for the n yields.

In general, there are kn possible outcomes, though a reasonably well-approximated

portfolio distribution can be obtained by fewer Monte Carlo simulations. However,

the computational burden remains quite important even for small portfolios.

23.1 Problem Statement and Solution Methodology 507

There are two sources of reducible complexity in this procedure. First, different

yields may be correlated to a certain extent, so simulating their outcomes indepen-

dently of each other introduces a loss of efficiency. PCA proposes a solution to this

issue by replacing the n yields with a number m ≪ n of mutually independent fac-

tors w1, . . . , wm. Second, sampling the distribution of Vπ by simulating samples

from factor distributions is highly time consuming due to the high number of pos-

sible states taken by each factor. For instance, a four-factor model (m = 4) with

M = 100 states for each factor leads to N = 1004 scenarios and a same number

of sample portfolio values Vπ . Monte Carlo simulation usually requires a high num-

ber, though smaller than N , of runs to come up with a reasonable assessment of the

portfolio distribution. Scenario simulation suggests replacing the underlying distrib-

utions by discrete ones involving a very small number of states, say from 3 to 9 in

most applications. Let us explore the two techniques to a greater depth.

Empirical analysis of interest rate dynamics shows that the yield curve y =

{yx, x ≥ 0} evolves over time according to a wide variety of possible deformations.

For instance, Central Bank may decide to decrease the short-term rate while the mar-

ket is quoting a higher 10-year bond yield; as a result, the yield curve is expected to

steepen. This phenomenon can be described as follows.

We consider n points on the yield curve. On a given time interval, all points may

vary quite heterogeneously, giving the impression that n factors are actually driving

the yield curve evolution. A moment’s reflection suggests that pairs of yields corre-

sponding to neighboring times-to-maturity are likely to move together whereas far-

away yields are likely to have a lower degree of mutual dependence in their behavior.

Qualitatively, we may say that a perturbation affecting a single yield spreads over the

entire term structure according to the degree of proximity to the shocked point. This

observation suggests that PCA should be performed on the empirical covariance (or

correlation) matrix of absolute (or relative) yield returns.

Slightly relaxing our notation, we let yi(t) denote the time t quoted yield corre-

sponding to time-to-maturity xi (i = 1, . . . , n). In a standard diffusion setting, we

may assume yield return dynamics

dy1(t)

y1(t)
= μ1 dt + dW1(t),

dy2(t)

y2(t)
= μ2 dt + dW2(t),

(23.1)
...

...

dyn(t)

yn(t)
= μn dt + dWn(t),

where the Wi’s are correlated Brownian motions. Principal components analy-

sis delivers dynamics for yi’s in terms of independent Brownian shocks W̃i(t)

(i = 1, . . . , n). These processes are obtained as linear combinations of the original

Brownian motion in that dW̃i =
∑n

k=1 αk dWk for suitable coefficients α1, . . . , αn.

Moreover, they are ranked according to their relative importance in reproducing the

508 23 Scenario Simulation Using Principal Components

underlying volatility. Indeed, if λk denotes the instantaneous variance per time unit

of the process W̃k , namely λk dt = Var(dW̃i), then λi ≥ λj , whenever i > j .

Complexity reduction can be achieved by setting a number ρ ∈ (0, 1] represent-

ing the proportion of the overall market volatility that needs to be reproduced by a

reduced-form yield curve model and defining m as the smallest number of Brownian

motions required for generating this figure, i.e.,

m := min

{

i ≥ 1:

∑i
k=1 λk∑n
k=1 λk

}

≥ ρ.

We then consider reduced-form dynamics

dy1(t)

y1(t)
= µ1 dt +

m
∑

k=1

β1k dW̃k(t),

dy2(t)

y2(t)
= μ2 dt +

m
∑

k=1

β2k dW̃k(t),

(23.2)
...

...

dyn(t)

yn(t)
= μn dt +

m
∑

k=1

βnk dW̃k(t).

Once this representation is established, a scenario simulation can be performed on

these dynamics. In most applications m is about 8–10 times lower than n.

Standard Monte Carlo simulation requires sampling among hundreds of possible

outcomes for the underlying Brownian motions. Scenario simulation is a reduction

technique aimed at simplifying the burden of generating paths from the exact noise

distribution. The idea is to select a very limited number of key states (called sce-

narios) of the noise driver, to assign them probabilities consistent with the initial

probability distribution, and finally to sample from this reduced-form model.

Jamshidian and Zhu (1997) suggest selecting 9 states for the first factor, 7 for the

second, 5 for the third, and 3 for the last driver. The scenario probability distribution

is taken as a multinomial approximation of the underlying multivariate normal dis-

tribution. If m denotes the number of possible outcomes for each of the four factors,

then the probability of a state i is given by

P(i) = 2−m m!
i!(m − i)!

.

The distance between two different states is 2/
√

m standard deviations and the dis-

tance between the center of the distribution and the farthest state is 1
2m 2√

m
=

√
m.

23.2 Implementation and Algorithm

23.2.1 Principal Components Analysis

Consider a vector-valued diffusion process with constant coefficients

23.2 Implementation and Algorithm 509

dy(t)

y(t)
= µ dt + dW(t), (23.3)

where W is a correlated n-dimensional Brownian motion. Here division between

vectors has to be interpreted componentwise, e.g., a
b
=(

a1
b1

, . . . , an

bn
). A time series

of cross-sectional data will be denoted by {y(t), t = δ, . . . , Nδ}, where y(t) =
(y1(t), . . . , yn(t)).

Algorithm (Principal Components Analysis on a Diffusion Process)

1. Data setting. Consider the annualized relative yield variations [y(t + δ) −
y(t)]/(δy(t)) for all dates t = δ, . . . , Nδ. The sample mean of these data is

given by

µ := (δN)−1
N

∑

k=1

[
y(kδ) − y((k − 1)δ)

y((k − 1)δ)

]
. (23.4)

If we subtract this average from each variation observed in the market, we obtain

a set of annualized centered relative yield variations

∆(t) := δ−1

[
y(t + δ) − y(t)

y(t)

]
− µ, t = δ, . . . , Nδ. (23.5)

The main hypothesis at this stage is that these vectors are all independent sam-

ples from a common multivariate normal distribution.

2. Descriptive statistical analysis. Compute the sample covariance matrix

C := Cov(∆) = N−1
N∑

t=1

∆(t)∆(t)⊤

=
(

N−1
n∑

t=1

Δi(t)Δj (t)

)

i,j=1,...,n

.

3. Diagonalization. Decompose C as C = U⊤ΛU , where

• Λ is the n×n diagonal matrix gathering the eigenvalues of C in a decreasing

order, i.e.,

Λ = Diag(λ1, . . . , λn), with λ1 > · · · > λn,

• U is the n×n matrix assembling the corresponding normalized eigenvectors

column by column, i.e.,

U = (u1| . . . |un), with λiu
i = Cui for all i.

4. Principal components. For each i = 1, . . . , n, define the ith principal component

fi as the variance normalized linear combination of annualized variations with

weights given by the elements ui
1, . . . , u

i
n of the ith eigenvector ui :

510 23 Scenario Simulation Using Principal Components

f = Diag
(√

λ−1
1 , . . . ,

√
λ−1

n

)
U⊤∆.

In matrix-like form, this expression reads as

⎛
⎝

f1
...

fn

⎞
⎠ =

⎛
⎜⎜⎝

∑n
k=1

√
λ−1

1 u1
kΔk

...∑n
k=1

√
λ−1

n un
kΔk

⎞
⎟⎟⎠ ,

where Δk is the kth entry of vector ∆. As a linear combination of normal vari-

ables with zero mean, vector f is also normal with mean equal to the zero vector

0 = (0, . . . , 0)⊤. Moreover, its covariance is given by the n × n identity matrix,

that is,

Cov(f) = Cov
(
Diag

(√
λ−1

1 , . . . ,

√
λ−1

n

)
U⊤∆

)

= Diag
(
λ−1

1 , . . . , λ−1
n

)
U Cov(∆)U⊤

= Diag
(
λ−1

1 , . . . , λ−1
n

)
UCU⊤

= Diag
(
λ−1

1 , . . . , λ−1
n

)
UU⊤ΛUU⊤

= In,

where we applied the property that the transpose of an orthogonal matrix is equal

to its inverse, e.g., U⊤ = U−1. In short, f ∼Nn(0,In). Since λi > λi+1, fi can be

interpreted as the ith most important component in explaining the cross-sectional

risk C.

5. Diffusion coefficients identification. By setting dt = δ and dW(t) = ∆ in equa-

tion (23.3), and by noticing that

∆ = Diag
(√

λ1, . . . ,
√

λn

)
U f =

⎛
⎜⎝

∑n
j=1

√
λ1u

j

1fj

...∑n
j=1

√
λnu

j
nfj

⎞
⎟⎠ , (23.6)

we come up to the following set of equations:

dy1(t)

y1(t)
= μ1 dt +

n∑

k=1

√
λ1u

k
1 dW̃k(t),

dy2(t)

y2(t)
= μ2 dt +

n∑

k=1

√
λ2u

k
2 dW̃k(t),

(23.7)
...

...

dyn(t)

yn(t)
= μn dt +

n∑

k=1

√
λnu

k
n dW̃k(t).

where dW̃j := fj . By reducing the number of factors to m < n, the resulting

dynamic system reads as in equation (23.2), where βik :=
√

λiu
k
i .

23.3 Results and Comments 511

The entries of each eigenvector ui are referred to as “factor loadings”. Indeed,

formula (23.6) implies that a unit perturbation in the component
√

λifi generates a

shock ui
1 on the yield y1, a shock ui

2 on the yield y2, and so on. Usually, the entries

of the first eigenvector display a common order of magnitude and share the same

sign. This means that a unit shock in the first component is reflected in a similar

movement of all points on the curve, that is a parallel shift. Similar interpretations

can be attributed to some of the remaining factors, as will be clear at the end of our

analysis.

The first applications of this decomposition in finance go back to Steeley (1990)

and Litterman and Scheinkman (1991). These authors studied the yield curve dy-

namics of the US interest rate market. Their main conclusion was that the first three

components f1, f2 and f3 explain more than 90% of the historical market volatility

during the eighties. Moreover, these components can be respectively interpreted as a

parallel shift, a change in slope, and a convexity adjustment in the shape of the term

structure. Although this method has been criticized for the strong assumption made

about the normality of the distribution of centered yield returns, it has now become a

market standard in the banking industry for the purpose of modelling cross-sectional

risk.

23.2.2 Code

Our implementation involves two codes, one for the scenario simulation model and

another for the Monte Carlo simulation. Centered yield variations are calculated

for a set of times-to-maturity. Function cov performs and delivers the variance–

covariance matrix of the time series of these quantities. Function eig returns the set

of decreasingly ordered eigenvalues and the corresponding normalized eigenvectors.

Once PCA has been performed, the four most significant components are singled out

and sample yield curves are generated.

The two codes differ in the way these curves are obtained. The scenario simula-

tion code uses a finite set of possible outcomes for each of the four components. The

Monte Carlo code generates pseudo-random samples for these figures. Once out-

comes for the selected components have been obtained, their value is plugged into

formula (23.7) and a set of sample yields, one per time-to-maturity, is returned as an

output.

23.3 Results and Comments

We implemented and tested the simulation algorithm using a time series of yield

curves in the US Treasury bond market. Our data span the period from March 1,

2000, to February 28, 2002, and the cross-section includes eleven yields, namely

those referring to yearly times-to-maturity for years one to ten, plus the six-month

yield.

Recall that the j th factor is given by a constant multiplied by the linear combi-

nation of yield increments Δ1, . . . , Δ11 defined in (23.5) with loadings u
j

1, . . . , u
j

11,

512 23 Scenario Simulation Using Principal Components

Fig. 23.1. Factor loadings of the most significant four principal components.

i.e., the entries of the normalized eigenvector corresponding to the j th greatest eigen-

value of the yield increments covariance matrix. We may figure out the shape of

a given factor j by visually inspecting the graph of all corresponding factor load-

ings plotted against the time-to-maturity variable, i.e., {(Ti, u
j

i), i = 1, . . . , 11}. Fig-

ure 23.1 shows a graph of factor loadings defining the most significant four factors.

We see that the first factor assigns quite uniform loading coefficients to all yield in-

crements. This feature suggests that the most important component driving the yield

curve risk is a parallel shift in the curve shape. The second factor loadings display

an increasing path. Correspondingly, this factor can be interpreted as a change in the

yield curve slope. Finally, the third factor can be identified with a curvature change

in the yield curve shape.

Table 23.1 reports instantaneous annualized standard deviations for the 11 prin-

cipal components. The overall variance is given by the sum of the diagonal entries in

the covariance matrix R or, equivalently, by the sum of all its eigenvalues2

VarTot = 0.153370 + 0.018219 + · · · + 0.000003 = 0.174838.

2 Since the trace operator Tr(A) :=
∑

i Aii is invariant under orthogonal transformations

and commutation among arguments, we have:

∑

i

Rii � Tr(R) = Tr(ΣΛΣ⊤) = Tr(ΣΣ⊤Λ)
Σ⊤=Σ−1

= Tr(Λ) �
∑

i

λi .

23.3 Results and Comments 513

Table 23.1. Instantaneous annualized volatilities reproduced by the eleven principal compo-

nents

Factor Label Variance, Std. dev., % Var., % Cumul.,

λj

√
λj λj /

∑11
k=1 λk

∑j
k=1 λk/

∑11
k=1 λk

1 W̃1 0.153370 3.916% 87.721% 87.721%

2 W̃2 0.018219 1.350% 10.420% 98.141%

3 W̃3 0.002309 0.481% 1.321% 99.462%

4 W̃4 0.000585 0.242% 0.335% 99.796%

5 W̃5 0.000181 0.135% 0.104% 99.900%

6 W̃6 0.000137 0.117% 0.078% 99.978%

7 W̃7 0.000017 0.041% 0.010% 99.988%

8 W̃8 0.000008 0.028% 0.005% 99.992%

9 W̃9 0.000005 0.023% 0.003% 99.995%

10 W̃10 0.000004 0.019% 0.002% 99.997%

11 W̃11 0.000003 0.018% 0.002% 100.000%

Fig. 23.2. Quota of the sample variance reported as a function of the cumulative number of

ranked principal components (factors).

In particular, the first component accounts for 0.1533702/0.174838 ∼= 87.721% of

the total variance. Figure 23.2 displays the cumulated variance reproduced by an

increasing number of principal components. It is clear from this picture that the most

significant four components represent almost the entire sample variance in the market

under investigation. Accordingly, we select W̃1, W̃2, W̃3 and W̃4 for the purpose of

generating sample yield curves.

514 23 Scenario Simulation Using Principal Components

Our next experiment involves the yield curve as recorded on February 28, 2002,

that is the last available datum in our set. We then generate eleven yields defining a

sample yield curve as will be quoted in three months from the current date. This task

is accomplished through standard Monte Carlo and scenario simulation. To put this

program into action, let t0 and (y1(t0), . . . , y11(t0)) denote the starting date and the

quoted term structure, respectively. If the simulation horizon is t = t0 + 3 months,

a standard Monte Carlo sample (y1(t), . . . , y11(t)) is obtained as

yi(t) = yi(t0) exp

[

1 + μi(t − t0) +
4∑

k=1

√
λiu

k
i

√
t − t0 × N k(0, 1)

]
,

where μi is the ith entry of vector µ defined in (23.4) and N 1(0, 1), . . . ,N 4(0, 1)

are independent samples from a standard normal distribution. A sample performed

using the scenario simulation model can be obtained by assuming that each N k is

a state of a discrete distribution approximating the normal density. We consider a

discrete set of states wk
1, . . . , w

k
m together with a distribution function defined by

P
(
wk

i

)
= 2−m m!

i!(m − i)!
, i = 1, . . . , m, k = 1, . . . , 4.

We choose the number mk of states depending on factor k according to the rule mk =
2(5 − k) + 1. So we have nine states for factor 1, seven states for factor 2, five states

for factor 3, and three states for factor 4. These are centered at zero and differ by a

multiple of 2/
√

mk . Table 23.2 reports the exact figures for all states. We plotted 105

sample yield curves obtained by the two methods on a common pair of Cartesian

axes. Figure 23.3 highlights the stronger uniformity among samples generated us-

ing the scenario simulation model as compared to those obtained using the standard

Monte Carlo technique. Deeper insight can be gained by examining descriptive sta-

tistics over a larger sample of yield curves. We generated 945 sample curves. Each

curve included eleven times-to-maturity. We then computed maximum, minimum,

mean, and variance of sample yields corresponding to each maturity. Results are re-

ported in Table 23.3 for the Monte Carlo simulation, and Table 23.4 for the scenario

simulation model. Scenario simulation performs as well as Monte Carlo in terms of

variety of samples paths. However, it outperforms standard Monte Carlo in terms of

computational cost, as long as the number of states is dramatically reduced and no

simulation is required at all.

It is important to underline that the quality of our results highly is highly de-

pendent on the assumption that the underlying model is Gaussian. Whenever the

underlying security prices display non-normal distributions, this hypothesis may re-

sult in a significant underestimation of the risk borne by a standing portfolio, and

consequently reduce the effectiveness of hedging strategies based on Value-at-Risk

measures. Gibson and Pristsker (2000) provide a few improvements of the Jamshid-

ian and Shu (1997) method as applied to the determination of Value-at-Risk figures

using PCA.

In all cases, PCA and scenario simulations constitute important tools for all risk

managers for at least three reasons. First, these techniques are easy to understand and

23.3 Results and Comments 515

Table 23.2. Scenario simulation approximation: states and probabilities for factors 1–4

Factor 1, k = 1

wk
i

: w1
1 w1

2 w1
3 w1

4 w1
5 w1

6 w1
7 w1

8 w1
9

−2.828 2.121 −1.414 −0.707 0.000 0.707 1.414 2.121 2.828

pwk
i

: 0.004 0.031 0.109 0.219 0.273 0.219 0.109 0.031 0.004

Factor 2, k = 2

wk
i

: w2
1 w2

2 w2
3 w2

4 w2
5 w2

6 w2
7

−2.450 −1.630 −0.820 0.000 0.820 1.630 2.450

pwk
i

: 0.016 0.094 0.234 0.313 0.234 0.094 0.016

Factor 3, k = 3

wk
i

: w3
1 w3

2 w3
3 w3

4 w3
5

−2.000 −1.000 0.000 1.000 2.000

pwk
i

: 0.062 0.250 0.370 0.250 0.062

Factor 4, k = 4

wk
i

: w4
1 w4

2 w4
3

−1.410 0.000 1.410

pwk
i

: 0.250 0.500 0.250

Fig. 23.3. Joint plot of 105 sample yield curves simulated on a 3-month horizon by standard

Monte Carlo.

516 23 Scenario Simulation Using Principal Components

Table 23.3. Monte Carlo simulation, 4 factors

Time-to-maturity Min Mean Max St. dev.

6 m 1.785 2.061 2.245 0.01113

1 y 2.140 2.445 2.652 0.01438

2 y 3.155 3.414 3.600 0.01351

3 y 3.865 4.071 4.224 0.01211

4 y 4.319 4.511 4.662 0.01135

5 y 4.639 4.827 4.984 0.01086

6 y 4.903 5.080 5.234 0.01046

7 y 5.090 5.265 5.426 0.01024

8 y 5.328 5.414 5.582 0.01002

9 y 5.350 5.530 5.706 0.00989

10 y 5.452 5.634 5.819 0.00977

Table 23.4. Scenario simulation, 4 factors

Time-to-maturity Min Mean Max St. dev.

6 m 1.649 2.077 2.506 0.01220

1 y 1.995 2.469 2.943 0.01505

2 y 2.997 3.427 3.857 0.01421

3 y 3.725 4.075 4.425 0.01275

4 y 4.180 4.509 4.838 0.01191

5 y 4.496 4.822 5.148 0.01138

6 y 4.757 5.073 5.389 0.01099

7 y 4.932 5.257 5.582 0.01081

8 y 5.076 5.406 5.736 0.01060

9 y 5.184 5.521 5.859 0.01051

10 y 5.281 5.625 5.969 0.01042

to implement. Secondly, their limits are well known, which may not be the case for

alternative and more sophisticated methods. Finally, PCA constitutes the standard

market practice. Thus, no serious comparative risk analysis should avoid this setting

as a benchmark.

It is worth mentioning that traditional PCA may be extended to the analysis of

cross-sectional shifts at a functional level. In this respect, Guiotto and Roncoroni

(2001) propose a theoretical framework where principal components are identified

in the stylized deformations observed on a time-series of cross-sectional data. The

study conducted by Galluccio and Roncoroni (2006) supported this approach from

an empirical viewpoint. In particular, these authors showed that factors underlying

cross-sectional shifts reproduce the yield curve risk more accurately than the tradi-

tional factors derived through standard PCA. Moreover, hedging a simple liability

against functional risk is more effective than hedging against the PCA factors in

terms of descriptive statistics of P&L distributions.

Financial Econometrics

24

Parametric Estimation of Jump-Diffusions*

Key words: maximum likelihood estimation, jump-diffusions, Monte Carlo

simulation, term structure of interest rates

We consider the problem of estimating the coefficients of diffusion processes with

jumps. These processes have been widely employed for describing sudden changes

both in stock price and in interest rate dynamics and reproducing high-order mo-

ments of sample data. In most cases, the lack of analytical expressions for transition

densities makes the use of maximum likelihood methods a very challenging task.

This case describes and tests the simulated maximum likelihood (SML) method

introduced by Pedersen (1995) and Brandt and Santa Clara (2002). This technique

allows for the estimation of a wide variety of diffusion processes, including those

which lack closed-form expressions for the transition density. We illustrate the SML

method by developing algorithms for the estimation of both continuous and mixed-

jump-diffusion processes. The latter process has been employed in interest rate mod-

elling by Piazzesi (2001).

The main idea underlying SML is to numerically evaluate the transition proba-

bilities of the process corresponding to all pairs of values taken by the state variable

at consecutive times. If a discretization of the time–space axes is properly refined,

the resulting transition density approaches a Gaussian distribution. The likelihood

estimator becomes a reliable approximation of the exact maximum likelihood esti-

mator, namely the one stemming from the exact, yet unknown, transition density of

the process.

Sections 24.1 and 24.2 introduce the estimation problem and illustrate the gen-

eral methodology, respectively. Section 24.3 details the algorithm, while Sect. 24.4

provides two applications. First, we consider the Cox, Ingersoll and Ross (1985)

model (CIR) for short-term interest rate dynamics. Since the transition density for

∗ with Piergiacomo Sabino.

520 24 Parametric Estimation of Jump-Diffusions

this model is known in closed-form, parameters can be estimated using the exact

maximum likelihood method. Consequently, we can use this model as a benchmark

against which we evaluate the relative performance of SML. Second, we adapt SML

to jump-diffusion processes and implement the resulting algorithm to the general

case of time-dependent jump intensity.

24.1 Problem Statement

We consider the problem of estimating the parameters of a continuous time diffusion

process Y satisfying a stochastic differential equation:

dY(t) = μ(Y (t), t; θ) dt + σ(Y (t), t; θ) dW(t). (24.1)

Here W is a standard Brownian motion and θ is a vector of unknown parameters. As-

sume that vector Ŷ = (Ŷ 0,Ŷ1, . . . , ŶN) gathers a set of observations of the process

as recorded at consecutive times t0, . . . , tN . If the exact transition density function

pY = pY (y, s, x, t; θ) is available in analytic form for any pair of times t < s

and states x, y, the likelihood function of the process is defined as the joint density

computed at the observed value Ŷ, i.e.,

L(θ; Ŷ) :=
N−1∏

n=0

p̂n(θ) =
N−1∏

n=0

p(Ŷn+1, tn+1, Ŷn, tn; θ). (24.2)

The maximum likelihood estimator determines the parameter value maximizing the

likelihood function computed on a sample Ŷ:

θ̂ML : Ŷ → arg max
θ

L(θ; Ŷ).

In many instances L is an exponential function. If this is the case, we may find it

more convenient to maximize the natural logarithm of L. The theory of stochas-

tic processes estimation using maximum likelihood is largely developed (see, e.g.,

Prakasa-Rao (1999)). However, the method requires an analytical expression for the

transition densities of the process. The SML technique approximates transition func-

tion values using Monte Carlo simulation. This technique provides an answer when-

ever other approximating methods fail. However, it suffers from all the typical in-

conveniences of simulation-based techniques, including intensive time consumption

and some difficulty arising whenever approximation errors need to be assessed.

24.2 Solution Methodology

Our goal is to provide an approximation for the transition function p̂n(θ) between

consecutive times tn and tn+1. For the sake of simplicity, we assume that sampling

occurs on an evenly spread time grid t0, . . . , tN (i.e., tn+1 − tn = Δ). Each interval

[tn, tn+1] is first split into M subintervals of length δ = Δ/M . Next, the transition

24.2 Solution Methodology 521

Fig. 24.1. Simulated likelihood scheme.

p̂n(θ) is represented as a convolution of densities over the two consecutive intervals

[tn, tn+1 − δ] and [tn+1 − δ, tn+1], resulting in the following expression:

p̂n(θ) = p(Ŷn+1, tn+1, Ŷn, tn; θ)

=
∫

R

p(Ŷn+1, tn+1, y, tn+1 − δ; θ) × p(y, tn+1 − δ, Ŷn, tn; θ) dy.

Figure 24.1 illustrates these points.

This expression can be interpreted as the expected value of the transition proba-

bility p(Ŷn+1, tn+1, y, tn+1 − δ; θ) as a function of y, with respect to the distribution

of the process Y at time tn+1 − δ (the underlined quantity in the expression below)

given that Y(tn) = Ŷn, i.e.,

p̂n(θ) = Etn,Ŷn

(

p
(

Ŷn+1, tn+1, Y (tn+1 − δ), tn+1 − δ; θ
))

. (24.3)

To compute this expectation, we need information about two quantities: (1) an ex-

pression for p and (2) the distribution of process Y at time tn+1−δ given Y(tn) = Ŷn.

Both quantities are computed using numerical approximation. To this aim, we dis-

cretize Eq. (24.1) according to the Euler scheme over the refined time grid:

tn,

tn + δ,
...

tn + (M − 1)δ = tn+1 − δ,

tn + Mδ = tn+1.

This method produces the following discrete time process:

522 24 Parametric Estimation of Jump-Diffusions

YM
tn+(m+1)δ = YM

tn+mδ + µ
(

YM
tn+mδ, tn + mδ; θ

)

× δ (24.4)

+ σ
(

YM
tn+mδ, tn + mδ; θ

)
√

δ × εn,m.

In the above equation, εn,m are independent standard Gaussian variables defined for

all discretization indices n = 0, . . . , N−1 and all refining indices m = 0, . . . ,M−1.

Since δ is “small” in comparison to Δ, we approximate the transition function in

the expectation (24.3) by the transition of the discrete process (24.4) on the same

interval:

p(Ŷn+1, tn+1, y, tn+1 − δ; θ) ≃ pM(y) := φN
(

Ŷn+1; μn(y), σn(y)
)

,

where:

• μn(y) = y + μ(y, tn + (M − 1)δ; θ)δ denotes a trend term,

• σn(y) = σ(y, tn + (M − 1)δ; θ)
√

δ represents a volatility component, and

• φN (·; μ, σ) is a normal density with mean μ and standard deviation σ .

The first approximation reads as

p̂n(θ) ≃ Etn,Ŷn

(

pM

(

Y(tn+1 − δ)
))

. (24.5)

This expression is the expected value of the approximated transition density pM

from a random starting time-state (tn+1 − δ, Y (tn+1 − δ)) to the known target time-

state (tn+1, Ŷn+1), with respect to the exact distribution p of Y(tn+1 − δ) conditional

upon Y(tn) = Ŷn.

The second approximation involves the distribution p. The expectation in ex-

pression (24.5) is computed by running a Monte Carlo simulation of the discrete

time process YM on the set tn, tn + δ, . . . , tn + (M − 1)δ, starting at YM
tn

= Ŷn. The

estimate resulting from K sample paths is as follows:

p̂n(θ) ≃ ˜̂pn(θ) := 1

K

K∑

i=1

pM

(
ỹ(i)

)

= 1

K

K∑

i=1

φN
(
Ŷn+1; μn

(
ỹ(i)

)
, σn

(
ỹ(i)

))
, (24.6)

where ỹ(i) are i.i.d. samples of YM at time tn + (M − 1)δ given YM
tn

= Ŷn. Each

sample is calculated by iterating the recursive relation (24.4) over the index m (m =
0, . . . ,M − 1), starting with YM

tn
.

Once p̂n(θ) is computed for all n, the likelihood function can be evaluated by

formula (24.2) by substituting ˜̂pn for p̂n. Maximization of this numerical function of

the parameter θ can be performed by standard numerical optimization routines.

24.3 Implementation and Algorithm

We can summarize the previous considerations into the following algorithm.

24.3 Implementation and Algorithm 523

Algorithm (Simulated Maximum Likelihood)

1. Fix θ .

2. For all n = 0, . . . , N − 1, compute the simulated transition using (24.6).

Generation of ỹ(i):

2.1. Set YM
tn

= Ŷn.

2.2. Generate εn,m
i.i.d.∼ N (0, 1) for m = 0, . . . ,M − 2.

2.3. Compute YM
tn+(m+1)δ using formula (24.4).

2.4. Return ỹ(i) := YM
tn+(M−1)δ .

3. Compute the approximated likelihood as L̃(θ; Ŷ) :=
∏N−1

n=0
˜̂pn(θ).

4. Return
˜̂
θML := arg maxθ L̃(θ; Ŷ).

Pedersen (1995) and Brandt and Santa Clara (2002) prove that the simulated

transition density converges P-almost surely to the exact transition density. Con-

sequently, both the SML estimator and the maximum likelihood estimator share

common asymptotic properties. Unfortunately, the rate of convergence of the SML

scheme is the same as the one for the crude Monte Carlo method, so the algorithm

runs quite slowly. This is not surprising, as the power of a Monte Carlo-based ap-

proach usually implies a sharp increase in the computational burden.

24.3.1 The Continuous Square-Root Model

The Cox, Ingersoll and Ross (1985) model is a popular device for modelling short-

term interest rate dynamics. We adopt this model as a benchmark for the purpose of

evaluating the relative quality of estimations delivered by SML.

The diffusion process is driven by a stochastic differential equation

dY(t) = α
(
μ − Y(t)

)
dt + σ

√
Y(t) dW(t). (24.7)

This defines a mean-reverting process Y with reversion frequency α, long run mean

μ, and1 local variance σ . We perform SML estimation on data generated by simula-

tion. Equation (24.7) is accordingly discretized using a Euler scheme

Yn+1 = Yn + α(μ − Yn) × 	t + σ
√

Yn ×
√

	t × εn+1. (24.8)

Here 	t = tn+1 −tn and εn+1
i.i.d.∼ N (0, 1). While this is not the best way to simulate

this process (a more efficient scheme is detailed in Chapter “Dynamic Monte Carlo”),

it can be easily adapted to extended CIR dynamics with jumps, as is done in the next

paragraph. Consequently, we have adopted this framework as a main reference. In

the present context, n ranges from 1 to N = 250, and the step is 	t = 1/250. The

file CIR.m implements the simulation algorithm for the discretization scheme (24.8)

corresponding to the parameter choice

1 The parameter α usually refers to the mean reversion speed of the process Y . However, this

terminology does not appear to be correct because α has the dimension of a frequency. The

mean reversion speed of Y at time t is actually given by the product α × (μ − Y (t)).

524 24 Parametric Estimation of Jump-Diffusions

Θ = {α = 1.5, μ = 0.035, σ = 0.1}.

Notice that these values satisfy the restriction

2αμ ≥ σ 2,

which is required for the continuous time process Y(t) to be strictly positive-valued.

Figure 24.2 shows a simulated trajectory produced by code cir.m. The SML esti-

mation of model parameters can be split in three steps:

1. Computation of simulated likelihood for a given set of parameters.

2. Maximization of the simulated likelihood using a routine based on the Simplex

method.

3. Evaluation of the estimated parameters Root Mean Square Error (RMSE) by nu-

merically computing the inverse negative Hessian matrix of the log-likelihood

function.

The starting set is arbitrarily chosen. Code likelihood.m computes the simulated

log-likelihood by implementing formulae (24.3) and (24.6) in the previous section.

The N observations Ŷ0, . . . , ŶN−1 are given as an input to the routine which sim-

ulates the log-likelihood function for K different scenarios. For the purpose of op-

timizing the simulated likelihood we adopt the internal function fminsearch.m,

which can handle discontinuities in the target functional. This routine is based on the

Simplex search method consisting of a non-gradient-based search procedure provid-

ing local minima. At each step, we reset the seed of the random number generator

to its original value in order to ensure that the normally distributed innovations re-

main unchanged, while maximizing the simulated likelihood. Code SML1.m defines

Fig. 24.2. Sample path of continuous CIR dynamics (250 time units).

24.3 Implementation and Algorithm 525

the maximization procedure and the computation of RMSEs. All variables are de-

fined within this routine and observations are generated by running code CIR.m.

The maximization tolerance is set to the default value 10−4.

24.3.2 The Mixed-Jump Square-Root Model

The CIR model can be generalized to include jumps. This extension allows us to

capture effects that have been observed in several markets. For example, sudden

shifts in the short-term interest rate are observed as a direct effect of Central Bank

announcements about monetary policy regime changes. This setting can also be used

for modelling electricity price dynamics, where periodic shocks occur during warmer

seasons due to unexpected unbalances between supply and demand. The underlying

process follows a stochastic differential equation

dY(t) = α
(

μ − Y(t)
)

dt + σ
√

Y(t) dW(t) + dJ (t). (24.9)

Here the additional term dJ (t) := J (t) − lims↑t J (s) represents the differential of a

compound jump process defined as

J (t) =
N(t)∑

i=1

Xi . (24.10)

In the above expression, N is a counting process representing the number of jumps

occurred by time t :

N(t) = number of jumps on [0, t].
This process can be univocally assigned by specifying an intensity process λ(t) sta-

ting the frequency of jump per time unit (i.e., the year) at each date. In other words,

we may interpret λ(t) × 	t as the annualized conditional expected number of jumps

occurring on the interval [t, t + 	t]. In most instances, λ is a deterministic function

of time.

Once N(t) is known, the net effect of all jumps is calculated. We suppose that

jump sizes are described through independent and normally distributed random vari-

ables Xi (i = 1, . . .):

Xi
i.i.d.∼ N (μjump, σjump),

and that these are all independent of the Brownian motion W .

For the purpose of illustrating the SML method in a reasonably general case,

we consider a time-varying intensity function. An instance of particular interest is

provided by

λ(t) = θ × 2

1 + | sin(π
(t−τ)

k
)|

.

Notice that the jump occurrence exhibits peak levels at multiples of k years, starting

at time τ with a maximum. Consequently, the specification above can be adopted

in all instances where jumps occur on a periodic basis. This is the case in interest

526 24 Parametric Estimation of Jump-Diffusions

Fig. 24.3. Intensity function of an inhomogeneous Poisson process.

rate markets where balance requirements are periodically monitored (e.g. the Euro

money market) and also in energy markets where price shocks display a seasonal

pattern. Setting k = 1/2 (half a year) and τ = 1/6 (two months), the jump intensity

shows two peaks per year, starting on March 1. Parameter θ represents the maximum

value attained by the intensity function. Figure 24.3 reports the graph for the selected

intensity.

We implement the model with an initial rate Y(t0) = 0.03 and a parameter set

Θ = {μjump = 0.01, σjump = 0.002, θjump = 10, α = 1.5, μ = 0.035, σ = 0.1}.

These values ensure a very small probability of obtaining negative values in the

process. The parametric choice above also ensures that the probability of negative

jumps, i.e., P [Xi ≤ 0] = φN (0; μjump, σjump), is 2.8665×10−7.

Following the experimental strategy adopted in the continuous case, these para-

meters are used to generate sample paths of the process. These paths are the input

for the SML procedure. Estimated parameters generated by SML are then compared

to the true values as a benchmark. Sample path generation is implemented in true-
jump.m. First, we generate a path with no jump. Next, we run position.m and

24.3 Implementation and Algorithm 527

get a sample set of jump times. Then, we simulate a normally distributed random

sample with size equal to the number of sample jumps. Finally, we overlay these

jumps onto the continuous path at the sample jump times, which results in a sample

path of the jump-diffusion process Y .

Figure 24.4 displays a sample generated by the described procedure. The main

computation is given by formula (24.6), which we reproduce here:

p̂n(θ) ≃ ˜̂pn(θ) := 1

K

K∑

i=1

p
(
Ŷn+1, tn+1, ỹ

(i), tn+1 − δ; θ
)
.

Here Ŷn+1 is the time tn+1 observation, δ is a “small” time lag, and θ is the unknown

vector of parameters. More importantly, p is the transition of the discretized process

on the interval [tn+1 − δ, tn+1] and the ỹ(i)’s (i = 1, . . . , K) are the time tn + (M −
1)δ = tn+1 − δ realizations of mutually independent sample paths of the process Y

drawn over the interval [tn, tn+1 − δ]. A simulation is performed using the Euler

iterative formula

Yn+1 = Yn + α(μ − Yn) × δt + σ
√

Yn ×
√

δt × εn+1 + I{tn+1}Xn+1.

Here jump occurrence is described by the indicator function

I{tn+1} =
{

1 if tn+1 is a jump time,

0 otherwise.

Since jump sizes are normally distributed, the transition density of the discrete

process between ti and ti+1 is a mixture of normal variables and the approximated

transition p on time interval [tn+1 − δ, tn+1] reads as follows:

Fig. 24.4. Sample path of CIR dynamics with jumps (250 time units).

528 24 Parametric Estimation of Jump-Diffusions

p
(

Ŷn+1, tn+1, ỹ
(i), tn+1 − δ; θ

)

= p
(i)
0 φN

[
Ŷn+1; μc, σ c

]
+ p

(i)
1 φN

[
Ŷn+1; μd, σ d

]
,

where

μc = ỹ(i) + α
(
μ − ỹ(i)

)
δt, σ c = σ

√
ỹ(i)

√
δ,

μd = ỹ(i) + α
(
μ − ỹ(i)

)
δt + μjump, σ d =

√
σ ỹ(i)δ + σ 2

jump .

In this expression, p
(i)
0 is the probability of no jump between ti and ti+1 = ti + δ.

This is computed through the jump intensity process as

p
(i)
0 = e

−
∫ ti+δt
ti

λ(s) ds ≃ e−λ(ti)δt .

We assume that no more than one jump can occur on each interval of length δ in the

refinement of the time axis.

For the purpose of computing the likelihood function in this model, we imple-

ment the program likelihoodj.m. This program generates a pair of independent

innovation variables, one for the continuous process and one for the jump component.

The latter is sampled by running genindex.m, which iteratively calls subroutine

subposition.m (a modified version of position.m).

We estimate the parameters of the jump component using a model where all other

parameters have been maintained fixed. Notice that optimization is performed with

respect to the jump parameters under fixed random innovations. In other words, we

simulate a standard normal variable Z and define the random jump size for any pair

of possible parameters μjump and σjump by

X = μjump + σjumpZ.

The maximization of the simulated likelihood and the estimation of the parameters of

the model under study are performed in a way similar to that of the process without

jumps. Program SML2.m launches function likelihoodj.m for the computation

of the simulated likelihood, and maximizes the returned value to produce a set of

optimal parameters. We avoid running the estimation for the six parameters of the

jump-diffusion model simultaneously. Rather, we fix the diffusion parameters on

the “true” values set for the generation of the sample path (α = 1.5, μ = 0.035,

σ = 0.2) and then run the maximization program SML2.m delivering the estimated

set of values {μjump, σjump, θjump}.

24.4 Results and Comments

24.4.1 Estimating a Continuous Square-Root Model

We perform an experimental estimation of the original CIR model. For the test,

we use 100 simulated paths, 250 observed values, and M = 10 simulation steps

within each of the N − 1 intervals. Using a personal computer equipped with a

24.4 Results and Comments 529

Table 24.1. Estimated parameters using simulated maximum likelihood

(continuous CIR dynamics)

Parameter Actual value Estimated value RMSE

α 1.5 3.720 0.029

μ 0.035 0.0273 0.0092

σ 0.1 0.1126 0.0035

1.8 GHz processor and 448 megabytes of random access memory, the simulation

takes about 4.5 hours (1 hour for the optimization and 3.5 for the computation of the

RMSE’s), and renders values for the fitting parameters and their RMSE’s as reported

in Table 24.1.The estimated parameters μ and σ are quite close to the true values,

whereas αmax is about two times greater than expected. Better results may be ob-

tained by increasing the number of simulations to enhance estimation effectiveness.

Furthermore, improvements may also be made by enlarging the set of rates, i.e.,

N larger than 250, and imposing a finer structure between consecutive observations,

i.e., M larger than 10. Notice that our choice has been constrained by computational

time considerations. However, we believe that the bias in the estimation of parameter

α is symptomatic of the slow performance of the SML methodology. In our opinion,

SML represents a viable solution as long as alternative methods are not available.

This is actually the case for several jump-diffusion processes.

Before examining the jump-diffusion case, we review the performance of the

available alternative methods in the present context. Since transition densities for

CIR dynamics are known in closed-form, we can run a maximum likelihood estima-

tion. We set Δ = t − s > 0, c = 2α[σ 2(1 − eαΔ], q = 2αμσ 2 − 1 and verify that

the transition is a noncentral chi-square distribution

pY (y, t, x, s) = ceu−v(v/u)q/2Iq

(

2
√

uv
)

,

where u = cxeαΔ, v = cy and Iq is the order q modified Bessel function of the

first kind.2 Samples from this distribution can be drawn by means of the Matlab R©

internal procedure ncx2pdf.m as detailed in Brigo and Mercurio (2006). Code

likelihood.m computes the exact negative log-likelihood function as described

above and routine MLE_true.m returns estimated parameters and corresponding

RMSE as reported in Table 24.2. These figures are quite close to those we obtain

using the simulated maximum likelihood estimator. Furthermore, while the former

estimations have a higher RMSE due to the small size of observed data, the com-

plete procedure only requires about half an hour. Even in this case the estimation

for α is not in perfect accordance with theoretical values. In general, the simulated

maximum-likelihood approach proved to be reasonably effective, whereas its effi-

ciency needs to be improved.

2 A Bessel function y(z; n) of order n is a solution of the ordinary differential equation

z2y′′ + zy′ − (z2 + n2)y = 0.

530 24 Parametric Estimation of Jump-Diffusions

Table 24.2. Estimated parameters using maximum likelihood (continuous CIR dynamics)

Parameter Actual value Estimated value RMSE

α 1.5 4.51 0.55

μ 0.035 0.029 0.020

σ 0.1 0.0926 0.0042

Table 24.3. Estimated parameters using simulated maximum likelihood (mixed-jump CIR

dynamics)

Parameter Actual value Estimated value

σjump 0.002 0.002

μjump 0.01 0.011

θjump 10 10.525

24.4.2 Estimating a Mixed-Jump Square-Root Model

We estimate a CIR model with jumps by performing 1000 simulated paths, each

consisting of 250 values. The period between consecutive times is split into M = 10

subperiods. Due to the extremely high computational time required for each run,

we do not estimate the RMSEs in this case. Our complete simulation requires about

2.5 hours and returns estimated values as indicated in Table 24.3. Compared to the

continuous CIR model, estimating this process requires more time; however, it still

provides estimations quite close to the actual values. This comparison should not be

overvalued since the estimation in the two cases concern two distinct sets of parame-

ters.

We finally suggest the final user to consider the following two issues before

adopting the SML method:

(1) the algorithm has a quite slow convergence order;

(2) the target function is highly irregular and the optimization tool must be selected

with care.

25

Nonparametric Estimation of Jump-Diffusions*

Key words: kernel methods, financial econometrics, estimation of jump-diffusions,

simulation

We consider the problem of estimating diffusion processes with jumps. These

processes have been widely used for describing the random evolution of financial

figures such as stock prices, market indices and interest rates.

This case describes and tests a nonparametric procedure introduced in Stanton

(1997) in a continuous path setting and then extended to mixed-jump-diffusions in

Johannes (1999, 2004) and Bandi and Nguyen (1999, 2003), who provide a rigorous

treatment of the underlying statistical theory. The technique we illustrate allows for

the estimation of a wide variety of homogeneous diffusion processes, including those

for which transition densities are not available in analytic form. We illustrate the

method by developing algorithms for the estimation of both continuous and mixed-

jump diffusion processes.

We organize the presentation as follows. Section 25.1 introduces the main issue

of estimating diffusion processes by finite sample data. Section 25.2 describes the es-

timation technique by specifying a finite sample version of the conditional moments

featuring continuous and mixed-jump models. Section 25.3 details a step-by-step im-

plementation procedure for all model specifications. Section 25.4 describes our code

and details an estimation experiment based on a time series of the 3-month EURI-

BOR, which is a reference short-term rate of interest in the European money market.

Results are described together with an assessment of the quality of the proposed pro-

cedure. An important by-product of our analysis is that continuous diffusion models

are proved to be unable to capture important features displayed by market data.

∗ with Gianna Figà-Talamanca.

532 25 Nonparametric Estimation of Jump-Diffusions

25.1 Problem Statement

We consider a one-dimensional time-homogeneous diffusion process X defined as

the unique solution of a stochastic differential equation

dX(t) = μ(X(t)) dt + σ(X(t)) dW(t). (25.1)

Here W is a one-dimensional standard Brownian motion and μ and σ are regular

functions ensuring existence and uniqueness of a weak solution to the equation (25.1)

(see, e.g., Karatzas and Shreve (1997) and Kloeden and Platen (2000)). Incidentally,

we remark that the methods and results to follow can be easily extended to a multi-

dimensional setting.

It is common practice in financial literature to identify a model by specifying

particular parametric forms for the drift and the diffusion functions. Focusing on

interest rate models, the drift can be an affine function of the process level. For in-

stance, we may consider a linear drift μ(x) = δx or a function μ(x) = α(β − x)

generating mean reversion to a constant level β. In the former case, the constant δ is

the sole drift parameter; in the latter instance, parameter α represents a mean rever-

sion force, while parameter β defines a trend which the process X reverts to in the

long run. As for the diffusion function, several specifications have been proposed:

Vasicek (1977) takes a simple constant value σ ; Cox, Ingersoll and Ross (1985) sup-

pose a level dependence as modeled by the function σ(x) = σ
√

x; Chan et al. (1992)

generalize these models by assuming a function of two parameters σ and γ , namely

σ(x) = σxγ . These models are estimated by parametric methods aimed at assigning

a number to each of the parameters specifying the process.

Assessing a form for both drift and diffusion coefficient should be in agreement

with their statistical meaning. It can be shown that the drift coefficient represents the

instantaneous average speed of the process at each point in time, conditional to its

value, i.e.,

μ(x) = lim
�t→0

1

�t
E[X(t + �t) − X(t)|X(t) = x].

Similarly, the diffusion coefficient represents the instantaneous average quadratic

speed, or centered moment of order two, of the process at each point in time, condi-

tional to its value, namely

σ 2(x) = lim
�t→0

1

�t
E

[(

X(t + �t) − X(t)
)2|X(t) = x

]

.

Moreover, all continuous diffusion processes, namely those exhibiting continuous

paths, display no higher-order moments:

lim
�t→0

1

�t
E

[(

X(t + �t) − X(t)
)j |X(t) = x

]

= 0, j > 2. (25.2)

Several studies have shown that continuous diffusion models suffer from relevant

shortcomings in explaining the dynamics of interest rate time series. For instance,

25.2 Solution Methodology 533

empirical moments computed on market proxies for the short rate often violates con-

dition (25.2). This observation seems to confirm that observed data is not generated

by a continuous diffusion model.

This problem can be overcome by modeling interest rate dynamics through a

mixed-jump diffusion model defined by

dXt = μ(X(t−)) dt + σ(X(t−)) dW(t) + dJ (t), (25.3)

J (t) =
N(t)∑

i=1

Yi . (25.4)

Here J is a compensated compound jump process with intensity λ(x), i.e., J (t) −
λ(X(t)) a martingale, and Yi

i.i.d.
∼ Y represent the random jump size whose com-

mon distribution pY is assumed to be independent of the Brownian noise W and the

counting process N . For these dynamics, the corresponding relations between model

coefficients and the descriptive statistics of the process read as

μ(x) = lim
�t→0

1

�t
E[X(t + �t) − X(t)|X(t) = x], (25.5)

σ 2(x) + λ(x)EY

[

Y 2
]

= lim
�t→0

1

�t
E

[(

X(t + �t) − X(t)
)2|X(t) = x

]

, (25.6)

λ(x)EY

[

Y j
]

= lim
�t→0

1

�t
E

[(

X(t + �t) − X(t)
)j |X(t) = x

]

, for all j > 2.

(25.7)

The key point in these expressions is that jumps allow for the modeling of time series

displaying high-order moments (i.e., j > 2) in the instantaneous increments.

Statistical estimation of diffusion processes such as (25.1) and (25.3) aims at de-

termining coefficients μ(x), σ(x), λ(x), and pY (y) compatible to observed data in

some sense to be specified. Parametric estimation assumes that the diffusion co-

efficients belong to a parametric family of deterministic functions of the system

state x. An estimator is a function assigning a parameter selecting diffusion coef-

ficients within the assumed family of functions to a set of empirical observations of

the process. Nonparametric estimation instead aims at determining μ(x), σ(x), and

λ(x) pointwise, i.e., for each value x chosen in a suitable interval of the real line,

without any reference to parametric families. Of course, these functions are required

to satisfy a number of regularity conditions to ensure that the resulting process is well

defined as the unique solution of the corresponding stochastic differential equation

(see, e.g., Oksendal and Sulem (2004) and Protter (2005)).

25.2 Solution Methodology

A possible method for nonparametrically estimating a diffusion process is to define

its coefficient by means of finite sample versions of the expressions on the right-hand

side of formulae (25.5), (25.6), and (25.7). Three logical steps are required:

534 25 Nonparametric Estimation of Jump-Diffusions

(1) observations x1, x2, . . . , xn are collected at a possibly large time frequency ∆;

(2) conditional moments are estimated nonparametrically using their finite sample

counterparts through, e.g., kernel methods;

(3) coefficients are singled out of the estimated conditional moments.

We now turn this program into a concrete estimation procedure for the EURIBOR.

Assume that n discrete observations r1, . . . , rn of the short rate process are recorded

with time frequency ∆. Finite sample estimates for the first two conditional moments

can be obtained by kernel convolutions as

M1(r) =
∑n

t=1 K(rt−r
h

)(rt+1 − rt)

∆
∑n

t=1 K(rt−r
h

)
, (25.8)

M2(r) =
∑n

t=1 K(rt−r
h

)(rt+1 − rt)
2

∆
∑n

t=1 K(rt−r
h

)
. (25.9)

In our setting, the kernel function K is a symmetric probability density on the real

axis expressing the influence a point at zero has on all other points in its domain. Pa-

rameter h is a bandwidth driving the smoothing behavior of the kernel. For instance,

in the above expressions, the mean variation of the process starting at a level r is

obtained by weighing all sample variations rt+1 − rt recorded in the past. The kernel

function provides loadings depending on the level r . If we take K to be a standard

Gaussian density, the larger the distance between rt and r , the lower the impact of

sample increment rt+1 − rt on the instantaneous average increment of the process

starting at level r . Conversely, the closer rt is to the actual level r , the higher the

importance of the sample increment rt+1 − rt will be in explaining the average in-

crement from r . It is clear from this remark that the influence of sample increments

is driven by the kernel function and the bandwidth level.1

For a continuous diffusion process, M1 and M2 are estimates of the drift and

the squared diffusion coefficient, respectively. For a mixed-jump diffusion, M2 is the

sum of the instantaneous squared diffusion term and the product between the second-

order moment of the jump size distribution and the jump intensity as is reported in

expression (25.6). Naturally, in the case of mixed-jump-diffusions, high-order mo-

ments are estimated for the purpose of completely specifying the estimated process.

Indeed, high-order moments can be computed through the following finite sample

statistics:

Mj (r) =
∑n

t=1 K(rt−r
h

)(rt+1 − rt)
j

∆
∑n

t=1 K(rt−r
h

)
, j > 2. (25.10)

These statistics may be employed for the purpose of testing the hypothesis that data

comes from a diffusion process with continuous paths.

Notice that, if we define kernel weights

1 Silverman (1986) offers a detailed account on kernel estimation methods, whereas James

and Webber (2000) provide a quick overview from a financial modeling perspective.

25.3 Implementation and Algorithm 535

ωt (r) =
K(rt−r

h
)

∑n
t=1 K(

ri−r
h

)
, t = 1, 2, . . . , n,

then equations (25.8), (25.9) and (25.10) read as

Mj (r) =
n

∑

t=1

(rt+1 − rt)
j

Δ
ωt (r), j ≥ 1.

Consequently, we may interpret these moments as weighing averages of an appro-

priate power of sample increments.

25.3 Implementation and Algorithm

We implement an estimation scheme aimed at simultaneously detecting whether

sample data is generated by a continuous or a diffusion model and identifying the

functional forms of the selected dynamics. Our procedure is carried out through the

following:

Algorithm (Nonparametric Estimation)

1. Compute M1(r), M2(r), M3(r), and M4(r) for all values r in the interval

[rmin, rmax], where rmin and rmax denote the minimum and the maximum val-

ues for the input data, respectively.

2. Simulate m paths of the continuous diffusion process defined by Eq. (25.1) with

μ(r) := M1(r) and σ 2(r) := M2(r).

3. For each path labeled by j = 1, 2, . . . , m, compute moments M
(j)

1 (r), M
(j)

2 (r),

M
(j)

3 (r), and M
(j)

4 (r) by formulae (25.8), (25.9), and (25.10), respectively.

4. For each r in the interval [rmin, rmax], sample moments M1(r), M2(r), M3(r),

and M4(r) computed at step 1 are then compared to the median value and to

the 10th and 90th percentiles of the m values obtained for M
(j)

1 (r), M
(j)

2 (r),

M
(j)

3 (r), and M
(j)

4 (r). The resulting figures serve as confidence bands for a

diffusion. If the sample estimates lie inside the confidence bands for all r ∈

[rmin, rmax], the null hypothesis stating a continuous diffusion behavior for in-

terest rate dynamics is not rejected and the estimation procedure is terminated

with a final assessment

μ̂(r) = M1(r),

σ̂ 2(r) = M2(r).

If the sample estimates lie outside the confidence bands for some values of r ,

move to the next step.

5. Compute the higher-order conditional moment M6(r) by formula (25.10) and

use this figure, together with M4(r), to identify both jump intensity and jump

size distributions.

536 25 Nonparametric Estimation of Jump-Diffusions

The last step deserves a few comments. In our experiments, we assume that the

jump size Y is normally distributed with zero mean and variance σ 2
Y > 0. Formu-

lae (25.6), (25.7), (25.9), and (25.10) lead to the following three approximated rela-

tions

M2(r) ≃ σ 2(r) + λ(r)σ 2
Y , (25.11)

M4(r) ≃ 3λ(r)σ 4
Y , (25.12)

M6(r) ≃ 15λ(r)σ 6
Y , (25.13)

where σ 2(r), λ(r), and σ 2
Y are values of the true coefficient functions. Estimates are

obtained by setting an exact equality in these relations. Using these formulae and the

definition of drift, we finally come up to nonparametric estimates for the coefficients

defining the mixed-jump diffusion process compatible with the sample data. More

precisely, by expressions (25.5) and (25.8) we have

μ̂(r) = M1(r).

Taking the ratio between the sixth and the fourth weighed moments and using

relations (25.13) and (25.12) (with a strict equality replacing “≃”), we arrive at

σ̂ 2
Y = M6(r)

5M4(r)
, which is rate dependent; as a first-order estimate for the constant jump

size variance we take the sample average of this quantity, namely

σ̂ 2
Y =

1

n

n∑

t=1

M6(rt)

5M4(rt)
. (25.14)

Given this estimate, the jump intensity directly follows from expression (25.12) as

λ̂(r) =
M4(rt)

3σ̂ 4
Y

.

The diffusion term in formula (25.9) is obtained as

σ̂ 2(r) = M2(r) − λ̂(r)σ 2
Y .

Under technical assumptions reported in Bandi and Nguyen (2003), these estimators

can be proven to be consistent and asymptotically normal.

In our experiment we adopt a Gaussian kernel defined as

K(x) =
1√
2π

exp

(

−x2

2

)

,

to derive moments estimates (25.8)–(25.10). We remark that, to the best of our

knowledge, no theoretical result driving the selection process of a bandwidth value

is available to date. Silverman (1986) suggests to use h = σn−1/5, where n is the

sample length and σ is the standard deviation of the data set. A practical solution

sometimes adopted in the existing literature is a cross-validation over a range of se-

lected values for h. Following Johannes (1999, 2004), we select a bandwidth value

25.4 Results and Comments 537

Table 25.1. Bandwidth values, where s is the annualized

standard deviation of the Euribor daily changes

Moment, Mk Bandwidth, h

M1 1.25s

M2 0.4s

M3,4,5,6 0.75s

for each of the moments to compute. These values are reported in Table 25.1 and are

expressed in terms of the empirical standard deviation s of EURIBOR daily changes.

This choice is consistent with the empirical findings in Chapman and Pearson (2000)

suggesting to oversmooth the drift function with respect to the diffusion coefficient.

The functional estimates are obtained point-by-point by considering m values for the

interest rate r .

Implementation is performed by routines kernelgauss.m,

kernelweights.m and kernelmoments.m. We also compute confidence in-

tervals for the estimates by simulation. This is carried out by running code simul.m
where a large number of sample paths are generated and computing the empirical

moments over each sample path using function kernelmomsim.m. Notice that

this routine differs from kernelmoments.m in that it takes kernel weights as in-

put. A shortcut aimed at avoiding an excessively intensive computation is to evalu-

ate kernel weights once for all paths, e.g., by using the whole data set. In the case

of a mixed-jump diffusion process, functional forms of drift, diffusion coefficients

and jump intensity are obtained through code Estimates.m. Empirical moments

are computed by running kernelmoments.m on the interest rate data set. Script

figuremom.m prints out all graphs presented below. Script total.m gathers the

entire implementation into a singe routine. Estimation results and graphical repre-

sentations require a five-minute running time on a 2.8 GHz processor.

25.4 Results and Comments

We report results obtained by applying the procedure described above to a time series

of 3-month EURIBOR rates. Our data set can be obtained by Datastream. It involves

1382 daily observations from January 4, 1999 to April 20, 2004. Figure 25.1 displays

graphs of the time series of rates and the corresponding daily variations. Figures 25.2

and 25.3 show the first and the second empirical moments.

We jointly plot the corresponding 10% and 90% confidence intervals. Circles re-

fer to the median of simulated values. The second moment function is split in two

graphs, one for r < 3.5% and the other for r > 3.5%. Notice that the estimated first

moment is always inside the corresponding confidence interval and does not differ

much from the median of simulated values. Unfortunately, the estimated second mo-

ment lies inside the relative confidence interval only for central values of the interest

rate. Figures 25.4 and 25.5 display graphs for the third and fourth empirical moments

as a function of rate r . We also indicate the median obtained through simulated paths,

the 10% and the 90% confidence intervals.

538 25 Nonparametric Estimation of Jump-Diffusions

Fig. 25.1. The 3-month EURIBOR from January 1999 to April 2004.

Fig. 25.2. Estimated first-order moment for the 3-month EURIBOR (+); 10–90th confidence

bands obtained by simulation (∗); median value (◦).

25.4 Results and Comments 539

Fig. 25.3. Estimated second-order moment for the 3-month EURIBOR (+); 10–90th confi-

dence bands obtained by simulation (∗); median value (◦).

Fig. 25.4. Estimated third-order moment for the 3-month EURIBOR (+); 10–90th confidence

bands obtained by simulation (∗); median value (◦).

540 25 Nonparametric Estimation of Jump-Diffusions

Fig. 25.5. Estimated fourth-order moment for the 3-month EURIBOR (+); 10–90th confi-

dence bands obtained by simulation (∗); median value (◦).

Notice that both moments lie outside confidence bands. In particular, the fourth

moment is well above the 90% confidence upper bound. These findings suggest that a

simple univariate diffusion model is not capable of reproducing the random dynamics

displayed by the 3-month EURIBOR in the period under investigation.

Turning to the estimation of a mixed-jump diffusion process, the estimated drift

function is again equal to the first moment. Figure 25.6 reports estimated drift (top

panel), jump intensity (mid panel), and volatility (bottom panel) as a function of

rate r .

Notice that jump intensity exhibits two modes and three local minima, one at the

median value in the data set, that is at 3%, the others at the two endpoints of the sam-

ple range. The diffusion coefficient is instead rather stable, showing a peak around

4.2%. As for the jump size variance, the issue is quite subtle. Recall that our esti-

mator for this figure is defined as the ratio between the sixth moment and five times

the fourth moment (formula (25.14)). This quantity varies with the level r of interest

rates. In our experiments we have computed 1382 values for this function. We argue

that the lower the variation of this sample curve, the better the estimation of the jump

size volatility using the average of these values. In our case, the 1382 sampled num-

bers display a standard deviation about 6.0151 × 10−7. Moreover, the 10th and 90th

percentiles amount to 1.2816 × 10−6 and 2.9668 × 10−6, respectively. These figures

prove a low dispersion of the sample function around its average σ̂ 2
Y = 2.3031×10−6

25.4 Results and Comments 541

Fig. 25.6. Estimation of the drift function, the jump intensity and the diffusion function for a

jump-diffusion with centered and normal jumps.

(which corresponds to a standard deviation σ̂Y = 0.0015). As a consequence, this

number seems to be a reliable estimation of the jump size volatility.

26

A Smiling GARCH*

Key words: econometrics, Monte Carlo simulation, implied volatility, GARCH

model

26.1 Problem Statement

In equity markets, empirical option prices document a well-known anomaly of the

Black and Scholes formula. Volatility as implied by traded premia changes with re-

spect to the exercise price and the maturity of an option. As shown in Fig. 26.1,

once plotted against different exercise prices and maturities, implied volatility –
the volatility value deduced from feeding observed option premia to the Black and
Scholes formula – presents a characteristic convex shape which resembles a smirk
(the smile effect). If we define option moneyness as the ratio between spot price and
strike price,1 in the stock option market we often observe that deep-in-the-money call
options (that are call options with moneyness significantly larger than one), or deep-

out-of-the-money put options, typically present an implied volatility greater than at-

the-money options. Conversely, deep-out-of-the-money call options or deep-in-the-

money put options admittedly show smaller implied volatility.
The immediate explanation of this phenomenon relates to the assumptions on

stock price distribution embedded in the Black and Scholes formula. More precisely,
since the latter assumes equity prices to be lognormally distributed, convexities in
implied volatility arise because observed equity prices distribute with a thinner right
tail and a fatter left tail than the canonical lognormal form. In fact, if the theoretical

∗ with Mariano Biondelli, Enrico Michelotti and Marco Tarenghi.
1 Moneyness equals one if an option is at-the-money (ATM); whilst it is greater or lower than

one if a call option is in- or out-of-the-money (ITM or OTM), respectively.

544 26 A Smiling GARCH

Fig. 26.1. Garch estimated versus market implied volatility surface.

assumption of lognormal distribution were to be perfectly confirmed in the market-

place, the cross-section of implied volatilities against moneyness would be flat by

construction.

This factual explanation, however, simply shifts the focus to price distributions:

why do they do not confirm the Black–Scholes assumptions? Several arguments have
been proposed. The most important is defined as the leverage effect. According to this
argument, when stock prices move downward, the leverage of a company increases
and its stocks become more risky. As a result, the volatility of prices increases to re-
flect a potentially more risky corporate profile. Moreover, particularly negative price
performances which occurred in the past (for instance, during the 1987 crash) may
influence the reactions of market players during a period of price downturn, which
may have additional bearing on price volatility. A fat left tail (higher frequency in low
values) in the distribution of prices (hence, a smile in implied volatilities) may thus
be an attempt to factor the impact of extremely negative events into option prices.
For example, Jackwerth and Rubinstein (1996) remark that the stock crash of Octo-
ber 1987 – under normality assumption – should occur only once in 14,756 years.
Nonetheless, from that event onward, implied volatilities for the S&P 500 Index op-
tions have exhibited the characteristic smile effect.

Leverage or stock crash effects, however, may be sensible to explain the smile
curve, but are not very useful to clarify the term structure of implied volatility
(Fig. 26.1). As far as the time dimension is concerned, different aspects need be
taken into consideration. In particular, empirical evidence shows that volatility is
mean reverting. So, if the current level is below its long term trend, then implied

26.2 Model and Solution Methodology 545

volatility plotted against time-to-maturity should be positively sloped (this consti-

tutes a proxy for the expectation of a return to normal levels over time). Conversely,

it should be negatively sloped, in periods in which its recent past value has been ab-

normally high. These observations clearly question the assumption of constancy of

the Black and Scholes framework and carry relevant implications for practitioners. In

fact market agents price new options using the implied volatilities from quoted and

liquid market prices. Hence, they are exposed to a serious risk of mispricing if their

pricing models do not carefully fit the volatility surface and its expected behavior.

Different remedies have therefore been proposed (see Hull (2005)). In these

pages we focus on the approach proposed by Duan (1995, 1996) based on a GARCH

option pricing model (see also Campbell, Lo and MacKinlay (1997)). The story goes

as follows. In Sect. 26.1, we describe the mathematical model, based on a GARCH

specification for stock volatility. We then show how to calibrate the model parame-

ters, by trying to fit the volatility surface on empirical observations. To this end, we

resort to a Monte Carlo simulation coupled with a nonlinear least squares procedure,

as described in Sect. 26.3. Subsequently, in Sect. 26.4, we provide a few numerical

results and comments about our main findings. Finally, in Sect. 5, we describe all the

functions implemented in the code.

26.2 Model and Solution Methodology

The trade-off between return volatility and asset returns is well documented in fi-

nance. However, as introduced above, equity data also exhibit a leverage effect, since

negative innovations in prices show greater positive impact on stock volatility than

positive shocks on prices have in the opposite direction. Hence, a model in which

asset prices and volatility are negatively and asymmetrically correlated seems to be

appropriate. Engle and Ng (1993) propose to this end the Nonlinear Asymmetric

GARCH(p; q), or NGARCH(p; q) model. The most important aspect of this model

is the asymmetric effect that news have on volatility. Indeed, a parameter θ is added

to the normal GARCH specification to control the size and direction of the shock. If

this parameter θ is positive, negative shocks in the underlying price process have a

larger impact on volatility than positive ones.

Therefore, in a discrete time setting, under the physical probability measure, one

period logarithmic returns are assumed to be conditionally normally distributed, and

volatility depends on itself and on past shocks in an asymmetric way:

ln
S(t + 1)

S(t)
= r + λσ(t) − 1

2
σ 2(t) + σ(t) × ε(t + 1), (26.1)

σ 2(t + 1) = β0 + β1 × σ 2(t) + β2 × σ 2(t) ×
(
ε(t) − θ

)2
, (26.2)

ε(t + 1)|Ft ∼ N (0, 1). (26.3)

In the above statement, S(t) is the asset price at time t , ε(t) is a standard normal

random variable, r is the one-period continuously compounded risk-free rate, λ is a

546 26 A Smiling GARCH

risk premium and θ the parameter controlling the leverage effect. This model guar-

antees a positive conditional volatility, if the additional constraints β0, β1, β2 ≥ 0

and β1 + β2 ≤ 1 are satisfied.

The above specification has the advantage of generating a skew in the volatility

structure. In fact, by looking at θ , it may be observed that this leverage parame-

ter drives an asymmetry on the information coming from the market. Suppose θ is

positive: negative shocks in the underlying price process have a larger impact on

volatility than positive ones. This creates an asymmetric impact on volatility. As a

consequence the parameter θ allows for a skew (or a smirk) in the volatility struc-

ture: positive θ means higher volatility for low stock prices, negative θ means higher

volatility for high stock prices.

Now, in order to price derivative contracts, we need the stock price process under

the risk-neutral probability measure. Duan (1995) has indeed shown how to risk-

neutralize the process described by (26.1)–(26.1). In particular, the model under the
risk-neutral probability measure P∗ becomes:

ln
S(t + 1)

S(t)
= r −

1

2
σ 2(t) + σ(t) × ξ(t + 1), (26.4)

σ 2(t + 1) = β0 + β1 × σ 2(t) + β2 × σ 2(t) ×
(
ξ(t) − θ − λ

)2
, (26.5)

with ξ(t) = ε(t) + λ a standard normal random variable under P∗.
As usual, the current price of an option contract can be seen as the average of

its discounted random payoff. For example, for a plain vanilla European call option,
with time-to-maturity τ and strike X, we have

ct (τ,X) = E∗
[

e−rτ max{S(t + τ) − X, 0}|Ft

]
, (26.6)

where E∗ is the expectation operator under the risk-neutral probability measure P∗,
S(t + τ) is the asset price at the option maturity t + τ , X denotes the strike price and
Ft is the σ -algebra representing the information set available at time t . Notice that
expression (26.6) requires a numerical valuation by appropriate methods, such as
Monte Carlo simulation. Running a simulation of the above NGARCH process and
discounting, we can estimate the option price (26.6) by the following computation

c
(n)
t (τ,X) =

1

n
e−rτ

n∑

i=1

max{Si(t + τ) − X, 0}, (26.7)

where Si(t + τ) is the ith simulated spot price at the option maturity.
Unfortunately, a crude Monte Carlo simulation is unable to guarantee that the

price process satisfies the martingale restriction. This fact obviously has a negative
impact on the quality of the estimate and the discounted average of a European call
option payoff computed from a Monte Carlo simulation, that is c

(n)
t (τ,X), may not

be a reliable estimate of ct (τ,X).
To overcome this problem we follow the Empirical Martingale Simulation (EMS)

procedure proposed by Duan and Simonato (1998). This simple correction of the

26.3 Implementation and Algorithm 547

Monte Carlo procedure imposes a constraint on the simulated sample paths of the

underlying prices, in order to ensure that these paths are martingales in an empir-

ical sense. The procedure modifies simulated asset prices at different time points

t1, t2, t3, . . . , tm = t + τ of the simulation, so as to get a new estimate for the price

S∗
i (tj , n) that respects martingality:

S∗
i (tj , n) = S(t)

Zi(tj , n)

Z0(tj , n)
,

for all i = 1, 2, . . . , n and j = 1, 2, . . . , m. The quantities Zi(tj , n) are recursively

defined by

Zi(tj , n) = S∗
i (tj−1, n)

S̃i(tj)

S̃i(tj−1)
, (26.8)

Z0(tj , n) =
1

n
e−rtj

n∑

i=1

Zi(tj , n), (26.9)

for i = 1, 2, . . . , n and j = 1, 2, . . . , m. In practice EMS uses a simple transfor-

mation of the simulated asset price S̃i(tj), to guarantee the martingale restriction.

Indeed, EMS can be described through the following chain that transforms the sim-

ulated price process into a new one satisfying the martingale condition:

S̃i(tj)

S̃i(tj−1)
→ Zi(tj , n) → Z0(tj , n) → S(t)

Zi(tj , n)

Z0(tj , n)
= S∗

i (tj , n). (26.10)

The attractive feature of this adjustment is that the EMS option price estimate will

reduce the Monte Carlo simulation error. For deep-in-the-money options, this error

will even be negligible. Indeed, for these options, the option price will be approxi-

mately Ŝ(t) − e−rtnX, where Ŝ(t) is discounted sample average asset price. Using

the EMS, this quantity coincides, by construction, with S(t), so that the EMS option

price will have a negligible variance if the option is deep-in-the-money. EMS has

one drawback however. Because of the dependency among sample paths created by

the EMS adjustment, the standard error of the price estimate is not readily available

from using one simulation sample. The EMS accuracy is studied in detail in Duan,

Gauthier and Simonato (2001).

26.3 Implementation and Algorithm

Several approaches have been proposed in order to estimate the NGARCH model.

A simple solution is to estimate the parameters by directly using a time series of the

underlying asset returns; for example, by maximum likelihood estimation. However,

in this manner one implicitly assumes that physical and risk-neutral probability mea-

sures coincide, bypassing the risk-neutralization of the NGARCH process proposed

548 26 A Smiling GARCH

above. Therefore, Duan (1996) proposes to estimate the NGARCH(1, 1) parameters

β0, β1, β2 and the sum β3 = θ + λ, by extracting implied volatilities from simulated

option prices and subsequently minimizing the sum of squared errors with respect to

market implied volatilities.

The resulting procedure can be summarized in the Algorithm below. In particular,

we calibrate the NGARCH model on July 21, 2003, using FTSE 100 index options,

with strikes ranging from 3625 to 4425 and maturities, beginning on August 2003

and ending on June 2004.

Algorithm

1. Extract from option market quotes, using the put-call parity, implied estimates of

the underlying index level and of the discounting factor. This procedure avoids

problems related to the synchrony of the stock and option markets;

2. Fix arbitrary NGARCH parameters, e.g., estimate them by using a time series

approach, and simulate the price of the underlying using (26.4) and applying the

EMS correction methodology;

3. Compute the simulated option prices (26.7) and extract the implied volatilities

on simulated prices by using the Black and Scholes formula;

4. Compute the sum of squared residuals between estimated implied volatilities at

the previous step and market implied volatilities on observed market prices;

5. Repeat Steps 2–5 by using a new set of GARCH parameters until the sum of
squared residuals has been minimized.

We tackle the first step by following Shimko (1993). This author exploits the
put-call parity theorem in order to compute the underlying asset value adjusted for
dividends and the discounting factor from option market prices. Indeed, we have

ct (τ,X) − pt (τ,X) = S(t)e−qτ − Xe−rτ , (26.11)

where q is the continuous dividend yield on stock prices. Let us include in the above
relationship an error term η in order to take into account slight violations of the
put-call parity due for example to a bid-ask spread:

Y = α + βX + η̃, (26.12)

where we relate Y = ct (τ,X) − pt (τ,X) linearly to X and then we have an equa-
tion suitable for ordinary least square (OLS) regression. Therefore, having obser-
vations of call and put options for different strikes X, we obtain, for each time-to-
maturity τ , the OLS estimates α̂ and β̂. Then, we can estimate implied spot prices
adjusted for dividends through S(t)e−qτ by α̂, and the implied interest rate r through
− ln(−β̂)/τ .

In Table 26.1 we report the results of the OLS Regression (26.12). Subsequently,
we can feed these estimates to the Black and Scholes formula in order to obtain the
market implied volatilities σmkt. To do this, we extract implied volatility from out-
of-the-money options. Therefore, if estimated stock prices S(t) are greater than X,
we use implied put-volatility, otherwise implied call-volatility.2 Finally, by using the

2 Note that for the put-call parity, we have:

26.3 Implementation and Algorithm 549

Table 26.1. Estimated values, according to the Shimko methodology, for the spot price includ-

ing dividends and the risk free rate for different time to maturities

Time-to-maturity (in days)

25 60 88 151 242 336

S0 4064.01 4071.41 4033.90 4044.72 3962.59 3927.41

r −0.0125 −0.0217 0.0282 0.0367 0.0346 0.0351

risk-neutral GARCH specification, (26.4) and (26.5), and the EMS correction (26.8),

we run 5,000 Monte Carlo simulations for each maturity. The starting values for the

GARCH parameters β0, β1, β2, λ + θ and σ1 have been arbitrarily set. In particular,

we set σ1 equal to the ATM implied volatility or the GARCH equilibrium volatility:

β0

1 − β1 − β2
.

Then, the option prices are obtained by replacing Si(t) with S∗
i (tj) in expres-

sion (26.7):

c
(n)
t (τ,X) =

1

n
e−rτ

n∑

i=1

max
{

S∗
i (t + τ) − X, 0

}

.

From simulated option prices, for each strike X and time-to-maturity τ , we compute

the GARCH implied volatilities σgarch(X, τ), by numerically inverting the Black and

Scholes formula. Then, given market implied volatilities σmkt(X, τ), we estimate the

parameters of the NGARCH model by minimizing the sum of squared differences.

The problem reads as a non-linear least squares minimization

min
β0,β1,β2,λ+θ

k
∑

i=1

m
∑

j=1

(
σmkt(Xi, τj) − σgarch(Xi, τj)

)2
,

pB&S + Ste
−qτ = cB&S + Xe−rτ , (26.13)

where pB&S and cB&S are the option premiums evaluated using Black and Scholes for-

mula. The same relationship is valid for market prices:

pm + Ste
−qτ = cm + Xe−rτ , (26.14)

where pm and cm are the market prices of the options with the same strike (X) and time to

maturity (τ) considered before. Subtracting (26.13) from (26.14) we get:

pB&S − pm = cB&S − cm. (26.15)

This means that the error we commit using the Black and Scholes formula is the same

when evaluating call and put options with the same strike and maturity, and so the implied

volatility is not dependent on the kind of option we are dealing with, of course ceteris

paribus. For this reason, we extract implied volatility from the most liquid options, i.e.

OTM puts and OTM calls.

550 26 A Smiling GARCH

under the natural constraints

β0 > 0,

β1 ≧ 0, β1 + β2 < 1,

β2 ≧ 0, λ + θ > 0.

The results of the minimization procedure are reported in Table 26.2. In particular,

notice the behavior of the GARCH parameter β3 = λ + θ . This parameter con-

trols the leverage effect under the risk-neutral measure and, thus, the skewness of

the risk-neutral density. We observe that β3 increases as the option maturity short-

ens, reflecting the fact that for short maturities risk-neutral densities appear more

skewed. A comment on the optimization procedure is necessary. Our aim is to find

the NGARCH parameters such that the above loss function, defining the distance

between market implied volatility smirk and the simulated one, is minimized. In the-

ory, a standard minimization procedure could be run. However sampling errors in

the simulation can create problems in the optimization procedure. In other words,

we may end up maximizing the sampling error! In order to overcome this problem,

we suggest the use of a grid minimization method. In practice we define a reasonable

parameter domain by taking the parameter values estimated on a time series basis as

reference points. Then, we divide the range for each parameter in a grid with ten bins

and we minimize the objective function across that multi-dimensional grid, with a

tolerance of 10−3. However, we still have to manage 3 × 104 = 30,000 Monte Carlo

simulations, each one consisting of 5,000 iterations, for every maturity. This implies

a huge computational effort. In order to limit this figure, we resort to some additional

simplifications:

1. We separately estimate the leverage effect parameter (λ + θ) and the other three

parameters.

2. We set the equilibrium variance of the GARCH model equal to the long term

market ATM variance:

β0 = σ 2
ATM(1 − β1 − β2).

These simplifications afford a reduction in the number of simulations to 3 × (10 +
102) = 330 and, as a result, in the computational time effort (nonetheless, still re-

markably high: at least 10 hours with a 2.0 GHz processor). Finally, using a grid

Table 26.2. The GARCH parameters estimated via the Duan methodology

Time-to-maturity (days) NGARCH parameters

β0 β1 β2 β3

25 0.00135 0.80551 0.10924 0.86

60 0.00138 0.80551 0.10654 0.8

88 0.00139 0.80233 0.10685 0.8

151 0.0012 0.805 0.10612 0.81

242 0.0011 0.80321 0.10924 0.78

336 0.00117 0.80351 0.10824 0.78

26.3 Implementation and Algorithm 551

search we guaranteed a good approximate solution to our problem. Using an opti-

mization routine like fminsearch in Matlab R©, the minimization procedure does

not produce reliable results.

As an alternative, we also consider a two-step procedure. In the first step, the

three parameters β0, β1 and β2 are found by a search over a three-dimensional grid,

given an arbitrary starting value for β3. In the second step, given the values of the

three parameters β0, β1 and β2, the value of β3 is optimized using a one-dimensional

minimization routine. We repeat this two-stage procedure only once, so that no op-

timality is ensured. In particular, parameter estimates strongly depend on the initial

(arbitrary, but hopefully meaningful) value for β3.

26.3.1 Code Description

Function initial

Provides the workplace of global variables which are necessary to run the following

functions. In this case, the M-File Initial contains: the initial values of the GARCH

parameters, the number of Monte Carlo simulations and all Market data (strikes,

maturities, implied volatility surface, underlying asset prices and interest rates).

Function impl_vol

1. Sets an initial guess for the implied volatility:

σ =
2

√

∣

∣

∣

∣

[

ln

(

S(t)

X

)

+ rτ

]

2

τ

∣

∣

∣

∣

.

2. Decides if the option is Call or Put;

3. Starts a “for cycle” to determine the implied volatility using the Newton method;
a. Computes d1, d2, Vega, N (d1), and N (d2), at every step;
b. Compares the theoretical premium to the real one and if the difference is

less than the tolerance level, then the implied volatility is accepted;
c. If the previous requirement is not fulfilled, it adjusts it in the following man-

ner (Newton recursion):

σ = σ − (Premiumtheo − Premiummkt)/Vega;

4. Sets the volatility value coming from the minimization /∈ R+ equal to zero. In
other words, volatility is forced to be non-negative.

Function vol_surface

1. Sets an external cycle for each maturity available on the market;

552 26 A Smiling GARCH

2. For every maturity runs a Monte Carlo simulation in order to obtain n paths of

the underlying asset, supposing that the underlying geometric Brownian motion

has a time varying variance described by the NGARCH equation:

σ 2(t + 1) = β0 + β1σ
2(t) + β2σ

2(t)
(
ξ(t) − θ − λ

)2;

3. Once a Monte Carlo path is simulated for each maturity, the code applies the

EMS procedure;

4. Using the corrected paths, the values of out-of-the-money call and put options

are computed for all strikes available on the market;

5. The implied volatility of these options is computed;

6. The value of the loss function (sum of squared residuals between simulated im-

plied volatilities and market implied volatilities) is then computed.

Function optimization

1. Sets a “for cycle” across maturities;
2. Retrieves the ATM volatility corresponding to the selected maturity;
3. Launches an optimization function (opt_garch) to fit the three GARCH pa-

rameters (excluding the leverage effect, minimized apart from these), supposing
that the equilibrium variance of the GARCH model is always equal to the ATM
variance;

4. A double entry grid of 10 × 10 bins is used to make the screening of parameters
β1 and β2, with a tolerance level of 10−3 for both;

5. The parameter β0 is automatically determined given the following relation:

β0 = σ 2
ATM(1 − β1 − β2);

6. Given the first three optimized parameters, considers another optimization
(opt_leverage routine) to find the best leverage parameter such that the dis-
tance between the market implied volatility surface and the GARCH simulated
implied volatility surface is minimized. Also in this case a grid approach is used
with ten bins and a tolerance of order 10−3;

7. The optimal parameters are stored in a matrix.

Function opt_garch

1. Defines the maximum and minimum values for parameter β1 (the GARCH ef-
fect), computes the range, and the medium plus initial value;

2. Start the first “for cycle” across the different values of β1 (grid);
3. For each value of β1 defines the maximum and minimum value of β2 (ARCH

effect parameter) in such a way that β1 + β2 < 1, i.e. max[β2] = 1 − β1 − 0.01;
4. Starts the second internal cycle “for” across the different and admissible values

for β2 (grid);

26.3 Implementation and Algorithm 553

5. For each admissible pair (β1, β2) runs the function garch_loss in order to

obtain estimated implied volatilities and the loss function with respect to the

market implied volatility;

6. A matrix of losses is obtained according to the two cycles “for” and the mini-
mum of this matrix identifies the optimal (β1, β2) pair;

7. A refining procedure is applied to reach the tolerance level of 10−3 for the opti-
mal parameter values: it repeats Steps 1–6 twice, with a range equal to 10−2 and
10−3 respectively, in an interval around the optimal values found.

Function opt_leverage

1. Given the values for the first three parameters, defines the minimum and maxi-
mum value for the leverage effect parameter (θ +λ) and computes the mean and
initial value;

2. Starts a cycle “for” across the different values of (θ + λ) (grid method), from
the minimum to the maximum value;

3. For each of them computes the loss function as a distance between market im-
plied volatility and GARCH estimated volatility (running garch_loss code);

4. Refines the search to get the required tolerance approximation (10−3 as for the
other parameters), repeating Steps 2 and 3.

Function garch_loss

1. Defines a vector of initial values for time dependent volatility using the equilib-
rium value of GARCH variance,

σ 2
ATM = β0/(1 − β1 − β2);

2. Defines a matrix of standardized normal shocks (rows equal to the number of
Monte Carlo simulation and columns equal to the number of steps in each sim-
ulation);

3. Starts a “for” loop across time to get the path of the underlying asset. Starting
with S0, the function generates, according to a Geometric Brownian Motion with
a GARCH volatility, n paths for the underlying asset using the recursion:

St+dt = St exp
((

r − 0.5σ 2
t

)
dt + σt

√
dtεt+dt

)
;

4. At each step the EMS procedure is applied to guarantee martingality and to
reduce Monte Carlo variance. At each step, GARCH variance is also updated
according to the normal shock which affects prices in the previous step:

σ 2
t = β0 + β1σ

2
t−1 + β2σ

2
t−1(ξt−1 − θ − λ)2;

5. The final vector of underlying prices (corrected with EMS procedure) is used to
obtain the Monte Carlo estimate of the option price:

c
(n)
t (τ,X) = 1

n
e−rτ

n∑

i=1

max
[

S∗
i (t + τ) − X, 0

]
;

554 26 A Smiling GARCH

6. A cylce “for” across strikes is used to obtain the out-of-the-money call or out-
of-the-money put option prices;

7. For each option the implied volatility is extracted running the impl_vol rou-
tine;

8. The loss function value is computed as the sum of squared residuals between
market implied volatilities and estimated volatilities.

26.4 Results and Comments

The results of the estimation procedure are given in Tables 26.3 and 26.4, where we
compare market implied volatilities (Table 26.3) and the ones computed according
to the Duan procedure (Table 26.4).

We observe that, for short maturities, the model undervalues implied volatilities.
On the contrary, for longer maturities, GARCH based implied volatilities are higher.
It seems that GARCH based implied volatility estimates tends to flatten out the peaks

Table 26.3. Market implied volatilities on FTSE 100 index on July 21st 2003

Strike Time-to-maturity (in days)

25 60 88 151 242 336
3625 0.24145 0.23058 0.22579 0.22854 0.22654 0.22261
3725 0.23678 0.209931 0.21986 0.21863 0.21997 0.21544
3825 0.20892 0.204449 0.20754 0.20875 0.21064 0.20858
3925 0.19238 0.184878 0.19745 0.19745 0.20221 0.20172
4025 0.17504 0.16508 0.18424 0.18123 0.19539 0.19529
4125 0.15254 0.15915 0.17881 0.18193 0.18844 0.18888
4225 0.15278 0.153475 0.17097 0.17153 0.18374 0.18309
4325 0.15194 0.149329 0.16374 0.16271 0.17264 0.17746
4425 0.18368 0.150364 0.15303 0.16115 0.17078 0.17227

Table 26.4. Estimated implied volatilities on FTSE 100 index on July 21st 2003

Strike Time-to-maturity (in days)

25 60 88 151 242 336
3625 0.22471 0.20661 0.19768 0.19497 0.20169 0.19686
3725 0.21496 0.20048 0.19589 0.19384 0.20104 0.19677
3825 0.20431 0.19567 0.19449 0.19819 0.20078 0.19629
3925 0.19735 0.19017 0.19277 0.19204 0.20061 0.19583
4025 0.19227 0.18601 0.19134 0.19144 0.20031 0.19529
4125 0.18762 0.18342 0.19079 0.19112 0.19986 0.19489
4225 0.18291 0.18115 0.19075 0.19083 0.19938 0.19451
4325 0.17953 0.17938 0.19046 0.19065 0.19865 0.19418
4425 0.17668 0.17694 0.19072 0.19057 0.19994 0.19379

26.4 Results and Comments 555

of the volatility surface, and to produce volatility data less affected by shocks than

observed implied volatilities.

In addition, the estimation procedure shows two main features:

(1) The decreasing trend of the leverage effect, from 0.86 for the shortest maturity

to 0.78 for the longest one. This is mirrored in market data, where far-out-of-the-

money puts with a very short life present a higher volatility premium than the

far-out-of-the-money put with a longer residual life.

(2) While the smirk effect is captured by the leverage parameter θ , the other

GARCH parameters remain almost constant across maturities. This can reflect

the stability of the underlying process which is common for all analyzed options.

Finally, from Figure 26.1, where the market quoted volatility is plotted against the

estimated volatility, we note that the GARCH estimation produces a kind of smooth-

ing effect of the surface compared to what is obtained by original market prices.

Appendix A: Proof of the Thinning Algorithm

Consider the problem of generating samples of a counting process

N(t) =
∑

i≥1 1{τi≤t} with (possibly random) intensity λ(s). This amounts to sam-

pling jump times τi , i ≥ 1, from the knowledge of λ(s). The thinning method

requires to (1) select λ∗ as an upper bound for λ(s) on its domain; (2) sample

jump times τ ∗
i of a Poisson process N∗ with constant intensity λ∗; (3) perform an

acceptance–rejection test on each τ ∗
i , which consists of sampling the random variable

1{λ∗Ui≤λ(τ∗
i)}, where Ui

i.i.d.∼ U[0, 1]; (4) accept τ ∗
i as a jump time of N provided that

the test succeeds, namely the independent uniform variable λ∗Ui on [0, λ∗] is smaller
than λ(τ ∗

i). It is assumed that λ,N∗ and the Ui’s are all statistically independent.
To prove this, we need to check that the process the counting process of the

accepted jump times N(t) =
∑

i : 0<τ∗
i ≤t 1{λ∗Ui≤λ(τ∗

i)} has intensity λ, that is:

E
(
N(t) − N(s)|FN

s

)
= E

(∫ t

s

λ(u) du

∣

∣

∣
F

N
s

)

, (A.1)

where FN
s is the completed filtration generated by N . This formula has a clear in-

terpretation in the deterministic case: the expected number of jump times occurring
over an interval (s, t] is given by accruing the jump intensity λ over the same in-
terval. For the sake of clarity, we assume that the function λ is superiorly bounded
and set λ∗ = sup λ(t, ω). It is left to the reader to prove that the intensity process
λ is FN -adapted. Using the linearity property and the rule of iterated conditional
expectation, we have

E
(

N(t) − N(s)|FN
s

)

= E

(

∑

i:s<τ∗
i ≤t

1{λ∗Ui≤λ(τ∗
i)}

∣

∣

∣
F

N
s

)

= E

(

∑

i:s<τ∗
i ≤t

E
(

1{λ∗Ui≤λ(τ∗
i)}|F

N
τ∗
i

)

∣

∣

∣
F

N
s

)

as FN
τ∗
i

⊃ F
N
s

558

= E

(∑

i:s<τ∗
i ≤t

P
(
Ui ≤ λ(τ ∗

i)/λ∗|FN
τ∗
i

)∣∣∣FN
s

)
as P(U[0, 1] ≤ X|X = u) = u

=
1

λ∗
E

(

N∗(t)∑

i=N∗(s)+1

λ(τ ∗
i)

∣∣∣FN
s

)

as λ(τ ∗
i) is FN

τ∗
i

-adapted

=
1

λ∗
E

(

E

(

N∗(t)
∑

i=N∗(s)+1

λ(τ ∗
i)

∣

∣

∣
FN

t

)∣

∣

∣

∣

∣

FN
s

)

as t > s.

Recall that the jump times are uniformly distributed on the interval (s, t] con-

ditional on the number of jumps having occurred over the same interval, that is

τN∗(s)+1, . . . , τN∗(t)|Ft
i.i.d.
∼ τ ∼ U(s, t]. The Wald theorem leads to:

E
(

N(t) − N(s)|FN
s

)

=
1

λ∗
E

(

E
[

N∗(t) − N∗(s)|FN
t

]

× E
[

λ(τ)|FN
t

]∣

∣FN
s

)

.

Given FN
s , the increment N∗(t) − N∗(s) and the random variable τ are mutually

independent. Moreover, τ is uniformly distributed in [s, t] given FN
t . The last term

then becomes equal to:

1

λ∗
E

(

N∗(t) − N∗(s)|FN
s

)

× E
(

λ(τ, ω)|FN
s

)

=
1

λ∗

∫ t

s

λ∗ du E

(∫ t

s

λ(u)
du

t − s

∣

∣

∣
F

N
s

)

= E

(∫ t

s

λ(u) du

∣

∣

∣
F

N
s

)

,

which is the claim to be proved.

Appendix B: Sample Problems for Monte Carlo

1. Let the state variable X be the instantaneous short rate r . Fix three increasing

times t < T1 < T2 and let PT2 be the process describing the value of a default free

zero-coupon bond maturing at time T2. We choose T2 ≥ T1 because the asset needs

to exist at time T1. We consider a call option on PT2 , expiring at T1 and strike at K

Euros. We want to design a procedure to evaluate the fair value of this option at time

t by making use of Monte Carlo methods. This option is a T1-maturing contingent

claim with pay-off function (x−K)+ on a T2-maturing contingent claim with pay-off

function equal to 1 in all states of the sample world:

V (t) = E∗
t

(
e−

∫ T1
t r(s) ds

(
PT2(T1) − K

)
+

)

= E∗
t

(
e−

∫ T1
t r(s) ds

(
E∗

T1

(
e
−

∫ T2
T1

r(s) ds)
− K

)
+

)
.

To simulate this value, we may follow two routes. The first algorithm is naive. We

set a small �t and evolve r over time points t, t +�t, t +2�t, . . . , T1 −�t, T1, T1 +

�t, . . . , T2 − �t . This is done by discretizing the s.d.e. for r over that partition. For

each simulated interest rate path, we compute the option pay-off. Summing up the

resulting payoff over n sampled paths and dividing by n, results in the following

approximated value:

C(t) ≈
1

n

n∑

i=1

[
e−

∑T1−�t

t=0 r(i)(t)�t
((

e
−

∑T2−�t

t=T1
r(i)(t)�t)

− K
)
+

]
.

The second algorithm is more effective. For each i = 1, . . . , N :

(1) generate a path (r(i)(t + �t), . . . , r(i)(T1 − �t)) up to time T1 − �t ;

(2) generate M “continuations”:

{(
r(i,k)(T1), r

(i,k)(T1 + �t), . . . , r(i,k)(T2 − �t)
)
, k = 1, . . . ,M

}
,

after time T1, until time T2 − �t is reached;

560

(3) use these continuations to obtain a Monte Carlo estimate for the time T1 value

of the bond:

P
(i)
T2

(T1) ≈
1

M

M∑

k=1

[
e
−

∑T2−�t

t=T1
r(i,k)(t)�t

]
;

(4) plug this value into the call option pay-off;

(5) discount between T1 and t using the path r(i)(t + �t), . . . , r(i)(T1 − �t) gener-

ated at the first step; finally

(6) sum all these terms up and divide by n. The corresponding Monte Carlo estimate

is:

C(t) ≈
1

n

n∑

i=1

[
e−

∑T1−�t

t=0 r(i)(t)�t

((

1

M

M∑

k=1

[
e
−

∑T2−�t

t=T1
r(i.k)(t)�t

])
− K

)

+

]

.

Write and run a computer code implementing the two procedures above. Elaborate

and apply a test to compare their performance.

2. Suppose a model for the underlying factor dynamics X depends on a parame-

ter. For instance, in the Black–Scholes model, X is the underlying security and we
may take the volatility σ as a parameter. We wish to evaluate the rate of variation of
the current fair value V (t) of a given contingent claim resulting from a small change
in the parameter δ. In the Black–Scholes example, we look for the Vega of an option.
We may perform two Monte Carlo estimations: one under dynamics for the underly-
ing factor corresponding to a parameter value δ + ε; the other for a parameter value
δ − ε, where ε is a small positive constant. To reduce computations, in both cases we
may use the same sequence of drawn r.v.’s needed to generate a path (this is one of
the variance reduction techniques we will develop in the last section). We come up
with estimations V (t; δ + ε) and V (t; δ − ε). The sensitivity can be approximated
by a first-order difference ∂δV (t) ≈ (V (t; δ + ε) − V (t; δ − ε))/(2ε). This method
lets us compute hedge ratios too: indeed, the call option hedger is required to take
a �-position in the underlying asset S, where � is just the sensitivity ∂SV (t, S(t)).
Write and run a computer code for computing sensitivities of the options detailed in
the examples of Section 1 with respect to the parameters involved in a Black–Scholes
model.

3. We wish to generate a simulated random path for a short rate model so
that a given set of observed discount bond prices is perfectly matched. Suppose
time t discount function is given by N observed zero-coupon bond prices PT1(t) =

p1, . . . , PTN
(t) = pN , where Tk = t + k�t . Recall the theoretical value for a dis-

count bond price is: PT (t) = E∗
t (exp(−

∫ T

t
r(s) ds)). Let r(t) = r0. If we simulate

a number n of discrete trajectories

{

r
(i)
tT =

(

r(i)(T1), . . . , r
(i)(TN−1)

)

, i = 1, . . . , n
}

for the risk-neutral dynamics of the short rate process r , the theoretical value of any
discount bond PTi

(t) need not match the corresponding observed price pi :

561

pi = PTi
(t) �= P

sampled
Ti

(t) =
1

n

n∑

i=1

e−�t
∑N−1

k=1 r(i)(Tk).

We want to bias each simulated path r
(i)
tT so as to obtain a new path r̂

(i)
tT which is

compatible with observed prices p1, . . . , pN in that:

pi =
1

n

n∑

i=1

e−�t
∑N−1

k=1 r̂(i)(Tk).

To each sample r(i)(Tk), we

(1) add the continuously compounded forward rate spanning [Tk, Tk+1] computed

from the simulated path r
(i)
tT by:

{

r
(1)
tT , . . . , r

(n)
tT

}

→ fTkTk+1(t) =
1

�t
lg

(
PTk

(t)

PTk+1(t)

)

=
1

�t
lg

(1
n

∑n
i=1 e

−�t
∑k−1

j=1 r(i)(Tj)

1
n

∑n
i=1 e−�t

∑k
j=1 r(i)(Tj)

)
,

and

(2) subtract the continuously compounded forward rate spanning [Tk, Tk+1] implied

in the observed discount function by:

{p1, . . . , pn} → f̂TkTk+1(t) =
1

�t
lg

(
pk

pk+1

)
.

Then the resulting paths

{

r̂
(i)
tT =

(
r̂(i)(T1), . . . , r̂

(i)(TN−1)
)
, i = 1, . . . , n

}
, (B.1)

defined by

r̂(i)(Tk) = r(i)(Tk) + fTkTk+1(t) − f̂TkTk+1(t),

satisfy the matching property. That is bond prices estimated by Monte Carlo

over the modified random paths in (B.1) exactly equal the observed prices

p1, . . . , pN :

pi = P
sampled
Ti

(t) =
1

n

n∑

i=1

e−�t
∑N−1

k=1 r̂(i)(Tk).

Write a program to implement this fitting procedure.

4. Give a formal proof for generating jump times by using the algorithm detailed

in Sect. 2.3.4.

5. The recursive formula for simulating r in the Vasicek model is:

r(ti+1) = μ(ti+1; ti, r(ti)) + σ(ti+1; ti, r(ti))
√

ti+1 − tiN (0, 1)

562

starting at (0, r0). For the CIR short rate model we have dr = α(b − r) dt +
σ
√

r dW(t) and:

r(ti+1) = r(ti) +
σ 2

4α

(
1 − e−α�t

)
χ2

(
4αβ

σ 2
,
σ 2

α

(
1 − e−α�t

)
e−α�t r(ti)

)
,

where χ2(d, c) denotes a random sample from a non-central chi-square distribution

with d degrees of freedom and non-centrality parameter c. See Johnson and Kotz

(1995) for details on this family of distributions. For each of these models, compare

Monte Carlo simulated European bond option values over increasing samples to the

theoretical values given by closed form formula.

6. Prove that the approximating process X(n) in the Algorithm “Sampling the-
orem method for stationary Gaussian processes” is not stationary by verifying that
its covariance function c(n)(t, s) = E(X(n)(t)X(n)(s)) does not depend on t and s

through t−s. By applying the sampling theorem stated in the same section, show that
c(n)(t, s) converges to a function of t −s as n → ∞. This justifies the approximation
made in the above-mentioned algorithm.

Appendix C: The Matlab R© Solver

Here we present the PDE solver implemented in a Matlab R© environment. This tool

aims at solving initial-boundary value problems for systems of parabolic and elliptic

partial differential equations (PDEs) in one space variable. The syntax to be used in

the command windows is as follows:

sol = pdepe(m,pdefun,icfun,bcfun,xmesh,tspan).

Here, m is parameter corresponding to the symmetry of the problem and can be set

equal to 0, 1, or 2; pdefun defines the PDE; icfun sets up initial conditions;

bcfun states boundary conditions; xmesh is a vector [x0,x1,...,xn] of in-

creasing entries specifying the points at which a numerical solution is to be re-

turned for each time in tspan = [t0,t1,...,tf]. Entries xmesh(1) and

xmesh(end) are equal to zL and zU, respectively. Moreover, the dimensions n

and f of the vectors xmesh and tspan must be greater or equal to 3. Entries

tspan(1)and tspan(end) are the starting and final maturities, respectively.

Function pdepe performs the time integration with an ODE solver that selects the

time step in a dynamic manner.1 Second-order approximations to the solution of the

PDE are made on the mesh specified in xmesh. Notice that the function pdepe does

not select the input mesh automatically. Therefore, it must be provided by the final

user, who may decide to use an unevenly spaced grid. Therefore, it is a good practice

to stagger mesh points by smaller amounts on the region of the domain where the

solution changes rapidly. It is usually convenient to refine the mesh near the strike

price and to use a sparse grid away from this region. The computational cost of the

resulting routine strongly depends on the length of xmesh.

Function pdepe solves PDEs of the following type:

c(z, τ, u, ∂zu)∂τu = z−m∂z(z
mf (z, τ, u, ∂zu)) + s(z, τ, u, ∂zu). (C.1)

The initial condition at τ = τ0 is u(τ0, z) = u0(z). For all τ and either z = zL, or

z = zU, the solution components satisfy a boundary condition:

1 For reference, see Shampine and Reichelt (1997) and Skeel and Berzins (1990).

564

p(z, τ, u) + q(z, τ)f (z, τ, u, ∂zu) = 0. (C.2)

Elements in q(z, τ) are either all zero or none of them is null. Nonzero values

for q are associated to Neumann and Robin boundary conditions, whereas Dirich-

let boundary conditions lead to a vanishing q(z, τ). Note that boundary conditions

are expressed in terms of the function f (z, τ, u, ∂zu) rather than ∂zu. Notice that

p(z, τ, u) depends on u whereas q(z, τ) is independent of it.

For the sake of clarity, let us examine a concrete example of utilization of the

function pdepe. We consider the initial value problem illustrated in Chapter 4 “Fi-
nite Difference Methods”. On the unit interval [0, 1], we consider the heat equation:

−∂τu(τ, z) + ∂zzu(τ, z) = 0, (C.3)

with initial condition:

u(0, z) =
{

2z, 0 ≤ z ≤ 1
2 ,

2(1 − z), 1
2 ≤ z ≤ 1,

(C.4)

and boundary conditions:
u(τ, 1) = u(τ, 0) = 0. (C.5)

The analytical solution of this initial value problem is:

u(τ, z) = 8

π
2

∞∑

n=1

1

n2
sin

(
nπ

2

)
sin(nπz)e−n2

π
2τ . (C.6)

Equation (C.3) can be reduced to the form (C.1) by setting

m = 0, c(z, τ, u, ∂zu) = 1,
(C.7)

f (z, τ, u, ∂zu) = ∂zu, s(z, τ, u, ∂zu) = 0.

The boundary conditions are (C.5) and can be written in the form (C.2) using

p(z, τ, u) = u(τ, z), q(z, τ) = 0,

where z can be either 0 or 1.2 The arguments of function pdepe can be built as
follows.

Let us examine a Matlab R© formulation of this example.

2 If, instead, we have opted for boundary condition (C.5), we would have set zL = 0, zU = 1,
and

p(zU, τ, u) = u(τ, zU), q(zU, τ) = 0,

p(zL, τ, u) = u(τ, zL), q(zU, τ) = 0.

565

• pdefun is a function that returns the terms c, f , and u. Input variables are

defined by scalars x and t and vectors u and DuDx that approximate the solution

and its partial derivative with respect to x. Comparing this to formula (C.7), the

Matlab R© code reads as follows:

function [c,f,s] = pdefun(x,t,u,DuDx)

c = 1;

f = DuDx;

s = 0;

• icfun evaluates the initial conditions. It has the form u = icfun(x). When

called with an argument x, icfun evaluates and returns the initial values of the

solution components at x in the column vector u. With reference to the initial

condition assigned in (C.4), the Matlab R© code reads as follows:

function u0 = pdex1ic(x)

u0 = 2*(x>=1/2).*(1-x)+2*(x<1/2).*x;

• bcfun evaluates terms p and q on boundary conditions (C.5) and returns the

vector [pl,ql,pr,qr], where pl and ql are scalars corresponding to p and

q evaluated at xL, similarly pr and qr correspond to xr. Therefore bcfun as-

sumes form [pl,ql,pr,qr] = bcfun(xl,ul,xr,ur,t), where ul
is the solution at the left boundary xL and uR is the solution at the right bound-

ary xR. With reference to our example, the Matlab R© formulation given in (C.2)

becomes:

function [pl,ql,pr,qr] = pdex1bcfun(xl,ul,xr,ur,t)

pl = ul;

ql = 0;

pr = ur;

qr = 0;

Below, we use subfunctions to place all the functions required by pdepe in a single

M-file that is named pdeexample.m. This file can be run from the

Matlab R© command window. The proposed function provides a solution for the

example discussed above using, for illustrative purposes, 10 points for the xmesh

and 24 points for the t-mesh. It calls function pdepe using the command sol =
pdepe(m,@pdefun,@pdex1ic,@pdex1bcfun,x,t). The resulting nu-

merical solution, generated by the line surf(x,t,sol), is illustrated in

Fig. C.1.

function pdeExample

m = 0;

566

Fig. C.1. Numerical solution of the PDE given in the example.

x = linspace(0,1,10);

t = linspace(0,0.1,10);

%computes the numerical solution of the pde

sol = pdepe(m,@pdefun,@pdex1ic,@pdex1bcfun,x,t);

% A surface plot is often a good way

to study a solution.

surf(x,t,sol)

title(’Numerical solution computed

with 10 mesh points.’)

xlabel(’Distance z’)

ylabel(’Time t’)

% Defining the PDE-------------------

function [c,f,s] = pdefun(x,t,u,DuDx)

c = 1;

f = DuDx;

s = 0;

% Defining the IC-------------------

function u0 = pdex1ic(x)

567

%u0 = 2*(x>=1/2).*(x-1/2);

u0 = 2*(x>=1/2).*(1-x)+2*(x< 1/2).*x;

% Defining the BC-------------------------

function [pl,ql,pr,qr] = pdex1bcfun(xl,ul,xr,ur,t)

pl = ul;

ql = 0;

pr = ur;

qr = 0;

% The analytical solution-------------------

function ansolution = solutionpde(x, t)

sumseries = 0

for n = 1:20

term = sin(n*pi/2)*sin(n*pi*x)*exp(-t*(n*pi)^2)/(n*n);

sumseries = sumseries+term;

end

ansolution = sumseries*8/pi^2.

Appendix D: Optimal Control

D.1 Setting up the Optimal Stopping Problem

We begin by replacing the performance measure (3.4) with the equivalent
∑τ

s=t F(s,

Xt,x(s)) and then redefine X by adding one singleton {k}, with k /∈ X, which plays

the role of a “flag” for the stopping time τ . The set of controls Ut,T is given by the
canonical basis in RT −t , i.e., u = (ut , . . . , uT −1) ∈ Ut,T and a single entry us is
equal to 1 (“stopping at time s”) and all the others equal 0. Then, we set dynamics as

p(dx; s, y, u,ω) =
{

p(dx; s,X(s, ω), ω) if u = 0,
δk(dx) (Dirac delta mass on {k}) if u = 1 or y = k,

or, alternatively, as

Xu(s + 1, ω) =
{

f
(
s,Xu(s, ω),W(s, ω)

)
if u = 0,

k if u = 1,

f (s, k,w) = k for all s and k.1

This means that the system is trapped into a steady state k once the control has been
activated (u = 1). Finally, the cost/reward function vanishes on the steady state {k}:

F(s, y, u) =
{

F(s, y) if y �= k,
0 if y = k.

The equivalence of this formulation to an optimal stopping problem can now be
easily proven as an exercise. Notice that the artificial state k signals the “death”
of the system. For practical purposes, there is no need to cast an optimal stopping
problem in this framework.

1 We remark the difference between symbols “ω” and “w”. The former denotes a generic
elementary event in a sample space Ω . You may think of it as a sample path itself, as is the
case of the so-called canonical process X(t, ω) = ω(t), defined on [0, T] × R[0,T]. The
latter is a real value assumed by the random noise W(t).

570

D.2 Proof of the Bellman Principle of Optimality

The two control policies u and u′ give rise to the same exact dynamics on {t, . . . , s}.
Therefore their performance coincides on {t, . . . , s − 1}. Note that they need not

be equal at s because the performance index in general depends on the control and

the two control policies u and u′ may not match at time s. This observation reduces

the problem to the one of showing that the performance stemming from the residual

dynamics (Xt,x,u(s), . . . , Xt,x,u(T)) resulting from applying u is no greater than the

reward deriving from the residual dynamics obtained by using u′ instead. Control

u =(u(t, ·), . . . , u(T , ·)) applied to the system dynamics for the remaining period

gives rise to a reward assessment:

J ∗ :=

T −1∑

i=s

F
(
i, Xt,x,u(i), u

(
i, Xt,x,u(i)

))
+ Ψ

(
Xt,x,u(T)

)
.

The uniqueness of the solution of a dynamic system implies the flow property:

Xt,x,u(i) = Xs,Xt,x,u(s),u|s (i),

where t ≤ s ≤ i ≤ T , and u|s is the truncated control (u(s), . . . , u(T)) resulting

from restricting u on the remaining period {s, . . . , T }. By applying, in order, the flow

property, the optimality of ûs on {s, . . . , T }, and the flow property again, we have:

J ∗ =

T −1∑

i=s

F
(
i, Xs,Xt,x,u(s),u|s (i), u

(
i, Xs,Xt,x,u(s),u|s (i)

))

+ Ψ
(
Xs,Xt,x(s),u|s (T)

)

≤

T −1∑

i=s

F
(
i, Xs,Xt,x,u(s),ûs

(i), û
(
i, Xs,Xt,x,u(s),ûs

(i)
))

+ Ψ
(
Xs,Xt,x,u(s),ûs

(T)
)

=

T −1∑

i=s

F
(
i, Xt,x,u′

(i), û
(
i, Xt,x,u′

(i)
))

+ Ψ
(
Xt,x,u′

(T)
)
.

This last term represents the performance generated by residual dynamics (Xt,x,u′
(s),

. . . , Xt,x,u′
(T)) corresponding to the control policy u′.

D.3 Proof of the Dynamic Programming Algorithm

We need to prove that uB dominates any other control policy in Ut,T . We apply the

Bellman principle of optimality at each step in the preceding backward induction.

At time T , if the reached state is y, the generated performance is uncontrollable and

D.3 Proof of the Dynamic Programming Algorithm 571

matches Ψ (y). This holds for any control policy and thus for the optimal one. At

time T − 1, whatever is the control policy u = (u(t), . . . , u(T − 2)) adopted on the

elapsed period {t, . . . , T − 2}, the policy

(
u(t, ·), . . . , u(T − 2, ·), ûT −1(T − 1, ·)

)
,

with ûT −1(T − 1, ·) = arg maxUT −1,T
J (T − 1, ·, u), dominates any other control

policy sharing the same first T − 2 components. This is because each entry of the

control policy contributes to the overall performance J additively. Therefore, the

optimal control policy must have û(T − 1, ·) as its (T − 1)th component. At time

T − 2, the Bellman principle of optimality states that the control policy:

(
u(t, ·), . . . , ûT −2(T − 2, ·), ûT −2(T − 1, ·)

)
,

with (ûT −2(T − 2, ·), ûT −2(T − 1, ·)) = arg maxUT −2,T
J (T − 2, ·, u), dominates

any other control policy sharing the same first T − 3 components. But the previous

step says that the optimal control policy must have ûT −1(T − 1, ·) as its (T − 1)th

component, i.e.,

(
u(t, ·), . . . , ûT −2(T − 2, ·), ûT −1(T − 1, ·)

)

≥
(
u(t, ·), . . . , u(T − 3, ·), ûT −2(T − 2, ·), ûT −2(T − 1, ·)

)

≥
(
u(t, ·), . . . , u(T − 3, ·), u(T − 2, ·), u(T − 1, ·)

)
.

Proceeding this way, we come up to the control policy:

uB =
(
ût (t, ·), . . . , ûT −2(T − 2, ·), ûT −1(T − 1, ·)

)

≥
(
ût (t, ·), . . . , ût (T − 2, ·), ût (T − 1, ·)

)
= û.

But û = arg maxUt,T
J (t, ·, u) dominates all control policy, in particular uB, i.e.,

û ≥ uB. Therefore, û = uB.

Bibliography

Abate, J., Choudhury, G.L., Whitt, W. (1996). On the Laguerre Method for Numerically In-

verting Laplace Transforms. Informs. Comput. 8, 413–427.
Abate, J., Choudhury, G.L., Whitt, W. (1998). Numerical Inversion of Multidimensional

Laplace Transforms by the Laguerre Method. Performance Evaluation, 31, 229–243.
Abate, J., Whitt, W. (1992a). Numerical Inversion of Probability Generating Functions. Oper-

ations Research Letters 12, 245–251.
Abate, J., Whitt, W. (1992b). The Fourier-Series Method for Inverting Transforms of Proba-

bility Distributions. Queueing Systems Theory Appl. 10, 5–88.
Abken, P.A. (2000). An Empirical Evaluation of Value at Risk by Scenario Simulation. Journal

of Derivatives 7, 12–30.
Abramowitz, M., Stegun, I.A. (1965). Handbook of Mathematical Functions. National Bureau

of Standards, Washington, DC. (Reprinted by Dover, New York.)
Abramowitz, M., Stegun, I.A., Kampen, J. (1993). Handbook of Mathematical Functions

(3rd ed.). John Wiley.
Acworth, P., Broadie, M., Glasserman, P. (1998). A Comparison of Some Monte Carlo and

Quasi-Monte Carlo Methods for Option Pricing. In: Hellekaled, P., Larcher, G., Nieder-
reiter, H., Zinterhof, P. (Eds.), Monte Carlo and Quasi-Monte Carlo Methods. Springer-
Verlag.

Aitsahlia, F., Lai, T. (1997). Valuation of Discrete Barrier and Hindsight Options. The Journal

of Financial Engineering 6(2), 169–177.
Aït-Sahalia, Y., Lo, A.W. (1998). Non-Parametric Estimation of State-Price Densities Implicit

in Financial Asset Prices. Journal of Finance 53(2), 499–548.
Akahori, J. (1995). Some Formulae for a New Type of Path-Dependent Options. Annals of

Applied Probability 5, 383–388.
Akesson, F., Lehoczky, L. (2000). Path Generation for Quasi-Monte Carlo Simulation of

Mortgage-Backed Securities. Management Science 46, 1171–1187.
Albrecher, H., Mayer, P., Schoutens, W., Tistaert, J. (2007). The Little Heston Trap. Wilmott

Magazine, January, 83–92.
Alexander, C. (2001). Market Models: A Guide to Financial Data Analysis, Wiley Series in

Financial Engineering. John Wiley & Sons.
Altman, E., Resti, A., Sironi, A. (2004). Deafault and Recovery Rates in Credit Risk Modeling:

A. Review of the Literature and Empirical Evidence. Journal of Finance Literature 1.

574 Bibliography

Altman, E., Resti, A., Sironi, A. (2005). The Link Between Default and Recovery Rates:

Theory, Empirical Evidence and Implications. The Journal of Business 78(6), 2203–2228.
Amin, K.I. (1993). Jump Diffusion Option Valuation in Discrete Time. Journal of Finance

48(5), 1883–1863.
Andersen, L.B.G. (2007). Efficient Simulation of the Heston Stochastic Volatility Model.

(Available at: http://ssrn.com/abstract=946405).
Andersen, T.G. (1995). Simulation and Calibration of the HJM Model. Working Paper, Gen-

eral Re Financial Products, New York.
Andersen, T.G., Broadie, M. (2001). A Primal–Dual Simulation Algorithm for Pricing Multi-

Dimensional American Options. Working Paper, Columbia Business School, New York.
Andersen, L., Brotherton-Ratcliffe, R. (1996). Exact Exotics. Risk 9, 85–89.
Andricopoulos, A.D., Widdicks, M., Duck, P.W., Newton, D.P. (2003). Universal Option Val-

uation Using Quadrature Methods. Journal of Financial Economics 67, 447–471.
Antia, H.M. (2002). Numerical Methods for Scientists and Engineers (2nd ed.). H.M.

Birkhäuser.
Antonov, I.A., Saleev, V.M. (1980). An Economic Method of Computing lpτ -Sequences.

USSR Comput. Maths. Math. Phys. 19, 252–256.
Aparicio, S., Hodges, S. (1998). Implied Risk-Neutral Distribution: A Comparison of Estima-

tion Methods. FORC preprint PP98-95, Warwick University.
Appel, G., Hitschler, F. (1980). Stock Market Trading Systems. Traders Press.
Applebaum, D. (2004). Lévy Processes and Stochastic Calculus. Cambridge University Press.
Asmussen, S., Rosinski, J. (2001). Approximations of Small Jumps of Lévy Processes with a

View Towards Simulation. Journal of Applied Probability 38, 482–493.
Atkinson, K.E. (1989). An Introduction to Numerical Analysis. John Wiley and Sons.
Atkinson, C., Fusai, G. (2004). Discrete Extrema of Brownian Motion and Pricing of Look-

back Options. Working Paper, Dipartimento SEMEQ, Università del Piemonte Orientale.
Atlan, M., Geman, H., Yor, M. (2005). Options on Hedge Funds under the High Water Mark

Rule. Working Paper.

Avellaneda, M., Buff, R., Friedman, C., Grandchamp, N., Kruk, L., Newman, J. (2001).
Weighted Monte Carlo: A New Technique for Calibrating Asset-Pricing Models. Inter-

national Journal of Theoretical and Applied Finance 4(1), 1–29.
Avellaneda, M., Gamba, R. (2000). Conquering the Greeks in Monte Carlo: Efficient Calcula-

tion of the Market Sensitivities and Hedge-Ratios of Financial Assets by Direct Numerical
Simulation. In: Avellaneda, M. (Ed.), Quantitative Analysis in Financial Markets, Vol. III.
World Scientific, Singapore, 336–356.

Avellaneda, M., Paras, A. (1994). Dynamic Hedging with Transaction Costs: From Lattice

Models to Nonlinear Volatility and Free-Boundary Problems. Unpublished manuscript.
Avellaneda, M., Scherer, K. (2002). All for One and One for All: A Principal Components

Analysis of the Latin American Brady Bond Market from 1994 to 2000. International

Journal of Theoretical and Applied Finance 5(1), 79–107.
Avellaneda, M., Wu, L. (1999). Pricing Parisian-Style Options with a Lattice Method. Inter-

national Journal of Theoretical and Applied Finance 2(1), 1–17.
Baccara, M., Battauz, A., Ortu, F. (2005). Effective Securities in Arbitrage-Free Markets with

Bid-Ask Spreads at Liquidation: A Linear Programming Characterization. Journal of Eco-

nomic Dynamics and Control 30(1), 55–79.
Bahra, B. (1997). Implied Risk-Neutral Probability Density Functions from Option Prices:

Theory and Application. Working Paper 66, Bank of England, 1368–5562.
Bakshi, G.S., Cao, C., Chen, Z.W. (1997). Empirical Performance of Alternative Option Pric-

ing Models. Journal of Finance 52, 2003–2049.

Bibliography 575

Baldi, P., Caramellino, L., Iovino, G. (1999). Pricing General Barrier Options: a Numerical

Approach Using Sharp Large Deviations. Mathematical Finance 9(4), 293–321.
Baldick, R., Kolos, S., Tompaidis, S. (2003). Valuation and Optimal Interrruption for Inter-

ruptible Electricity Contracts. Working Paper, University of Texas.
Ballotta, L. (2001). Lévy Processes, Option Valuation and Pricing of the Alpha-Quantile Op-

tion. Ph.D. Thesis, Università Cattolica Sacro Cuore, Milan.
Ballotta, L., Kyprianou, A. (2001). A Note on the Alpha-Quantile Option. Applied Mathemat-

ical Finance 8, 137–144.
Bandi, F.M., Nguyen, T.H. (1999). Fully Nonparametric Estimators for Diffusions: A Small

Sample Analysis. Working Paper, University of Chicago.
Bandi, F.M., Nguyen, T.H. (2003). On the Functional Estimation of Jump-Diffusion Processes.

Journal of Econometrics 116, 293–328.
Barbieri, A., Garman, M.B. (1996). Putting a Price on Swings. Energy and Power Risk Man-

agement 1(6).
Barbieri, A., Garman, M.B. (1997). Ups and Downs of Swings. Energy and Power Risk Man-

agement 2(1).
Barlow, M.T. (2002). A Diffusion Model for Electricity Prices. Mathematical Finance 12,

287–298.
Barone-Adesi, G. (2005). The Saga of the American Put. Journal of Banking and Finance

29(11), 2909–2918.
Barone-Adesi, G., Whaley, R. (1987). Efficient Analytic Approximation of American Option

Values. Journal of Finance 42(2), 301–320.
Barrett, R., Berry, M., Chan, T.F., Demmel, J., Donato, J., Dongarra, J., Eijkhout, V., Pozo, R.,

Romine, C., Van der Vorst, H. (1994). Templates for the Solution of Linear Systems: Build-

ing Blocks for Iterative Methods. SIAM, Philadelphia (http://www.netlib.org/templates/
Templates.html).

Barton, D.E., Dennis, K.E.R. (1952). The Conditions Under Which Gram–Charlier and Edge-
worth Curves are Positive Definite and Unimodal. Biometrika 39, 425–427.

Barucci, E. (2003). Financial Markets Theory: Equilibrium, Efficiency and Information.
Springer Finance. Springer-Verlag, Berlin–Heidelberg–New York.

Bates, D.S. (1991). The Crash of ’87: Was It Expected? The Evidence from Options Markets.
Journal of Finance 46(3), 1009–1044.

Bates, D. (1996). Jumps and Stochastic Volatility: Exchange Rate Processes in Deutschemark
Options. Review of Financial Studies 9, 69–108.

Battauz, A. (2002). Change of Numéraire and American Options. Stochastic Analysis and

Applications 20(4), 709–730.
Baxter, M., Rennie, A. (1996). Financial Calculus: An Introduction to Derivative Pricing.

Cambridge University Press.
Baz, J., Das, S.R. (1996). Analytical Approximations of the Term Structure for Jump-

Diffusion Processes: A Numerical Analysis. Journal of Fixed Income 78–86.
Bazaraa, M.S., Sherali, H.D., Shetty, C.M. (1993). NonLinear Programming, Theory and Al-

gorithms (2nd ed.). Wiley.
Beaglehole, D., Dybvig, P., Zhou, G. (1997). Going to Extremes: Correcting Simulation Bias

in Exotic Option Valuation. Financial Analysts Journal 53, 62–68.
Beamon (1998). Competitive Electricity Prices. Working Paper, Energy Information Admin-

istration.
Bedendo, M., Anagnou, I., Hodges, S.D., Tompkins, R. (2005). Forecasting Accuracy of

Implied and GARCH-Based Probability Density Functions. Review of Futures Markets

14(1), Summer.

576 Bibliography

Bellman, R. (1957). Dynamic Programming. Dover Publications.

Bellman, R., Kalaba, R.E., Lockett, J. (1966). Numerical Inversion of the Laplace Transform.

Application to Biology, Economics, Engineering and Physics. American Elsevier, New

York.

Benth, F.E., Dahl, L.O., Karlsen, K.H. (2003). Quasi Monte Carlo Evaluation of Sensitivities

of Options in Commodity and Energy Markets. International Journal of Theoretical and

Applied Finance 6(8), 865–884.
Benth, F.E., Kallsen, J., Meyer-Brandis, T. (2007). A Non-Gaussian Ornstein–Uhlenbeck

Process for Electricity Spot Price Modeling and Derivatives Pricing. Applied Mathemati-

cal Finance 14(2), 153–169.
Benth, F.E., Saltyte-Benth, J. (2006). Analytical Approximation for the Price Dynamics of

Spark Spread Options. Studies of Nonlinear Dynamics & Econometrics 10(3).
Bertsekas, D.P. (2005). Dynamic Programming and Optimal Control, Vol. 1 and 2 (2nd ed.).

Athena Scientific.
Bessembinder, H., Chan, K. (1995). The Profitability of Technical Trading Rules in the Asian

Stock Markets. Pacific-Basin Finance Journal 3, 257–284.
Bessembinder, H., Chan, K. (1998). Market Efficiency and the Returns to Technical Analysis.

Financial Management 27(2), 5–17.
Best, M.J., Grauer, R. (1991). On the Sensitivity of Mean-Variance Efficient Portfolios to

Changes in Asset Means: Some Analytical and Computational Results. Review of Finan-

cial Studies 4, 315–342.
Bhanot, K. (2000). Behavior of Power Prices. Journal of Risk 2, 43–62.
Biffis, E., Millossovich, P. (2006). The Fair Value of Guaranteed Annuity Options. Scandina-

vian Actuarial Journal 1, 23–41.
Björk, T. (2004). Arbitrage Theory in Continuous Time (2nd ed.). Oxford University Press.
Block, S.B. (1999). A Study of Financial Analysts: Practice and Theory. Financial Analysts

Journal 55(4), 86–95.
Blume, M.E. (1975). Betas and Their Regression Tendencies. Journal of Finance 30(3), 785–

789.
Borodin, A.N., Salminen, P. (2002). Handbook of Brownian Motion: Facts and Formulae

(2nd ed.). Birkhäuser.
Botterud, A., Bhattacharyya, B., Ilic, M. (2002). Futures and Spot Prices, an Analysis of the

Scandinavian Electricity Market. Working Paper, MIT.
Bouchard, B., Ekeland, I., Touzi, N. (2004). On the Malliavin Approach to Monte Carlo Ap-

proximation of Conditional Expectations. Finance and Stochastics 8(1), 45–71.
Bouchaud, J.P., Potters, M., Sestovic, D. (2000). Hedged Monte Carlo: Low Variance Deriva-

tive Pricing with Objective Probabilities. Working Paper, Science & Finance Capital Fund
Management, France.

Boudoukh, J., Whitelaw, R.F., Richardson, M., Stanton, R. (1997). Pricing Mortgage-Backed
Securities in a Multifactor Interest Rate Environment: A Multivariate Density Estimation
Approach. Review of Financial Studies 10, 405–446.

Box, G.E.P., Muller, M.E. (1958). A Note on the Generation of Random Normal Deviates.
Annals of Mathematical Statistics 29, 610–611.

Boyle, P. (1977). Options: A Monte Carlo Approach. Journal of Financial Economics 4(3),
323–338.

Boyle, P., Broadie, M., Glasserman, P. (1997). Monte Carlo Methods for Security Pricing.
Journal of Economic Dynamics and Control 21, 1267–1321.

Boyle, P., Evnine, J., Gibbs, S. (1989). Numerical Evaluation of Multivariate Contingent
Claims. Review of Financial Studies 2(2), 241–250.

Bibliography 577

Boyle, P., Kolkiewicz, A. (2002). Pricing American Derivatives Using Simulation: A Biased

Low Approach. In: Fang, K.T., Hickernell, F.J., Niederreiter, H. (Eds.), Monte Carlo and

Quasi-Monte Carlo Methods. Springer-Verlag, Berlin–Heidelberg–New York.
Boyle, P.P., Lau, S.H. (1994). Bumping Up Against the Barrier with the Binomial Method.

Journal of Derivatives 1, 6–14.
Boyle, P., Tan, K.S. (1997). Quasi-Monte Carlo Methods. Working Paper, University of Wa-

terloo.
Boyle, P., Tian, Y.S. (1998). An Explicit Finite Difference Approach to the Pricing of Barrier

Options. Applied Mathematical Finance 5, 17–43.
Brandt, M.W. (2006). Portfolio Choice Problems. In: Ait-Sahalia, Y., Hansen L.P. (Eds.),

Handbook of Financial Econometrics. Elsevier, forthcoming.
Brandt, M.W., Santa Clara, P. (2002). Simulated Likelihood Estimation of Diffusions with

an Application to Exchange Rate Dynamics in Incomplete Markets. Journal of Financial

Economics 63, 161–212.
Breeden, D., Litzenberger, R.H. (1978). Prices of State-Contingent Claims Implicit in Option

Prices. Journal of Business 51(4), 621–651.
Brennan, M., Schwartz, E. (1977). The Valuation of American Put Options. Journal of Finance

32(2), 449–463.
Brennan, M., Schwartz, E. (1978). Finite Difference Methods and Jump Processes and the

Pricing of Contingent Claims: A Synthesis. Journal of Financial and Quantitative Analy-

sis 13, 461–474.
Brennan, M., Schwartz, E. (1985). Determinants of GNMA Mortgage Prices. Journal of the

American Real Estate and Urban Economics Association 13, 209–228.
Brigo, D., Mercurio, F. (2006). Interest Rate Models – Theory and Practice: With Smile, In-

flation and Credit (2nd ed.). Springer Finance. Springer-Verlag, Berlin–Heidelberg–New
York.

Brigo, D., Mercurio, F., Rapisarda, F. (2004). Smile at the Uncertainty. Risk 97–100.
Britten-Jones, M. (1999). The Sampling Error in Estimates of Mean-Variance Efficient Port-

folio Weights. Journal of Finance 54(2), 655–671.
Briys, E., Bellalah, M., Mai, H.M., De Varenne, F. (1998). Options, Futures and Exotic Deriv-

atives. Wiley, England.
Broadie, M., Detemple, J. (1996). American Option Valuation: New Bounds, Approximations,

and a Comparison of Existing Methods. Review of Financial Studies 9, 1211–1250.
Broadie, M., Detemple, J. (1997). Valuation of American Options on Multiple Assets. Review

of Financial Studies 7, 241–286.
Broadie, M., Glasserman, P. (1996). Estimating Security Price Derivatives Using Simulation.

Management Science 42, 269–285.
Broadie, M., Glasserman, P. (1997). Pricing American-Style Securities Using Simulation.

Journal of Economic, Dynamics and Control 21, 1323–1352.
Broadie, M., Glasserman, P. (1997). A Stochastic Mesh Method for Pricing High-Dimensional

American Options. Working Paper, Columbia University.
Broadie, M., Glasserman, P., Jain, G. (1997). Enhanced Monte Carlo Estimates of American

Options Prices. Journal of Derivatives 4, 25–44.
Broadie, M., Glasserman, P., Kou, S. (1997). A Continuity Correction for Discrete Barrier

Options. Mathematical Finance 7(4), 325–349.
Broadie, M., Glasserman, P., Kou, S. (1999). Connecting Discrete and Continuous Path-

Dependent Options. Finance and Stochastics 3, 55–82.
Broadie, M., Kaya, Ö. (2006). Exact Simulation of Stochastic Volatility and Other Affine Jump

Diffusion Processes. Operations Research 54, 217–231.

578 Bibliography

Brock, W., Lakonishok, J., LeBaron, B. (1992). Simple Technical Trading Rules and the Sto-

chastic Properties of Stock Returns. Journal of Finance 47(5), 1731–1764.
Brooks, R.D., Faff, R.W., McKenzie, M.D. (1998). Time-Varying Beta Risk of Australian

Industry Portfolios: A Comparison of Modelling Techniques. Australian Journal of Man-

agement 23, 1–22.
Bruner, R.F., Eades, K.M., Harris, R.S., Higgins, R.C. (1998). Best Practices in Estimating the

Cost of Capital: Survey and Synthesis. Financial Practice and Education 27, 13–28.
Bruti-Liberati, N., Platen, E. (2006). Strong Approximations of Stochastic Differential Equa-

tions with Jumps. Journal of Computational and Applied Mathematics 205(2), 982–1001.
Bruti-Liberati, N., Platen, E. (2007). Approximation of Jump Diffusions in Finance and Eco-

nomics. Computational Economics 29(3/4), 283–312.
Bruti-Liberati, N., Nikitopoulos-Sklibosios, C., Platen, E. (2006). First Order Strong Approx-

imations of Jump Diffusions. Monte Carlo Methods and Applications 12(3), 191–209.
Burlisch, R., Stoer, J. (1992). Introduction to Numerical Analysis (2nd ed). Springer-Verlag,

Berlin–Heidelberg–New York.
Buser, S.A. (1986). Laplace Transforms as Present Value Rules: A Note. Journal of Finance

XLI(1), 243–247.
Cai, N., Kou, S.G. (2007). Pricing Asian Options via a Double-Laplace Transform. Working

paper, Columbia University.
Cairns, A.J. (2004). Interest Rate Models: An Introduction. Princeton University Press.
Campa, J.M., Chang, K., Reider, R. (1997). ERM Bandwidths for EMU and After: Evidence

from Foreign Exchange Options. Economic Policy 24, 55–89.
Campa, J.M., Chang, K., Reider, R. (1998). Implied Exchange Rate Distributions: Evidence

from OTC Option Markets. Journal of International Money and Finance 17(1), 117–160.
Campbell, J.Y., Lo, A.W., MacKinlay, A.C. (1997). The Econometrics of Financial Markets.

Princeton University Press, Princeton, NJ.
Carmona, R., Dayanik, S. (2003). Optimal Multiple Stopping of Linear Diffusions and Swing

Options. Working Paper, Princeton University.
Carr, P. (1998). Randomization and the American Put. Review of Financial Studies 11(3),

597–626.
Carr, P. (2000). Deriving Derivatives of Derivative Securities. Journal of Computational Fi-

nance 4(2), 5–29.
Carr, P., Geman, H., Madan, D.H., Yor, M. (2003). Stochastic Volatility for Lévy processes,

Mathematical Finance 13(3), 345–382.
Carr, P., Geman, H., Madan, D.H., Wu, L., Yor, M. (2005). Option Pricing Using Integral

Transforms. Working Paper.

Carr, P., Hirsa, A. (2003). Why Be Backward? Forward Equations for American Options. Risk

16(1), 103–107.
Carr, P., Jarrow, R., Myneni, R. (1992). Alternative Characterizations of American Put Op-

tions. Mathematical Finance 2(4).
Carr, P., Madan, D.H. (1999). Option Evaluation Using the Fast-Fourier Transform. Journal

of Computational Finance 2(4), 61–73.
Carr, P., Schröder, M. (2004). Bessel Processes, the Integral of Geometric Brownian Motion

and Asian Options. Theory of Probability and its Applications 71(1), 113–141.
Carr, P., Yang, G. (1997). Simulating Bermudan Interest Rate Derivatives. Working Paper,

Morgan Stanley, New York.
Carr, P., Yang, G. (1998). Simulating American Bond Options in an HJM Framework. Working

Paper, Morgan Stanley, New York.

Bibliography 579

Carrière, J. (1996). Valuation of the Early-Exercise Price for Options Using Simulations and

Nonparametric Regression. Insurance: Mathematics and Economics 19(1), 19–30.
Cartea, Á., Figueroa, M.G. (2005). Pricing in Electricity Markets: A Mean Reverting Jump

Diffusion Model with Seasonality. Applied Mathematical Finance 12(4), 313–335.
Cartea, Á., Williams, T. (2007). UK Gas Markets: the Market Price of Risk and Applications

to Multiple Interruptible Supply Contracts, forthcoming in Energy Economics.
Carverhill, A., Pang, K. (1998). Efficient and Flexible Bond Option Valuation in the Heath,

Jarrow and Morton Framework. In: Dupire, B. (Ed.), Monte Carlo: Methodologies and

Applications for Pricing and Risk Management. Risk Publications, London.
Cathcart, L. (1998). The Pricing of Floating Rate Instruments. Journal of Computational Fi-

nance 1(4), 31–51.
Cerny, A. (2003). Mathematical Techniques in Finance: Tools for Incomplete Markets. Prince-

ton University Press.
Chan, K.C., Karoly, G.A., Longstaff, F.A., Sanders, A.B. (1992). The Volatility of Short Term

Interest Rates: An Empirical Comparison of Alternative Models of the Term Structure of
Interest Rates. Journal of Finance 47, 1209–1227.

Chapman, D., Pearson, N. (2000). Is the Short Rate Drift Actually Non Linear? Journal of

Finance 55(1), 355–388.
Chen, R.R., Scott, L. (1993). Maximum Likelihood Estimation for a Multifactor Equilibrium

Model of the Term Structure of Interest Rates. Journal of Fixed Income 3, 14–31.
Chen, R., Scott, L. (1995). Interest Rate Options in Multifactor Cox–Ingersoll–Ross Models

of the Term Structure. Journal of Derivatives 3, 53–72.
Cherubini, U., Luciano, E. (2001). Value-at-Risk Trade-Off and Capital Allocation with Cop-

ulas. Economic Notes 30(2), 235–256.
Cherubini, U., Luciano, E., Vecchiato, W. (2004). Copula Methods in Finance. Wiley Finance

Series. John Wiley & Sons.
Chesney, M., Cornwall, J., Jeanblanc-Picqué, M., Kentwell, G., Yor, M. (1997). Parisian Pric-

ing. Risk 10(1), 77–80.
Chesney, M., Jeanblanc-Picqué, M., Yor, M. (1995). Brownian Excursion and Parisian Barrier

Options. Advances in Applied Probability 29, 165–184.
Cheuk, T., Vorst, T. (1996). Complex Barrier Options. Journal of Derivatives, Fall, 8–22.
Chopra, V., Ziemba, T. (1993). The Effect of Errors in Means, Variances and Covariances on

Optimal Portfolio Choice. Journal of Portfolio Management 19(3).
Choudhury, G.L., Lucantoni, D.M., Whitt, W. (1994). Multidimensional Transform Inversion

with Applications to the Transient M/G/1 Queue. Annals of Applied Probability 4(3), 719–
740.

Christoffersen, P.F. (1998). Evaluating Interval Forecast. International Economic Review 39,
841–862.

Christoffersen, P., Jacobs, K. (2004). The Importance of Loss Function in Option Evaluation.
Journal of Financial Economics 72, 291–318.

Churchill, R.V., Brown, J.W. (1989). Complex Variables and Applications (5th ed.). McGraw-
Hill Companies.

Clewlow, L., Carverhill, A. (1994). On the Simulation of Contingent Claims. Journal of Deriv-

atives 2, 66–74.
Clewlow, L., Strickland, C. (1997). Monte Carlo Valuation of Interest Rate Derivatives Under

Stochastic Volatility. Journal of Fixed Income 7(3), 35–45.
Clewlow, L., Strickland, C. (1998). Implementing Derivative Models. Wiley & Sons, London.
Clewlow, L., Strickland, C. (2000). Energy Derivatives: Pricing and Risk Management.

Lacima Group Publications.

580 Bibliography

Clewlow, L., Strickland, C., Kaminski, V. (2001). Risk Analysis of Swing Contracts. Energy

and Power Risk Management.

Cochrane, J.H. (2001). Asset Pricing. Princeton University Press, Princeton, NJ.

Connor, G., Herbert, N. (1999). Estimation of the European Equity Model. Horizon: The Barra

Newsletter 169.

Cont, R., Tankov, P. (2004). Financial Modelling with Jump Processes. Chapman & Hall/CRC

Press.

Conze, A., Viswanathan, R. (1991). Path-Dependent Options: The Case of Lookback Options.

Journal of Finance 46(5), 1893–1907.
Cook, R.D., Weisberg, S. (1982). Residuals and Influence in Regression. Chapman and Hall,

New York.
Corielli, F. (2006). Hedging with Energy. Mathematical Finance 16(3), 495–517.
Courtadon, G. (1982). A More Accurate Finite Difference Approximation for the Valuation of

Options. Journal of Financial and Quantitative Analysis 17(5), 697–703.
Cox, J.C. (1996). The Constant Elasticity of Variance Option Pricing Model. Journal of Port-

folio Management, Special Issue, 15–17.
Cox, J.C., Ingersoll, J.E., Ross, S.A. (1985). A Theory of the Term Structure of Interest Rates.

Econometrica 53(2), 385–407.
Cox, J.C., Ross, S.A. (1976). The Valuation of Options for Alternative Stochastic Processes,

Journal of Financial Economics 3(1-2), 145–166.
Cox, J.C., Ross, S.A., Rubinstein, M. (1979). Option Pricing: A Simplified Approach. Journal

of Financial Economics 7, 229–264.
Craddock, M., Heath, D., Platen, E. (2000). Numerical Inversion of Laplace Transforms:

A Survey of Techniques With Applications to Derivatives Pricing. Journal of Compu-

tational Finance 4(1).
Craig, I., Thompson, A.M. (1994). Why Laplace Transforms are Difficult to Invert Numeri-

cally? Computers in Physics 8(6), 648–654.
Crump, K. (1976). Numerical Inversion of Laplace Transform using Fourier Series Approxi-

mation. J. Assoc. Comp. Mach. 23, 89–96.
Cryer, C.W. (1971). The Solution of a Quadratic Programming Problem Using Systematic

Overrelaxation. SIAM J. Control 9, 385–395.
Dahl, L.O., Benth, F.E. (2002). Fast Evaluation of Asian Basket Option by Singular Value

Decomposition. In: Monte Carlo and Quasi-Monte Carlo Methods. Spinger, 201–213.
Das, S.R. (1997a). A Direct Discrete-Time Approach to Poisson–Gaussian Bond Option Pric-

ing in the Heath–Jarrow–Morton Model. Working Paper, Harvard Business School.
Das, S.R. (1997b). Poisson–Gaussian Processes and the Bond Markets. Working Paper, Har-

vard University.
Das, S.R., Sundaram, R.K. (1999). Of Smiles and Smirks: A Term Structure Perspective. Jour-

nal of Financial and Quantitative Analysis 34(2), 211–239.
Dassios, A. (1995). The Distribution of the Quantile of a Brownian Motion with Drift and the

Pricing of Related Path-Dependent Options. Annals of Applied Probability 4, 719–740.
Davies, B., Martin, B.L. (1970). Numerical Inversion of Laplace Transforms: A Critical Eval-

uation and Review of Methods. Journal of Computational Physics 33, 1–32.
Davis, P., Rabinowitz, P. (1975). Methods of Numerical Integration. Academic Press, New

York.
Davydov, D., Linetsky, V. (2001a). Pricing and Hedging Path-Dependent Options under the

CEV Process. Management Science 47, 949–965.
Davydov, D., Linetsky, V. (2001b). Structuring, Pricing and Hedging Double Barrier Step

Options. Journal of Computational Finance 5(2), 55–87.

Bibliography 581

D’Ecclesia, R.L., Zenios, S.A. (1994). Risk Factor Analysis and Portfolio Immunization in

the Italian Bond Market. Journal of Fixed Income, 51–60.
De Jong, C., Huisman, R. (2002). Option Formulas with Mean Reverting Power Prices with

Spikes. Working Paper, Erasmus University, Rotterdam.
Demange, G., Rochet, J.-C. (1997). Methodes Mathématiques de la Finance. Economica.
Dempster, M.A., Hutton, J.P. (1999). Pricing American Options by Linear Programming.

Mathematical Finance 9(3).
Deng, S. (1999). Financial Methods in Competitive Electricity Markets. Ph.D. Thesis, Univer-

sity of California at Berkeley.
Deng, S., Johnson, B., Sogomonian, A. (1999). Spark Spread Options and the Valuation of

Electricity Generation Assets. Proceedings of the 32nd Hawaii International Conference

on System Sciences.
Den Iseger, P. (2006). Numerical Inversion of Laplace Transforms Using a Gaussian Quadra-

ture for the Poisson Summation Formula. Probability in the Engineering and Informa-

tional Sciences 20(1), 1–44.
Derman, E., Kani, I. (1994). Riding on a Smile. Risk 7(2), 32–39.
Detry, P.J., Grégoire, P. (2001). Other Evidences of the Predictive Power of Technical Analy-

sis: The Moving Average Rules on European Indexes. Working Paper, EFMA 2001
Lugano Meeting.

Devroye, L. (1986). Non-Uniform Random Variate Generation. Springer-Verlag, Berlin–
Heidelberg–New York.

D’Halluin, Y., Forsyth, P.A., Vetzal, K.R. (2003). Robust Numerical Methods for Contingent
Claims under Jump Diffusion Processes. IMA Journal on Numerical Analysis 25, 87–112.

D’Halluin, Y., Forsyth, P.A., Labahn, G. (2005). A Semi-Lagrangian Approach for American
Asian Options Under Jump Diffusion. SIAM Journal on Scientific Computing, 27, 315–
345.

Di Graziano, G., Rogers, L.C.G. (2005). A New Approach to the Modelling and Pricing of
Correlation Credit Derivatives. Working Paper, Cambridge University.

Doetsch, G. (1970). Introduction to the Theory and Application of the Laplace Transformation.
Springer-Verlag, Berlin–Heidelberg–New York.

Dongarra, J., Bunch, J., Moler, C., Stewart, G. (1979). LINPACK User’s Guide. SIAM Pub.,
Philadelphia.

Douady, R. (1998). Model Calibration in the Monte Carlo Framework. In: Dupire, B. (Ed.),
Monte Carlo: Methodologies and Applications for Pricing and Risk Management. Risk
Publications, London.

Douglas, M., Simin, T. (2003). Outlier-Resistant Estimates of Beta. Financial Analysts Jour-

nal 59(5), 56–69.
Duan, J. (1995). The Garch Option Pricing Model. Mathematical Finance 5, 13–32.
Duan, J. (1996). Cracking the Smile. Risk 9, 55–59.
Duan, J.-C., Dudley, E., Gauthier, G., Simonato, J.-G. (2003). Pricing Discretely Monitored

Barrier Options by a Markov Chain. Journal of Derivatives 10(4), Summer, 9–32.
Duan, J.-C., Gauthier, G., Simonato, J.-G. (2001). Asymptotic Distribution of the EMS Option

Price Estimator. Management Science 47(8), 1122–1132.
Duan, J., Simonato, J.G. (1998). Empirical Martingale Simulation for Asset Prices. Manage-

ment Science 44(9), 1218–1233.
Dubner, H., Abate, J. (1968). Numerical Inversion of Laplace Transforms by Relating them to

the Finite Fourier Cosine Transform. J. ACM 15(1), 115–123.

582 Bibliography

Duffy, D.A. (1993). On the Numerical Inversion of Laplace Transforms: Comparison of Three

new Methods on Characteristic Problems from Applications. ACM Trans. on Math. Soft.

19(3), 333–359.
Duffie, D. (2001). Dynamic Asset Pricing Theory (3rd ed.). Princeton University Press.
Duffie, D., Glynn, P. (1995). Efficient Monte Carlo Simulation of Security Prices. Annals of

Applied Probability 5, 897–905.
Duffie, D., Pan, J., Singleton, K.J. (1998). Transform Analysis and Asset Pricing for Affine

Jump-Diffusions. Econometrica 68(6), 1343–1376.
Duffie, D., Singleton, K.J. (1993). Simulated Moments Estimation of Markov Models of Asset

Prices. Econometrica 61, 929–952.
Dumas, B., Luciano, E. (1991). An Exact Solution to a Dynamic Portfolio Choice Problem

with Transaction Costs. Journal of Finance 46(2), 577–595.
Dunn, K.B., McConnell, J.J. (1981a). A Comparison of Alternative Models for Pricing GNMA

Mortgage-Backed Securities. Journal of Finance 36(2), 471–490.
Dunn, K.B., McConnell, J.J. (1981b). Valuation of GNMA Mortgage-Backed Securities. Jour-

nal of Finance 36(3), 599–617.
Dumas, B., Fleming, J., Whaley, R. (1998). Implied Volatility Functions: Empirical Test. Jour-

nal of Finance 53, 2059–2106.
Dupire, B. (1994). Pricing with a Smile. Risk 7(1), 18–20.
Dupire, B. (Ed.) (1998). Monte Carlo: Methodologies and Applications for Pricing and Risk

Management. Risk Publications, London.
Dupire, B., Savine, A. (1998). Dimension Reduction and Other Ways of Speeding Monte

Carlo Simulation. In: Risk Handbook. Risk Publications, 51–63.
Dyke, P.P. (1999). An Introduction to Laplace Transforms and Fourier Series. Springer-Verlag,

Berlin–Heidelberg–New York.
Efron, B. (1979). Bootstrap Methods: Another Look at the Jackknife. Annals of Statistics 7,

1–26.
Efron, B., Tibshirani, R. (1986). Bootstrap Methods for Standard Errors, Confidence Intervals,

and Other Measures of Statistical Accuracy. Statistical Science 1, 54–77.
Emanuel, D., MacBeth, J. (1982). Further Results on the Constant Elasticity of Variance Call

Option Pricing Model. Journal of Financial and Quantitative Analysis 17, 533–554.
Embrechts, P., Klüppelberg, C., Mikosch, T. (1997). Modelling Extremal Events for Insurance

and Finance. Springer-Verlag, Berlin–Heidelberg–New York.
Embrechts, P., Lindskog, F., McNeil, A. (2001). Modeling Dependence with Copulas and

Applications to Risk Management. Working Paper, ETH, Zurich.
Engle, R.F., Ng, V. (1993). Measuring and Testing the Impact of News on Volatility. Journal

of Finance 48, 1749–1779.
Escribano, Á., Peña, J.I., Villaplana, P. (2002). Modeling Electricity Prices: International Ev-

idence. Working Paper 02-27, Economic Series 08, Departamento de Economia, Univer-
sidad Carlos III de Madrid.

Evans, M., Swartz, T. (2000). Approwimating Integrals via Monte Carlo and Deterministic

Methods. Oxford Statistical Science Series 20. Oxford University Press.
Eydeland, A., Wolyniec, K. (2002). Energy and Power Risk Management: New Developments

in Modeling, Pricing and Hedging. Wiley, Chicago.
Falloon, W., Turner, D. (1999). The Evolution of a Market. In: Managing Energy Price Risk,

RiskBooks, London.
Fama, E. (1969). Efficient Capital Markets: A Review of Theory and Empirical Work. Journal

of Finance 25(2) 383–417.

Bibliography 583

Fama, E., Blume, M. (1966). Filters Rules and Stock-Market Trading. Journal of Business

39(1), 226–241.
Fama, E., French, K. (1992). The Cross-Section of Expected Stock Returns. Journal of Fi-

nance 47, 427–465.
Feller, W. (1951). Two Singular Diffusion Problems. Annals of Mathematics 54(1), 173–182.
Fermanian, J.D., Scaillet, O. (2004). Some Statistical Pitfalls in Copula Modeling for Financial

Applications. Research Paper 108, FAME, Université de Genève.
Fermanian, J.D., Wegkamp, M. (2004). Time-Dependent Copulas. Working Paper, CREST,

Paris.
Figlewski, S., Gao, B. (1999). The Adaptive Mesh Model: A New Approach to Efficient Op-

tion Pricing. Journal of Financial Economics 53, 313–351.
Fiorenzani, S. (2005). Load-Based Models for Electricity Prices. Working Paper, EDISON

Trading.
Fiorenzani, S. (2006a). Financial Optimization and Risk Management in Refining Activities.

International Journal of Global Energy. Special Issue on Energy Finance 26(1), 62–82.
Fiorenzani, S. (2006b). Pricing Illiquidity in Energy Markets. Energy Risk (May), 65–75.
Fiorenzani, S. (2006c). Quantitative Methods for Electricity Trading and Risk Management:

Advanced Mathematical and Statistical Methods for Energy Finance. Palgrave Macmillan
Trading.

Fishman, G.S. (1996). Monte Carlo: Concepts, Algorithms, and Applications. Springer-
Verlag, Berlin–Heidelberg–New York.

Fleming, W.H., Rishel, R.W. (1975). Deterministic and Stochastic Optimal Control. Springer-
Verlag, Berlin–Heidelberg–New York.

Fournié, E., Lasry, J.-M., Touzi, N. (1997). Monte Carlo Methods for Stochastic Volatility
Models. In: Rogers, L.C.G., Talay, D. (Eds.), Numerical Methods in Finance. Cambridge
University Press.

Fournié, E., Lasry, J.M., Lebuchoux, J., Lions, P.L., Touzi, N. (1999). Applications of Malli-
avin Calculus to Monte Carlo Methods in Finance. Finance and Stochastics 3, 391–412.

Fréchet, M. (1951). Sur les Tableaux de Corrélation dont les Marges sont Données. Annales

Universitaires Lyon Sc. 4, 53–84.
Freedman, D.A., Peters, S.C. (1984). Bootstrapping a Regression Equation: Some Empirical

Results. Journal of the American Statistical Association 79, 97–106.
Fu, M.C., Madan, D., Wang, T. (1998). Pricing Continuous Asian Options: A Comparison

of Monte Carlo and Laplace Transform Inversion Methods. Journal of Computational

Finance 2(1), 49–74.
Fusai, G. (2000). Corridor Options and Arc-Sine Law. Annals of Applied Probability 10(2),

634–663.
Fusai, G. (2001). Applications of Laplace Transform for Evaluating Occupation Time Options

and Other Derivatives. PhD. Thesis, University of Warwick.
Fusai, G. (2004). Pricing Asian Options via Fourier and Laplace Transforms. Journal of Com-

putational Finance 7(3).
Fusai, G., Abrahams, I.D., Sgarra, C. (2006). An Exact Analytical Solution for Discrete Bar-

rier Options. Finance and Stochastics 10, 1–26.
Fusai, G., Recchioni, M.C. (2001). Analysis of Quadrature Methods for Pricing Discrete Bar-

rier Options. Working Paper, Financial Options Research Center Preprint, 2001/119, War-
wick Business School, to appear in Journal of Economics Dynamics and Control.

Fusai, G., Sanfelici, S., Tagliani, A. (2002). Practical Problems in the Numerical Solution of
PDE’s in Finance. Rendiconti per gli Studi Economici Quantitativi, Università Ca’ Foscari
Venezia, 105–132.

584 Bibliography

Fusai, G., Tagliani, A. (2001). Pricing of Occupation Time Derivatives: Continuous and Dis-

crete Monitoring. Journal of Computational Finance 5(1), 1–37.
Gabbi, G., Sironi, A. (2005). Which Factors Affect Corporate Bonds Pricing: Empirical Evi-

dence from Eurobonds Primary Market Spreads. The European Journal of Finance 11(1),
59–74.

Galiani, S. (2003). Copula Functions and Their Application in Pricing and Risk Managing
Multiname Credit Derivative Products. MSc Dissertation, King’s College, University of
London.

Galluccio, S., Le Cam, Y. (2006a). Implied Calibration of Stochastic Volatility Jump Diffusion
Models. Working Paper (downloadable at ssrn.com).

Galluccio, S., Le Cam, Y. (2006b). Modelling Hybrids with Jumps and Stochastic Volatility.
Working Paper (downloadable at ssrn.com).

Galluccio, S., Roncoroni, A. (2006). A New Measure of Cross-Sectional Risk and Its Em-
pirical Implications for Portfolio Risk Management. Journal of Banking and Finance,
forthcoming. (Preprint, available on www.ssrn.com).

Gander, W., Gautschi, W. (2000). Adaptive Quadrature-Revisited. BIT 40(1), 84–101.
Garbow, B.S., Giunta, G., Lyness, J.N., Murli, A. (1988a). Software for an Implementation of

Weeks’ Method for the Inverse Laplace Transform Problem. ACM Trans. Math. Software

14, 163–170.
Garbow, B.S., Giunta, G., Lyness, J.N., Murli, A. (1988b). Algorithm 662: A FOR-

TRAN Software Package for Numerical Inversion of the Laplace Transform Based on
Weeks’Mmethod. ACM Trans. Math. Software, 14, 171–176.

Garcia, D. (2003). Convergence and Biases of Monte Carlo Estimates of American Option
Prices Using a Parametric Exercise Rule. Journal of Economic Dynamics and Control 27,
1855–1879.

Gardner, D., Zhuang, Y. (2000). Valuation of Power Generation Assets: A Real Options Ap-
proach. Algo Research Quarterly 3, 2–20.

Gatheral, J. (2006). The Volatility Surface: A Practitioner’s Guide. Wiley Finance.
Gatti, S., Rigamotti, A., Saita, F., Senati., M. (2006). Measuring Value at Risk in Project

Finance Transactions. European Financial Management (forthcoming).
Gaver, D.P. Jr. (1966). Observing Stochastic Processes and Approximate Transform Inversion.

Operations Research 14(3), 444–459.
Geman, H., El Karoui, N., Rochet, J.C. (1995). Changes of Numéraire, Changes of Probability

Measure and Option Pricing. Journal of Applied Probability 32, 443–458.
Geman, H., Eydeland, A. (1995). Domino Effect. Risk 8(4), 65–67.
Geman, H., Roncoroni, A. (2006). Understanding the Fine Structure of Electricity Prices.

Journal of Business 79(3), forthcoming (Preprint available on www.ssrn.com).
Geman, H., Yor, M. (1993). Bessel Processes, Asian Options and Perpetuities. Mathematical

Finance 3(4), 349–375.
Geman, H., Yor, M. (1996). Pricing and Hedging Double Barrier Options: A Probabilistic

Approach. Mathematical Finance 6(4), 365–378.
Gentle, J.E. (1998). Random Number Generation and Monte Carlo Methods. Springer-Verlag,

Berlin–Heidelberg–New York.
Gerber, H.U., Shiu, E.S. (1994). Option Pricing by Esscher Transforms. Transactions of the

Society of Actuaries XLVI, 99–140.
Gibson, M.S., Pristsker, M. (2000). Improving Grid-Based Methods for Estimating Value at

Risk of Fixed-Income Portfolios. Working Paper, Federal Reserve Board, Washington.
Gihman, I.I., Skorohod, A.V. (1979). Controlled Stochastic Processes. Springer-Verlag,

Berlin–Heidelberg–New York.

Bibliography 585

Gitman, L.J., Mercurio, V.A. (1982). Cost of Capital Techniques Used by Major U.S. Firms:

Survey and Analysis of Fortune’s 1000. Financial Management 14(4), 21–29.
Glasserman, P. (2004). Monte Carlo Methods in Finance. Springer-Verlag, Berlin–

Heidelberg–New York.
Glasserman, P., Heidelberger, P., Shahabuddin, P. (1999a). Importance Sampling in the Heath-

Jarrow-Morton Framework. Journal of Derivatives 6, 32–50.
Glasserman, P., Heidelberger, P., Shahabuddin, P. (1999b). Stratification Issues in Estimating

Value-At-Risk. In: Proceedings of the Winter Simulation Conference. IEEE Press, New
York.

Glasserman, P., Heidelberger, P., Shahabuddin, P. (2000). Variance Reduction Techniques for
Estimating Value-at-Risk. Management Science 46, 1349–1364.

Glasserman, P., Zhao, X. (1999). Fast Greeks by Simulation in Forward LIBOR Models. Jour-

nal of Computational Finance 3, 5–39.
Glynn, P.W., Iglehart, D.L. (1989). Importance Sampling for Stochastic Simulations. Manage-

ment Science 35, 1367–1392.
Glynn, P.W., Whitt, W. (1992). The Efficiency of Simulation Estimators. Operations Research

40, 505–520.
Gobet, E., Munos, R. (2002). Sensitivity Analysis Using Itô–Malliavin Calculus and Martin-

gales: Application to Stochastic Optimal Control. Report 498, Centre de Mathématiques
Appliquées, Ecole Polytechnique, Palaiseau, France.

Gocharov, Y., Pliska, S.R. (2003). Optimal Mortgage Refinancing with Endogenous Mortgage
Rates. Working Paper, University of Illinois at Chicago.

Goldenberg, D. (1991). A Unified Method for Pricing Options on Diffusion Processes. Journal

of Financial Economics 29(1), 3–34.
Goldman, M.B., Sosin, H.B., Gatto, M.A. (1979). Path-Dependent Options: Buy at the Low,

Sell at the High. Journal of Finance 34, 1111–1127.
Golub, G., Van Loan, C. (1996). Matrix Computations. John Hopkins Studies in Mathematical

Sciences, Baltimore.
van den Goorbergh, R.W.J., Genest, C., Werker, B. (2003). Multivariate Option Pricing Using

Dynamic Copula Models. Working Paper 2003-122, Center, Tilburg University.
Gourieroux, C., Monfort, A. (1996). Simulation Based Econometric Methods. Oxford Univer-

sity Press.
Greene, W.H. (2002). Econometric Analysis (5th ed.). Prentice Hall, New Jersey.
Grigoriu, M. (2003). Stochastic Calculus. Birkhäuser.
Grüne, L., Semmler, W. (2004). Solving Asset Pricing Models with Stochastic Dynamic Pro-

gramming. Working Paper 54, CEM, Bielefeld University.
Guiotto, P., Roncoroni, A. (2001). Theory and Calibration of HJM with Shape Factors. In:

Geman et al. (Eds.), Mathematical Finance – Bachelier Congress 2000. Springer-Verlag,
Berlin–Heidelberg–New York, 407–426.

Hageman, L.A., Young, D.M. (1981). Applied Iterative Methods. Academic Press, New York.
Hampel, F.R. (1986). Robust Statistics. Wiley, New York.
Harvey, A.C. (1994). Forecasting, Structural Time Series Models and the Kalman Filter. Cam-

bridge University Press.
Harvey, D.I., Leybourne, S.J., Newbold, P. (1999). Forecast Evaluation Tests in the Presence

of ARCH. Journal of Forecasting 18, 343–445.
Herold, U., Maurer, R. (2002). Portfolio Choice and Estimation Risk: A Comparison of

Bayesian Approaches to Resampled Efficiency. Working Paper 94, Johann Wolfgang
Goethe Universitat, Frankfurt.

586 Bibliography

Hestenes, M.R., Stiefel, E. (1952). Methods of Conjugate Gradients for Solving Linear Sys-

tems. Journal Research National Bureau of Standard 49, 409–436.
Heston, S. (1993). A Closed-Form Solution for Options with Stochastic Volatility with Appli-

cation to Bond and Currency Options. Review of Financial Studies 6, 327–343.
Heynen, R.C., Kat, H.M. (1995). Lookback Options with Discrete and Partial Monitoring of

the Underlying Price. Applied Mathematical Finance 2, 273–284.
Hinz, Y. (2003). Modelling Day-Ahead Electricity Prices. Applied Mathematical Finance 10,

149–161.
Hirsa, A., Madan, D. (2003). Pricing American Options under Variance Gamma. Journal of

Computational Finance 7(2), 63–80.
Hoeffding, W. (1940). Massstabinvariante Korrelationstheorie. Schriften der Mathematischen

Seminars und Instituts für Angewandte Mathematik der Universität Berlin 5, 181–233.
Hörfelt, P. (2003). Extension of the Corrected Barrier Approximation by Broadie, Glasserman,

and Kou. Finance and Stochastics 7, 231–243.
Hong, H.S., Hickernell, F.J. (2000). Implementing Scrambled Digital Nets. Unpublished Tech-

nical Report, Hong Kong Baptist University.
Hu, T., Müller, A., Scarsini, M. (2003). Some Counterexamples in Positive Dependence. Ap-

plied Mathematics Working Paper, Series 28/2003, ICER, Torino.
Huber, P. (1981). Robust Statistics. Wiley, New York.
Hudson, R., Dempsey, M., Keasey, K. (1996). A Note on the Weak Form Efficiency of Capital

Markets: The Application of Simple Technical Trading Rules to UK Stock Prices – 1935
to 1994. Journal of Banking and Finance 20, 1121–1132.

Hugonnier, J.N. (1999). The Feynman–Kac Formula and Pricing of Occupation Time Deriva-
tives. International Journal of Theoretical and Applied Finance 2(2), 153–178.

Hui, C.H., Lo, C.F., Yuen, P.H. (2000). Comment on Pricing Double Barrier Options Using
Laplace Transforms by Antoon Pelsser. Finance and Stochastic 4, 105–107.

Huisman, R., Mahieu, R. (2003). Regime Jumps in Electricity Prices. Energy Economics 25,
425–434.

Hull, J.C. (2005). Options, Futures and Other Derivatives (6th ed.). Prentice-Hall.
Hull, J.C., White, A. (1987). The Pricing of Options on Assets with Stochastic Volatilities.

Journal of Finance 42(2), 281–300.
Hull, J.C., White, A. (1990). Valuing Derivative Securities Using the Explicit Finite Difference

Method. Journal of Financial and Quantitative Analysis 25(1), 87–100.
Hull, J.C., White, A. (2003). Valuation of a CDO and an N-th to Default CDS without Monte

Carlo Simulation. Working Paper, University of Toronto.
Hsu, M. (1998). Spark Spread Options Are Hot! Journal of Electricity 11, 28–39.
Imai, J., Tan, K.S. (2002). Enhanced Quasi-Monte Carlo Method with Dimension Reduction.

Proceedings of the 2002 Winter Simulation Conference, 1502–1510.
Ince, E.L. (1964). Ordinary Differential Equations. Dover Publications, Inc., New York.
Ingersoll, J.E. (1986). Theory of Financial Decisions Making. Rowman & Littlefield Publish-

ers, Inc.
Isakov, D., Hollistein, M. (1999). Application of Simple Technical Rules to Swiss Stock

Prices: Is it profitable? Finanzmarket and Portfolio Management 13(1), 9–26.
Jackwerth, J. (1999). Option Implied Risk-Neutral Distributions and Implied Binomial Trees:

A Literature Review. Journal of Derivatives 7(2), 66–82.
Jackwerth, J., Rubinstein, M. (1996). Recovering Probability Distributions from Option

Prices. Journal of Finance 51(5), 1611–1631.
Jacod, J., Protter, P. (1998). Asymptotic Error Distributions for the Euler Method for Stochas-

tic Differential Equations. Annals of Probability 26, 267–307.

Bibliography 587

Jacod, J., Shiryaev, A. (1988). Limit Theorems for Stochastic Processes. Springer-Verlag,

Berlin–Heidelberg–New York.
Jaillet, P., Ronn, E., Tompaidis, S. (2003). Valuation of Commodity Based Swing Options.

Management Science 50(7), 909–921.
James, W., Stein, C. (1961). Estimation with Quadratic Loss. Proceedings of the Fourth Berke-

ley Symposium on Mathematical Statistics and Probability. University of California Press,
Berkeley, 361–379.

James, J., Webber, N. (2000). Interest Rate Modelling. Wiley Series in Financial Engineering,
John Wiley & Sons.

Jamshidian, F. (1987). Pricing of Contingent Claims in the One-Factor Term Structure Model.
Working Paper, Merryl Linch, New York. In: Vasicek and Beyond (1996), Risk Publica-
tions.

Jamshidian, F. (1989). An Exact Bond Option Formula. Journal of Finance 44, 205–209.
Jamshidian, F. (1990). The Preference-Free Determination of Bond and Option Prices from

the Spot Interest Rate. Advances in Futures and Options Research 4, 51–67.
Jamshidian, F. (1991a). Bond and Options Evaluation in the Gaussian Interest Rate Model.

Research in Finance 9, 131–170. Appeared also in: Vasicek and Beyond (1996), Risk
Publications.

Jamshidian, F. (1991b). Forward Induction and Construction of Yield Curve Diffusion Models.
Journal of Fixed Income 1, 62–74.

Jamshidian, F. (1991c). Commodity Option Evaluation in the Gaussian Futures Term Structure
Model. Review of Futures Markets 10(2), 324–346.

Jamshidian, F. (1992). An Analysis of American Options. Review of Futures Markets 11(1),
73–80.

Jamshidian, F. (1993). Options and Futures Evaluation with Deterministic Volatility. Mathe-

matical Finance 3(2), 149–159.
Jamshidian, F. (1995). A Simple Class of Square-Root Models. Applied Mathematical Finance

2, 61–72.
Jamshidian, F. (1996). Bond, Futures and Option Evaluation in the Quadratic Interest Rate

Model. Applied Mathematical Finance 3, 93–115.
Jamshidian, F. (1997). Libor and Swap Market Model and Measures. Finance and Stochastics

1, 293–330.
Jamshidian, F. (1997). A Note on Analytical Valuation of Double Barrier Options. Working

Paper, Sakura Global Capital.
Jamshidian, F. (1999). Libor Market Model with Semimartingales. In: Option Pricing, Interest

Rates and Risk Management (2001), Cambridge University.
Jamshidian, F., Zhu, Y. (1997). Scenario Simulation: Theory and Methodology. Finance and

Stochastics 1, 43–67.
Jarrow, R.A. (1986). The Pricing of Commodity Options with Stochastic Interest Rates. Ad-

vances in Futures and Options Research 2, 19–45.
Jarrow, R.A., Rudd, A. (1982). Approximate Option Valuation for Arbitrary Stochastic

Processes. Journal of Financial Economics 10, 347–369.
Jensen, M., Benington, G. (1970). Random Walks and Technical Theories: Some Additional

Evidence. Journal of Finance 25, 469–482.
Jobson, J.D., Korkie, B. (1980). Estimation of Markowitz Efficient Portfolios. Journal of the

American Statistical Association 75, 544–554.
Joe, H. (1997). Multivariate Models and Dependence Concepts. Monographs on Statistics and

Applied Probability. Chapman and Hall, London.

588 Bibliography

Joe, H., Xu, J.J. (1996). The Estimation Method of Inference Functions for Margins for Mul-

tivariate Models. Unpublished Working Paper, University of British Columbia.

Johannes, M. (1999). Jumps in Interest Rates: A Nonparametric Approach. Working Paper,

University of Chicago.

Johannes, M. (2004). The Statistic and Economic Role of Jumps in Interest Rates. Journal of

Finance 59, 227–260.
Johnson, N.L., Kotz, S. (1995). Continuous Univariate Distributions, Vol. 1 and 2 (2nd ed.).

Wiley Series in Probability and Statistics.
Jolliffe, L. (1986). Principal Components Analysis. Series in Statistics. Springer-Verlag,

Berlin–Heidelberg–New York.
Joskow, P., Kahn, J. (2001). A Quantitative Analysis of Pricing Behavior in California Whole-

sale Electricity Market During Summer 2000. Working Paper, MIT.
Jouanin, J.F., Riboulet, G., Roncalli, T. (2003). Financial Applications of Copula Functions.

Working Paper, Crédit Lyonnais.
Ju, N. (2002). Pricing Asian and Basket Options via Taylor Expansion. Journal of Computa-

tional Finance 5(3), 79–103.
Judge, G.G., Hill, R.C., Griffiths, W.E., Lütkepol, H., Lee, T.C. (1988). Introduction to the

Theory and Practice of Econometrics (2nd ed.). Wiley, New York.
Kahl, C., Jäckel, P. (2005). Not-so-Complex Logarithms in the Heston Model. Wilmott Maga-

zine, Sept., 94–103.
Kahl, C., Jäckel, P. (2006). Fast Strong Approximation Monte Carlo Schemes for Stochastic

Volatility Models. Quantitative Finance 6(6), 513–536.
Kallsen, J., Tankov, P. (2004). Characterization of Dependence of Multidimensional Lévy

Processes Using Lévy Copulas. Working Paper, Ecole Polytechnique, France.
Karatzas, I., Lehoczky, J.P., Sethi, S.P., Shreve, S.E. (1986). Explicit Solution of a General

Consumption/Investment Problem. Math. Operations Research 111, 261–294.
Karatzas, I., Lehoczky, J.P., Shreve, S.E. (1987). Optimal Portfolio and Consumption Deci-

sions for a “Small Investor” on a Finite Horizon. SIAM Journal of Control and Optimiza-

tion 25, 1557–1586.
Karatzas, I., Shreve, S.E. (1997). Brownian Motion and Stochastic Calculus (2nd ed.). GTM

Collection, Springer-Verlag, Berlin–Heidelberg–New York.
Kat, H.M. (2001). Structured Equity Derivatives: The Definitive Guide to Exotic Options and

Structured Notes. Wiley Finance, London.
Këllezi, E., Webber, N. (2004). Valuing Bermudian Options when Asset Returns Are Lévy

Processes. Quantitative Finance 4, 87–100.
Kendall, M. (1994). Advanced Theroy of Statistics (6th ed.). Edward Arnold, London, Halsted

Press, New York.
Keppo, J. (2004). Pricing Electricity Swing Options. Journal of Derivatives 11, 26–43.
Kimberling, C.H. (1974). A Probabilistic Interpretation of Complete Monotonicity. Adequa-

tiones Math. 10, 152–164.
Kloeden, P.E., Platen, E. (2000). Numerical Solution of Stochastic Differential Equations.

Applications of Mathematics Collection. Springer-Verlag, Berlin–Heidelberg–New York.
Knez, P.J., Ready, M.J. (1997). On the Robustness of Size and Book-to-Market in Cross-

Sectional Regressions. Journal of Finance 52(4), 1355–1382.
Knittel, C.R., Roberts, M.R. (2001). An Empirical Examination of Deregulated Electricity

Prices. Working Paper, Boston University.
Koehler, J.R., Owen, A. (1996). Computer Experiment. In: Handbook of Statistics, Design and

Analysis of Experiments.

Bibliography 589

Kou, S. (2002). A Jump-Diffusion Model for Option Pricing. Management Science 48, 1086–
1101.

Krylov, N.V. (1980). Controlled Diffusion Processes. Springer-Verlag, Berlin–Heidelberg–
New York.

Kunitomo, N., Ikeda, M. (1992). Pricing Options with Curved Boundaries. Mathematical Fi-

nance 2, 275–298.
Kupiec, P. (1995). Techniques for Verigying the Accuracy of Risk Measurement Models. Jour-

nal of Derivatives, 2, 173–184.
Kushner, H.J. (1967). Stochastic Stability and Control. Academic Press, New York.
Kushner, H.J., Dupuis, P. (1992). Numerical Methods for Stochastic Control Problems in Con-

tinuous Time. Springer-Verlag, Berlin–Heidelberg–New York.
Kwok, Y.-K. (1998). Mathematical Models of Financial Derivatives. Springer-Verlag, Berlin–

Heidelberg–New York.
Kwok, Y.-K., Barthez, D. (1989). An Algorithm for the Numerical Inversion of Laplace Trans-

forms. Inverse Problems 5, 1089–1095.
Lacoste, V., El Karoui, N., Jeanblanc, M. (2005). Optimal Portfolio Management with Amer-

ican Capital Guarantee. Journal of Economic Dynamics and Control 29, 449–468.
Lambert, J.D. (1991). Numerical Methods for Ordinary Differential Systems. The Initial Value

Problem. John Wiley & Sons.
Lamberton, D., Lapeyre, B. (1996). Introduction to Stochastic Calculus Applied to Finance.

Chapman & Hall, London.
Lari Lavassani, A., Simchi, M., Ware, A. (2000). A Discrete Valuation of Swing Options.

Canadian Applied Mathematics 9, 35–74.
Lavely, J., Wakefield, G., Barrett, B. (1980). Toward Enhancing Beta Estimates. Journal of

Portfolio Management 6(4), 43–46.
Lax, P.D., Richtmyer, R.D. (1956). Survey of the Stability of Linear Finite Difference Equa-

tions. Comm. Pure Appl. Math. 9, 267–293.
L’Ecuyer, P. (1988). Efficient and Portable Combined Random Number Generators. Commu-

nications of the ACM 31.
L’Ecuyer, P. (1994). Uniforml Random Number Generation. Annals of Operations Research

53, 77–120.
L’Ecuyer, P., Simard, R., Wegenkittl, S. (2002). Sparse Serial Tests of Uniformity for Random

Number Generators. SIAM Journal of Scientific Computing 24, 652–668.
Leblanc, B., Scaillet, O. (1998). Path Dependent Options on Yields in the Affine Term Struc-

ture Model. Finance and Stochastics 2, 349–367.
Lehmann, E. (1966). Some Concepts of Dependence. Annals of Mathematical Statistics 37,

1137–1153.
Levy, E. (1992). Pricing European Average Rate Currency Options. Journal of International

Money and Finance 11, 474–491.
Lewis, A. (2000). Option Valuation Under Stochastic Volatility. Finance Press, Newport

Beach.
Lewis, A. (2002). Asian Connections. Wilmott Magazine 57–63.
Lewis, P.A.W., Shedler, G.S. (1979). Simulation of Nonhomogeneous Poisson Processes by

Thinning. Naval Logistics Quarterly 26, 403–413.
Lì, X.D. (2000). On Default Correlation: A Copula Approach. Journal of Fixed Income 9,

43–54.
Li, A., Ritchken, P., Sankarasubramanian, L. (1995). Lattice Methods for Pricing American

Interest Rate Claims. Journal of Finance 50, 719–737.
Linetski, V. (1999). Step Options. Mathematical Finance 9(1), 55–96.

590 Bibliography

Linetsky, V. (2004). Spectral Expansions for Asian (Average Price) Options. Operations Re-

search 52, 856–867.
Lipton, A. (1999). Similarities via Self-Similarities. Risk 12(9), 101–105.
Lipton, A. (2001). Mathematical Methods for Foreign Exchange. World Scientific.
Litterman, R., Scheinkman, J. (1991). Common Factors Affecting Bond Returns. Journal of

Fixed Income 1, 54–61.
Lo, A., MacKinlay, A.C., Zhang, J. (1997). Econometric Models of Limit Order Executions.

Working Paper 6257, NBER.
Longin, F. (1996). The Asymptotic Distribution of Extreme Stock Market Returns. Journal of

Business 69, 383–408.
Longin, F. (2000). From VaR to Stress Testing: The Extreme Value Approach. Journal of

Banking and Finance 24, 1097–1130.
Longin, F., Bouyé, E., Legras, J., Soupé, F. (2001). Correlation and Dependence in Financial

Markets. HSBC CCF. Quants 41.
Longin, F., Solnik, B. (2001). Correlation Structure of International Equity Markets During

Extremely Volatile Periods. Journal of Finance 46, 649–676.
Longstaff, F.A. (1993). The Valuations of Options on Coupon Bonds. Journal of Banking and

Finance 17(1), 27–42.
Longstaff, F.A. (2002). Optimal Recursive Refinancing and the Valuation of Mortgage-Backed

Securities. Working Paper, UCLA.
Longstaff, F.A., Schwartz, E.S. (2001). Valuing American Options by Simulation: A Simple

Least Squares Approach. Review of Financial Studies 14, 113–147.
Lord, R., Koekkoek, R., Van Dijk, D. (2006). Comparison of Biased Simulation Schemes for

Stochastic Volatility Models. Discussion Paper No. 06-046/4, Tinbergen Institute.
Lucia, F., Schwartz, E. (2002). Electricity Prices and Power Derivatives. Review of Derivative

Research 5, 5–50.
Luciano, E., Marena, M. (2002). Copulae as a New Tool in Financial Modelling. Operational

Research: An International Journal 2, 139–155.
Luenberger, D.G. (1989). Linear and Nonlinear Programming (2nd ed.). Addison-Wesley.
Lund, A., Ollmar, F. (2003). Analyzing Flexible Load Contracts. Working Paper.
MacMillan, L.W. (1986). An Analytical Approximation for the American Put Prices. Ad-

vances in Futures and Options Research 1, 119–139.
Maddala, G.S., Li, H. (1996). Bootstrap Based Tests in Financial Models. In: Maddala, G.S.,

Rao, C.R. (Eds.), Handbook of Statistics. Statistical Methods in Finance 14. Elsevier.
Manoliu, M., Tompaidis, S. (2002). Energy Futures Prices: Term Structure Models with

Kalman Filter Estimation. Applied Mathematical Finance 9, 21–43.
Martin, R.D., Simin, T. (1999). Robust Estimation of Beta. Technical Report 350, Department

of Statistics, University of Washington.
Marsaglia, G. (1972). The Structure of Linear Congruential Generators. In: Zaremba, S.K.

(Ed.), Applications of Number Theory to Numerical Analysis, 249–286. Academic Press,
New York.

Marsaglia, G., Bray, T.A. (1964). A Convenient Method for Generating Normal Variables.
SIAM Review 6, 260–264.

Maspero, D., Saita, F. (2005). Risk Measurement for Asset Managers: A Test of Relative VaR.
Journal of Asset Management 5(5), 338–350.

McCauley, R., Melick, W. (1996a). Risk Reversal. Risk 9(11), 54–57.
McCauley, R., Melick, W. (1996b). Propensity and Density. Risk 9(12), 52–54.
McKean, H.P. (1967). Appendix: A Free Boundary Problem for the Heath Equation Arising

From a Problem in Mathematical Economics. Industrial Management Review 6, 32–39.

Bibliography 591

Melick, W., Thomas, C.P. (1997). Recovering an Asset’s Implied PDF from Option Prices: An

Application to Crude Oil During the Gulf Crisis. Journal of Financial and Quantitative

Analysis 32(1), 91–115.
Melino, A., Turnbull, S. (1990). Pricing Foreign Currency Options with Stochastic Volatility.

Journal of Econometrics 45, 239–265.
Meneguzzo, D., Vecchiato, W. (2004). Copula Sensitivity in Collateralized Debt Obligations

and Basket Default Swaps. Journal of Futures Markets 24(1), 37–70.
Merton, R. (1971). Optimum Consumption and Portfolio Rules in a Continuous-Time Model.

Journal of Economics Theory 3, 373–413. Erratum: ibidem 6 (1973), 213–214.
Merton, R. (1974). On the Pricing of Corporate Debt: The Risk Structure of Interest Rates.

Journal of Finance 29, 449–470.
Merton, R. (1976). Option Pricing when Underlying Stock Returns Are Discontinuous. Jour-

nal of Financial Economics 3(1/2), 125–144.
Meucci, A. (2005). Risk and Asset Allocation. Springer-Verlag, Berlin–Heidelberg–New York.
Michaud, R.O. (1998). Efficient Asset Management. Harvard Business School Press, Boston.
Mikusinski, P., Sherwood, H., Taylor, M.D. (1992). Shuffles of Min. Stochastica 13, 61–74.
Milevsky, M.A., Posner, S.E. (1998). Asian Options, The Sum of Lognormals and the Recipro-

cal Gamma Distribution. Journal of Financial and Quantitative Analysis 33(3), 409–422.
Miltersen, K. (1999). Pricing Interest Rate Contingent Claims: Implementing a Simulation

Approach. Working Paper, Odense University.
Mitchell, A.R., Griffiths, D.F. (1980). The Finite Difference Method in Partial Differential

Equations. John Wiley (Corrected reprinted edition, 1994).
Moorthy, M. (1995a). Numerical Inversion of Two-Dimensional Laplace Transforms Fourier

Series Representation. Applied Numerical Mathematics 17, 119–127.
Moorthy, M.V. (1995b). Inversion of the Multi-Dimensional Laplace Transform – Expansion

by Laguerre Series. Z. Angew. Math. Phys. 46, 793–806.
Morton, K.W., Mayers, D.F. (1994). Numerical Solution of Partial Differential Equations.

Cambridge University Press.
Murphy, J. (1999). Technical Analysis of the Financial Markets. Report, New York Institute

of Finance.
Musiela, M., Rutkowski, M. (1997). Martingale Methods in Financial Modelling. Applica-

tions of Mathematics 36. Springer-Verlag, Berlin–Heidelberg–New York.
Nahum, E. (1998). On the Distribution of the Sumpremum of the Sum of a Brownian Motion

with Drift and a Marked Point Process, and the Pricing of Lookback Options. Technical

Report N. 516, Dept. of Statistics, Berkeley.
Nelsen, R.B. (1999). An Introduction to Copulas. Lectures Notes in Statistics. Springer-Verlag,

Berlin–Heidelberg–New York.
Niederreiter, H. (1992). Random Number Generation and Quasi-Monte Carlo Methods.

CBMS-NSF 63, SIAM.
Oksendal, B. (2003). Stochastic Differential Equations: An Introduction with Applications.

Springer-Verlag, Berlin–Heidelberg–New York.
Oksendal, B., Sulem, A. (2004). Applied Stochastic Control of Jump Diffusions. Springer-

Verlag, Berlin–Heidelberg–New York.
Owen, A. (1998). Latin Supercube Sampling for Very High-Dimensional Simulations. ACM

Transaction on Modelling and Computer Simulation 8, 71–102.
Owen, A. (2002). Variance and Discrepancy with Alternative Scramblings. ACM Transactions

on Computational Logic, Vol. V.
Pacelli, G., Recchioni, M.C., Zirilli, F. (1999). A Hybrid Method for Pricing European Options

Based on Multiple Assets. Applied Mathematical Finance 6, 61–85.

592 Bibliography

Pelsser, A. (2000). Pricing Double Barrier Options Using Laplace Transforms. Finance and

Stochastics 4, 95–104.
Pedersen, A. (1995). A New Approach to Maximum Likelihood Estimation for Stochastic

Differential Equations Based on Discrete Observations. Scandinavian Journal of Statistics

22, 55–71.
Piazzesi, M. (2001). An Econometric Model of the Yield Curve with Macroeconomic Jumps

Effects. Working Paper, University of California, Los Angeles.
Picoult, E. (1999). Calculating Value-at-Risk with Monte Carlo Simulation. In: Dupire, B.

(Ed.). Monte Carlo: Methodologies and Applications for Pricing and Risk Management

209–229. Risk Publications, London.
Pilipovich, D., Wengler, J. (1998). Getting into the Swing. Energy and Power Risk Manage-

ment 2(10).
Pitsianis, N., Van Loan, C. (1993). Approximation with Kronecker Products. In: Linear Alge-

bra for Large Scale and Real Time Application. Kluwer Academic Publishers, 293–314.
Platzman, L.K., Ammons, J.C., Bartholdi, J.J. (1988). A Simple and Efficient Algorithm to

Compute Tail Probabilities from Transforms. Oper. Res. 26, 137–144.
Poncet, P., Gesser, V. (1997). Volatility Patterns: Theory and Some Evidence from the Dollar-

Mark Option Market. Journal of Derivatives 5(2).
Portait, R., Bajeux-Besnainou, I., Jordan, J. (2001). An Asset Allocation Puzzle: Comment.

American Economic Review 91(4), 1170–1180.
Portait, R., Bajeux-Besnainou, I., Jordan, J. (2003). Dynamic Asset Allocation for Stocks,

Bonds and Cash. Journal of Business 76(2), 263–287.
Portait, R., Nguyen, P. (2002). Dynamic Mean Variance Efficiency and Asset Allocation with

a Solvency Constraint. Journal of Economics Dynamics and Control.
Prakasa-Rao, B.L.S. (1999). Semimartingales and Their Statistical Inference. Chapman &

Hall/CRC.
Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P. (1992). Numerical Recipes in

C: The Art of Scientific Computing. Cambridge University Press.
Protter, P. (2005). Stochastic Integration an Differential Equations (2nd ed.). Springer-Verlag,

Berlin–Heidelberg–New York.
Quarteroni, A., Sacco, R., Saleri, F. (2000). Numerical Mathematics. Springer-Verlag, Berlin–

Heidelberg–New York.
Rebonato, R. (1998). Interest Rate Option Models (2nd ed.). Wiley & Sons.
Rebonato, R. (1999). Volatility and Correlation in the Pricing of Equity, FX and Interest-Rate

Options. Wiley Series in Financial Engineering, John Wiley & Sons.
Ribeiro, C., Webber, N. (2003). Valuing Path Dependent Options in the Variance-Gamma

Model by Monte Carlo with a Gamma Bridge. Journal of Computational Finance 7.
Ribeiro, C., Webber, N. (2005). Correcting for Simulation Bias in Monte Carlo Methods to

Value Exotic Options in Models Driven by Lévy Processes. Applied Mathematical Fi-

nance.
Rich, D.R. (1994). The Mathematical Foundations of Barrier Option Pricing Theory. Advances

in Futures and Options Research 7, 267–371.
Ritchken, P. (1995). On Pricing Barrier Options. Journal of Derivatives 3, 19–28.
Richtmyer, R.D., Morton, K.W. (1967). Difference Methods for Initial Value Problems

(2nd ed.). Wiley-Interscience, New York.
Rogers, C. (2000). Evaluating First-Passage Probabilities for Spectrally One-Sided Lévy

Processes. Journal of Applied Probability 37(4), 1173–1180.
Rogers, L.C.G. (2002). Monte Carlo Valuation of American Options. Mathematical Finance

12, 271–286.

Bibliography 593

Rogers, L.C.G., Shi, Z. (1992). The Value of an Asian Option. Journal of Applied Probability

32, 1077–1088.
Rogers, L.C.G., Talay, B. (Eds.) (1997). Numerical Methods in Finance. Cambridge Univer-

sity Press.
Rogers, L.C.G., Williams, D. (1987). Diffusions, Markov Processes and Martingales, Vol. 2,

Ito Calculus. Wiley.
Roncoroni, A. (1995). A Trade-off Optimal Choice Problem arising in the Financial Eco-

nomic Policy of Developing Countries: Private Sector Credit Demand Incentives under
Constrained Debt Recovery Policy. “Laurea” Degree Dissertation, Bocconi University,
Milan.

Roncoroni, A. (1997). Principal Component Analysis for Finite and Infinite Dimensional Dy-
namical Models. Working Paper, Courant Institute of Mathematical Sciences, New York.

Roncoroni, A. (1999). Infinite Dimensional HJM Dynamics for the Term Structure of Interest
Rates. Working Paper 9903, ESSEC.

Roncoroni, A. (2000). The S Option – An Alternative to the Surrender Option in Mortgage
Backed Securities. Working Paper, CEREG, Université Paris Dauphine.

Roncoroni, A. (2002). Essays in Quantitative Finance: Modelling and Calibration in Interest
Rate and Electricity Markets. Ph.D. Dissertation, Université Paris IX Dauphine, France.

Roncoroni, A. (2004). Models for Risk Management in the Energy Markets and the Italian
“Nuovo Mercato Elettrico”. Technical Report, The Italian Stock Exchange, Milan.

Roncoroni, A., Galluccio, S., Guiotto, P. (2003). Shape Factors and Cross-Sectional Risk.
Working Paper, ESSEC Business School, France.

Roncoroni, A., Moro, A. (2006). Flexible-Rate Mortgages. International Journal of Business

11(2).
Roncoroni, A., Zuccolo, V. (2004). The Optimal Exercise Policy of Volumetric Swing Options

with Penalty Constraints. Working Paper, ESSEC Business School.
Ross, S. (1997). Simulation. Academic Press, San Diego.
Rousseeuw, P.J., Leroy, A.M. (1987). Robust Regression and Outlier Detection. Wiley, New

York.
Rubinstein, R. (1981). Simulation and the Monte Carlo Method. John Wiley & Sons, New

York.
Rubinstein, M. (1994). Implied Binomial Trees. Journal of Finance 49(3), 771–818.
Rubinstein, M., Reiner, E. (1991). Breaking Down the Barriers. Risk 8, 28–35.
Sankaran, M. (1963). Approximations to the Non-Central Chi-Square Distribution. Biometrika

50, 199–204.
Salminen, P., Wallin, O. (2005). Perpetual Integral Functionals of Diffusions and Their Nu-

merical Computations. Working Paper.

Salopek, D.M. (1997). American Put Options. Chapman & Hall, CRC.
Samuelson, P.A. (1967). Rational Theory of Warrant Pricing. Industrial Management Review

6, 13–31.
Sankaran, M. (1963). Approximations to the Non Central Chi-Square Distribution. Biometrika

50, 199–204.
Sato, K.I. (2000). Lévy Processes and Infinitely Divisible Distributions. Cambridge University

Press.
Sbuelz, A. (1999). A General Treatment of Barrier Options and Semi-Static Hedges of Double

Barrier Options. Working Paper, London Business School.
Sbuelz, A. (2005). Hedging Double Barriers with Singles. International Journal of Theoretical

and Applied Finance 8, 393–407.

594 Bibliography

Scaillet, O. (2000). Nonparametric Estimation of Copulas for Time Series. Journal of Risk

5(4), 25–54.
Scherer, B. (2002). Portfolio Resampling: Review and Critique. Financial Analysts Journal

58(6), 98–109.
Schonbucher, P.J. (2003). Credit Derivatives Pricing Models. Wiley Finance, London.
Schoutens, W. (2003). Levy Processes in Finance. Wiley.
Schroder, M. (1989). Computing the CEV Option Pricing Formula. Journal of Finance 44,

211–219.
Schwager, J.D. (1996). Schwager on Futures: Technical Analysis. Wiley & Sons, New York.
Schwartz, E.S. (1997). The Stochastic Behavior of Commodity Prices: Implications for Valu-

ation and Hedging. Journal of Finance 52, 923–973.
Schwartz, E.S., Torous, W.N. (1989). Prepayment and the Valuation of Mortgage-Backed Se-

curities. Journal of Finance 44, 375–392.
Schwartz, E.S., Torous, W.N. (1992). Prepayment, Default, and the Valuation of Mortgage

Pass-Through Securities. Journal of Business 65, 221–239.
Schweizer, B., Wolff, E. (1981). On Non Parametric Measures of Dependence for Random

Variables. Annals of Statistics 9, 879–885.
Selby, M.J.P. (1983). The Application of Option Theory to the Evaluation of Risky Debt.

Ph.D. Thesis, London Business School.
Seydel, R.U. (2006). Tools for Computational Finance (3rd ed.). Springer Universitext.
Shampine, L.F., Reichelt, M.W. (1997). The MATLAB ODE Suite. SIAM Journal on Scien-

tific Computing, 18, 1–22.
Sharpe, W.F., Alexander, G.J., Bailey, J.V. (1999). Investments (6th ed.). Prentice-Hall Inter-

national.
Shimko, D. (1991). Finance in Continuous Time: A Primer. Kolb Publishing Company.
Shimko, D. (1993). Bounds of Probability. Risk 6(4), 33–37.
Singhal, K., Vlach, J. (1975). Computation of Time Domain Response by Numerical Inversion

of the Laplace Transform. Journal of the Franklin Institute 2, 110–127.
Shiryaev, A.N. (1978). Optimal Stopping Rules. Springer-Verlag, Berlin–Heidelberg–New

York.
Shreve, S. (2004). Stochastic Calculus for Finance II: Continuous-Time Models. Springer-

Verlag, Berlin–Heidelberg–New York.
Siegmund, D. (1976). Importance Sampling in the Monte Carlo Study of Sequential Tests.

Annals of Statistics 4, 673–684.
Silverman, B.W. (1986). Density Estimation for Statistics and Data Analysis. Chapman &

Hall.
Singhal, K., Vlach, J. (1975). Computation of Time Domain Response by Numerical Inversion

of the Laplace transform. Journal of the Franklin Institute 2, 110–127.
Singhal, K., Vlach, J., Vlach, M. (1975). Numerical Inversion of Multidimensional Laplace

Transforms. Proc. IEEE 63, 1627–1628.
Skeel, R., Berzins, M. (1990). A Method for the Spatial Discretization of Parabolic Equations

in One Space Variable. SIAM Journal on Scientific and Statistical Computing 11, 1–32.
Sklar, A. (1959). Fonctions de Repartition à n Dimensions et leurs Marges. Publications de

l’Institut de Statistique de l’Université de Paris 8, 229–231.
Smith, G.D. (1985). Numerical Solution of Partial Differential Equations: Finite Difference

Methods. Oxford University Press.
Söderlind, P., Svensson, L. (1997). New Techniques to Extract Market Expectations from

Financial Instruments. Journal of Monetary Economics 2(40), 383–429.

Bibliography 595

Stanton, R. (1995). Rational Prepayment and the Valuation of Mortgage-Backed Securities.

Review of Financial Studies 8, 677–708.
Stanton, R. (1997). A Nonparametric Model of Term Structure Dynamics and the Market Price

of Interest Rate Risk. Journal of Finance 7(5), 1973–2002.
Steeley, J.M. (1990). Modelling the Dynamics of the Term Structure of Interest Rates. Eco-

nomic and Social Review 21, 337–361.
Stehfest, H. (1970). Algorithm 368: Numerical inversion of Laplace Transform. Communica-

tion of the ACM 13(1), 47–49.
Stevenson, T. (2001). Filtering and Forcasting Spot Electricity Prices. Working Paper, UTS,

Sydney.
Stewart, G. (1973). Introduction to Matrix Computations. Academic Press, New York.
Stoer, J., Bulirsch, R. (1980). Introduction to Numerical Analysis. Springer-Verlag, Berlin–

Heidelberg–New York.
Strauss, W.A. (1992). Partial Differential Equations: An Introduction. Wiley & Sons, Chich-

ester, England.
Sullivan, M.A. (2000). Pricing Discretely Monitored Barrier Options. Journal of Computa-

tional Finance 3(4) 35–52.
Sullivan, R., Timmermann, A., White, H. (1999). Data-Snooping, Technical Trading Rule

Performance, and the Bootstrap. Journal of Finance 54(5), 1647–1691.
Sweeney, R.J. (1988). Some New Filter Rule Tests: Methods and Results. Journal of Financial

and Quantitative Analysis 23(3), 285–300.
Talay, D. (1982). How to Discretize Stochastic Differential Equations. In: Lecture Notes in

Mathematics 972. Springer-Verlag, Berlin–Heidelberg–New York, 276–292.
Talay, D. (1984). Efficient Numerical Schemes for the Approximation of Expectations of

Functionnals of the Solutions of a S.D.E., and Applications. In: Lecture Notes in Control

and Information Sciences 61. Springer-Verlag, Berlin–Heidelberg–New York, 294–313.
Talay, D. (1995). Simulation and Numerical Analysis of Stochastic Differential Systems:

A Review. In: Kree, P., Wedig, W. (Eds.), Probabilistic Methods in Applied Physics, Lec-

ture Notes in Physics 451, Springer-Verlag, Berlin–Heidelberg–New York, 63–106.
Talbot, A. (1979). The Accurate Numerical Inversion of Laplace Transforms. J. Inst. Math.

Appl. 23(1), 97–120.
Tankov, P. (2005). Simulation and Option Pricing in Lévy Copula Model. In: Avellaneda,

M., Cont, R. (Eds.), Mathematical Modelling of Financial Derivatives, IMA volumes in
Mathematics and Applications, Springer-Verlag, Berlin–Heidelberg–New York.

Tavella, D., Randall, C. (2000). Pricing Financial Instruments: The Finite Difference Method.
Financial Engineering, Wiley.

Thompson, A.C. (1995). Valuation of Path-Dependent Contingent Claims with Multiple Ex-
ercise Decisions Over Time: The Case of Take-or-Pay. Journal of Financial and Quanti-

tative Analysis 30(2), 271–293.
Thompson, G.W.P. (1998). Fast Narrow Bounds on the Value of Asian Options. Working Pa-

per, University of Cambridge.
Thorp, W.A. (2000). The MACD: A Combo of Indicators for the Best of Both Worlds. AAII

Journal 30–34.
Tian, Y. (1999). Pricing Complex Barrier Options Under General Diffusion Processes. Journal

of Derivatives, Winter, 11–30.
Titman, S., Tompaidis, S., Tsyplakov, S. (2004). Market Imperfections, Investment Flexibility

and Default Spreads. Journal of Finance 59(1), 165–205.
Tompkins, R., D’Ecclesia, R.L. (2006). Unconditional Return Disturbances: A Non Parametric

Simulation Approach. Journal of Banking and Finance 30(1), 287–314.

596 Bibliography

Topper, J. (2005). Financial Engineering with Finite Elements. The Wiley Finance Series.

Trigeorgis, L. (1991). A Log-Transformated Binomial Numerical Analysis Method for Valu-

ing Complex Multi-Option Investments. Journal of Financial and Quantitative Analysis

26(3), 309–326.
Turnbull, S., Wakeman, L. (1991). A Quick Algorithm for Pricing European Average Options.

Journal of Financial and Quantitative Analysis 26, 377–389.
Varga, R. (1962). Matrix Analysis. Prentice-Hall, Englewood Ckiffs, NJ.
Vasicek, O.A. (1973). A Note on Using Cross-Sectional Information in Bayesian Estimation

of Security Betas. Journal of Finance 28(5), 1233–1239.
Vasicek, O. (1977). An Equilibrium Characterization of the Term Structure. Journal of Finan-

cial Economics 5, 177–188.
Vecer, J. (2001). A New PDE Approach for Pricing Arithmetic Average Asian Options. Jour-

nal of Computational Finance 4(4), 105–113.
Vetzal, K.R. (1998). An Improved Finite Difference Approach to Fitting the Initial Term Struc-

ture. Journal of Fixed Income 7 (March), 62–81.
Villeneuve, S., Zanette, A. (2002). Parabolic ADI Methods for Pricing American Options on

Two Stocks. Math. Oper. Res. 27(1), 121–149.
Vlach, J., Singhal, K. (1993). Computer Methods for Circuit Analysis and Design (2nd ed.).

Van Nostrand Reinhold Company, New York.
Wang, S.S. (1999). Aggregation of Correlated Risk Portfolios: Models and Algorithms.

Preprint, CAS Committee on Theory of Risk.
Webber, N., Kuan, G. (2003). Valuing Barrier Options in One-factor Interest Rate Models.

Journal of Derivatives 10, 33–50.
Weeks, W. (1966). Numerical Inversion of Laplace Transforms Using Laguerre Functions.

Journal ACM 13(3), 419–429.
Weideman, J.A.C. (1999). Algorithms for Parameter Selection in the Weeks Method for In-

verting the Laplace Transform. SIAM J. Sci. Comput. 21(1), 111–128.
Wilmott, P., Dewynne, J.N., Howison, S. (1993). Option Pricing: Mathematical Models and

Computation. Oxford Financial Press.
Yohai, V.J., Stahel, W.A., Zamar, R.H. (1991). A Procedure for Robust Estimation and In-

ference in Linear Regression. In: Stahel, W., Weisberg, S. (Eds.), Directions in Robust

Statistics and Diagnostics. Springer-Verlag, Berlin–Heidelberg–New York, 365–374.
Yor, M. (1991). On Exponential Functionals of Brownian Motion and Related Processes.

Springer-Verlag, Berlin–Heidelberg–New York.
Yor, M. (2001). Exponential Functionals of Brownian Motion and Related Processes.

Springer-Verlag, New York.
Young, D.M. (1971). Iterative Solution of Large Sparse Systems. Academic Press.
Zauderer, E. (2006). Partial Differential Equations of Applied Mathematics. Pure and Applied

Mathematics: A Wiley-Interscience Series of Texts, Monographs and Tracts, 3rd ed.
Zhang, J.E. (2001). A Semi-Analytical Method for Pricing and Hedging Continuously Sam-

pled Arithmetic Average Rate Options. Journal of Computational Finance 5(1), 59–79.
Zhang, X.L. (1997). Numerical Analysis of American Option Pricing in a Jump-Diffusion

Model. Mathematics of Operations Research 22, 668–690.
Zhu, Y.I., Wu, X., Chern, I.L. (2005). Derivative Securities and Difference Methods. Springer-

Verlag, Berlin–Heidelberg–New York.
Zvan, R., Forsyth, P.A., Vetzal, K.R. (1998a). Penalty Methods for American Options with

Stochastic Volatility. J. Comput. Appl. Math. 91, 199–218.

Bibliography 597

Zvan, R., Forsyth, P.A., Vetzal, K.R. (1998b). Robust Numerical Methods for PDE Models of

Asian Options. Journal of Computational Finance 1, 39–78.
Zvan, R., Vetzal, K.R., Forsyth, P.A. (2000). PDE Methods for Pricing Barrier Options. Jour-

nal of Economic Dynamics and Control 24, 1563–1590.

Index

A
A0 stability 115
absolute normal distribution 22
acceptance–rejection 11, 20, 21, 25, 27, 61
adaptive quadrature 188, 193
admissible

control 71, 458, 476
stopping rule 477
strategy 79

affine function 532
Akaike Information Criterion (AIC) 303
alpha-stable distribution 265
American

call option 472
continuation value 77
option 66, 77, 148, 149, 156
put option 77, 148, 346, 349

antithetic variables 31–33, 419
approximate dynamics 45, 46, 59, 60
arbitrage 4, 9, 48, 77, 83, 86, 119, 157,

199, 335, 340, 346, 363, 369, 398,
425, 441, 444

Archimedean copula 245, 264
Arithmetic Brownian Motion 412, 414
Asian option 10, 33, 48, 219, 226, 227,

374–379, 381, 382, 384, 391, 392,
396–398, 406–409

asset allocation 273, 274, 278, 285
asymptotically dependent 238
autoregressive (AR) 311, 316, 321, 326,

327, 427

B
backtesting 289, 304, 305, 308
backward

difference 93, 101
induction 66, 480, 570

bandwidth value 536, 537
bang-bang 457
barrier options 45, 48, 152, 156, 185, 194,

196, 197, 212, 229, 488
basket

default swap 487, 490, 496
option 5, 11, 84, 267, 395
swap 495, 497, 499

Bayes’ formula 21
Bayes Information Criterion (BIC) 303
Bayesian 289, 290, 296–298, 306, 307,

309
Bellman’s principle 69, 73, 74, 570, 571
Bermuda option 346
Bernoulli number 167
Bessel function 192, 529
beta 266, 289–293, 295, 296, 299–301,

303, 304, 306–309
resistant 293

binomial
model 78
tree 149, 462

Black–Scholes
model 32, 34, 144, 149, 185–188, 219,

560
with jumps 56, 58

bond
default 23
option 190, 562
prices 152, 154, 191, 490, 560

bootstrap method 255, 312, 317
bootstrapping 276, 311, 316
boundary conditions 86–88, 90, 97, 101,

110, 112, 116–118, 125, 150, 152,
153, 156, 220, 222, 380, 382, 418,
563–565

600 Index

Box–Müller 20, 25, 26, 28
Bromwich 217, 229, 383

inversion formula 214

C
calibration 3, 66, 331, 333, 335, 336,

353, 354, 356, 358–361, 363, 365,
367–369, 443, 450

call option 10, 37, 43, 84, 86, 87, 119,
144–147, 149–152, 154, 186–190,
192, 199, 219, 225, 332, 356, 357,
413, 425, 460, 461, 546, 559, 560

CAPM 289–291
cash-and-carry 428
Cauchy distribution 29
central difference 92, 93
Central Limit theorem 6, 24
CEV model 147, 212
change of numeraire 156, 191, 379
characteristic function 29, 197–200, 203,

204, 206, 241, 354, 356–358, 494
chi-square distribution 30, 31, 154, 212,

260
Cholesky (decomposition) 258, 396, 397,

407, 409, 496
Clayton (copula) 238, 239, 247, 249, 250,

261, 262
Collateralized Debt Obligation (CDO)

499, 500
commodity 331, 373, 427, 442, 457, 506
compensator (of a jump process) 51
Composite Newton–Cotes formula 162
compound

copula 263, 264
jump process 50, 51, 56, 533

concordance 233–236, 266
condition number 127, 139
conditional

coverage 305
default (probability) 492
distribution 81, 240, 260, 433
expectation 9, 83, 157, 199, 347, 413,

459
simulation 53, 54
transition density 193, 452

confidence
band 535, 538–540
interval 192, 283, 350, 537

congruential generator 12
Conjugate Gradient Method (CGM) 133
conservative term 85
consistency 110–112, 354
continuous

diffusion 45, 49, 56, 58, 531–535
monitoring 195, 412, 419, 421
time process 42, 43, 524

control
policy 69–71, 73, 75–77, 458, 474–477,

480–483, 485, 570, 571
variables 33, 72, 73, 80, 431, 458, 475,

477
controlled dynamic system 69, 71, 75
convective term 85, 91
convergence 6, 7, 35, 48, 110–112, 119,

122, 130–133, 135–139, 174, 218,
295, 312, 328, 350, 404, 406, 408,
409, 411, 412, 422, 485, 488

convolution 215, 493, 496
of densities 521

copula 67, 231–235, 237–266, 490, 491,
496

density 241–244, 246, 248–250, 252
functions 231–233, 238–240, 245, 252,

254, 255, 257–259, 265, 266, 490
corporate bonds 499
correlated events 491
correlation 32, 231, 234, 236, 237, 242,

258, 259, 290, 316, 355, 367, 396,
407, 408, 488, 496–502, 506, 507

matrix 242, 258, 259, 407, 408, 488,
496

counting process 50, 56, 446, 489, 490,
493, 525, 557

coupon bond 144, 152–155, 185, 191–193,
212, 559, 560

covariance matrix 26, 27, 255, 275–278,
282, 396, 409, 505, 509, 511, 512

Cox–Ingersoll–Ross model 144, 152, 156,
190, 212, 519, 523

Crank–Nicolson 93, 103, 106–110, 114,
118, 120, 121, 124, 126, 137, 145,
146, 149, 150, 381, 417, 424

credit
derivatives 469, 487, 488, 490, 499
risk 229, 267, 487

cross-sectional data 506, 509, 516
cubic copula 237
cumulative distribution function 5, 9, 16,

17, 42, 240, 242, 491

D

day-ahead
market 429, 431, 432, 448
price 427–429, 431, 432, 434

Debye’s function 250

Index 601

default
probabilities 490, 497
time 488, 490–492, 496
times 488, 490, 491, 496, 497

defaultable bonds 487
delivery

date 429
time (swing option) 458, 463

demand peaks 441
density function 7, 9, 21, 36, 42, 199, 204,

225, 256, 264, 302, 326, 331–334,
375, 436–438, 520

dependence 71, 130, 199, 231–239, 245,
252, 254, 266, 301, 334, 414, 415,
430, 472, 473, 488, 491, 507

diffusion coefficients 63, 65, 90, 117, 119,
510, 532, 537, 540

digital option 35
discounted expected value function 478
discrete

distribution function 9
monitoring 87, 185, 411, 412, 421

discretization 11, 45, 48, 58, 71, 78, 91,
111, 117, 121, 166, 218, 355, 360,
363, 386–388, 416, 421, 424, 462, 519

scheme 48
diversification 273–275, 278, 284, 285
downward jump 78
drawdowns 314, 315, 325
dual problem 345
dynamic programming 66, 69, 73, 74, 76,

77, 79–81, 147, 345–347, 457, 459,
463, 471, 477, 570

algorithm 74, 76, 79, 477, 570
equation 345, 347

E
Edgeworth Expansion 373, 376
efficient frontier 274–279, 282, 283
eigenfunction 374
electricity price 52, 428, 450–454, 525
elliptic 85, 563
elliptical

copula 240
distribution 240

Empirical Martingale Simulation 546
empirical moment 533, 537
endogenous random intensity 60, 61
energy price 441, 442, 448, 457
equity line 326
estimation 3, 5, 7, 8, 10, 11, 252–255,

273–277, 282–286, 289–293, 295,
296, 298, 299, 306–309, 401, 404–406,

408, 409, 450, 519, 520, 523, 524,
528–531, 533–535, 540, 541, 554, 555

risk 273–276, 284–286
estimator 7, 8, 31–39, 253–255, 292–294,

296, 298, 301, 302, 304, 399, 498,
519, 520, 523, 536, 540

Euler
discretization 48, 71
iterative formula 527
scheme 47, 48, 59, 61, 355, 521

Euler Algorithm 218–220, 224, 227, 228,
385, 386, 389

European option 48, 212, 362, 398
European-style derivative 9, 37
EWMA (Exponentially-weighted moving

average) 299, 300, 306, 310
exogenous random intensity 60
exotic options 81, 156, 229, 373, 411
explicit scheme 94, 96, 97, 111, 113–116,

136
exponential

density 22, 51
distribution 22, 23, 453
moving average 312, 313
sampling 17

F
Factor Model 290, 490, 491
Fast Fourier Transform (FFT) 185, 197,

201–205, 210, 353, 354, 360, 490,
493–498, 500, 501

Feynman–Kac 227, 417
filter 289, 290, 300–302, 306, 308–310,

343, 344, 428
financial

derivatives 9
security valuation 3

finite
difference 47, 83, 84, 93, 94, 101, 103,

109–112, 116, 136, 138, 145, 148,
156, 212, 381, 412, 417, 418, 564

element 120
first-to-default 501, 502
Fisher’s information matrix 253
Fong–Vasicek model 47
forward

contract 457
difference 92, 94
price curve 506
provision 430, 431
purchase 430–432

Fourier
methods 64, 493

602 Index

series expansion 64
Fourier Inversion 197, 200, 203, 212, 357,

385, 386
Fourier Series Method 217, 218
Fourier transform 158, 197, 200–202, 204,

208, 212, 353, 354, 356, 357, 360,
382, 384, 390, 391, 490, 493, 494,
496, 498

Frank copula 263
Frank n-copula 249, 263
Fréchet–Hoeffding bounds 233
free boundary 73

G
gamma distribution 30, 377
GARCH 311, 316, 317, 321, 326–328,

543–545, 548–555
gas spot price 441, 443, 458–460
Gauss–Chebyshev 177-179
Gauss–Hermite 177, 180
Gauss–Laguerre 177, 178, 180
Gauss–Legendre quadrature 179, 182, 186,

195, 201, 500
Gauss–Seidel 132
Gaussian

copula 241–244, 253, 258, 259, 491,
496

copula simulation 258, 259
elimination 122
kernel 256, 536
process 58, 62
quadrature 158, 174, 175, 177, 178, 181,

182, 200, 218, 387–389
variable 5, 31, 72

Geometric Brownian Motion (GBM) 46,
48, 56, 84, 88–91, 119, 144, 145, 149,
150, 157, 188, 189, 194, 333, 374,
377, 382, 396, 461, 488, 552, 553

global
minimum variance portfolio 276, 278,

283, 284
penalty (swing option) 460, 461

Godambe’s information matrix 255
Greek 109, 110, 144, 358
grid 47, 92, 94, 95, 98, 99, 101, 103, 110,

111, 127, 148, 168, 171, 201, 203,
350, 360, 397, 418, 521, 550–552, 563

Gumbel copula 247, 248, 262, 265

H
Haar function 44
hazard rate 9, 11, 23, 24, 490, 496, 497,

502, 503

heat rate 442, 443, 452, 453, 455
hedge funds 229, 505
Hessian matrix 524
historical probability 206
Hoeffding phi 236, 237
horizon refinement 460
Hull and White recursion 495

I
implicit scheme 101, 102, 104, 105, 114,

115, 117, 136, 137
implied-tree 333
implied volatility 331, 333, 336, 338, 339,

361, 365, 366, 543, 544, 549, 551–554
in-the-money (option) 87, 349, 358, 363,

443, 543, 547
inference functions for margins 251, 254
infinite element 120
initial condition 69, 71, 76, 88, 90, 91, 96,

98, 101–103, 109, 113, 116, 150, 152,
153, 221, 222, 227, 380, 382, 388,
476, 563, 565

integral equation 412, 414, 415
intensity function 52, 446, 447, 490, 525,

526
interarrival time 50, 51, 64
interruptible contracts 457
intrinsic value 196, 346, 348, 358
Inverse Fast Fourier Transform 493, 494
Inverse Fourier Transform 201, 493
Inverse Laplace Transform 213, 222, 264
inverse transformation 11, 14, 17, 18, 25,

60
iterated expectation theorem 494
iterative methods 121, 122, 127, 128, 131,

133, 135, 141, 143, 145, 155
Itô formula 5

J
Jacknife method 255
Jacobi 122, 127–131, 133, 135–141, 143
James–Stein estimator 296
joint

density 241
distribution function 231, 235, 238

jump
intensity process 60, 528
process 49–51, 56, 355, 488, 533
regime 450–452
size 56, 62, 368, 528, 534–536, 540

K
Kalman Filter 289, 290, 300–302, 306,

308–310, 428

Index 603

Karhounen–Loeve expansion 44
Kendall’s tau 234–236, 242, 246, 247, 249
Kernel regression 333
Kimberling theorem 247, 266
knock out option 116
Kupiec Test 305, 308
Kurtosis 316, 324, 340, 353, 355, 366, 376

L
L0 stable
Lagrange Interpolation formula 159
Laplace Transform 212–217, 219,

221–223, 225–230, 263, 264, 374,
382–385, 389, 391, 392

Lax Equivalence Theorem 111, 112, 114,
119

Lax–Richtmyer stability 112
Least Median of Squares 294, 307, 308
Least Trimmed Squares 294, 307, 308
Lebesgue measure 42
left tail decreasing 240
Leverage Effect 544, 545, 550, 552, 553,

555
Lévy process 29, 45, 67, 185, 206, 207,

212
likelihood 39, 251–254, 293, 296, 297,

301–303, 308, 321, 444, 450, 519–521,
523, 524, 528–530, 547

linear system 101–103, 107, 117, 121–124,
127–129, 136, 140–143, 148, 216,
388, 421

Lobatto quadrature 183, 184, 420
local

penalty (swing option) 460
volatility 333

log-likelihood function 253, 254, 302, 444,
524

log-normal 25, 331, 333, 339, 343
logarithmic likelihood function 253
lognormal 78, 146, 225, 237, 343, 373,

375, 376, 386, 391, 393, 543, 544
mixture 343

Longstaff–Schwartz simulation 66, 345,
351

lookback options 84, 411–413, 418–421,
423, 425, 426

lower tail dependence 238, 239
LU Decomposition 122, 124, 127, 140,

144, 382, 421

M
Malliavin derivative 345
marginal

cost of production 441

default probability 494
market

heat rate 443
model 3, 290, 299

Markov
chain 474, 480
control policy 477
control problem 476

martingale 66, 207, 212, 347–349, 351,
379, 380, 546, 547

maximum likelihood 251, 253, 293, 301,
303, 308, 444, 450, 519, 520, 523,
529, 530, 547

estimation 301, 519, 529, 547
estimator 253, 293, 519, 520, 523

mean
reversions 427
reverting process 58, 444

Mean Absolute Error 304, 309
Mean Error 304, 309
Mean Square Error 5, 103, 105, 107, 108,

301, 302, 304, 309, 524
mean-variance 273, 276–287
measure

of concordance 234
of dependence 235, 236

Midpoint formula 164, 165
Milstein scheme 48, 355
mixed jump diffusion 49, 56, 66, 531, 533,

534, 536, 537, 540
mixture 311, 331, 333, 334, 336, 340–343,

527
moment

generating function 30, 225, 226, 493,
494

matching 375, 386, 391
Monte Carlo

methods 3, 7, 9, 10, 35, 39, 395, 398,
399, 401, 404, 491, 496, 498, 523, 559

simulation 3, 9, 11, 154, 212, 231, 257,
311, 345, 347, 355, 356, 390, 395,
411, 412, 419, 421, 426, 499, 500,
519, 520, 545–547, 551–553

mortgage-backed securities 471
moving average 299, 312, 313
Moving Average Convergence Divergence

(MACD) 312
multidimensional inverse transformation

17
multinomial approximation 508
multiple exercise derivative 457
multivariate

Gaussian copula 241, 253

604 Index

Gaussian distribution 240
normal distribution 25, 240, 242, 274,

276, 508, 509
optimal stopping rule 476
stationary process 255
Student’s t distribution 242

N
net present value 443
Newton–Cotes formula 158, 161–163,

174, 179, 186
NGARCH 545, 547, 548, 550, 552
non-central chi-square distribution 154,

212, 562
non-linear least squares 335, 360, 545, 549
non-parametric 333
nonparametric

estimation 255, 531, 535
kernel 251, 266

norm 28, 47, 111, 113, 114, 133, 136, 137,
143

normal
density 25, 27, 28, 241, 342
distribution 6, 22, 24, 25, 43, 46, 240,

242, 274, 276, 305, 316, 324, 508, 509
null hypothesis 316, 324, 326
numeraire 156, 191, 199, 379, 380
numerical inversion 19, 25, 26, 168, 203,

213, 216, 219, 221, 223, 225–230,
354, 374, 384–386, 389

O
OLS regression 548
optimal

allocation 79
control 69, 71, 73–77, 81, 82, 433, 458,

476, 480, 482, 483, 569, 571
control policy 73, 75–77, 476, 480, 482,

483, 571
control problem 69, 71, 74, 76, 433
investment problem 79
stopping problem 73, 81, 569
stopping time 72, 483
strategy 474

optimization problem 69, 74, 80, 156, 339
option valuation 66, 459
options 66, 459

American 66, 77, 148, 149, 156
Asian 10, 33, 48, 219, 226, 227,

374–379, 381, 382, 384, 391, 392,
396–398, 406–409

at-the-money 211, 338, 359

barrier 45, 48, 152, 156, 185, 194, 196,
197, 212, 229, 488

basket 5, 11, 84, 267, 395
Bermuda 346
bond 190, 562
call 10, 37, 43, 84, 86, 87, 119, 144–147,

149–152, 154, 186–190, 192, 199,
219, 225, 332, 356, 357, 413, 425,
460, 461, 546, 559, 560

digital 35
European 48, 212, 362, 398
exotic 81, 156, 229, 373, 411
in-the-money 87, 349, 358, 363, 443,

543, 547
knock out 116
lookback 84, 411–413, 418–421, 423,

425, 426
out-the-money 355
path-dependent 5, 10, 37, 38, 84, 395,

399, 411
payoff 4, 5, 10, 33, 35, 36, 38, 83, 190,

191, 373, 397, 398, 452, 458, 459,
487, 559, 560

put 77, 86, 87, 147, 148, 154, 211, 346,
349, 416, 424, 425, 554

real 441, 442
spark spread 442–444, 449, 450, 452,

453
spread 52, 313, 359, 363, 442–444,

449, 450, 452, 453, 465, 471, 472,
488–490, 496–501

swing 457–461, 463–466
vega 358, 560

Ordinary Differential Equation (ODE)
213, 221

ordinary least squares 289, 294, 306, 450
orthogonal polynomial 176, 177
oscillations 109, 110, 115, 119, 120, 342,

444, 452
out-of-sample 274, 278, 280, 281, 284,

285, 287, 368, 472
out-the-money 355
outliers 290, 293–295
outstanding balance 471, 473, 477, 479,

480, 487

P

p-values 306–308, 316, 317, 326–328
parabolic 85, 116, 119, 219, 563
parametric estimation 519
path-dependent 5, 10, 37, 38, 84, 395, 399,

411

Index 605

pay-off 4, 5, 10, 33, 35, 36, 38, 83, 190,
191, 373, 397, 398, 452, 458, 459,
487, 559, 560

PDE 83–86, 88–92, 95, 110, 111, 116,
119–122, 127, 128, 144, 145, 149,
150, 152–156, 192, 193, 212, 213,
221, 222, 373–375, 379, 388, 411,
412, 417, 418, 420–422, 424–426, 563

PDE Solver 149, 563
peak price 449
Pearson’s linear correlation 236, 242
penalty 156, 457–461, 463–466
performance measure 70, 314, 569
periodic intensity function 52
Poisson

jump time 23, 24, 55
process 50, 51, 490, 496, 526
random variable 53, 54, 355
realization 53

Poisson–Gaussian process 58
portfolio

choice 82
turnover 286, 287

positive quadrant dependence 239, 266
Posterior Distribution 297, 298
power

plant 427, 429, 442, 443, 448, 449, 452,
453, 455

unit value 448
present value 9, 10, 335, 443, 458, 459,

461, 496, 497
principal components analysis 505,

507–509
Prior Distribution 306
probability distributions 3, 36, 39, 76, 331,

333, 374, 435, 481, 483, 484, 488,
490, 492, 496, 508

profit
factors 314, 324, 325
& loss (P&L) 304, 348, 431

pseudo-random (number) 11, 12, 14
pseudo-random samples 9, 11, 511
put option 77, 86, 87, 147, 148, 154, 211,

346, 349, 416, 424, 425, 554

Q
quadrature 157, 158, 173–190, 192–197,

200, 201, 211, 212, 216, 218, 354,
387–389, 412, 418, 420, 500

quasi-Monte Carlo 66

R
Radon–Nikodym derivative 42
ramp-up time 442, 449, 453–455

random walk 38, 48, 303, 308, 311, 316,
321, 327, 462, 466

rate of convergence 135–137, 406, 523
real

estate 276, 471
options 441, 442

reciprocal gamma 375, 377, 386, 391
Rectangle Rule 163, 164, 166
recursive algorithm 459, 490
reducing the variance 3, 31
refraction period 459
regime-switching behavior 429
Relative Strength Index 313
replication 8, 82
resampled frontiers 279, 283
resampling 273, 274, 276, 278–280,

283–286
residual capacity 430, 431
Reweighted Least Squares 294, 295, 307
right-continuous 15
risk

analysis 505, 516
free 35, 549
management 3, 505

risk-neutral 9, 77, 83, 84, 147, 152, 157,
190, 207, 212, 226, 331–333, 337,
338, 341, 342, 353, 356, 374, 396,
491, 546, 547, 549, 560

density 226, 331–333, 338, 342, 353
probability 4, 9, 83, 84, 157, 349, 356,

374, 396, 491, 546, 547
Robin boundary condition 86, 90, 564
robust estimate 289
rolling regression 290
Romberg Extrapolation 168, 170–172,

181, 187, 195

S
sampling theorem 62, 562
Schauder function 44
Schweitzer–Wolff’s sigma 236
seasonality 441, 445
self-financing

portfolio 80
trading strategies 79

series expansion 43–45, 48, 64, 104, 118,
376, 391

shape factors 505
Sharpe ratios 285, 286
short-term interest rate 519, 523, 525
shrinkage 289, 290, 295, 296
simplex

method 156, 524

606 Index

search method 524
Simpson quadrature 173, 500
Simpson Rule 158, 172–174, 180, 186
simulation 3, 39, 41, 42, 48–51, 53–55, 58,

59, 66, 67, 257–264, 279–281, 317,
321–323, 345, 395, 396, 406–408,
421, 422, 505, 506, 511, 514–516,
528–531, 537–540, 545–547

schemes 3, 48, 49
skewness 324, 334, 353, 355, 376
smile 188, 206, 331, 333, 340, 365, 366,

506, 543, 544
smoothing 290, 299, 300, 306, 534, 555
Snell envelope 345
source term 85
spark spread 442–444, 449, 450, 452, 453
Spearman’s rho 234–236, 242, 249
spike 52, 441, 447, 485
spot

delivery 427
market 429–432
price 48, 84, 85, 89, 99, 145, 146, 186,

187, 194, 196, 197, 203, 223, 335, 358,
368, 388, 413, 419, 421, 430–436,
442, 443, 457–461, 464

spread 52, 313, 359, 363, 442–444, 449,
450, 452, 453, 465, 471, 472, 488–490,
496–501

spreadsheet 125, 206, 306, 336, 338
square-root model 145, 188, 219, 227, 354,

523, 525, 528, 530
stability 110–113, 115, 117, 119, 126, 278,

299, 367
standard

Brownian motion 38, 42, 44, 48, 56,
374, 435, 532

deviation 49, 277, 283, 284, 309, 316,
317, 322, 326, 328, 340, 343, 537,
540, 541

normal variable 59, 528
state variable 5, 7, 9–11, 41, 46, 51, 60,

69, 71, 72, 79, 80, 84, 86, 301, 412,
458–460, 466, 476, 477, 482, 519, 559

stationary 24, 45, 62, 64, 133, 252, 255,
315, 326, 377, 436, 437, 562

process 45, 62, 255
statistical inference for copulas 251
Statistically Equivalent Portfolio 279, 282
Steepest Descent Method 133
stochastic 11, 41, 42, 45, 49, 56, 66,

69–74, 76, 79, 81, 83, 84, 203, 207,
252, 333, 334, 353–355, 365, 366,
368, 369, 433, 442, 443, 520

differential equation 56, 83, 353, 446,
520, 523, 525, 532

dynamic programming 76
mesh method 345
optimal control problem 71, 433
volatility 66, 84, 203, 333, 353–355,

365, 366, 368, 369
stratified sampling 13, 15, 399, 409
strike price 10, 37, 43, 48, 77, 147, 186,

190, 338, 339, 348, 349, 374, 388,
391, 397, 412, 413, 443, 457, 543, 563

structural model 488
Student t-copula 242, 244, 245, 260
successive over-relaxation (SOR) 122
supply

& demand 427, 441, 525
price 430, 432

survival
copula 240
probability 244, 495

swing
pay-off 458
rights 458, 459, 464–466

swing (option) 457–461, 463–466

T

technical analysis 311, 312, 315
Technical Rule 312
term structure 46, 81, 156, 355, 363, 365,

505–507, 511, 514, 519, 544
terminal condition 84, 86, 88, 414
thinning

method 59–61
simulation 55

threshold 10, 35, 48, 87, 127, 129, 131,
166, 450, 451, 465, 466, 491

time
dependent volatility 427, 553
horizon 54, 61, 69, 73, 346, 348, 349,

363, 460–462, 471–473, 475, 480
time-to-maturity 382, 507, 511, 512, 516,

545, 546, 549, 550, 554
Trading Rule 311, 316, 317, 321, 324–328
transacted quantities (swing option) 458
transaction costs 82, 315, 328, 472, 473,

480
transition

density 37, 45, 48, 157, 212, 414, 519,
520, 522, 523, 527

probabilities 46, 58, 474, 476, 519, 521
Trapezoidal Rule 171, 172, 180, 186, 189,

200, 201, 203, 218, 360, 383, 385, 416

Index 607

trend 25, 311–313, 332, 435, 444, 446,
450, 451, 544, 555

tridiagonal system 124, 420
trinomial discretization 460
truncation error 110, 111, 201
T -statistic 306, 315

U
uniform density 13
univariate

standard normal 258, 496
Student t 244

up jump factor 78
upper tail dependence 247

V
value

function 74–76, 81, 461, 463, 477–481,
485

at risk (VAR) 290, 304, 308, 310
value-at-risk (VaR) 66, 304, 305, 505, 514
variance–covariance matrix 274–278, 282,

292, 511
variance reduction 11, 31, 33, 34, 395,

398, 399, 455, 560

Vasicek model 46, 47, 307, 561
vega option 358, 560
volatility 48, 63–66, 84, 188–190, 203,

327, 331, 333, 336, 338, 339, 353–356,
358, 359, 361, 363, 365–369, 425,
447, 540, 543–546, 549, 551–555

smile 188, 333, 366, 506
surface 333, 355, 363, 365–367, 544,

545, 551, 552, 555

W
Wald’s theorem 558
weak solution 532
Wiener–Hopf 212
Winsorizing 294

Y
yield 338, 339, 363, 507, 509, 511–516

curve 507, 511, 512, 514, 516

Z
zero-coupon 152, 154, 190, 559, 560
zero variance estimator 38
Z-transform 414–416, 420

